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Abstract

This contribution describes a general mixed-integer linear programming model based on a time-indexed formulation
covering the relevant features required for the complete supply chain management of a multi-site production network.
While the actual application is taken from the chemical industry, the model provides a starting point for many ap-
plications in the chemical process industry, food or consumer goods industry. In many real world problems certain
features just need to be eliminated from this general model in order to describe a current situation. The model combines
aspects related to production, distribution and marketing and involves production sites (plants) and sales points. Be-
sides standard features of lot sizing problems (raw materials, production, inventories, demands) further aspects, e.g.,
different time scales attached to production and distribution, the use of periods with different lengths, the modeling of
batch and campaign production need to be considered. There are also new conceptual aspects in this paper, e.g., how to
define the capacity of a multi-site, multi-product production network, or how to approach complex planning problems.
We give a complete description of features ready for implementation, and the experience we have with the current
implementation in our company. A long-term implication of this contribution might be that it will initiate further
research efforts aiming to derive special cuts improving the formulation. © 2000 Elsevier Science B.V. All rights re-
served.

Keywords: Decision support systems; Modeling; Production; Inventory; Transportation; Distribution; Integer
programming; Branch and bound

1. Problem definition called multi-purpose plants, i.e. plants with ma-
chines or reactors that can be operated in different

1.1. Introduction modes. In each mode it is possible to produce
several products according to free or fixed recipes

A problem frequently occurring in food or (joint production) leading to a general mode-
chemical process industry is the modeling of so- product relation: in a certain mode several prod-

ucts are produced (with different maximal daily

—_ production capacity rates), and vice-versa, a
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production time. Planning problems of this type,
where the production of an item implies some
discrete event, are called /ot sizing problems. For a
survey on lot sizing problems see Kuik et al.
(1991).

Because of their high complexity, these prob-
lems are often seen as academic and not suitable
for practical optimization. Instead, either simpli-
fications (like linear relaxations) or simulation
approaches are used, especially if there are several
plants, tank inventories, and the production
problem is just a part of the bigger problem of
optimizing the whole supply chain with regard to a
detailed description of the commercial environ-
ment, such as demands with different prices for
different customers, availability of raw material or
quality commitments.

We developed a rather general approach, a
linear mixed integer model, that can handle all of
the features mentioned and was successfully im-
plemented into a production planning system at
BASF. The system is able to produce near-optimal
production plans in reasonable time on a regular
basis. Examples are presented in Section 3.4.

1.2. Problem description

The problem of finding strong MIP formula-
tions for modeling of changeovers has attracted
several researchers in the past years, see for ex-
ample Constantino (1996) or Wolsey (1997). For
describing the general mode-product relation, we
follow the formulation by Kallrath and Wilson
(1997), which is shortly presented in Appendix A.
We extend and generalize their formulation in
order to model detailed description of commercial
aspects: We now distinguish between production
and marketing. The first is taking place in pro-
duction sites or plants, the second in sales points.
Because of the different accuracy of the available
data, we use different time scales for plants and
sales points, leading to an appropriately exact
description of each real world aspect (see Fig. 1).

Plants and sales points and sales points among
each other are connected by transport, so we can
include the case that production sites and distri-
bution depots are at different places, even in dif-

ferent countries. All types of transport are
modeled by semi-continuous variables.

Production mode changes may take place at
any time in a production period, but at most once.
Following the classification in Belvaux and Wolsey
(1999), lot sizing problems of this type are called
small bucket problems with two setups (one before,
one after mode change) per period (SB-2P). Our
model is capable of mapping special features such
as batch or campaign production. Batch produc-
tion operates in integer multiples of batches where
a batch is the smallest unit to be produced, e.g.,
200 tons. Several batches following each other
immediately establish a campaign. Some typical
batch restrictions group batches into campaigns,
or consider that only campaigns of a minimal size
can be produced. Multi-level production or raw-
material consumption can be modeled as well.

The inventory aspects are described in great
detail considering fixed tanks, product-variable
tanks and containers. For all products, the model
keeps track of their origin to satisfy customers who
have preferences for a specific production site. This
is needed in the area of high performance chemi-
cals, but also, for example, in food industry, where
customers have preferences for products that come
from certain areas or even preferences for certain
types of packaging. Demands of different cus-
tomers at the same sales points can be aggregated
or described individually (e.g., with different pric-
es) for some or all customers.

