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Abstract.
Continued fractions, rational interpolants, and Padé approximants are mathematical

tools that are very appropriate for analyzing nonlinear problems. These technics and con-
cepts are found in many numerical algorithms (equation solving, integration, differential
equations, convergence acceleration, sequence transformations, and extrapolation methods
in general) and in the applied sciences. In this contribution, a brief introductory review
into the field of rational function techniques which may hopefully motivate the reader to
apply the methods to his own problems is given.

1. Introduction

1.1. Motivation

This review on Padé approximants and the analytic and numerical tech-
niques based on rational functions was inspirated by a paper (Contopoulos
and Seimenis, 1975) on the application of the Prendergast method (Pren-
dergast, 1982) to a logarithmic potential V (x, y) = ln(x2 + y2/U2 + C2). In
that paper equations of motion are derived, and a rational expansion of x
and y is coupled with a Fourier series ansatz in order to represent the solu-
tion. This approach leads to a set of nonlinear coupled equations. However
the solutions derived by the authors did not fulfill all the equations. It is
difficult to see why some equations are considered and others are neglected.
A consistent approach to this problem is to treat it as an approximation
problem (see Subsection 5.3). In this framework, a given function (here,
the solution of the equations of motion) or a set of data is fitted by an
ansatz function (here, a rational trigonometric function) with some degrees
of freedom. Usually, the ansatz function cannot exactly represent the given
function or data set since it leads to an overdetermined system. In this case,
the degrees of freedom in the ansatz function are chosen in such a way that
a given function, e.g., a least squares function, is minimized.

The rational function approximation problem is closely related to con-
tinued fractions, rational interpolants, and Padé approximants. These tech-
niques and concepts are found in many numerical algorithms (equation solv-
ing, integration, differential equations, convergence acceleration, approxima-
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tion of special functions, the z-transform) and in the applied sciences, e.g.,
physics, chemistry, mechanics, fluid dynamic, or circuit theory. They form
an important class of methods to investigate nonlinear problems, e.g., in the
analysis of diverging series.

A Padé approximant is the ratio of two polynomials constructed from
the coefficients of the Taylor series expansion of a function. Since it provides
an approximation to the function throughout the whole complex plane the
study of Padé approximants is simultaneously a topic in mathematical ap-
proximation theory and analytic function theory. It has wide applicability
to those areas of knowledge that involve analytic techniques. The theory
involved connects classical topics in mathematics as continued fraction, one
of the oldest subjects in mathematics at all, with very modern concepts
as formal orthogonal polynomials (Brezinski, 1983). Padé approximants are
the base of many nonlinear methods, and they have close connections with
the famous ε-algorithm (Wynn, 1956), continued fractions, and orthogonal
polynomials. Padé approximants are the nonlinear counter part to the first
order Taylor series expansions which are used in linear methods.

There are many methods available to compute Padé approximants (Wuy-
tack, 1979). Since many of them are based on continued fractions section 3
provides a basic introduction into the field of continued fractions.

Since celestial mechanics is full of nonlinear problems the reader may
find this review helpful and may detect possible applications. The review is
tried to be on an elementary level. Examples are provided where possible.
In particular, a Padé approximant is used to solve Kepler’s equation. Some
proves are included to give an idea how they work. The interested reader is
also referred to (Cuyt and Wuytack, 1987) from which this paper benefits
most.

1.2. Some Historical Remarks on Continued Fractions and Padé
Approximants

In 1731, rational fractions [now called Padé approximants after the French
mathematician Henri Padé (1863-1953)] are mentioned in a letter of the En-
glish mathematician Georges Anderson. They are also given by Leonhard
Euler (1707-1783). The first mathematician who was aware of the funda-
mental property f(t) − [p/q]f (t) = O(tp+q+1) was Joseph Louis Lagrange
in a paper (1776) dealing with the solution of differential equations by con-
tinued fractions. However continued fractions are already used by Johann
Henrich Lambert (1728-1777) in 1756. Padé in his thesis (Padé, 1892) un-
der Charles Hermite (1822-1901) invented the Padé table and studied the
so-called block structure. In the 19th century, many contributions to the the-
ory of Padé approximants were made by Carl Gustav Jacobi (1804-1851),
Leopold Kronecker (1823-1891), Bernhard Riemann (1826-1866) and Georg
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Frobenius (1849-1917). Probably, E.B. van Vleck gave the name Padé ap-
proximants to rational fractions (Brezinski, 1983). Since 1965 a growing
interest into rational fractions and related topics is observed in pure math-
ematics, numerical analysis, theoretical physics, chemistry, mechanics and
electronics. Nowadays, there is a huge amount of literature available on Padé
approximants. (Brezinski, 1991) gives more than 6000 references.

2. Padé Approximations

2.1. An Illustrative Example

A Padé approximant is that rational function whose power series expansion
agrees with a prescribed power series to the highest possible order. Consider
a given power series

f(x) ≡
∞

∑

i=0

cixi (1)

and a rational function

R(x) ≡ p(x)
q(x)

, p(x) =
m

∑

i=0

aixi , q(x) =
n

∑

i=0

bixi . (2)

The rational function R(x) is called Padé approximant to the series f(x) if

f(x)−R(x) = O(xm+n+1) , (3)

i.e., the monom with lowest order in the difference polynom

f(x) · q(x)− p(x) = f(x) ·

(

n
∑

i=0

bixi

)

−
m

∑

i=0

aixi (4)

is of order m + n + 1 or higher. The condition (3) is equivalent to the
requirement

R(0) = f(0) ,
dk

dxk R(x)
∣

∣

∣

∣

x=0
=

dk

dxk f(x)
∣

∣

∣

∣

x=0
, k = 1, 2, ..., m + n . (5)

The required definitions (3) or (5) provide m + n + 1 equations for the
m + n + 2 unknowns a0, . . . , am and b0, b1, . . . , bn.

n
∑

j=0
bjcm−j+k = 0 , k = 1, ...n

k
∑

j=0
bjck−j = ak , k = 0, ...m

. (6)
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Fig. 1. The figure shows the power series based on the first five terms, f(x) is
drawn as a solid line, and the Padé approximant R(x) is represented as a dotted
curve. Note that within the range [0, 10] the Padé approximant R(x) and the exact

expression f(x) =
[

7 + (1 + x)(4/3)
](1/3)

almost agree.

Obviously, this system of equations is underdetermined. Therefore, usually
the normalization b0 = 1 is used. However as discussed below some care is
necessary with this normalization. In principle, the first n equations may be
used to determine the b′s, from which the a′s can be computed using the
second set of equations. However considering numerical efficiency, this is not
a safe method since the matrix is close to singular. In section 4 different
methods are presented to compute the Padé approximant safely.

