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Abstract We describe and solve a real world problem in chemical industry
which combines operational planning with strategic aspects. In our simul-
taneous strategic & operational planning (SSDOP) approach we develop a
model based on mixed-integer linear (MILP) optimization and apply it to a
real-world problem; the approach seems to be applicable in many other sit-
uations provided that people in production planning, process development,
strategic and financial planning departments cooperate.

The problem is related to the supply chain management of a multi-
site production network in which production units are subject to purchase,
opening or shut-down decisions leading to an MILP model based on a time-
indexed formulation. Besides the framework of the SSDOP approach and
consistent net present value calculations, this model includes two additional
special and original features: a detailed nonlinear price structure for the raw
material purchase model, and a detailed discussion of transport times with
respect to the time discretization scheme involving a probability concept.
In a maximizing net profit scenario the client reports cost saving of several
millions US$.

The strategic feature present in the model is analyzed in a consistent
framework based on the operational planning model, and vice versa. The
demand driven operational planning part links consistently to and influ-
ences the strategic. Since the results (strategic desicions or designs) have
consequences for many years, and depend on demand forecast, raw mate-
rial availability, and expected costs or sales prices, resp., a careful sensitivity
analysis is necessary showing how stable the decisions might be with respect
to these input data.
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1 Introduction

This contribution evolved from a project in chemical industry in which we
developed and successfully applied a mixed-integer model to a real world
problem which combines strategic and operational planning aspects in one
model (a second example which encourages this approach is described in
[9, Section 8.2]); operational planning aspects involve decisions on short or
mid-term time-scale which are transformed into operational activities, e.g.,
producing, shipping or selling something. Let us first give some motivation
why this simultaneous strategic & operational planning (SSDOP) approach
based on mixed-integer optimization may greatly improve a company’s sit-
uation and let us focus on some problems we might expect.

1.1 Solving design and operational planning problems simultaneously

It is a frequent experience that clients ask for support on a production
planning or scheduling problem for a plant or reactor which just went into
operation. Often, especially in scheduling problems, it turns out that there
exist certain bottlenecks. It would greatly improve the situation if the design
of a plant or reactor would be analyzed simultaneously with the planning or
scheduling problem. Certainly, this problem is mathematically demanding
because scheduling problems alone are already very difficult to solve [10],
e.g., because of resources (raw material, machine availability, or personnel)
too strongly limited. Thus, if the design and planning/scheduling problem
are part of one embracing model this bottleneck situation might be avoided.
This simultaneous approach requires the availability of realistic and detailed
demand forecast, and expected cost or sales prices, resp., and that the de-
partments being responsible for the design and the planning/scheduling
cooperate. The latter problem is by far the more difficult one, especially in
large companies. A concrete example of this type, a process design network
problem, is discussed in [9, Section 9.2].

1.2 Solving strategic and operational planning problems simultaneously

A company running a complex production network consisting of several
plants, (see, for instance, [11, Section 10.4]) wishes to buy additional plants,
open new reactors based on improved technology, or to shut down some
older reactors. In their multi-stage production system there might exist log-
ical implications between the status of certain reactors. The data governing
the investment or deinvestment decisions are the costs to buy a plant, or
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the costs to open or shut down a reactor. The investments or deinvest-
ments should be sound over a time horizon of, say, up to 15 years. The best
approach to analyze such situations is to develop a quantitative planning
model and to enhance it by additional plants or reactors (leading to so-called
design variables and constraints) and let the model provide suggestions on
optimal design decisions. Regarding the database, it is necessary to provide
the full data set (recipes, production rates and capacity, etc.) for all design
plants or design reactors. All cost data should be discounted over the time
horizon in order to support a net present value analysis. Such a case for a
real production division of a chemical company is discussed in Section 2.
To model this problem we partly use the model formulation published in
[7], [11, Section 10.4], or [13]; the current project required major extensions
related to design reactors, transport arriving over several time slices, non-
linear pricing structures to purchase raw materials and additional objective
functions such as maximize net profit, multi-criteria objectives (i.e., maxi-
mize profit & minimize the quantity of transport in tons), maximize sales
volume or maximize turnover.

Another problem of this type ([8] and [9, Section 9.1]), linking strategic
and operational aspects is the optimization of a network of processing units
at a large production site connected by a system of pipes. The purpose of
this model was to design an integrated production network minimizing the
costs for raw material, investment and variable costs for re-processing units,
and a cost penalty term for low product quality. The investment decisions
are considered on a 10-year linear depreciation rate.

1.3 Mathematical problems of combined models: complexity

Although company wide supply chain production models exist, see, for in-
stance, [1] in most cases, because of their high complexity, even pure pro-
duction planning or supply chain optimization problems are often seen as
academic and not suitable for practical application. Instead, either simplifi-
cations (like linear relaxations) or simulation approaches are used, especially
if there are several plants, tank storages, and the production planning prob-
lem is just a part of the comprehensive problem of optimizing the whole
supply chain with regard to a detailed description of the commercial en-
vironment, such as demands with different prices for different customers,
availability of raw material or quality commitments.

Therefore, if one suggests a simultaneous strategic/design & operational
planning (SSDOP) approach it is not a surprise that the sceptics might
argue embedding a complex mixed-integer programming model in an even
bigger problem including design features ”is by far too difficult”. Indeed, the
problem might be large and complex, but as the case discussed in Section
2 shows, it is worthwhile to try and it can be done.
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1.4 Mathematical problems of combined models: structure of the objective
function

It is important that the problem is – within the limits and the assump-
tions of the model – approached as an exact optimization problem with a
well-defined objective function representing the economic structure of the
business process. We need to be able either to prove optimality, or to derive
safe bounds enabling us to compare different scenarios reliably and to per-
form sensitivity analyses. A simulation approach is no substitute because
it does not strictly (in the mathematical sense) support these items as it
could happen that the scenarios A and B have the optimal solutions 110 and
105 but a simulation based approach produces best evaluations 103 and 104
which would indicate that B is better. In the SSDOP approach there are a
few complicating factors related to the structure of the objective function.

Since the objective function may contain terms related to operational
planning (variable costs for production and processing, transport, raw mate-
rial, utilities, inventories, mode-changes, etc.) and the design decision (event
costs to close or open reactors, to purchase plants, etc.) the scaling in the
objective function terms might be poor. This problem might be overcome
by appropriate branching strategies and prioritizing the branching variables.
Since the planning horizon considered may cover up to 15 years, nonlinear
(usually concave) terms describing a price structure might enter in addition.
If these terms are not too complicated they can be described sufficiently ac-
curate as shown in Section 4.2, for instance.

1.5 Mathematical problems of combined models: reliability of data

A point of practical concern is the availability of demand forecast data,
costs or sales prices over a long period. People not favoring the SSDOP
approach might use this as a strong argument against it. There are two
arguments to meet these concerns: a) on what grounds would they base
their investment decisions otherwise? (the problem related to accurate data
concerns both mathematical planning and non-mathematical planning) and
b) the mathematical planning approach supports sensitivity analyses and
allows to estimate the stability of the decisions with respect to variability
of the forecast data. In addition, when building the model and collecting
the data, it is necessary to try to balance the degree of details entering the
model. Finally, depending on the specific purpose, the overall model might
be adapted to its use on different application levels (pure strategic, pure
operational planning with fixed design decisions, etc.) requiring different
accurateness of the data.