Finally, the model and its implementation
supports several objective functions, the most im-
portant of which are: maximizing total sales,
minimizing costs, and maximizing contribution
margin. Conceptually, the maximizing sales sce-
nario allows definition of the capacity of a multi-
site, multi-product production network.

2. A mixed-integer linear programming model

We consider production sites (plants) located in
different countries. All of them can manufacture
the most important basic products, some can do
additional rarely wanted products. To each plant
or reactor belongs a set of modes (=status of
plant), in which it can be operated. In each mode
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several products can be produced. A product may
be produced in several modes. A plant either is in
exactly one mode, or it is doing a changeover from
one mode to another. Although the sites, some-
times referred to as origins, are similar with respect
to the basic products, we cannot treat them as
being quite identical. Some customers need to
know exactly where their products come from, or
they demand the product from a special site. To
model this, we group our customers with their
demands into sales categories. For each category,
sales prices and allowed origins can be defined
individually.

Because of the need for flexible and fast de-
livery, production and distribution networks will
often have more sales points than sites. Each of
the sales points is connected to one site by
transport facilities, different sales points may be
connected to the same site. The sales points
among each other are also connected, and all of
them have some (fixed or product-variable) stor-
age tanks and container space for different prod-
ucts available.

For marketing aspects, we use a commercial
time scale, whilst for production a production time
scale. Usually marketing is less exact in forecasting
than production, so we can treat each aspect with
the appropriate precision and time resolution.
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2.1. General framework

Throughout this model description the follow-
ing set of indices will be used. Because of the two
different resolutions of the time scale, we have two
indices, k and ¢, for time, the index r is used in
Section 2.2 to connect these two (Fig. 2):

ie”s production sites
plants origins

ke ={l,...,K;}  production periods

me M; modes (site-depen-
dent)

pEP products

re R, ={1,...,Ry} production slices in
commercial slice

qge 2 raw materials

s sales points

teg =A{1,...,T} commercial periods

ceE® sales categories

(customers)

2.2. Time discretization

The goal of the production planning system is to
compute an optimal production plan (or one with
guaranteed bounds) for a certain planning horizon.
The starting point and length of the planning hori-
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zon can be chosen by the user. Regarding delivery or
sale, usually a commercial time scale of 12 periods
(months) is chosen. Another possible scenario
would be to cover a production plan with 16 peri-
ods: the first 12 with a length of about 30 days, and 4
additional ones with a length of 120 days. So the
production plan would cover a total time of 2 years.

We divide the entire planning horizon into K;
production slices of size DY /R;, days, where D" is
the length of the 7th commercial period in days and
R; is the (integral) number of production slices
embedded in that commercial period. A different
number of slices can be embedded for each plant i.

In most cases, especially at the beginning of the
planning horizon, the production schedule has a
finer resolution than the commercial plans for sales
and shipping, see the following example. This has
to be done, because we can have no more than one
mode change per production period. Using two
time scales, the resolution is chosen adequately for
the purpose of both production planners and
marketing people. The function

ift=1,

ift>1, (2.1)

... 0
k(i) = {k D

gives the number (minus one) of the production
slice starting at the beginning of the commercial
period ¢ at site 7, and, with r referring to a pro-
duction slice embedded in the commercial time
interval 7, k(i,¢,7) := k,(i,t) + r gives the absolute
number k(i, ¢,7) of that production slice within the
production time scale referenced by ¢ and r at plant
i, and connects both time scales. If the production
time scale and the commercial time scale are
identical, we have R, = 1, and k := k(i,t,r) = 1.

2.3. Modes, mode-changes and production

The current model uses exactly the concepts of
modes, mode-changing and coupling to produc-

tion described in detail by Kallrath and Wilson
(1997). For convenience of the reader, this ap-
proach based on state variables is briefly summa-
rized in Appendix B.

Using this approach we end up with variables
mi, telling us the number of days (fractional days
are allowed) in which the plant is in mode m
during production period k:

mb >0 number of days plant i in period k
is in mode m, (2.2)

and the production variables

p; . = 0 tons of p produced at plant i in period k.
(2.3)

These are connected with the help of the produc-
tion rates data R},

Piik < Z Rﬁnpmzenk V{ipk}. (2.4)
meMi|3R],

The production rates R}, are also used to in-
dicate whether product p can be produced in mode
m at site i at all. If R} =0 this is not possible.
Note that (2.4) is an inequality. Even if the plant is
in a mode in which certain products could be
produced there is no need to produce at full ca-
pacity.