The following example (Press and Teukolsky, 1992) shows that Padé ap-
proximants might be very helpful for extrapolation. The exact function to
be analyzed is

f(x) =
[

7 + (1 + x)(4/3)
](1/3)

. (7)

The first five terms in the power series expansion of that function f(x) are

f(x) ≈ 2 +
1
9
x +

1
81

x2 − 49
8748

x3 +
175

78732
x4 + ... (8)

The Padé approximants R(x) in the case m = n = 2 based on this series is

R(x) =
a0 + a1x + a2x2

1 + b1x + b2x2 (9)
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with the coefficients

a0 a1 a2 b1 b2
2 0.92714 0.067834 0.40801 0.0050766 . (10)

Very often, as shown in this example, Padé approximants maintain accuracy
far outside the radius of convergence of the series. The figure shows the power
series in the dashed curve, f(x) is the solid line, and the Padé approximant
R(x) is represented as a dotted curve. To understand this property, requires
some insight in the convergence theory of Padé approximants closely related
to analyticity and complex analysis.

2.2. Notations, Definitions, and Formal Foundation of Padé Ap-
proximants

In order to present a formal definition and also since they are used in many
proofs concerning Padé approximants, the operators ∂ and ω are introduced.
If p is a polynomial, ∂p gives the exact degree of a polynomial, i.e., the
degree of that nonzero term with highest exponent. ∂(a0 + a1x + 5x2) = 2
may serve as an example. If p is a polynomial or a power series, then ωp
returns the order of p, i.e., the degree of the first nonzero term. Let a3 6= 0,
then ω

(∑∞
i=3 aixi

)

= 3. These operators applied to arbitrary polynomials p
and q have the following obvious properties:

∂(pq) = ∂p + ∂q (11)

ω(p+q) = min{ωp, ωq} (12)

c = const ⇒ ω(cp) = ω(p) (13)

ω(xkp) = k + ω(p) (14)

ω(p) ≥ k ⇒ ω(pq) ≥ k (15)

(∂p ≤ n) ∧ (ωp ≥ n + 1) ⇒ p ≡ 0 (16)

which can be easily proven.
The first step towards a concept of Padé approximant is the Padé approxi-

mation problem (PAP) of order (m, n). That problem consists in determining
polynomials p(x) and q(x) in such a way that

∂p ≤ m
∂q ≤ n

ω(fq − p) ≥ m + n + 1
. (17)

The last inequality expresses that all coefficients with index i < m+n+1 of
the power series fq − p vanish. The condition (17) is equivalent to the two
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linear systems of equations (6) with ci = 0 for i < 0. To solve this system
it has already been mentioned that the b′s might be determined by the n
equations in the n + 1 unknowns b0, ..., bn.

The PAP of order (m, 0) is solved by the partial sums of (1) which in
most cases is the Taylor series expansion of some function.

Similar to the concept of equivalence classes of rational numbers solving
the equation ax = b where a, b are rational numbers, and all rational num-
bers qb

qa with rational q 6= 0 solve ax = b, different solutions of the same
PAP can exist. However there exists a relation between them according to
the following theorem:

THEOREM 1. If the polynomials p1, q1 and p2, q2 satisfy (17), then p1q2 =
p2q1.

The proof only uses the definition (17) and some properties of the operators
∂ and ω. Since most of the proofs related to Padé approximants have a
similar structure it is given in some detail.

Proof.

By adding and subtracting fq1q2, the polynomial p := p1q2 − p2q1 can be
written as p = (fq2−p2)q1− (fq1−p1)q2. Since p1, q1 and p2, q2 satisfy (17)
the inequalities

ω(fq1 − p1) ≥ m + n + 1
ω(fq2 − p2) ≥ m + n + 1

hold. Therefore, if (12) is applied to p, the inequality ω(p1q2 − p2q1) ≥
m + n + 1 is derived. However according to (11) p1q2− p2q1 is a polynomial
of degree at most m + n, i.e., ∂(p1q2 − p2q1) ≤ m + n. Eventually, applying
(16) to p gives p ≡ 0 which is equivalent to p1q2 = p2q1.

Similar to rational numbers the rational forms p1/q1 and p2/q2 are equiv-
alent. If p and q satisfy (17) then

[m/n]f (x) = rm,n(x) =
p0(x)
q0(x)

(18)

is called the Padé approximant of order (m,n) or irreducible form of p/q
normalized in such a way that q0(0) = 1, i.e., b0 = 1. As discussed below,
some care is necessary with this normalization. Since in the computation of
p0(x) and q0(x) a polynomial may be cancelled out, the relation

m′ := ∂p0 ≤ m
n′ := ∂q0 ≤ n (19)

needs to be observed. Nevertheless, it is guaranteed that for every non-
negative m and n a unique Padé approximant of order (m,n) for f exists.
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2.3. Fundamental properties of Padé approximants

The definition given in the section (2.1) shows that some care is necessary
when computing the Padé approximant. Consider f(x) = 1 + x2 and m =
n = 1. That clearly gives c0 = c2 = 1 and c1 = 0, and the systems of
equations

b1c1 = −c2b0

a0 = c0b0

a1 = b0c1 + b1c0 (20)

which, when b0 = 1, cannot be solved because c1 = 0 and c2 6= 0. The
solution a0 = b0 = 0 and a1 = b1 = 1, and therefore p(x) = q(x) = x,
satisfies (17). However p0 = q0 = 1 which was derived by cancelling out the
common factor give a Padé approximant r1,1 = 1 with ω(fq0 − p0) = 2 <
m + n + 1 which violates (17).

Fortunately, once p0 and q0 are known, it is possible to construct a ra-
tional form of order (m,n) as shown in the following theorem (Cuyt and
Wuytack, 1987, Theorem 2.3, p.66):

THEOREM 2. If the Padé approximant of order (m,n) for f is given by
rm,n(x) = p0(x)

q0(x) then there exists an integer s with 0 ≤ s ≤ min{m−m′, n−
n′}, in such a way that p(x) = xsp0(x) and q(x) = xsq0(x) satisfy (17).

In the example discussed above we have m′ = n′ = 1 and therefore again
p(x) = q(x) = x.

2.4. Padé Table and Normality

In order to establish some relations between Padé approximants rm,n of
different order it is helpful to order them in a table

r0,0 r0,1 r0,2 · · ·
r1,0 r1,1 r1,2 · · ·
r2,0 r2,1 r2,2 · · ·
r3,0 r3,1 · · ·
r4,0 · · ·
...

which is called the Padé table of f . While the first column consists of the
partial sums of f the first row contains the reciprocals of the partial sum of
1/f . The Padé table, e.g.,
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Table 1: Padé table for f(x) = ex = 1 + x + x2

2! + x3

3! + x4

4! + . . .
1 1

1−x
1

1−x+ 1
2x2 · · ·

1 + x 1+ 1
2x

1− 1
2x

1+ 1
3x

1−x+ 1
6x2 · · ·

1 + x + 1
2x2 1+ 2

3x+ 1
6x2

1− 1
3x

1+ 1
2x+ 1

12x2

1− 1
2x+ 1

2x2 · · ·

1 + x + 1
2x2 + 1

6x3 1+ 3
4x+ 1

4x2+ 1
24x3

1− 1
4x

...