2 Strategic decisions in a worldwide production-network

The core production planning problem covers large parts of the supply chain
including several plants, multi-stage production using multi-purpose reac-
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tors with some logical rules in the production scheme, tank storages, trans-
port with a detailed representation of the commercial environment, such
as demands with different prices for different customers and availability of
raw material. Products are subject to aggregate demand requirements at
certain demand points. Variable costs for production, inventory, transport
are given. The raw material purchase follows a nonlinear price structure.
The client asked to consider the production planning problem as a part
of larger problem. This larger problem comprises a production network in
which gaseous raw materials along a line of up to six intermediate products
are converted into finished products, and in which a production unit from a
given set of design units is subject to shutdown or opening, or in which even
some whole plants can be purchased. To avoid duplication of material most
details of production and other features are specified in Subsection 4.1. The
most important objective is to maximize the total net profit (contribution
margin minus fixed costs minus investment costs) of the entire production
network. In addition the following objective functions are maximized: con-
tribution margin, total sales neglecting cost, turnover and total production.
Costs can be minimized and multi-criteria objectives, for instance, maximize
profit & minimize transport, are supported. The most relevant decision vari-
ables indicate how much time per time-slice a reactor spends in a certain
mode, how much of a product is produced, stored or shipped to another
location. Binary variables trace the status and mode changes of a reactor.
Structurally, most of the constraints are balance equations tracing invento-
ries, connecting production and production recipes over several production
levels and tracing mode changes. Other constraints relate production quan-
tities, production rates and available time to each other, or guarantee that
capacity limits are observed.

3 The mathematical model: preliminaries

3.1 The structure of the model and its basic objects

The problem sketched above has some common features with modeling
multi-purpose plants which are frequently used in the food or chemical pro-
cess industry. In each mode such a reactor can produce several products
according to free or fixed recipes (joint production, coproduction) leading
to a general mode-product relation described by a set of yield coefficients:
in a certain mode several products are produced (with different maximum
daily production rates), and vice-versa, a product can be produced in differ-
ent (but not all) modes. Mode changes correspond physically, for instance,
to a change of the temperature or pressure of a reactor, put the reactor in
a new feasible mode and result in a considerable loss of production time,
which in our case is sequence-dependent, and are modeled as a proportional
lotsizing and scheduling problem (PLSP, [5, p.150]), i.e., based on time-
indexed formulations with at most one setup- or mode-change per period;
see also [12] for a survey on lot sizing problems.
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We thus transform the problem into a model describing a multi-site pro-
duction network including multi-stage production in plants (a plant hosting
sets of reactors) depending on the mode chosen for the reactors. Parts of
the model have already been published in [7], [11, Section 10.4], or [13]; the
current project required major extensions related to design reactors, trans-
port arriving over several time slices, nonlinear pricing structures to pur-
chase raw materials and additional objective functions such as maximize net
profit, multi-criteria objectives (i.e., maximize profit & minimize the quan-
tity of transport in tons), maximize sales volume or maximize turnover. We
thus extend and develop an elaborated version of the model [11, Section
10.4]. In our model we use the following set of objects and indices:

b ∈ B := {1, . . . , NB} : break points (nonlinear price function)
c ∈ C := {1, . . . , NC} : sales categories
d ∈ D := {1, . . . , ND} : demand points
k ∈ Ks := {1, . . . , NK

s } : production periods at site s
m ∈Msr := {1, . . . , NM

sr } : modes at site s for reactor r
p ∈ P := {1, . . . , NP } : products
r ∈ R := {1, . . . , NR} : reactors
s ∈ S := {1, . . . , NS} : production sites / plants
t ∈ T := {1, . . . , NT } : commercial periods

Break points are points at which the unit price as a function of volume
changes. Sales categories allow, for instance, to model that the first 80% of
an order can be purchased at a price of 100 US$, the next 20% at 90US$.
Demand Points may represent customers, regional warehouse locations or
distributors who specify the quantity of a product they request, and are
sinks in the supply network, i.e., points where a product leaves the system
and is not further traced. Demand may be subject to certain constraints,
e.g., satisfying a minimum quantity of demand, observing origins of produc-
tion or supplying a customer from the same origin.

3.2 Discretization of time

In order to investigate a planning horizon of up to 15 years and to cover
the production at a level which is sufficiently detailed we use the time dis-
cretization scheme described by [13] using non-equidistant commercial and
production time slices (periods); in most cases, the production schedule has
a finer resolution than the commercial plans for sales and shipping. Dif-
ferent time scales allow to have smallest time slices relevant to production
which may be of the order of just a few days while the commercial peri-
ods may cover even a few years. The entire planning horizon is therefore
divided into NK

s production slices of size DP
t /Ust days, where DP

t is the
length of the tth commercial period in days and Ust is the number of pro-
duction slices embedded in that commercial period. Regarding delivery or
sale, in typical operational planning, usually a commercial time scale of 12
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periods (months) is chosen. Another possible scenario is, for instance, to
cover a two year production plan with NT = 16 periods: the first 12 with a
length of about 30 days, and four additional ones with a length of 120 days.
Commercial and production time slices are linked by the function

ks(s, t) :=
{

0 , if t = 1
ks(s, t− 1) + Us,t−1 , if t > 1 ∀{st} (1)

which gives the number (minus one) of the production slice starting at
the beginning of commercial period t at site s, and, with u referring to a
production slice embedded in the commercial time interval t. The function

k(s, t, u) := ks(s, t)+u ∀{st} (2)

gives the absolute number k(s, t, u) of the uth production slice in the com-
mercial period t within the production time scale referenced by t and u
at plant s, and connects both time scales. For shortness, if sums cover the
whole planning horizon, we use k rather than k(s, t, u). Finally, we need the
inverse function, tk(s, k),

tk(s, k) := min{t | ks(s, t) < k ≤ ks(s, t)+Ust} ∀{st} (3)

returning the commercial period that covers the production slice k at plant
s. It can be expressed in terms of the functions defined above: For further
details on this topic we refer to [13]. A 5-year planning horizon in which the
commercial data are available on an annual basis and production should be
considered with a fineness of one month, leads to

NT = 5 ; DP
t = 360 ∀t ; Ust = 12 ∀{st} (4)

while for asset evaluation over a time horizon covering 10 years with two
production time slices per year is described by

NT = 10; DP
t = 360 ∀t; Ust = 2 ∀{st} (5)

3.3 Limits and underlying assumptions

The limits of the model follow from its underlying assumptions which are
further discussed in Section 7.1:

1. Only one mode change per production time slice is allowed as the model
is formulated as a proportional lotsizing and scheduling problem (PLSP,
[5, p.150] or [6]), i.e., based on time-indexed formulations with at most
one setup- or mode-change per period. This assumption seems not to
be a very serious restriction for operational planning since a production
time slice has a length of a week or a month and typically only one setup-
change per month occurs. For the long term analysis the description of
the mode changing reactors may not be accurate enough. But one should
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keep in mind that the demand forecast and other input data are of
limited accuracy as well; the client regarded the approach as sufficiently
accurate and realistic.

2. Transport times are of the order of a few days. In the 12-month scenarios
transport times are only considered using a probability assumption. In
even longer term scenarios transport times are neglected.

3. Only variable inventory costs are considered. They are based on the
capital tied up in inventories and interest rates.

4. Design reactors cannot be subject to intrinsic mode changes. In the
current case this limitation did not cause any problems because the
approximately 30 reactors subject to design decisions were single product
reactors.