The inclusion of campaigns of minimal size,
discrete batches or the requirement that the plant
has to stay in a certain mode for at least, say 5
days, over several production slices is possible. The
basic idea is numbering campaigns consecutively
and to give the production variables p;k a further
index n to account for the campaign the product is
produced in. The details are described in Kallrath
(1999).

2.4. Coupling production to raw material flow

At site i the production of one ton of product p
requires RZP tons of raw materials ¢g. Note that a
product may require several raw materials and
that some raw materials are used by several
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products. Therefore the following equations are
set up to couple the production products variables,
p;k, to the variables u, describing the usage of
raw materials:

Uigr = Z pr;k v{igk}. (2.5)
pe/\R,Up>0
The factors, R}, , may be interpreted as utilization
factors. 1 <RU < 1.1 is a typical range. Ingp =1,
it means that the amount of raw material is com-
pletely converted into a product and no loss oc-
curs. The coupling between the usage of raw
material and the availability is established by the

stock balance equations (2.26) and (2.27).

2.5. Modeling transport

Because products are manufactured in plants
and sold in sales points, we have to use transport
to distribute the products. Logically, this type of
transport also connects the different time scales via
the mass balance equations (2.22)—(2.24). Another
type of transport connects the different sales points
to each other. Transport is described by transport
times 7 and 77  and further by certain minimal
quantities whlch have to be observed. The model

considers transport variables

o tons/prod. period of p shipped

from site i to sales pt. s,
(2.6)

Pssypie toms/comm. period of p

shipped between sales pts. (s — s4).

These are semi-continuous, because transport
does not make sense below some minimum
amount 7. Semi-continuous variables, o, for
instance, obey the definition

Ok =0V T <o <M V{ispk}. (2.7)
It is not advantageous to define semi-continuous
variables with the help of binary variables using
the definition above, because the solver will usually
not drive the binary variable to unity, if the cor-
responding continuous variable is above the lower
limit. Instead, it will branch on the binary variable

unnecessarily in the branch-and-bound process.
State of the art MIP solvers give the user the op-
portunity to define semi-continuous variables di-
rectly.

As said, the first type of transport is used to
distribute the products from a plant to the different
sales points it is corresponding to. This is done by
a distribution equation

Ph =Y o Vipk}. (2.8)

s€S

The second type of transport is defined in the
material balance equations (2.22)—(2.24).

2.6. Including demands

We now come to the commercial aspects of our
model. Most important data are the demand data
Dy, telling the demand of product p at sales point
s in commercial period ¢. To increase flexibility, we
use the index ¢, to class articles into different sales
categories. This allows us to define different prices
for different customers for the same product, or to
exclude certain origins of the product. Remember
that certain customers impose severe restrictions
on the properties of the product and therefore can
be delivered only from a subset of the plants. If the
sparse table Dj‘pla has no entry for a combination of
sales point s, product p and sales category ¢, every
origin (plant) 7 is possible. Otherwise only the
given origins are allowed. Using this information,
we define the sales variables
| 3Dy A (Vi ADA v 3DA ) (2.9)

YplEf spcj spci

as the sales (in tons) of product p in category ¢
from sales point s produced at i in period z. Sales
variables are created only for allowed origins, and
only if a demand exists.

Certainly no more must be sold than is required
by the demand, i.c.,

Z Spics < Dsper V{spet}

icd

(2.10)

is a simple bound restricting the sales variables
from above. A lower bound, forcing a minimum
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demand to be satisfied, can easily be constructed
the analogous way.

Some customers can adapt to the specific
quality of a product, but they want to do that only
once. In these cases the solver is free to choose one
of the allowed origins for the customer, but it has
to be the same for the whole planning horizon. If a
sales category c is specified in the sparse table D;“pzc,
shipment of p must always come from the same
site To model this last feature the sales variables

Sty are coupled with the binary variables
if sale may occur

ro._ 1 . A2
Opic *= {0 otherwise Vispic} | 3D

spc?