1 + x + 1
2x2 + 1

6x3 + 1
24x4 ...

...

and

Table 2: Padé table for f(x) = 1 + sin(x) = 1 + x− x3

3! + x5

5! −
x7

7! + . . .
1 1

1−x
1

1−x+x2
1

1−x+x2− 5
6x3 · · ·

1 + x 1 + x 1+ 5
6x

1− 1
6x+ 1

6x2 · · ·

1 + x 1 + x 1+x+ 1
6x2

1+ 1
6x2 · · ·

1 + x + 1
2x2 − 1

6x3 1 + x− 1
6x3 ...

1 + x + 1
2x2 − 1

6x3 1 + x− 1
6x3

1 + x− 1
6x3 + 1

120x5 ...
...

show different structural features which lead to the concept of normality and
block structure. The Padé table of f(x) = 1 + sin(x) has a block structure
consisting of square blocks of size 2 containing equal Padé approximants.
These block structure is generally characterized by the following theorem:

THEOREM 3. For a given Padé approximant of order (m,n), i.e., rm,n(x) =
p0(x)
q0(x) the following relations hold.

a) ω(fq0 − p0) = m′ + n′ + t + 1 with a non-negative slack variable
t ≥ 0
b) for k and l satisfying m′ ≤ k ≤ m′ + t and n′ ≤ l ≤ n′ + t the

relation rk,l(x) = p0(x)
q0(x) holds

c) m ≤ m′ + t and n ≤ n′ + t
Property b) expresses for t > 0 the existance of a block of size (t+1)×(t+1).

Those Padé approximants which occur only once in the Padé table are
called normal. As expected from the previous theorem the necessary and
sufficient conditions for a Padé approximant to be normal are expressed in
the following theorem:
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THEOREM 4. The Padé approximant rm,n = p0/q0 for f is normal if and
only if

a) m = m′ and n = n′

b) ω(fq0 − p0) = m + n + 1
Since the Padé approximants can be derived from a system of linear equa-
tions which might be solved by ratio of determinants it is not a surprise that
normality of a Padé approximant can also be guaranteed by the nonvanish-
ing of certain determinants.

In order to express some determinant relation the following notation is
introduced:

Dm,n+1 :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

cm cm−1 · · · cm−n
cm+1 cm · · · cm+1−n

...
...

. . .
...

cm+n cm+n−1 cm

∣

∣

∣

∣

∣

∣

∣

∣

∣

(21)

with Dm,0 = 1. Using this definition the normality of a Padé approximant
rm,n = p0/q0 can be expressed by the following theorem:

THEOREM 5. The Padé approximant rm,n = p0/q0 for f is normal if and
only if the following equations hold

det Dm,n 6= 0
det Dm+1,n 6= 0
det Dm,n+1 6= 0
det Dm+1,n+1 6= 0

. (22)

3. Continued Fractions

Continued fractions have a very long history in mathematics. In the ”Hand-
book of Mathematical Functions” (Abramowitz and Stegun, 1970) they are
listed under elementary analytical methods, and for almost all functions in
that book a continued fractions representation is given.

3.1. Notations and Definitions

A continued fraction is an expression of the form

C = b0 +
a1

b1+
a2

b2+
a3

b3+
. . . = b0 +

∞
∑

i=1

ai

bi+
= b0 +

a1

b1 + a2
b2+

a3
b3+···

(23)

where the ai and bi are real (or complex) numbers or functions and are
respectively called partial numerators and partial denominators. If
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the number of terms is finite, C is called a terminating continued fraction.
An example for this case is

1 +
x

1/2+
x− 1
2/3+

x− 2
3/10

= 1 +
x

1
2 + x−1

2
3+ x−2

3/10

. (24)

A stepwise evaluation of that expression yields
2
3

+
x− 2
3/10

=
10x− 18

3
,

1
2

+
x− 1
10x−18

3

=
4x− 6
5x− 9

,

1 +
x

4x−6
5x−9

=
4x− 6 + x(5x− 9)

4x− 6
=

5x2 − 5x− 6
4x− 6

.

If the number of terms is infinite, C is called an infinite continued fraction
and the terminating fraction

Cn = b0 +
n

∑

i=1

ai

bi+
(25)

is called the nth convergent of the continued fraction (23). As demonstrated
in the above example the nth convergent is the ratio of two polynomials

Cn =
Pn

Qn
=

Pn(b0, a1, b1, . . . , an, bn)
Qn(b0, a1, b1, . . . , an, bn)

(26)

where Pn and Qn are polynomials of a certain degree in the 2n + 1 partial
numerators and denominators b0, a1, b1, . . . , an, bn. The polynomials Pn and
Qn are respectively called the nth numerator and the nth denominator of
the continued fraction (23). If lim

n→∞
Cn exists and is finite, then the continued

fraction is said to be convergent and C is called the value of the continued
fraction. A simple case, in which there is always convergence is if ai = 1 and
the b′s are all integers. This case, although it looks very special is significant
since by equivalence transformations it is possible to rewrite a continued
fraction in that or similars forms which allow simple convergence tests.

3.2. Fundamental Properties of Continued Fractions

3.2.1. Recurrence Relations for Pn and Qn

As it can be shown by induction, the nth numerator and denominator satisfy
the same three-term recurrence relation but with different starting values,
i.e., for n ≥ 1

Pn = bnPn−1 + anPn−2
Qn = bnQn−1 + anQn−2

, P−1 = Q0 = 1 , P0 = b0 , Q−1 = 0 . (27)
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Again by induction, from (27) the relation

Cn − Cn−1 = (−1)n+1 a1a2 . . . an

QnQn−1
, QnQn−1 6= 0 (28)

can be derived which yields for the nth convergent of the continued fraction

Cn = b0 +
n

∑

i=1

(−1)n+1 a1a2 . . . an

QnQn−1
. (29)

This sum is the nth partial sum of the Euler-Minding series

b0 +
∞

∑

i=1

(−1)n+1 a1a2 . . . an

QnQn−1
. (30)

Note that this establishes a relation between the nth convergent of the con-
tinued fraction and the nth partial sum of series. In general, a series

∑∞
i=0 di

and a continued fraction b0 +
∑∞

i=1
ai

bi+
are called equivalent if for every

n ≥ 0 holds

Dn =
n

∑

i=0

di = b0 +
n

∑

i=1

ai

bi+
= Cn (31)

i.e., the nth partial sum Dn equals the nth convergent Cn of the continued
fraction . Another relation between successive convergents is

ai, bi > 0 ⇒ C2n < C2n+2 , C2n−1 > C2n+1 . (32)