5. Production utilization rates and associated constraints refer to utiliza-
tion per production slice. At present, the model does not include con-
straints enforcing global utilization aspects of the supply network.

6. In order to support net present value considerations all cost related data
are discounted over time using a discount rate of p%.

4 The mathematical model: the operational planning aspects

4.1 Plants, reactors and production

Each plant consists of one or two sets of reactors. While all reactors are
subject to multi-stage production requirements and possible coproduction,
some are multi-purpose reactors subject to mode changes. Topologically,
at each plant, the reactors are arranged in chains, in which each reactor
needs only one pre-product; however, the current model formulation does
not exploit this features and can also be applied to convergent or divergent
material flows and more general topologies. The reactors within a chain
operate simultaneously and at different levels of the multi-stage production
process. There exist capacity limits for each reactor and task, as well as
capacities for the production of each product, and minimum production
requirements. Some reactors in the chain are subject to mode changes lasting
usually one or two days. Reactors obtain products from preceding reactors
or from tanks, and charge the products through pipelines to tanks or to
subsequent reactors.

Modeling production involves the concepts of multi-stage production,
joint production (coproduction) and mode changes of the multi-purpose
reactors. The description of the mode changes is based on [11, pp. 321]; the
adoption of this approach to the current problem is as follows. The basic
binary variables are the state variables

δsrmk =
{

1 , if reactor r is in mode m at the end of period k
0 , otherwise (6)

It is one of the most fundamental assumptions in this model that there is
at most one mode change per period. If the state variables take the values
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δsrm1k−1 = δsrm2k = 1 we have a mode change from mode m1 to m2 in
time interval k.

Both, the continuity of modes and mode changes are tracked by the
binary variables

ξsrkm1m2
=

{
1 , if δsrm1k−1 = δsrm2k = 1
0 , otherwise ∀{srm1m2k} (7)

This variable is unity if at the end of period k−1 reactor r ∈ Rs

∣∣IMC
sr = 1

of plant s ∈ S is in mode m1 ∈ Msr and at the end of period k ∈ K it is
in mode m2 ∈ Msr. ξsrkm1m2

is a variable not only describing whether a
change-over occurs, but it also indicates whether production continues. If
the reactor is in mode m both at the end of period k − 1 and k then we
have ξsrkmm = 1.

The state variables and the mode-change variables will now be coupled
by some additional binary variables: αsrmk, if reactor r at plant s spends
some time in period k in mode m; βsrmk, if mode m is started on reactor r
at site i in period k; and finally, γsrmk, if mode m is terminated on reactor r
at site i in period k. These binary variables are related to the mode changing
variables by the constraints

βsrmk =
∑

m1 6=m

ξsrkm1m ∀(srmk) (8)

and

γsrmk =
∑

m1 6=m

ξskmm1
∀(srmk) (9)

The multi-stage production scheme looks as follows: at a site s a certain
reactor r is connected to one (or possibly more) preceding reactors r′; it is
assumed that transfer times between reactors are zero. The reactor topology
is completely described by the indicator table ITopo

sr′r which takes the value
1 if reactor r′ can charge to reactor r. Reactor r converts the product p′

produced by preceding reactors r′ into the product p, or possibly into several
coproducts. Actually, this product p′ can also be taken from the preceding
reactor r′ or from an intermediate tank. The total quantity pU

srp′k of product
p′ reactor r uses in period k is therefore

pU
srp′k = uS

srp′k +
∑

r|IT opo

srr′ >0∧ISRP
sr′p′=1

pD
sr′rp′k (10)

∀
{
srp′

∣∣IPP
srp′ = 1 ∧ IPipi

sr = 1
}

∀k (11)

where IPP
srp′ indicates whether reactor r uses p′ as a pre-product at all. The

indicator table ISRP
sr′p′ controls which reactor r′ at site s is able to produce

product p′, and uS
srp′k is the quantity of product p′ taken by reactor r from

the tank. Note that IPipi
sr = 1 means that reactor r is – via an input pipeline

– connected to a tank and is able to extract material from that storage
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device; in the current case, each reactor needs exactly one pre-product,
therefore IPipi

sr does not depend on the product as this is known a priori.
pD

sr′rp′k is the quantity of product p′ charged from reactor r′ directly to
reactor r and allows also to model convergent material flows if the topology
is chosen appropriately. Note that uS

srp′k appears as a loss term in the stock
balance equation (44). If p′ is a raw material, which can only be purchased,
(10) reduces to

pU
srp′k = uS

srp′k ∀
{
srk

∣∣IPP
srp′ = 1 ∧ IPipi

sr = 1
}

(12)

because p′ is not produced on any reactor, and therefore for all reactors r′

we have ISRP
sr′p′ = 0. To model raw material availability it has to be ensured

in the input data that uS
srp′k has no upper bound, or is consistent with the

raw material availability, respectively. Finally, if the reactor is not connected
to an input tank, (10) reduces to

pU
srp′k =

∑
r|IT opo

srr′ >0∧ISRP
sr′p′=1

pD
sr′rp′k ∀

{
srp′k

∣∣IPP
srp′ = 1 ∧ IPipi

sr 6= 1
}

(13)
The multi-stage production, i.e., the quantity pP

srpk of product p produced
on reactor r at site s is described by recipe equations of the form∑

p∈P|ISRP
srp >0

Rsrp′pp
P
srpk = pU

srp′k ∀
{
srp′k

∣∣IPP
srp′ > 0

}
(14)

It is a matter of taste whether to apply the recipe coefficient to p′ or p. Note
that reactor r produces several products p using p′ simultaneously.

In addition to the multi-stage concept we also have to consider copro-
duction. If the conversion of product p′ produces two products p1 and p2 in
a fixed ratio RFR

srp1p2
, we have

pP
srp1k = RFR

srp1p2
pP

srp2k ∀
{
srp1p2k

∣∣∃RFR
srp1p2

> 0
}

(15)

So (15), means that for each mass unit that is produced of product p2 one
also gets RFR

srp1p2
mass units of product p1. The quantity pP

srpk of prod-
uct p which can be produced on reactor r at site s in period k is limited
by the capacity RP

srp specified in tons/day. With Pmin
srpk := HsrkRP min

srp =
HsrkRU min

srp RP
srp , where Hsrk is the number of days available for produc-

tion in period k and RU min
srp specifies production utilization for reactor r at

site s and product p in %, and the production capacity, Pmax
srpk := HsrkRP

srp,
of reactor r in tons in period k, we get the bounds

pP
srpk ≤ Pmax

srpk ∀
{
srpk

∣∣ISRP
srp = 1 ∧ IMC

sr 6= 1
}

(16)

Some additional sets of constraints consider minimum production of a prod-
uct at a plant over a specific time period. This may be quantified by RU min

srp ,
the production utilization for reactor r at site s and product p in %. If the
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minimum Pmin
srpk := RU min

srp Pmax
srpk is not met, then no production is possible.

Therefore, pP
srpk is a semi-continuous variable or subject to the disjunctive

constraints, resp.

pP
srpk = 0 ∨ Pmin

srp ≤ pP
srpk ≤ Pmax

srp ∀
{
srpk

∣∣∃RP
srp

}
(17)

For those reactors subject to opening or shut-down decisions or belonging
to plants which might be purchased the capacity balance reads

pP
srpk = 0 ∨ Pmin

srpkθsr ≤ pP
srpk ≤ Pmax

srpkθsr (18)

∀
{
srpk

∣∣∃RP
srp ∧ ∃ID

sr

}
where the indicator table ID

sr indicates whether reactor r is a design reactor
and the binary variable θsr specifies whether the reactor is available or not.
It is also possible to apply global constraints enforcing that, if a design
reactor falls below a certain minimum usage rate, it has to be shut down;
however, due to the lack of space we do not present this feature here.