(2.11)

only generated if Dfp{ exists. Of course there must
be at least one possible origin for the demand,
defined in table D{,,. The binary variables are

connected by the convexity constraint

Z 5”]“ =1 V{spc}.

i€y

(2.12)

and s’

Let us now couple 5W spict”

The inequalities

Jpl(t g Méaplc v{iSPCt}

(2.13)
ensure that no sale of product p in category c
from origin i at sales point s is possible if
53sz¢ =0. If 5; =1 then the inequalities (2.13)
produce the redundant bounds s}, <M. M is a
sufficiently large upper bound, the best choice is

M = DSpL'l'

2.7. External purchase

Due to lack of capacity it may happen that not
all of the demand can be covered by production.
Therefore, it is very important to provide the op-
tion to consider external purchase of products.
External purchase is characterized by the amount
P!, which can be purchased at most and the cost/
ton C_g,, for external purchase. It is very important
that these costs reflect the real business process
and not only are some artificial penalty costs. The
external purchase variables

Pui (2.14)

describe external purchase (in tons) of product p in
period z. We define an additional plant and let all
products bought externally have this plant as their
origin, reflecting the impossibility to sell product
from the “wrong” plant to certain customers. This
additional plant may also be used as origin for
stock inventories whose origin has been forgotten
or that are impure. If the problem is infeasible, we
can allow products from all plants to be bought
externally. These variables hint for the bottle neck
in the current situation (not all demand can be
satisfied) and may provide a platform for discus-
sion about what to do with the current demands.
Maybe a customer will accept delivery in a later
period. The variables pf, are bounded according
to

p_&plt = })fyt V{Splt} (2 1 5)

2.8. Product inventories

The model contains stocking of products in
tanks and containers. They are associated to sales
points and contain a specific product from a spe-
cific plant. At each site there is a set of 47 tanks,
which can store any product. Concerning con-
tainers we only look at the sum of inventoried
product from the same origin. Tanks have upper
capacity limits S; , whilst the use of containers is
only constrained by the physical space S¢ available
to keep them. Note that the tank capacity limit
depends on the product: Some tanks may not be
able to store certain products, and, because often
products are computed as being pure although
their concentration is only, say, 40%, tank capac-
ities may be different for different products. We
define the non-negative continuous stock variables

>0 V{spit} Yne N, (2.16)

spz itn

total stock (tons) in tank n at s of product p pro-
duced at i at the end of period ¢, and

>0 V{spit} (2.17)

S‘pll

total stock (tons) in containers of p produced at i
at s at the end of period ¢. To keep track of which
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product is in a tank, we define some binary vari-
ables

/lspim =
{ 1 if tank » at s is filled with p V{spit},
0 otherwise Vne AT
(2.18)

We ensure that the tanks contain only one product
at a time by coupling the binary variables A, to
the inventory variables i~ and adding the con-

vexity constraint (2.20):

spitn

it <SS Apim V{spit} Vne /T

spitn ~X Sspn

(2.19)

This equation also serves as the capacity con-
straints for the tanks. Similar to (2.12) we need a
constraint

Z Z Jspim < 1 V{st} Vne JVST’

pe? icS

(2.20)

guaranteeing that at most one of the binary vari-
ables is unity. If a tank is empty at the end of a
period, the sum on the left-hand side of (2.20) is
zero and the inequality is inactive.

The sum over all products stored in containers
at a given site is constrained by

3N i€, <8 Vst

pEY ics

(2.21)

2.9. Balance equations

The different parts of the model described so far
are connected by material balance equations. They
also connect the commercial time periods. Pre-
cisely, the balance equations connect the ends of
the periods by looking at the sum of inflow and
outflow. This can be interpreted in a way, that the
model assumes incoming and outgoing flows in a
given period to take place in such an order, that
the tanks (and containers) neither overflow nor
run below zero. The inflow f{, consists in trans-
port from plants and other sales points and ex-
ternal purchase:

R(i,t)
J SS 1S
<f.;pit - Z T:vs.vpit + T;'spt + Z O-ispk(i,t—Tii_,)

ss €S |ss#s r=1 \t>Té
E .
+ E p,s'gspitf T;S;A + pspit V{Splt},
s, €S STS

(2.22)

where 7! the time needed to ship products from
site 7 to sales point s and 77 the time for shipping
from sales point s, to sales point s. Note that be-
cause 7. and 7 are used in the index it is required
that they are integral. If the commercial time scale
is shorter than the time needed for transport, we
may have transports on their ways at the time the
model is run, these have to be input as 7> and
T3, Due to the non-zero transport times it may
happen that certain containers shipped to a desti-
nation will not arrive within the planning horizon.
Currently this problem is handled by the following
rule: no transport is allowed if the product would
not arrive at the destination within the planning
horizon.