3.2.2. Equivalence transformations

The purpose of equivalence transformations of continued fractions is to
rewrite them in a prescribed form which allows a better analysis, of e.g.,
convergence properties, of that continued fraction. Let pi 6= 0 for i ≥ 0. The
transformation that alters the continued fraction (23) into

b0 +
p1a1

p1b1+
+

∞
∑

i=2

pi−1piai

pibi+
(33)

is called an equivalence transformation. If, for example, ai 6= 0, i ≥ 1, then
by choosing

pi =
1

aipi−1
, p0 = 1 , i ≥ 1 (34)

the continued fraction (23) takes the form of a reduced continued frac-
tion, i.e.,

d0 +
∞

∑

i=1

1
di+

. (35)

If all d′s are positive then the reduced continued fraction is convergent.
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3.2.3. Contraction of a Continued Fraction

The Euler-Minding series showed that there is an interrelation between con-
tinued fractions and the partial sums of a series. There is also a relation
between the sequence {Cn}n∈N of subsequently different elements and a
continued fraction which can be constructed in such a way that Cn is the
nth convergent of that continued fraction. In order to do so it is sufficient to
define the a′s and b′s as

a1 = C1−C0, b0 = C0, b1 = 1, ai =
Ci−1 − Ci

Ci−1 − Ci−2
, bi =

Ci − Ci−2

Ci−1 − Ci−2
.(36)

3.3. Methods to construct Continued Fractions

There are many methods to construct continued fractions available. We will
cover only a few and refer to other algorithms, e.g., successive substitution,
and details to (Cuyt and Wuytack, 1987).

3.3.1. Equivalent continued fractions

A given series
∑∞

i=0 di can be represented by the continued fraction

d0 +
d1

1+
−d2

d1 + d2+

∞
∑

i=3

−di−2di

di−1 + di+
. (37)

This formula can be derived from (36) with Cn =
∑n

i=0 di. In particular,
(36) can be applied to the Taylor series expansion of a function, e.g.,

f(x) = ex =
∞

∑

i=0

xi

i!
. (38)

In order to get used to the concepts established above let us consider this
example in some detail. Since in the example d0 = 1 (36) reduces to

1 +
x

1+

∞
∑

i=2

− 1
(i−2)!

1
i!x

i−2xi

1
(i−1)!x

i−1 + 1
i!x

i+
.

Performing the equivalent transformation p = xi−1 and applying (33) yields

1 +
x

1+

∞
∑

i=2

− 1
(i−2)!

1
i!x

1
(i−1)! + 1

i!x+
.

Due to

1
(i− 1)!

+
1
i!

x =
i
i!

+
1
i!

x =
i + x

i!
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it is possible to apply another equivalence transformation p = i! and to get
the final result

ex = 1 +
x

1+

∞
∑

i=2

−(i− 1)x
i + x+

. (39)

Note that due to equivalence of (38) and (39) and the convergence of ex

in the whole complex plane, the sum
∑∞

i=2
−(i−1)x

i+x+ is convergent, but by
substituting x → −x and observing that e−x is convergent also the sum
∑∞

i=2
(i−1)x
i−x+ is convergent.

The continued fraction of a function is not unique. (Abramowitz and
Stegun, 1970, p.70) give several continued fractions for ex.

3.3.2. The Method of Viscovatov

The method of Viscovatov (Viscovatov, 1806) is used to develop a continued
fraction expansion for functions given as the ratio of two power series

f(x) =
d10 + d11x + d12x2 + ...
d00 + d01x + d02x2 + ...

(40)

which leads simply to

f(x) =
d10

d00+
d20x
d10+

d30x
d20 + · · ·

(41)

with

dk,i = dk−1,0 · dk−2,i+1 − dk−2,0 · dk−1,i+1 , k > 2 , i ≥ 0 . (42)

3.3.3. Corresponding and Associated Continued Fractions

Corresponding and associated continued fractions establish a link between
Taylor series expansions and continued fractions. A continued fraction b0(x)+
∑∞

i=1
ai(x)

bi(x)+ for which the Taylor series expansion of the nth convergent Cn(x)
around the origin matches a given power series

f(x) =
∞

∑

i=0

cixi (43)

up to and including the term of degree n (2n) is called corresponding (as-
sociated) to this power series, i.e., for a corresponding continued fraction,
if

Cn(x) = b0(x) +
∞

∑

i=1

ai(x)
bi(x)+

=
∞

∑

i=0

dixi (44)
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then for every n (2n) we have di = ci for i = 0, . . . , n. By applying the
algorithm of Viscovatov to (f(x) − c0)/x with d1i = c1+i for i ≥ 0 the
corresponding continued fraction for f(x) follows as

f(x) =
c1

1+
d20x
c1+

d30x
d20 + · · ·

(45)

because the Taylor series expansion of the kth convergent matches the power
series for f(x) up to and including the term of degree k.

3.4. Convergence of Continued Fraction

A simple case, in which a continued fraction converges was already men-
tioned in a previous section and was expressed by the condition that ai = 1
and the b′s are all integers. Many convergence theorems date to the 19th cen-
tury, e.g., the theorem by Seidel (Seidel, 1846): If bi > 0 for i ≥ 1, then the
continued fraction b0 +

∑∞
i=1

1
bi+

converges, if and only if the series
∑∞

i=1 bi

diverges. Another result is that the continued fraction
∑∞

i=1
ai

bi+
converges if

|bi| ≥ |ai|+ 1 for i ≥ 2. For the nth convergent Cn we have |bi| ≥ |ai|+ 1 for
i ≥ 1, and for Cn we have |Cn| < 1 if n ≥ 1. While the results or theorems
are easy to state, e.g., the continued fraction

∑∞
i=1

ai
1+ converges if |ai| ≤ 1

4
for i ≥ 2, many convergence properties of continued fractions are related to
analyticity and can only be understood on the platform of complex calculus.

4. Methods to compute Padé approximants

There are many methods available to compute Padé approximants: corre-
sponding continued fractions, the qd-algorithm (Cuyt and Wuytack, 1987,
pp.79), the algorithm of Gragg (Cuyt and Wuytack, 1987, pp.83), solutions
of the system of equations, determinant formulae, the method of Viscova-
tov (1806), recursive algorithm, and the famous ε-algorithm (Wynn, 1956).
Some of them are briefly outlined in the following subsections.

4.1. Corresponding Continued Fractions

With this method it is possible to compute Padé approximants below the
main diagonal in the Padé table. In order to do so consider the following
sequence

Tk = {rk,0, rk+1,0, rk+1,1, rk+2,1, . . .}

of elements on a descending staircase in the Padé table and the continued
fraction

d0 + d1x + . . . + dkxk +
dk+1xk+1

1+
dk+2x
1+

dk+3x
1+

+ . . . . (46)
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If every three consecutive elements in Tk are different, then a continued
fraction of the form (46) exists with dk+i 6= 0 for i ≥ 1 and in such a
way that the nth convergent equals the (n + 1)th element of Tk. If the nth

convergent equals the (n+1)th of T0 (n ≥ 0), then (46) is the corresponding
continued fraction to the power series (1). Details for the computation of
the d′s are found in (Cuyt and Wuytack, 1987, pp.77).