The quantity pP
srpk of output product p is charged to a local tank (site

inventory) or charged to subsequent reactors. This is expressed by the dis-
tribution equation

pP
srpk = pT

srpk+
∑

r∈R|IT opo

srr′ >0

pD
srr′pk ∀

{
srpk

∣∣ISRP
srp = 1

}
(19)

where pT
srpk is the quantity of product p charged to the tank (site inventory)

by pipeline, or by

pP
srpk =

∑
r∈R|IT opo

srr′ >0

pD
srr′pk ∀

{
srpk

∣∣ISRP
srp = 1

}
(20)

if reactor r has no pipeline connection to an output tank.

4.2 Raw material modeling

Raw materials are in most aspects treated similarly to all other products,
for instance, they fulfill the recipe equation (14). However, for raw materials
we have to consider purchase cost CRM

srp and the availability ARM
srpk which

describes how much raw material p is available in period k. Raw materials
are fed to the reactors by a tank. Thus we model the availability exploiting
the tank feature IPipi

sr = 1 and the variable us
srpk expressing how much of

product p (in this case raw material) reactor r at site s takes from the tank.
The variable uS

srpk is subject to the availability constraint

uS
srpk ≤ ARM

srpk ∀
{
srpk

∣∣∃ARM
srpk ∧ IPP

srp = 1
}

(21)
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The notation ∃ARM
srpk reflects that an inequality is generated only if a table

entry for ARM
srpk exists. A more elaborated view of the raw materials, con-

trolled by a site and raw material dependent flag RM
sp , takes the following

features into account:

RM
sp description
0 material requirement planning output; no constraints, no costs
1 take as much raw material as needed at a fixed price
2 take as much raw material as needed at a nonlinear price
3 take all available raw material (use or burn) at a fixed price

and generates all constraints only if a raw material tank has been declared,
i.e., if ∃SSC

sp .
If RM

sp = 0 no raw material constraints or costs are considered. In the report
we just print the raw material which would be required. For modeling the
raw material features we introduce the following variables:

uR
spk : usage (in tons) of raw material (product) p in period k

uRB
spbk : usage (in tons) of raw material (product) p in segment b

bR
spk : burned quantity (in tons) of raw material (product) p

µspbk : binary var. indicating RBPV
spb−1k ≤ uRB

spbk ≤ RBPV
spbk in period k,

ωspt : binary var. indicating the use of raw material p in period t

If Y RM
spk specifies the price per ton which can be obtained if the raw material

is burnt, it can not be used otherwise, and thus converted into energy.
For ∀

{
spk

∣∣∣∃ARM
spk ∧

(
∃r with IPP

srp = 1
)
∧ ∃Y RM

spk

}
we apply the following

bounds or constraints, resp.:

uR
spk ≤ ARM

spk if RM
sp = 1 (22)

uR
spk + bR

spk = ARM
spk if RM

sp = 3 (23)

The case RM
sp = 2 is more difficult to model and requires the following data

RBPC
spbk specific raw material cost in segment b

RBPV
spbk raw material volume at break point b

RACC
spbk accumulated raw material cost at break point b

RFIX
spk fixed cost (setup cost) if raw material p is chosen

RPEN
spk penalty cost if raw material p is not used at all

where segment b refers to the range between break point b − 1 and b, and
thus to the interval [RBPV

spb−1k, RBPV
spbk ] the penalty cost RPEN

spk apply to the
situation that an annual contract with the raw material supplier has been
established but the raw material is not used at all, RACC

sp1k = 0 and for
b = 2, . . . , NB

RACC
spbk = RACC

spb−1k+RBPC
spbk

(
RBPV

spbk −RBPV
spb−1k

)
(24)
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To select the appropriate segment or interval [RBPV
spb−1k, RBPV

spbk ] for the quan-
tity of raw material purchased we exploit the binary variable µspbk which
indicates that RBPV

spb−1k ≤ uRB
spbk ≤ RBPV

spbk . The constraints

NB+1∑
b=1

µspbk = 1 ∀
{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(25)

and
uRB

spbk ≥ RBPV
spb−1kµspbk ∀

{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(26)

uRB
spbk ≤ RBPV

spbk µspbk ∀
{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(27)

guarantee that uRB
spbk falls exactly into one segment. Note that µspNB+1k = 1

is used to indicate that no raw material is used at all.
The real quantity uR

spk of used raw material is coupled to the segment
quantity by

uR
spk =

NB∑
b=1

uRB
spbk ∀

{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(28)

As raw material is purchased on the basis of annual contracts, which might
force that a certain quantity has to be purchased by the provider, we in-
troduce the binary variable ρspt indicating whether any quantity of raw
material p is used in the commercial period at all

ρspt ≥ 1−µspNB+1k ∀
{
sptk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(29)

If no raw material is used at all, penalty cost may be applied by the provider.
An alternative, and in most cases superior formulation of these raw

material aspects replaces (26) to (28) by

uR
spk =

NB∑
b=2

RBPV
spb−1kµspbk+

NB∑
b=1

uRB
spbk ∀

{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(30)

uRB
spbk ≤ RBPV

sp1k µspbk ∀
{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(31)

where uR
spk has a slightly different meaning now, and

uRB
spbk ≤

(
RBPV

spbk −RBPV
spb−11k

)
µspbk ∀

{
spk

∣∣∃ARM
spk ∧ ∃SSC

sp

}
(32)

The variable raw material cost are then given by∑
s∈S

∑
p∈P

NB∑
b=2

NK
s∑

k=1

RACC
spb−1kµspbk +

∑
s∈S

∑
p∈P

NB∑
b=1

NK
s∑

k=1

RBPV
spbk uRB

spbk (33)

+
∑
s∈S

∑
p∈P

NT∑
t=1

RPEN
spt +

∑
s∈S

∑
p∈P

NT∑
t=1

(
RFIX

spt −RPEN
spt

)
ρspt

A special ordered set approach involving the µspbk variables has been tested
as well, but did not turn out to be superior compared to the formulation in
which the µspbk variables are just binary variables.



14 Josef Kallrath

4.3 Transport

The model considers three types of transport: transport of products be-
tween production sites and transport of products from production sites
to demand points; in some rare cases there is also transport between de-
mand points. Transport costs depend on the source, destination and prod-
uct, minimal quantities to be observed and transport times (typically a few
days). Transportation quantities are expressed by non-negative, dimension-
less semi-continuous transport variables specifying, when multiplied by the
minimum transport quantity, TM , the quantity of product p shipped:

σDD
dd′pt : . . . between demand points d and d′

σSD
sdpk : . . . shipped from site s to demand point d

σSS
ss′pk : . . . shipped from site s to site s′

(34)

The semi-continuous variables, for instance, σSD
sdpk are defined

σSD
sdpk = 0 ∨ 1 ≤ σSD

sdpk ≤ S+
sdpk ∀{sdpk} (35)

with some upper bound S+
sdpk, and they enter the inventory balance equation

in the form TMSD
sdpk σSD

sdpk where TMSD
sdpk is the minimum transport quantity.