The outflow f¢, consists in transport to other

spit
sales points and sales to customers:

o0 _ E
spit pSSdPi’

SA€ES |saFSNATS < T

ssg X

+ Zsipm V{spit}.

ceb

(2.23)

The balance equation reads

2 : .p .C
lspiln + lspil

neJ"’ST
— P :C ! 0 .
- z : lspit—ln + lspil—l + spit — Jspit V{Spll‘}.

ne 1\7

(2.24)

The sum on the left-hand side of the equation is
the total storage of product p from plant / in any
available tank. The sum over all tanks on both
sides of the equation implies that stock can be
exchanged between compatible tank at zero cost.
(For t = 1 we replace the first term one the right-
hand side 3, v it ,, by 35, 7 S0, the sum of
the initial product stocks.)

It is possible to define a strategic minimal stock
amount Sj,”pi for products stored at any sales point:
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Z ii;im + iscg;zt = Sjwpz V{Spll} | ElSspz

VIE./VST

(2.25)

2.10. Raw material inventories and balance equa-
tions

Raw material inventory levels sf, should al-
ways be above the safety stock and should never
exceed the capacity limits. Raw material invento-
ries are supplied by incoming transport at certain
periods described by the table quk. The raw ma-
terial usage is governed by the equations

1 - qul iql V{lq} (226)
and
sf.;k = S:;k_l + R‘qu — “f;k Yiq}, k>1. (2.27)

Note that R} represents the sum of initial raw
material stock and what is supplied in the first
period.

The raw material inventory levels are enforced
by the bounds

SE <R < SRE ighy. (2.28)

2.11. Objective functions

The model can be used to answer a variety of
questions and therefore covers several objective
functions. The most important from the econom-
ical point of view maximizes the contribution
margin. It includes the yield computed on the
bases of production and the associated sales prices
and the cost. Another one neglects the yields and
just asks for the costs to satisfy all demands. If this
is not possible, i.e., capacity is not sufficient, we
may want to maximize total production without
regard to costs or yield. Other possible scenarios
would be to minimize changeovers, minimize tank
stock at the end of the year, minimize transport,
etc.

The yield is computed from the specific sales
prices S..:

y=20 00 D S

s€S peP teT c€C icS

(2.29)

There are a whole lot of costs that can be incor-
porated: variable production costs

; ; kZ Chph (2.30)
i€t p
mode changing costs
; Z ; Dl Gimms (2.31)
i k=1 m mye
’”2#’”1

costs for transport between sales points and sites

=222 ZCT’T Tt

icd s€¥ pe? k=1

(2.32)

costs for transport between sales points and other
sales points

=22 2 2 2 Cal b (233)
S€Y sq€Y peP teT iced
and finally, inventory costs
=22 2 2 G et 2 i
SES peEP icS t€T nen’t
(2.34)

The objective function for the “maximize contri-
bution scenario”

(CV+CM+CTI+CTS+CSP).
(2.35)

max Z,, Z, =y —

As is discussed in Kallrath and Wilson (1997) it is
advantageous to formulate such block objective
functions by replacing the block terms by their
explicit equivalents.

In the case of the “minimize cost scenario” the
objective function is simply

max Z, Z, = —(c" + M+ "+ P+ 7).

(2.36)
To avoid infeasibilities due to lack of production

capacity sufficient external purchase of products
should be made available.
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The motivation for “maximize total sales sce-
nario” is to handle cases in which the capacity is
not sufficient to satisfy all demands but to produce
as much as possible with the available production
capacities. If we would neglect the demands com-
pletely we would get a trivial solution: the plant
systems produces the products according to high-
est production capacities and avoids mode changes
completely. That is not what we want. Including
the yield and cost structure into the problem
would in fact lead to the “maximize contribution
scenario’ and is not compatible with what we as-
sociate with “maximum total sales” because some
production is neglected because it is not attractive
from the economic point of view. A consistent
approach is to neglect costs (nearly) completely,
and to set yields for all demands to an equal value,
say, 18, or any realistic average yield. So we
maximize total sales by trying to satisfy as much of
the demand as possible. Thus the objective func-
tion is simply

max » Y >N (Zsjp,.c, - 0.9@,).

S€Y peP teT icS et

(2.37)

The only cost that has to be considered is costs for
external purchase, otherwise the model will just
satisfy demands by externally purchased products
it gets for free. The consequence of the simplicity
of the objective function is that the problem is
highly dually degenerate. Therefore it produces
solutions which appear as ‘“‘strange”, with lots of
transport, for example. In case the initial and final
stocks are the same maximizing sales is equivalent
to maximizing production. So, this scenario can
tell us the total production capacity of the whole
production network with respect to a given de-
mand pattern.