4.2. Solution of the linear equations

The formal linear system which defines the Padé approximant has a very
special form namely that of a Töplitz matrix. Nevertheless, unfortunately,
the equations are frequently close to singular. Therefore, it is not advisable
to solve it by specialized Töplitz methods. Rather, it is recommended to
solve it by full LU decomposition. Additionally, it is a good idea to refine
the solution by iterative improvements. Once the b′s are known, the a′s can
be computed explicitly.

In the case D = det Dm,n 6= 0 it is also possible to express the Padé
approximant rm,n(x) = p0(x)/q0(x) by means of determinant formulae based
on the abbreviations

Fk(x) :=
{

∑k
i=0 cixi , k ≥ 0

0 , k < 0
. (47)

Then the numerator p0(x) and denominator q0(x) have the form

p0(x) =
1
D

∣

∣

∣

∣

∣

∣

∣

∣

∣

Fm(x) xFm−1(x) · · · xnFm−n(x)
cm+1

... Dm,n
cm+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(48)

and

q0(x) =
1
D

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x · · · xn

cm+1
... Dm,n

cm+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (49)

4.3. Recursive Algorithm to Compute Padé approximants

While corresponding continued fractions provide a mean to compute Padé
approximants on descending staircases, the recursive algorithm (Cuyt and
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Wuytack, 1987, pp.90) presented and proved in this section allows to cal-
culate Padé approximants on ascending staircases. The recursive scheme is
based on the normality of the Padé table and uses the nomenclature

rm,n := rm,n(x) =
∑m

i=0 a(i)
m,nxi

∑n
i=0 b(i)

m,nxi
. (50)

If the Padé approximants rm,n = p3
q3

, rm,n−1 = p2
q2

and rm+1,n−1 = p1
q1

are
normal, then

p3

q3
=

a(m)
m,n−1p1 − a(m+1)

m+1,n−1xp2

a(m)
m,n−1q1 − a(m+1)

m+1,n−1xq2

. (51)

This formula and the scheme behind it can be visualized as

rm,n−1 → rm,n
rm+1,n−1 ↗ ⇐⇒ 2 → 3

1 ↗ . (52)

The proof of (51) requires to show ∂p3 ≤ m,∂q3 ≤ n and ω(fq3 − p3) ≥
m + n + 1. The normality and the uniqueness of the Padé approximants
then guarantee p3

q3
= rm,n. The second step (∂q3 ≤ n) is easy. Since rm,n−1

and rm+1,n−1 are Padé approximants the inequalities ∂q1 ≤ n − 1 and
∂(xq2) = 1 + ∂q2 ≤ 1 + (n − 1) = n hold. According to (12) this yields
∂q3 ≤ n− 1 as desired. Unfortunately, the same argumentation would only
lead to ∂p3 ≤ m + 1 in the first case. In order to prove ∂q3 ≤ m it must
be shown that the coefficient with highest exponent vanishes. In order to do
so define an operator P̂ which maps a polynom p(x) onto its term with the
highest exponent, e.g., P̂

[

1 + x + 2x2
]

= 2x2, P̂ [p1(x)] = a(m+1)
m+1,n−1x

m+1,

or, P̂ [p2(x)] = a(m)
m,n−1x

m. Applying this operator onto p3(x) yields

P̂ [p3(x)] = a(m)
m,n−1P [p1]− a(m+1)

m+1,n−1xP [p2]

= a(m)
m,n−1a

(m+1)
m+1,n−1x

m+1 − a(m+1)
m+1,n−1xa(m)

m,n−1x
m = 0

as wanted. Eventually, to prove the third property, consider fq3−p3 in more
details:

fq3 − p3 = a(m)
m,n−1(fq1 − p1)− a(m+1)

m+1,n−1x(fq2 − p2) . (53)

Then, again with (12) it follows

ω(fq3 − p3) = min{ω(fq3 − p3), ω(fq3 − p3)}
≥ min{(m + 1) + (n + 1), 1 + (m) + (n− 1) + 1}
≥ m + n + 1

as desired.
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As an example, we compute the Padé approximant r0,2 of f(x) = ex =
1 + x + x2

2! + . . . (see Table 1), i.e.,

r0,1 = 1
1−x → r0,2

r1,1 = 1+ 1
2x

1− 1
2x

↗ .

Applying (51) yields

r0,2 =
1 · (1 + 1

2x)− 1
2x · 1

1 · (1− 1
2x)− 1

2x · (1− x)
.

A similar formula as (51) provides a recursive scheme

rm−1,n
↗ ↑
rm,n−1 rm,n

⇐⇒
3

↗ ↑
1 2

. (54)

As another application of (51) the Padé approximant r1,1 of a second-order
Taylor series expansion of a function

f(x) = f0 + f ′0 · x +
1
2
f ′′0 · x2 (55)

is computed. In order to make things easier, put c0 = f0 = f(0), c1 = f ′0 =
f ′(0), and c2 = f ′′0 = 1

2f ′′(0). The Padé table of that problem is

0 1
0 c0
1 c0 + c1x ?
2 c0 + c1x + c2x2

.

Then, it is easy to derive the following results

r1,1 =
c1(c0 + c1x + c2x2)− c2(c0 + c1x)

c1 · 1− c2 · 1

=
c0c1 + (c2

1 − c0c2)x
c1 − c2

= c2
1
c0/c1 + (1− c0c1/c2

1)x
c1 − c2

or in the original notation

r1,1 =
f ′20

f ′0 − 1
2f ′′0

·
[

f0

f ′0
+

(

1− 1
2

f0f ′′0
f ′20

)

x
]

. (56)

This result is used later to derive a formula based on Padé approximants for
solving nonlinear equations.
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5. Rational Interpolants

Rational interpolants (Stoer, 1989, 2.2 Interpolation mit rationalen Funk-
tionen) are defined in such a way that they reproduce a given data set of
real or complex points {xi, fi}i∈N. These points may, or may not, represent
a function f . This concept was first investigated by Cauchy (Cauchy, 1821).
It generalizes that of Lagrangian interpolation based on polynomial interpo-
lation. The rational interpolation problem of order (m,n) for f consists in
finding a rational function p(x)/q(x) or polynomials p(x) and q(x) defined
in (2) with p(x)/q(x) irreducible and in such a way that

f(xi) =
p(xi)
q(xi)

, i = 0, . . . ,m + n (57)

leading to the homogeneous system of m + n + 1 linear equations in the
m + n + 2 unknown coefficients ai and bi of p and q

f(xi)q(xi) = p(xi) , i = 0, . . . ,m + n . (58)

Similar as in the Padé approximation problem, an equivalence class is asso-
ciated with this problem and the rational interpolant rm,n(x) is chosen to be
the irreducible representative of this class. If the normalization q0(x0) = 1
leads to a rational function not fulfilling (57) anymore, then, the polynomials
p(x) and q(x) may be multiplied by

∏s
i=1(x− yi) where the s points yi are

elements of the set {x0, , xm+n}. Analogue to the Padé table, it is possible to
construct the table of rational interpolants, which in its first column has the
polynomial interpolant for f and in the first row the inverses of the polyno-
mial interpolants for 1/f . The table has features which are comparable with
the block structure of the Padé table, and it has an analogue definition of
normality.