The various time scales in our model SSDOP force us to model trans-
port time very carefully. The actual transport times are a few days, usually
between 1 and 6 days. If the transport times are consistent with the time
discretization, i.e., the transport time is an integer multiple of the small-
est time slice, the transport times can be considered in the index counting
the time slice (see [11, Section 10.4]). Regarding the length of the planning
horizon and the discretization of time we consider two model approaches to
transport. In the 15-year planning horizon with half-year time slices and in
the short term (operational planning) scenario covering three months the
time resolution is one week. That fits transport times which will be reason-
ably approximated to be 0 or 1 week. In the one-year (operational) planning
scenario with time slices of one month this is not accurate enough. We might
use smaller time slices (leading to significantly increased CPU times) but
in order to avoid this, we suggest to use the following approach based on
a probability assumption (for clarity, we neglect some of the indices in this
paragraph). The essential idea of this approach is to conserve the flow of
materials but to distribute the shipment arrival to two adjacent time slices.

Let DPK
sk be the length of the time period k at site s, ∆sd be the time

needed for transportation from site s to destination d and let us assume
that ∆sd ≤ min

(
DPK

k , DPK
k+1

)
for all k. If we assume that shipments during

production period k leave site s with uniform probability in period k, the
product will arrive at the destination d with probability

ωsdk :=
∆sd

DPK
sk

=
∆sd

DP
t

Ut (36)
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in period k + 1 and with probability 1 − ωsdk in period k. Therefore, in
the one-year planning scenario, we use the following heuristic approach to
consider transport in the inventory balance equations. If pT

sd is the quantity
to be shipped (appears as a loss term at the site where transport origins)
we consider (at the destination of shipment) (1 − ωsdk)pT

sd in the balance
equation of period k and ωsdkpT

sd in period k + 1 as source terms. This
approach is not recommended if the planning tool is used operationally.
But for long term, e.g., annual planning, it should be perfectly suitable,
especially, if there exists some minimum inventory level.

Let us now focus in more detail on products originating from site s in
production period k arriving at demand point d in commercial period t.
The time, ∆sd, associated with this transport and the length, DPK

sk , of the
period allow us to compute ωsdk from (36).

At first consider the short term scenario in which ∆sd is an integer
multiple of DPK

sk , i.e., Tsd = ∆sd/DPK
sk . Then a shipment originating in

period k arrives in period k +Tsd. If the commercial period t consists of Ust

production time periods then all shipments originating in periods{
k = 1, . . . , NK

s |tk(s, k + Tsd) = t
}

(37)

arrive in that period.
In the long-term scenario transport is modeled using a probability as-

sumption, i.e., a fraction 1 − ωsdk of the quantity TMSD
sdpk σsdpk arrives in

period k at the destination d, i.e., the arriving quantity of product p in
period k is given by

(1− ωsdk) TMsd
sdpk σsdpk

{
k = 1, . . . , NK

s |tk(s, k) = t
}

(38)

and the complementary fraction ωsdk arrives in period k + 1, i.e.,

ωsdk′TMsd
sdpk σsdpk′

{
k′ = 1, . . . , NK

s |tk(s, k′ + 1) = t
}

(39)

Note that there might occur two terms containing the variable σsdpk (one
associated with the 1 − ωsdk term, and another one connected to ωsdk′

for the adjacent period), which in some modeling language may lead to
complications (column appears twice in a row) if Ust > 1. This problem
can be overcome by collecting all coefficients related to the same variable a
priori.

4.4 Modeling inventories and stock balances

Inventories and related costs are considered for each product at both plants
(inventories at sites) and regional warehouses (inventories at demand points).
At demand points it is possible to lease some additional storage capacity.
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4.4.1 Inventories at sites At present it is assumed that for each product p
there is a dedicated tank available at a site. The stock, sS

spk, for all {spk},
is described by the balance equation

sS
spk = sS

spk−1 + pES
spk + ŜS

spk + uR
spk −

∑
r|IP ipi

sr =1

uS
srpk (40)

+
∑

r∈R|(ISRP
srp =1∧IP ipi

sr =1)
pT

srpk (41)

−
∑

sd∈Ssdk

TMss
ssd

σSS
ssdpk −

∑
d∈Dsdk

TMsd
sd σSD

sdpk (42)

+
∑
ss∈S

(1− ωsssk) TMss
sss σSS

sssp,k−(1−π)T ss
sss

(43)

+
∑
ss∈S

ωssskTMss
sss σSS

sssp,k−π−(1−π)T ss
sss

(44)

in which the terms have the following meaning: sS
spk−1 is the stock level at

the end of the previous period, pES
spk denotes external purchase [see Section

4.6], ŜS
spk

ŜS
spk :=

∑
ss∈S|∃SSS

spk

SSS
ssspk (45)

denotes transport arriving in period k from shipment originating before the
first period. The supply, uR

spk, of raw material available in period k appears
as a source term, the usage of the product,

∑
uS

srpk, as a loss term. The
sum

∑
pT

srpk represents the quantity of product charged from other reactors
to this tank. The terms based on the σ-variables have been explained in
Section 4.3 describing shipments to other sites and demand points as well
as products received from other sites. The sets

Ssdk :=
{
sd ∈ S

∣∣sd 6= s ∈ S ∧ k + T ss
ssd

< NK
}

(46)

Ssk :=
{
sd ∈ S

∣∣sd 6= s ∈ S ∧ k > T ss
ssd

}
(47)

Dsdk :=
{
d ∈ D

∣∣k + T sd
sd < NK

}
(48)

and

Ddk :=
{
dd ∈ D

∣∣dd 6= d ∈ D ∧ t + T dd
ddd

< NT
}

(49)

define the sets of sites or demand points which can be linked by transport
to the current location s within the planning horizon.

For k = 1 the term sS
spk−1 is replaced by the initial product stock SSS

sp .
The site-balance equation (44) for site inventories (also called local invento-
ries) couples multi-stage production, intermediate storage space and trans-
port (between sites, and between sites and demand points). pES

spk describes
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external purchase opportunity at site inventories. If no storage capacity is
available the variables sS

spk and sS
spk−1 drop out in (44).

The maximum stock levels for products read

sS
spk ≤ SCAP

sp ∀
{
spk

∣∣∃SSC
sp

}
(50)

The product stock should never fall below the safety stock, SSS
sp ,

sS
spk ≥ SSS

sp ∀{spk} (51)

and a possible restriction, SLP
sp , in the last period, i.e., as forced by IRL

sp =4,
is considered as

sS
spk ≥ SLP

sp ∀{sp} , k = NK (52)

The user selects different inventory constraints (here just verbally summa-
rized) at the final period by the flag IRL

sp

IRL
sp description
0 no condition at all
1 total inventory in final period equals total initial inventory
2 specific finished product stock equals the initial inventory
3 specific finished product stock equals pre-given target stock
4 specific finished product stock should be ≥ than target stock

4.4.2 Inventories at demand points At demand points there may exist a
tank for an end-product p. If so, the stock balance equation reads

sD
dpt = sD

dpt−1 + pED
dpt + ŜDT

dpt −
NC∑
c=1

sL
dpct −

∑
dd∈D

TMdd
ddd

σDD
ddd

(53)

+
∑
s∈S

Ks∑
k=1|k+t1(s,d)≤Ks

t(k+t1(s,d))=t

(1− ωsdk) TMsd
sd σSD

sdpk (54)

+
∑
s∈S

Ks∑
k=1|k+t2(s,d)≤Ks

∧t(k+t2(s,d))=t

ωsdkTMsd
sd σSD

sdpk (55)

+
∑

d∈D|t>t1(d,dd)

(1− ωdddt)TMdd
dd σDD

ddp,t−t1(d,dd) (56)

+
∑

d∈D|t>t2(d,dd)

ωdddtT
MDD
dd σDD

ddp,t−t2(d,dd) (57)

for all {sr|∃SSC
dp }and t = 2, . . . , NT , in which the terms have the following

meaning: sD
dpt−1 is the stock level at the end of the previous period, pED

dpt

denotes external purchase [see Section 4.6], ŜDT
dpt

ŜDT
dpt :=

NS∑
s=1|∃SP T

sdpt

SDT
sdpt (58)
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denotes transport arriving in period k from shipment originating before the
first period, and the loss term,

∑
sL

dpct, due to the sales of finished products.
The terms based on the σ-variables have been explained in Section 4.3
describing shipments to demand points as well as products received from
other sites and demand points.