3. Implementation, optimization techniques, results

3.1. Real world aspects

The following numbers should give an impres-
sion of the size of the problem: The production

network consists of four plants (sites) in three
different regions with their own sales point and one
additional tank farm. Each site can produce
products in five different modes. Only one raw
material is considered. The sales points have a
fixed tank for every product and between one and
six variable tanks plus container storage space.
Over two hundred demands (combination of
product, origin, sales category and time period)
have to be fulfilled. A typical plan consists out of
12 commercial time periods, which are divided into
12 to 36 production periods, depending on the site.

3.2. The database and user-interface

The aim of our modeling is to make regular
production planning possible on a PC. In order for
the system to be accepted, easiness of use is its
most important feature. We choose an MS-
ACCESS database to store all the necessary data,
and a friendly user-interface was also programmed
in MS-ACCESS. The interface invokes the model
generator and solver, and interprets the output
after optimization. This approach allows the de-
veloper to distinguish completely between the data
and the structure of the model. Communication
between user-interface and solver is exclusively by
ASCIT files. This proved to be superior in speed
when compared with the ODBC interface in MS-
ACCESS. The interface includes a number of
switches to allow using the model for different
purposes. For instance, availability of raw mate-
rial is usually not considered in the first production
planning round, in order to determine the actual
demand of raw material. When orders have been
affirmed (or rejected), an optimal plan is computed
with the available amounts. Or, initially, one
probably would switch off the batch and campaign
constraints across periods. However, in a fine
tuning phase one might add this feature.

3.3. Mathematical aspects

The model lead to a mixed-integer linear pro-
gramming problem (MILP) with the following
problem statistics:
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7643 Trows

15137 structural columns

49613 matrix elements

406 rhs elements

7869 bound elements

0 general integer variables
720 binary variables

7036 semi-continuous variables
14288 directives

density is. 042884 percent

A primal simplex algorithm is used to compute
the LP-relaxation; the solution is stored keeping the
basis of the scenario. For the ‘““maximize contribu-
tion” or “‘minimize cost’” scenarios we use branch
and bound with a dual simplex algorithm while the
“maximize sales” scenario works much better with
the primal algorithm because of its dual degeneracy.

Because of the large number of binary and
semi-continuous variables in the model, we have to
support B&B with directives defined for discrete
variables. In the “maximize contribution margin”
and “minimize sales” scenario the variables 5;1.6,
which assure that certain customers always get the
product from the same site, should be given high
priority. Next important are the plant state vari-
ables 9;,; described in (A.1). The solver should
always try to bring them down first. Later come
the binary tank variables Ag,. Also, the “down”
branch should be evaluated first. If not produc-
tion, but storage capacity is the main bottleneck of
the system, the plant status and the tank variables
may be exchanged in importance. Last come the
semi-continuous transport variables. In their case
the ““up” branch should be the first to be explored.

3.4. Implementation and results

For a typical reference scenario (S;) covering
12-36 production time periods we have derived

production plans maximizing total sales. Using
Dash’s MILP-solver XPRESS-MP 10.05 (Ashford
and Daniel, 1987, 1991), we got the results given in
Table 1 (including the number of continuous 7.,
binary b and semi-continuous variables sc, number
of constraints ¢, integer solution number /P, num-
ber of nodes n,, running time t on a 166 MHz
Pentium Laptop, best upper bound zY, best lower
bound z* and integrality gap A:=100((zY —z*) /z")).

The first feasible integer solution is usually
found within 10 minutes using XPRESS-MP on
a Pentium, after exploring about 500 nodes in
the B&B tree. Usually, it is accepted as the solu-
tion. This heuristic is justified because our trials
indicate that its associated contribution margin
deviates by only a few percent from that of the
continuous problem (well within the error associ-
ated with the input data) and because it eliminates
the need for the time consuming complete search
for the absolute optimal solution via the B&B
algorithm.

The solution derived in the ‘“maximize sales”
scenario is used to support the solution process in
the “maximize contribution margin” or “minimize
cost” scenario. This approach is supported by two
additional output data produced in the “maximize
sales” scenario: the total production

K;
0r=> > > P (3.38)
icd pe? k=1
and the total unmet demands
O =Dy — > D I N N s (339)

s€Y pe? icd c€b teT

These numbers can be used as additional con-
straints in the other scenarios.

In addition, the LP-relaxation of the ‘“‘maximize
sales” scenario is used as the initial basis to start
the Simplex algorithm in the other scenarios.