5.1. Interpolating Data

The methods to compute rational interpolants are similar to those of Padé
approximants. Most of them are based on continued fractions.

5.1.1. Interpolating continued fractions

This method is similar to the computation of Padé approximants by corre-
sponding continued fractions. For a staircase of rational interpolants

Tk = {rk,0, rk+1,0, rk+1,1, rk+2,1, . . . , k ≥ 0} (59)

coefficients di can be computed in such a way that the convergents Cn(xi)
of the continued fraction

d0 + d1(x− x0) + . . . + dk(x− x0) · . . . · (x− xk−1) (60)

+
dk+1dk(x− x0) . . . (x− xk−1)

1+
dk+2(x− xk+1)

1+
dk+3(x− xk+2)

1+
+ . . .(61)
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are precisely the subsequent elements of Tk. In order to have the property
Cn(xi) = f(xi) the d′s are chosen as di = ϕi[x0, . . . , xi], where ϕk[x0, . . . , xk]
is called the kth inverse difference of f in the points x0, . . . , xk.

5.1.2. Inverse differences

The inverse differences are defined as

ϕ0[x] = f(x) , ∀x ∈ G ⊂ C (62)

ϕ1[x0, x1] =
x1 − x0

ϕ0[x1]− ϕ0[x0]
, ∀x0, x1 ∈ G ⊂ C (63)

ϕk[x0, x1, . . . , xk−2, xk−1, xk]

=
xk − xk−1

ϕk−1[x0, x1, . . . , xk−2, xk]− ϕk−1[x0, x1, . . . , xk−2, xk−1]
. (64)

The continued fraction

ϕ0[x] +
x− x0

ϕ1[x0, x1]+
x− x1

ϕ2[x0, x1, x2]+
(65)

is called Thiele interpolating continued fraction. As an example for a
rational interpolant consider the four data points {(0, 1), (1, 3), (2, 2), (3, 4)}
which lead to the table

1
3 1/2
2 2 2/3
4 1 4 3/10

.

The rational interpolant r(x) interpolating these data points is the continued
fraction (24)

1 +
x

1/2+
x− 1
2/3+

x− 2
3/10

=
5x2 − 5x− 6

4x− 6
.

For other algorithms to compute rational interpolants the reader is re-
ferred to (Cuyt and Wuytack, 1987, pp.143). In particular, a generalized
ε-algorithm [(Wynn, 1956); (Cuyt and Wuytack, 1987, pp.151)] is available.
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5.1.3. Stoer’s recursive method

Particularly interesting is Stoer’s recursive method since it is embedded in
the Bulirsch-Stoer integrator for initial value problems (Bulirsch and Stoer,
1966). This method computes the value of an interpolant and not the inter-
polant itself. The polynomials

p(j)
m,n(x) =

m
∑

i=0

aixi , q(j)
m,n(x) =

n
∑

i=0

aixi (66)

fulfill the interpolating conditions

fq(j)
m,n(x)− p(j)

m,n(x) = 0 , i = j, . . . , j + m + n .

Note that the interpolating problem starts at the point xj . To express some
relations between successive rational interpolants lying on the main descend-
ing staircase

{

p(j)
0,0

q(j)
0,0

,
p(j)
1,0

q(j)
1,0

,
p(j)
1,1

q(j)
1,1

,
p(j)
2,1

q(j)
2,1

, . . .

}

(67)

let a(j)
m,n and b(j)

m,n indicate the coefficients of degree m and n in the polyno-
mial p(j)

m,n and q(j)
m,n respectively:

p(j)
n,n = (x− xj)a

(j)
n,n−1p

(j+1)
n,n−1(x)− (x− xj+2n)a(j)

n,n−1p
(j+1)
n,n−1(x) (68)

q(j)
n,n = (x− xj)a

(j)
n,n−1q

(j+1)
n,n−1(x)− (x− xj+2n)a(j)

n,n−1q
(j+1)
n,n−1(x)

and

p(j)
n+1,n = (x− xj)b(j)

n,np(j+1)
n,n (x)− (x− xj+2n+1)b(j+1)

n,n p(j)
n,n(x) (69)

q(j)
n+1,n = (x− xj)b(j)

n,nq(j+1)
n,n (x)− (x− xj+2n+1)b(j+1)

n,n q(j)
n,n(x)

with

p(j)
0,0 = fj , q(j)

0,0 = 1 . (70)

Based on this fundamental relations it is possible to derive rational inter-
polants on the descending staircase







p(j)
k,0

q(j)
k,0

,
p(j)

k+1,0

q(j)
k+1,0

,
p(j)

k+1,1

q(j)
k+1,1

, . . .







(71)

with

p(j)
k,0 = c0 +

k
∑

i=1

ci · (x− xj) · . . . · (x− xj+i−1) , p(j)
k,0 = 1 (72)

where the ci are divided divergences of f .
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5.2. Rational Hermite Interpolation

A more general interpolation problem is the rational Hermite interpolation
problem of order (m,n) for f which consists in computing polynomials p(x)
and q(x) with p/q irreducible and satisfying

f (l)(xi) =
(

p
q

)(l)

(xi) ∀l = 0, . . . , si − 1 ; i = 0, . . . , j

f (l)(xj+1) =
(

p
q

)(l)

(xj+1) ∀l = 0, . . . , k − 1 (73)

where (l) denotes the lth derivative, and si interpolation points coincidence
with xi, i.e., si interpolation conditions must be fulfilled in xi, and

1 ≤ k ≤ sj+1 , m + n + 1 =
j

∑

i=0

si + k . (74)

There are two special cases: si = 1 for all i ≥ 0 reproduces the rational
interpolation problem, and j = 0, i.e., all conditions must be fulfilled in one
single point, which is identical to the Padé approximation problem. A related
problem is the Newton-Padé approximation problem (Cuyt and Wuy-
tack, 1987, pp.157) which is solved by the Newton-Padé approximant.
As the other problems presented in this paper, determinant representation,
continued fraction representation, or Thiele’s continued fraction expansion
may be applied to derive the Newton-Padé approximant.