The functions

t2(x, y) := t1(x, y)+π , t1(x, y) = (1−π)T xy
xy (59)

are used to select the appropriate indices in time; π = 1 indicates short
term planning (in that case transportation times must correspond to the
time discretization) and π = 0 indicates long term planning (in this case
transport arriving is treated using a probability assumption). TSD

sd denotes
the minimum transport quantity and the time TP

sd needed to ship products
from site s to demand point d. Note that because TP

sd is used in the index it
is required that TP

sd is measured in units of the period and that it is integral.
For the first period, t = 1, sD

dp0 is replaced by SDS
dp , where SDS

dp denotes
the initial stock of product p at demand point d and

ŜDT
dpt :=

NS∑
s=1|∃SP T

sdpt

SDT
sdpt (60)

denotes transport arriving in period t from shipment not originating within
the current planning horizon.

If no inventory is available and there exists a demand Ddpct, then the
sales variables sL

dpct are immediately coupled to the transportation variables
and the terms sD

dpt and sD
dpt−1 drop out in (57).

Stock must never exceed the storage capacity, i.e.,

sD
dpt ≤ SCS

dp +sR
dpt ∀{dpt} (61)

where sR
dpt gives the current additional tank capacity; sometimes it is pos-

sible to rent or lease a tank for a short while, e.g., for a few months. The
additional stock is usually bounded by

sR
dpt ≤ SCR

dp ∀{dpt
∣∣∃SCR

dp } (62)

The safety stock bounds are

sD
dpt ≥ SDM

dp ∀
{
spt

∣∣∃SDM
dp

}
(63)

and the bounds for the last period are

sD
dpt ≥ SDE

dp ∀
{
spt

∣∣∃SDE
dp

}
(64)

Note that these bounds are only considered if the corresponding stock ca-
pacities or safety stocks exist.
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4.5 Demand

There are 10 to 20 demand points for the products produced at the pro-
duction sites located in various parts of the world. The demand points are
thought of as regional warehouses. The demand at these points reflects
mostly aggregate demand by several customers but also a few large individ-
ual customers. The demand for product p is characterized by volume and
sales price. This input is generated from an independent sales forecasting
model. Sales must not exceed the demand Ddpct, i.e.,

sL
dpct ≤ Ddpct ∀ {dpt |∃Ddpct } (65)

where Ddpct indicates how much of product p at time t is required at demand
point d.

In the “maximize contribution margin” scenario there is no need to
satisfy demand completely. Therefore, this scenario provides the additional
option that a lower limit, DLL

dpct, on the demand is considered:

sL
dpct ≥ min

{
DLL

dpct, Ddpct

}
∀

{
dpt

∣∣∃DLL
dpct ∧ ∃Ddpct

}
(66)

In “satisfy demand” scenarios the demand has to be satisfied exactly, i.e.,

sL
dpct = Ddpct ∀ {dpct |∃Ddpct } (67)

Due to lack of production capacity it may happen that not all of the demand
can be covered by own production. Therefore, it is very important to provide
the option to consider external purchase of products [see Section 4.6].

4.6 External purchase

External purchase of products helps to avoid running into situations of not
being able to fulfil the demands. External purchase appears as source terms
in the inventory balance equations for both site and demand points, and is
characterized by the maximum quantity PES

spk

(
PED

dpt

)
available for purchase

and the costs/ton CES
spk

(
CED

dpt

)
. It is very important that these costs reflect

the real business process, and that they are not considered as some artificial
penalty costs. In addition to the upper bounds

pES
spk ≤ PES

spk ∀
{
spk |∃ PES

spk

}
(68)

pED
dpt ≤ PED

dpt ∀
{
dpt |∃ PED

dpt

}
(69)

there might be lower limit PES−
spk or pED−

dpt , resp. The external purchase
variables might be interpreted as semi-continuous variables, i.e.,

pES
spk = 0 ∨ pES−

spk ≤ pES
spk ≤ PES

spk (70)

pED
dpt = 0 ∨ pED−

dpt ≤ pED
dpt ≤ PED

dpt (71)

if the supplier is willing to provide support but asks for a minimum quantity
to deliver if support is requested.
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5 The mathematical model: the design decisions

Since the network consists of several plants with different product streams
it seems adequate to investigate whether it makes sense

– to open certain reactors at a site and to produce additional products,
– to shut-down certain reactors and thus not to produce some products at

this site,
– or to buy whole sites.

One way to analyze such questions is to run different scenarios and to pick
the best one. This simulation approach, however, might fail to identify the
real good candidates and the optimal solution. The alternative approach is
to model these questions or corresponding features appropriately and let
the optimizer come up with optimal suggestions regarding the design of the
production network.

5.1 A simple approach to include design decisions

A simple inclusion of the design features realized in the first phase of the
project was to let the optimizer choose whether to open or shutdown a
reactor once and for ever at the beginning of the planning horizon. That
approach involves the following data: the total cost for buying a plant, CB

s ,
the annual cost for buying a plant, CBA

s , the fixed cost to operate a reactor,
CFIX

sr , the event value cost to open a reactor, CO
sr, and the event value

cost to shut down a reactor, CSD
sr . The design costs to be included in a

net profit objective function (contribution margin minus fixed costs minus
design costs) has the form

−zD : =
∑

s∈S|∃CBA
s

CBA
s ηs +

∑
s∈S

∑
r∈R|∃CSDA

sr

(
CSDA

sr − CFIX
sr

)
ϕsr

+
∑
s∈S

∑
r∈R|∃CSO

sr

(
CO

sr + CFIX
sr

)
µsr (72)

where the binary variables ηs, ϕsr and µsr indicate whether a plant is
bought, a reactor is shut down or opened.

An additional binary variable θsr is introduced if ID
sr = 1;

ID
sr = 1 ⇔

{
IsR
sr = 1 ∧

(
∃CBA

s ∨ CSD
sr ∨ CO

sr

)}
(73)

where ID
sr indicates whether reactor r at site s is subject to design decisions;

most cases we studied involved about 30 design reactors. θsr controls the
available capacity of a reactor and is related to the other binary variables
as follows:

θsr = ηs ∀
{
sr |∃ IsR

sr = 1 ∧ ∃CBA
s

}
(74)

θsr = 1−ϕsr ∀
{
sr |∃ IsR

sr = 1 ∧ ∃CSD
sr

}
(75)
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θsr = µsr ∀
{
sr |∃ IsR

sr = 1 ∧ ∃CO
sr

}
(76)

The relations (74) to (76) give us a hint on possible priorities (ηs,ϕsr,µsr,θsr)
for the variables in the branching process. It is assumed that CSD

sr and CO
sr

do not exist simultaneously.
The disadvantage of that approach, in a 10- or 15-year planning horizon,

is that a reactor has to be opened or shut down in the first period of the
planning horizon and stays in that status for the rest of the planning horizon.
A more detailed view described in the next section allows for time dependent
and temporary shutdowns and openings.