Table 1
e b sc c 1P Iy T zVY z- A
Si 12397 2973 1608 8441 1 440 8m 54479 53444 1.9
S 2 960 +6™ 54479 53724 1.4
Si 3 1721 +8m 54479 53927 1.0




432 C.H. Timpe, J. Kallrath | European Journal of Operational Research 126 (2000) 422-435

3.5. Commercial impact and results

The optimal or near-optimal production plans
satisfy the demand up to about one percent. Short-
term wishes for extra deliveries can now be fast
and reliably affirmed or rejected. Money could be
saved by reducing tank storage; on the other hand,
the need for certain tank stock levels can now be
proven. The system also hints for bottlenecks in
the plant and delivery system, long-term conse-
quences may be the extension of the so-identified
problem areas.

The model reflects the business process to a
sufficient degree of reality. It turns out to be a
useful tool in complex production network. The
production plans are plausible and not counter-
intuitive.

4. Conclusions and further research

Despite the success let us be aware that the
model is less than the reality and certainly has
some limitations and assumptions it is based on:
1. Only one mode change is possible per produc-

tion period. This seems not to be a very serious

restriction since the length of a production peri-
od can be chosen. But, since the length of the
production period must be larger then the time
needed to perform a mode change in that peri-
od, a problem can arise if changeover times on

a plant vary strongly.

2. Production rates do not depend on time. This
can obviously be extended if necessary.

3. Stock balance equations only hold for the end
of each commercial period. For a more detailed
accounting of product stock, tanks could be de-
scribed as corresponding to production sites in-
stead of to sales points. In that case it would
also make sense to describe transport from sites
to sales points in units of the production period.
But if storage capacity is a very severe restric-
tion in reality, this might still be not accurate
enough. In either case transport time can only
take integral values.

Apart from these assumptions, the model pro-
vides a reasonable starting point for many appli-
cations in the chemical process industry and it is

open to further generalizations. At present, in
some cases it is possible to prove optimality, but in
most cases it provides safe bounds. The approach
described in this paper will hopefully initiate fur-
ther research efforts aiming to derive special cuts
improving the formulation.

Appendix A. The basic states variables and unique-
ness of plant status

The worldwide production network and its
current state is characterized by the state variables
5imk S {07 1}:

5imk =
1 if plant / is in mode Vie d, Nme M,
m at the end of period &

0 otherwise Vke .

(A1)

These variables can be used to guarantee that at
the end of time interval k the plant at site i is in a
unique mode, e.g., by equations of the form

> om=1 Vies Vkex (A.2)

me.M;

However, as will become obvious below it is not
necessary to add the equations explicitly to the
systems of constraints.

Note that some initial data 4,,, have to be
provided to define the known status of plant i
before we start planning. Of course, these initial
data must satisfy the condition

> Aw=1 Vi (A.3)

me.M i

Sometimes the state of all plants may be given in
advance, and one may want to fix the states of all
plants to the states known from another optimi-
zation run. Therefore, the model provides the op-
tion to use the states of all plants according to the
bounds 6, = 47 ., where A? give the state of all
plants during the whole planning horizon. All
other variables can then be optimized with respect

to the fixed modes.



C.H. Timpe, J. Kallrath | European Journal of Operational Research 126 (2000) 422-435 433

If our states variables take the wvalues
Oimk—1 = Oimyr = 1 we have a mode change from
mode m; to m, in time interval k.

The continuity of modes or mode changes is
tracked by the binary variables

1 if 5im1k—l = 5im2k =1 Vie g,
éikmlmz = me ‘%iv
0 otherwise Vk e A

(A.4)

This variable is unity if at the end of period £ — 1
the plant is in mode m; and at the end of period k
it is in mode m,. &y, m, is @ variable not only de-
scribing whether a changeover occurs or not but it
tells us whether production continues. If the plant
is in mode m both at the end of period k£ — 1 and k
then we have &, = 1.

The state variables and the mode changes
variables will now be coupled by some additional
binary variables:

Olimic
1 if plant i is in mode m for some time in
= period &,
0 otherwise,
(A.5)
ﬁimk
__J 1 if mode m is started at site i in period £,
T otherwise,
(A.6)
and finally
Vimk *=

1 if mode m is terminated at site i in period £,
0 otherwise.