5.3. Fitting Rational Functions to Data

Similar to the generalized concept between polynomial interpolation and fit-
ting polynomials to given data sets, it is possible to fit rational functions to a
set of data points adjusting the parameters ai and bi. However different from
polynomial least squares problems, rational function least squares problems
are nonlinear least squares problem (Eichhorn, 1993). They are much more
difficult to solve and therefore fitting rational functions is a only rarely dis-
cussed topic. They may be formulated as a special case of unconstrained
minimization with an objective function of the form

f(y) =
N

∑

ν=1

[rν(y)]2 = rtr . (75)

in such a way a structure may arise either from a nonlinear over-determined
systems of equations

rν(y) = 0 , ν = 1, ..., N , N > M , (76)
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or from a data fitting problem with N given data points (xν , dν) and vari-
ances σν , a model function Φ(x,y), possibly a rational function, and M
adjustable parameters x:

rν := rν(y) =
1
√

σν
[Φ(xν ,y)− dν ] . (77)

The weights wν may be derived from the variances σν and chosen as

wν :=
1
σ2

ν
. (78)

If the model function Φ(x,y) is chosen as a rational function R(x) = p(x)/q(x)
then the vector y represents the coefficients of the polynomials, i.e., y = [a0, a1, . . . , am, b1, . . . , bn]t

and M = m + n + 1. The special case N = M is again the rational interpo-
lation problem.

Due to the limited space, for the case N > M , it is only possible to give a
brief scetch on how f(y) is minimized with respect to y. With the definition

Aνj :=
∂rν

∂yj
⇐⇒ A(y) := [5r1,5r2, ...,5rN .] (79)

the first and second derivatives, i.e, the Jacobian J and the Hessian H of
f(y) follows as

J = 2Ar , H = 2AAt + 2 ·
N

∑

ν=1

[

rν52rν
]

. (80)

If the second derivatives52rν are at hand then (80) can be used in the quasi-
Newton method. However in most practical cases it is possible to utilize a
typical property of least squares problems. The components rν are expected
to be small, and H might be sufficiently well approximated by

H ≈ 2AAt . (81)

This approximation of the Hessian matrix is also achieved if the residuals rν
are taken up to linear order. Note, that by this approximation the second
derivative method only requires first derivative information. This is typical
for least squares problems and this special variant of Newton’s method is
called Gauss-Newton method (or generalized least squares method). The
damped Gauss-Newton method including a line search iterates the solution
of yk of the kth iteration to yk+1 according to the following scheme:
− determination of a search direction sk by solving AkAt

ksk = −Akrk
which is analagous to the normal equation of linear least squares

− solving the line search subproblem, i.e, finding αk = arg min{ f(yk+αsk)
| 0 < α ≤ 1}
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− defining yk+1 = yk + αksk

Note, that the Gauss-Newton method and its convergence properties depend
strongly and the approximation of the Hessian matrix. In large residual

problems the term
N
∑

ν=1

[

rν52rν
]

in (80) becomes substantial, and the rate

of convergence becomes poor.

6. Applications of Padé approximants in Applied Mathematics

There is a wide variety of problems occurring in applied mathematics which
benefit from Padé approximants. Some examples like nonlinear equation
solving or integration of initial value problems are briefly discussed while
for applications of Padé approximants or rational interpolants to partial
differential equations or integral equations the reader is referred to (Cuyt
and Wuytack, 1987). Another application is the Laplace transform inversion
(Brezinski, 1983).

6.1. Solving nonlinear equations f(x) = 0

Let xi be an approximate solution of the equation f(x) = 0. Most numerical
procedures iterate as

xi+1 = xi + ∆xi . (82)

They differ in the way ∆xi is computed. For abbreviation let us define

f = f(xi) , f ′ = f ′(xi) , f ′′ = f ′′(xi) .

While Newton’s method (m = 1, n = 0) is based on the linearization

f(x) ≈ f(xi) + f ′(xi)(x− xi) (83)

yielding

∆xi = − f
f ′

(84)

the 2nd order Taylor expansion (m = 2, n = 0)

f(x) ≈ f(xi) + f ′(xi)(x− xi) +
1
2
f ′′(xi)(x− xi)2 (85)

gives

∆xi = − 1
f ′′
·
[

f ′ ∓
√

(f ′)2 − 2ff ′′
]

(86)
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with a much smaller convergence region and the problem of choosing the
right sign. With the knowledge of f, f ′, and f ′′ the Padé approximant cor-
responding to the expansion (85) follows according to (56) as

r11(x) =
f ′(xi)2

f ′(xi)− 1
2f ′′(xi)

·
[

f(xi)
f ′(xi)

+
(

1− 1
2

f(xi)f ′(xi)
f ′(xi)2

)

(x− xi)
]

.(87)

Putting r11(x) = 0, yields

∆xi = − f/f ′

1− 1
2

f ′′f
f ′2

= − ff ′

f ′2 − 1
2ff ′′

(88)

which is known as Halley’s method. Note the similarities between the New-
ton algorithm and the result based on r11(x). Both contain the term −f/f ′.
In general, if instead of r11(x) the Padé approximant rm,n(x) of order (m,n)
is used to determine ∆xi, the order of convergence is at least m+n+1, i.e.,

lim
i→∞

|xi+1 − x∗|
|xi − x∗|m+n+1 = C∗ < ∞ .

This is in agreement with the known convergence properties of Newton’s
method (2nd order). Both, the iteration based on the second order Taylor
series, and Halley’s method have at least an order of convergence which is
3. However iterative methods resulting from the use of (m, n) Padé approx-
imants with n > 0 can be interesting because the asymptotic error constant
C∗ may be smaller than in the case of n = 0 (Merz, 1968).

Similar to Newton’s method, it is also possible to generalize Halley’s
method for the solution of a system of nonlinear equations (Cuyt and Wuy-
tack, 1987, pp.222).

6.1.1. Solving Kepler’s equation using Padé approximants

In order to demonstrate the application of the Padé approximants to a prob-
lem relevant to Astronomy consider Kepler’s equation

E − e sin E = M , M ∈ [0, 2π) , e ∈ [0, 1] (89)

which yields

f(x) = x− e sinx−M (90)

and

f ′(x) = 1− e cos x , f ′′(x) = e sinx . (91)
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The correction ∆xi derived from the Padé approximant of order (m, n) is

∆xi = − f/f ′

1− 1
2

f ′′f
f ′2

= − ff ′

f ′2 − 1
2ff ′′

= − (x− e sin x−M) · (1− e cosx)
(1− e cosx)2 − 1

2(x− e sinx−M) · e sinx
. (92)

Table 3 contains the iterations for solving (89) for M = 0.6 and e = 0.9 with
the initial approximation x0 = 0.08 and the result x = 1.497589413390409.
Note that this result is achieved first by the iteration based on the Padé
approximant r11(x). The second order Taylor series ansatz also beats the
Newton procedure. However this ansatz cannot be used with the initial value
x0 = 0. Even more drastically is the result achieved with the initial value
x0 = 0.07. In that case, Newton’s method diverges while the other methods
perform as for x0 = 0.08.