5.2 Time dependent and temporary shutdowns

In the course of the project it became obvious that more details regard-
ing time resolution are necessary. Therefore, reactors, for which opening or
shutdown cost are specified, will be treated as reactors subject to time de-
pendent opening or shutdown decisions. These reactors are modeled similar
as the reactors subject to mode changes. For each design reactor we assign
two modes (m = 1 and 2 corresponding to on and off ), and use the variables
αsr1k , βsr1k, γsr1k, and δsr1k explained in ([11, Section 10.4]). Note that
this model approach implies that the design reactors can not be subject to
intrinsic mode changes which was not a problem in the current application.
However, it is now possible that both CSD

srk and CO
srk may be different from

zero. A further detail to be considered is that the opening decisions need
some time to be put into reality. Therefore, a delay time KFO

sr might specify
which production time slice is the first one in which the reactor could be
opened. This conditions, for k = 1, . . . ,max(1,KFO

sr − 1), is realized by the
bounds

αsr1k = βsr1k = δsr1k = 0 ∀(sr) ∈ RD := {(sr)
∣∣IMC

sr 6= 1 ∧ ∃IIBR
sr }

(77)
for all design reactors which are not yet opened.

Although, the economical parameters may already prevent that reactors
are opened and shut down wildly and very frequently it might be necessary
for managerial reasons to introduce two parameters, KO and KC , which
specify that if a reactor is opened in production time slice k, it has to be
open for the next KO time slices, and vice versa, if a reactor is shutdown in
period k it has to stay closed for the next KC time slices. These conditions
tighten the model constraints by putting the variables αsr1k, βsr1k, γsr1k

and δsr1k to zero for certain time slices in which a plant cannot operate and
are enforced by

k+KO∑
κ=k+1

γsr1k ≤ KO−KOβsr1k ∀(sr) ∈ RD, ∀k ∈ KO
s (78)

k+KC∑
κ=k+1

αsr1k ≤ KC−KCγsr1k ∀(sr) ∈ RD, ∀k ∈ KC
s (79)
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k+KC∑
κ=k+1

βsr1k ≤ KC−KCγsr1k ∀(sr) ∈ RD, ∀k ∈ KC
s (80)

k+KC∑
κ=k+1

δsr1k ≤ KC−KCγsr1k ∀(sr) ∈ RD, ∀k ∈ KC
s (81)

k+KO∑
κ=k+1

δsr1k ≥ (KO−1)βsr1k ∀(sr) ∈ RD, ∀k ∈ KO
s (82)

k+KC∑
κ=k+1

γsr1k ≤ KC−KCγsr1k ∀(sr) ∈ RD, ∀k ∈ KC
s (83)

k+KC∑
κ=k+1

βsr1k ≤ KO−KOβsr1k ∀(sr) ∈ RD, ∀k ∈ KO
s (84)

withKC
s := {1, . . . ,max(1, NK(s)−KC)} andKO

s := {1, . . . ,max(1, NK(s)−
KO)}. Finally, when a reactor is open, i.e., αsr1k = 1, it is ensured that a
certain minimum quantity is really produced, i.e.,

pP
srpk ≥ PMIN

srpk αsr1k ∀
{
srpk

∣∣IMC
sr 6= 1 ∧ ∃IIBR

sr ∧ ∃ISRP
srp

}
(85)

Note that (85) cannot be applied to reactors which are design reactors and
are already open at the beginning of the planning horizon. The reason is that
for such reactors we necessarily have αsr1k = 1. However, if such a reactor
is subject to a shutdown decision it may be not even able to produce and
thus cannot meet the minimum production requirement (85).

The basic cost terms are the costs for shutdown and opening adjusted
for discounted cash flows and depreciation (see below), i.e., terms such as

cD1 :=
∑

(sr)∈RD

NK
s∑

k=1

CSD
srkγsr1k , cD2 :=

∑
(sr)∈RD

NK
s∑

k=1

CO
srkβsr1k (86)

The improved design model also considers the residual book value Vsrk [see
Equation (90)] of an opened reactor, i.e., a reactor which caused opening
cost) at the end of the planning horizon. This adds the term

zD2 := −
∑

{sr}∈RD

NK
s∑

k=1

Vsrkβsr1k+
∑

{sr}∈RD

NK
s∑

k=1

Vsrkγsr1k (87)

to the objective function. Vsrk is based on the net present value and on the
depreciation. At present we apply a linear depreciation rate. The discounted
opening cost in production time slice k are DP

t /Ust

CO
srk = CO

sr/Dk−1 , D := 1+
p

100Ust
(88)
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where p is the discount rate in percent. The calculation of the depreciation
depends on the opening time and thus we obtain the depreciation factor

FD
s := 1− NK

s − k

UstTD
(89)

where TD denotes the depreciation time in years; a typical value is TD = 15
years. Formula (89) for the computation of the depreciation factor assumes
that the depreciation time is measured in units of the commercial time scale;
typically the discretization of the commercial time periods is one year and
so the depreciation time is also given in years. Based on these assumptions,
if the opening occurs in period k the residual book value is

Vsrk = CO
sr/Dk−1

(
1− NK

s − k

UstTD

)
(90)

If we assume that a reactor which causes opening cost is not shut down,
i.e., it is opened at most once, the term added to the objective function is

∑
{sr}∈RD

NK
s∑

k=1

Vsrkαsr1NK
s

βsr1k =
∑

{sr}∈RD

NK
s∑

k=1

Vsrkβsr1k (91)

Therefore, the total contribution of βsr1k to the design term in the objective
function representing the opening cost and the residual book value is

zD2 :=
∑

{sr}∈RD

NK
s∑

k=1

(
Vsrk − CO

srk

)
βsr1k (92)

An additional cost term is included to describe reactors that are subject to
a shutdown decision in the first period but require continuation cost CCNT

sr ,
e.g., for maintaining or upgrading existing facilities, if the reactor is not shut
down in the first period. This feature is considered by the binary variable

σsr ∀
{
sr

∣∣(sr) ∈ RD ∧ ∃CCNT
sr

}
(93)

the constraint

σsr ≥ 1−γsr11 ∀
{
sr

∣∣(sr) ∈ RD ∧ ∃CCNT
sr

}
(94)

and the costs term

cD3 :=
∑

(sr)∈RD|∃CCNT
sr

CCNT
sr σsr (95)

in the net profit objective function.
The total contribution of the design reactors to the objective function is

zD := −cD1 +zD2−cD3 (96)
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6 The mathematical model: the objective functions

The model covers eight different objective functions invoked by OBJTYPE=n,
where n is a number between 1 and 8:

1. “max. contribution margin” ([11, Section 10.4])
2. “max. contribution margin while guaranteeing minimum demand”
3. “min. cost while satisfying full demand” ([13])
4. “max. total sales neglecting cost” ([13])
5. “max. net profit” (the detailed and full design problem)
6. “multi-criteria objectives” (maximize profit & minimize transport)
7. “max. total production”
8. “max. total production of products for which demand exists”

Only the fifth one exploits all design features; all other assume a fixed de-
sign. The first one maximizes the contribution margin, y − c, and includes
the yield, y, calculated on the basis of production and the associated sales
prices and the sum of all variable cost c. The second one minimizes the
variable cost, c, while satisfying demand. In the cases 1 to 6 the follow-
ing variable cost are involved: variable production cost, change-over cost,
transport between sites, between sites and demand points, and between de-
mand points, inventory cost for products, and cost for external purchase of
products; in case 5 these cost terms are discounted according to Section 5.2
which leads to the net profit objective function

max z , z := y−c+zD (97)

The objective functions 7 and 8 are used in an initial phase to test the
data and to derive the theoretical capacity of the production network. The
total net profit objective function contain the design cost terms which have
quite different scaling characteristics compared to the standard production
planning terms. Using variable directives in the B&B scheme, i.e., priori-
tizing the design decisions, it was possible to cope with this problem. The
multi-criteria objectives scenario is solved by a goal programming approach
as described in [9].