(A7)

These binary variables are related to others by the
constraints

ﬁimk = Z éikm]m VIv me %z Vkv (A8)

my#m

and

Vimk = Z éikmml VI, mec e%,‘ Vk. (A9)

my#m

To express whether mode m is used at all in period
k we have

Ximk = bimkfl + 5imk - éikmm VZa mec %ia

k=2,....T, (A.10)

and

Olim1 = AimO + 5im1 - éilmm VI7 me 'ﬂl (All)
Note that is not necessary to declare £, f and y as
binary variables if we have declared 6 and « as
binary variables.

Finally we have the following block of con-
straints:

Vimk = 5imk—l - éikmm VI, me «%1’,

k=2,...,T, (A.12)
or
Vil = Aim — Eitpm Vi, Ym € M;, (A.13)
and
Bink = Oimk — Citm Vi, Ym € M.,

k=2,...,T. (A.14)

The constraints above complete our description of
mode changes.

Now we can also see why (A.2) is not required
any longer. This follows from (A.3) and inspection
of (A.11)

Z Oim1 = 1 + Z 6im1 - Z éilmm

me.M ; me.M i meM;

Vi, Vm € M. (A.15)
If in the first period a mode change takes place
then >, &iww =0 but > o =2 since
production is possible in exactly two modes. Thus
we have » ., d; = 1. If no mode change oc-
curred then production was possible in only one
mode which gives Y ., %imi =D, 4 Citwm = 1
which again leads to ) Oim = L.

me.l i
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The total number of mode changes during the
entire planning horizon at site i can be forced
upper-bounded to ME by

Ki

Z Z ZéikmlngMf Vi.

k=1 myedl; met;
mymy

(A.16)

Appendix B. Modeling the production requirements

The most important data for modeling pro-
duction are Hy, the number of days available for
production and mode-change in production period
k, and R} . the production rate (and mode-prod-
uct relation) at plant i. Notice that H; depends on
k which gives us the opportunity to model tem-
porary shutdowns (maintenance, test runs, etc.)
The production rates R}, A will also be used to in-
dicate whether product p can be produced in mode
matsite i at all. If R} = 0 this is not possible. It is
possible that a certain product can be produced in
several modes.

From Hy we compute Hy .. the number of
days left for production if a mode change from m;
to my occurs, by Hy . =max{0,H; —M] 1,
with the mode-change duration M . Note that
we do not require Hy or Hj . to be an integer
quantity.

With this data we connect the state variables to

the production variables:

piTpk > 0 tons of p produced at plant i in period £.
(B.1)

For that we introduce a variable telling us the
number of days (fractional days are allowed) in
which the plant is in mode m during production
period k:

D
imk

m; . > 0 number of days plant i in period &

is in mode m. (B.2)
We first note that

R
Mg < H,

mm,

i V{imk} (B.3)

is a valid upper bound. Remember, that a;,; car-
ries the information whether mode m is used in

period k or not. If the plant is never in mode m
during period k then o;,, = 0 and the plant indeed
spends zero days in mode m. Otherwise, the in-
equality reduces to m;,; < Hj. Fractional values of
%me during the LP relaxation or within the tree
reduce the time the plant can be in mode m leading
to smaller amounts of the products being pro-
duced in this mode. This is one aspect of tightening
the relaxation.

Next, we want to compute the available ca-
pacities subject to mode-changes. These con-
straints read

§ R E R
Mk < I_Iimzmkéikmzm + I—Iimmzk éikmmz

me.M; myEM i
my#m

i, m e M, Vk, (B.4)

and

§ Mimk < ]—Iik - § E Aimlmz fikmlmz

me.A i|Hyx#0 myE€M; myEM;
mym

Vi, Vk. (B.5)

Constraint (B.4) defines the upper limit on the
number of days of production of product p at site i
in period k£ as a function of the mode-change
variables. Days for mode m become available in
period k only if either the site status switches zo
mode m in period k (first term in the right-hand
side of (B.4)) or the site status switches from mode
m in period k (i.e., has status p at the end of period
k — 1). When the mode of the site is m at the end of
period £ — 1 and k (i.e., &y,,» = | and no change-
over occurs in period k), the value of the available
capacity HY  is counted once in the first terms. In
any integer solution at most two modes have a
positive upper bound on available days in each
period.

Constraint (B.5) defines the global available
capacity in period k to be equal to the number of
days available minus the number of days used for
mode-change. The second term can only be ap-
plied if A4, <Hy. Otherwise, we should fix
itmmy, = 0 because there is not enough capacity in
period k to perform the mode-change from mode
m; to mode m;.
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