Table 3: Different approaches to solve of Kepler’s equation
i Newton’s method 2nd order Taylor series Halley’s method (Padé)
0 0.08 0.08 0.08
1 5.83361644869743 2.951454104137709 1.990737759621929
2 -23.8595077579223 1.725646756896568 1.515004434940171
3 10.53662172774097 1.497774911860013 1.497590554024128
4 2.855615982488301 1.497589413390334 1.497589413390409
5 1.78140789166866 1.497589413390408 1.497589413390409
6 1.527825081877051 1.497589413390409 1.497589413390409
7 1.498016733395694 1.497589413390409 1.497589413390409
8 1.497589501081973 1.497589413390409 1.497589413390409
9 1.497589413390412 1.497589413390409 1.497589413390409
10 1.497589413390408 1.497589413390409 1.497589413390409

6.2. Integrating Differential Equations - Initial Value Prob-
lems

Numerically, a first order differential equation initial value problem

y′ =
dy
dx

= f(x, y) , x ∈ [a, b] , y(a) = y0 (93)

is solved by discretizing the interval [a, b] in, say k points

xi = a + ih , i = 0, . . . , k (94)

with

h =
b− a

k
, k > 0 .
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In general, methods which calculate approximations yi+1 for y(xi+1) by con-
structing local approximations for the solution y(x) of (93) at the point xi
of the form

yi+1 = yi + hg(xi, yi, h) , i = 0, . . . , k − 1 (95)

are called explicit one-step methods. Usually, the function g(xi, yi, h) is
related to the power series

yi + (x− xi)f(xi, yi) + f ′(xi, yi) + . . . (96)

which approximates the Taylor series expansion

y(xi) + (x− xi)f(xi, y(xi)) + f ′(xi, y(xi) + . . . .

Now it is possible to construct the Padé approximant ri(x) of order (m,n)
for the power series (96). Putting x = xi+1 and replacing x − xi = h leads
to yi+1 = ri(xi+1). The method is of order p if the Taylor series expansion
for g(x, y, h) satisfies

y(xi+1)− y(xi)− hg(xi, y(xi), h) = O
(

hp+1) . (97)

Therefore, the method is of order (m + n) if ri(x) is a normal Padé approx-
imant. The Padé approximant of order (1, 0) reproduces Euler’s method

yi+1 = yi + hf(xi, yi) (98)

and the Padé approximant of order (1, 1) has the form

yi+1 = yi + h
[

2f2(xi, yi)
2f(xi, yi)− hf ′(xi, yi)

]

. (99)

Padé approximants can be very interesting when integrating stiff differential
equations which have the property that ∂f(x,y)

∂y has a large real negative part,
e.g., y′ = λy with Re(λ) large and negative, and the solution y(x) = eλx, and
therefore lim y(x) = lim eλx = 0. Methods are called A-stable (Dahlquist,
1963) if they yield a numerical solution of y′ = λy with Re(λ) < 0 which
tends to zero as i → ∞ for any fixed positive h. If a Padé approximant of
order (m,m), (m,m + 1), or (m,m + 2) is used to construct g(xi, y(xi), h)
then the resulting scheme is A-stable (Ehle, 1973).



On Rational Function Techniques and Padé Approximants 27

6.3. Numerical Integration

Consider I =
∫ b
a f(x)dx. Many methods for computing an approximate value

to this integral replace f by an interpolating polynomial and hence compute
I as a linear combination of function values. Popular quadrature rules are the
Newton-Cotes formulas (Trapez-rule, Simpson-rule). Polynomial Hermite in-
terpolation also considers derivative information. Naturally, after what has
been said in the previous section, rational interpolants are an appropriate
mean to compute I. Alternatively, Padé approximants may be used as for
integrating initial value problems, realizing that

I = y(b) , y′(x) = f(x) , y(a) = 0 (100)

leads
∫ xi+1

xi

f(t)dt ' h
2f2(xi)

2f(xi)− hf ′(xi)
. (101)

7. Applications of Padé approximants in Applied Sciences

Padé approximants are used in statistical physics of phase transitions and
critical phenomena (Hunter and Baker, 1973), scattering physics, e.g., non-
relativistic, quantum mechanical scattering by a fixed potential source, elec-
tric circuits (passive, linear, lumped, reciprocal networks), dynamic dipole
polarizability for an atomic or molecular system. They are very helpful on
problems where the solution is obtained as a (divergent or convergent) power
series whose coefficients can be hardly computed.

8. Remarks and Conclusions

8.1. Multivariate Cases

The problems and the methods to deal with them presented in this paper
were explained for the univariate case, i.e., for functions

f : < → <, x → f(x) . (102)

In some places it has been stressed that the formalism works also for complex
functions with complex arguments. Furthermore, it is possible to generalize
the concepts to the multivariate case

f : <n → <m,x → f(x) (103)

for which the reader is referred to (Cuyt and Wuytack, 1987).
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8.2. Convergence of Rational interpolants and Padé approxi-
mants

At several places throughout this paper it has been mentioned that the con-
vergence properties of rational interpolants and Padé approximants are con-
nected analyticity and need to be investigated on the background of complex
calculus. It was beyond the scope of this contribution to cover those aspects.
The reader is referred to (Baker, 1975) for convergence theory. There are fas-
cinating results which relate convergence properties of Padé approximants
to the distribution of poles and zeros of the underlying function f , e.g., the
Baker-Gammel-Wills conjecture.

8.3. Topics not covered

It was not possible either to illuminate the connection of Padé approximants
and the theory of formal orthogonal polynomials (Brezinski, 1983) which
plays a fundamental role in the algebraic theory of Padé approximants. They
provide a natural basis to derive recursive methods for computing any se-
quence of Padé approximants. Furthermore, Padé approximants are closely
related to Gaussian quadrature methods.

A generalization of Padé approximants themselves is a relaxation of the
requirements with respect to the denominator (choice of the poles), leads to
the concept of Padé-type approximants [(Brezinski, 1979);(Brezinski, 1980)].

8.4. Linear methods and nonlinear analogues

As a conclusion it can be said that every linear method has its nonlinear
analogue. In case, the linear methods are inaccurate or divergent it is rec-
ommended to use a similar nonlinear technique. Padé approximants and
rational techniques (rational interpolants, continued fractions, etc.) are use-
ful for that purpose. The price to be paid for the ability of the nonlinear
method to cope with the singularities is the programming difficulty of avoid-
ing divisions by small numbers within actual programs. Closing the circle,
the latter, is a well-known problem within perturbations methods in celestial
mechanics.
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