7 Computational issues, implementation and results

The model has been coded and the MILP problem has been solved using
Dash’s modeling language and MILP-solver XPRESS-MP 10.60 ([2], [3] and
[4]). During some first numerical experiments it was observed that the ob-
jective function in the scenarios 4, 7 and 8 was dually degenerated. Thus,
a significant speed-up was achieved using the primal Simplex algorithm to
solve these scenarios. Some DOS-based procedures have been programmed
to automate the process of accessing the data from an EXCEL spreadsheet,
generating the matrix, solving the problem and returning the results into
the EXCEL spreadsheet. Especially, some batch files developed enabled us to
pass appropriate command streams to the solver depending on the objective
function scenario.
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7.1 Model assumptions and validation

The first step of model validation was to review and summarize the assump-
tions and limitations of our mathematical model. They are already given
in Section 3.3 but in this practical case, only the implementation of the
model showed that they have been reasonable and acceptable. The model
was carefully validated by the client, i.e., by an experienced production
planner and a financial expert running the model and the software under
different circumstances. Especially, the opening and shut-down of reactors
were carefully traced and subject to plausibility checks by the financial plan-
ners, for instance, taking into account the contribution margin related to a
newly opened reactor compared to its investment cost. It was interesting to
inspect solutions in which a reactor which was no longer profitable was shut-
down immediately, after a reactor based on a new technology was opened.
Transport between sites and demand points was an issue which sometimes
lead to solutions non-intuitive to the people responsible for the production
planning in single plants, and usually needed clarification.

7.2 Computational issues

To give an example of the problem size and some solution characteristics we
quote a typical scenario (S5) with about 30 design reactors covering 10 years
with 10 commercial and 20 production time slices, for which we derived pro-
duction and design plans maximizing total net profit. Using Dash’s MILP-
solver XPRESS-MP 10.60 ([2], [3] and [4]) for a problem with nc = 26941
continuous, nc = 5100 binary and nsc = 1100 semi-continuous variables
and c = 28547 constraints, we got the following results (including the in-
teger solution number IP , number of nodes nn, run time τ on a 266 MHz
Pentium II PC in minutes, best upper bound zU , best lower bound zL and
integrality gap ∆ := 100 zU−zL

zL ):

IP nn τ zU zL ∆
S5 1 218 4 140.8 137.5 2.4
S5 2 1794 34 138.4 138.4 −

The first feasible integer solution is usually found within 10 minutes after
exploring about 300 nodes in the B&B tree. Usually, for pure operational
planning, this solution is accepted and the tree search is terminated. This
heuristic is justified if ∆ is of the order of a few percent (well within the
error associated with the input data) because it eliminates the need for the
time consuming complete search for the absolute optimal solution via the
B&B algorithm. In the SSDOP approach this is only valid, if ∆ is less or
equal, say, 1%.

It is remarkable that this model even when all design features are ex-
ploited is able to find the first feasible integer solution, usually after 200 or
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300 nodes, within a few minutes (integrality gap between 1 and 3 percent)
and is able to prove optimality in most cases within 30 minutes (3000 nodes
typically). If all design features are fixed, the problem is solved to optimality
within a few minutes (1000 to 2000 nodes).

In order to carry out sensitivity analyses of the solution with respect
to the input data, especially to the demand data and costs or sales prices,
it is important that we are able to conduct the complete search via the
B&B algorithm or to get an integrality gap ∆ less than one percent. The
sensitivity analysis was carried out by the client by varying the input data
by up to 20 percent and inspecting the objective function value and the
design decisions.

7.3 Commercial results, benefits and experience

The client reports cost savings of several millions of US$. These cost sav-
ings were achieved via a reduction in transportation cost compared to the
previous year when the model was not in use. The solution for a one year
planning horizon allowed the company to better understand and forecast the
flow of products between North America, Europe and Asia. This knowledge
was then used to reduce the need and cost of urgent shipments.

The results obtained with the use of the design feature allowed the busi-
ness team to clearly demonstrate the value of its investment plan to senior
management. The comprehensive results obtained from the model allowed
the team to focus its recommendation on facts and quickly address ques-
tions concerning product flows, production sourcing, capacity constraints,
and working capital needs in addition to investment capital requirements.
Moreover, it was beneficial to the client to see that the design solutions
(which reactors to be opened or to be closed) were stable against up to 20%
changes in the demand forecast.

It was vital to the project that on the client’s side people responsible
for the operational planning and colleagues from the financial planning de-
partment cooperated with each other. It was very interesting during the
modeling phase to see how know-how from quite separate areas merged and
lead to a complex model providing just the right degree of detail to satisfy
all parties involved.

8 Conclusions

We have developed and applied a model that combines operational planning
with strategic aspects having consequences for years. The decisions deter-
mine the infrastructure and aggregate production plans for a horizon up to
15 years. It is important that realistic and detailed demand forecast, and,
possibly, cost and sales prices are available, and also that a sensitivity anal-
ysis is performed showing how stable the optimal solution is with respect
to changes in these input data. Especially, for problems with such a long
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planning horizon and great financial impact it is vital that the optimality of
a solution can be proven, or that at least some safe bounds can be specified.

As far as good modeling practice is concerned, we learned from the
discussion and communication with the client during the model building
phase that great attention has to be paid to achieving a good balance of
details entering the model. Some focus had also to be given to the structure
of the objective function which might contain terms of very different size,
and thus may lead to bad scaling. A useful extension of the model might
be to include tax and depreciation related features considering special rules
for specific countries and their tax rates.

Provided that optimality is proven or safe bounds are derived, combining
strategic or design aspects with operational planning is an elegant approach
taken by some chemical companies; it can save huge quantities of money and
also supports an analysis related to the stability of solutions.

Last but not least we want to stress one crucial fact learned from two
projects (one described in this paper, for the other one see [9, Section 9.2]):
the simultaneous strategic/design & operational planning approach requires
that the departments being responsible for the strategic or design decisions
and the planning/scheduling cooperate; our experience is that this problem
is by far more difficult to solve than the mathematical or technical ones,
especially in large companies and their cultural and organizational struc-
tures. But especially, in large organizations, for instance, if new sites are
established in otherwise nonindustrial areas (e.g., the construction of new
plants in South East Asia) or new structures have to be embedded into ex-
isting sites, appropriate models combining operational planning with strate-
gic or design planning almost certainly lead to great financial savings, and
therefore, the simultaneous approach should be attractive to many other,
especially large companies.
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