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Abstract Since there has been tremendous progress in planning and sche-
duling in the process industry during the last 20 years, it might be worth-
while to give an overview of the current state-of-the-art of planning and
scheduling problems in the chemical process industry. This is the purpose
of the current review which has the following structure: we start with some
conceptional thoughts and some comments on special features of planning
and scheduling problems in the process industry. In Section 2 the focus is
on planning problems while in Section 3 different types of scheduling prob-
lems are discussed. Section 4 presents some solution approaches especially
those applied to a benchmark problem which has received considerable in-
terest during the last years. Section 5 allows a short view into the future
of planning and scheduling. In the appendix we describe the Westenberger-
Kallrath problem which has already been used extensively as a benchmark
problem for planning and scheduling in the process industry.

Key words Mixed integer programming – Supply chain optimization –
Process industry – Planning – Scheduling

1 Introduction

1.1 Special features in the process industry

In the process industry continuous and batch production systems can be
distinguished. There exists also semi-batch production which combines fea-
tures from both. Plants producing only a limited number of products each
in relatively high volume typically use special purpose equipment allowing
a continuous flow of materials in long campaigns, i.e., there is a continu-
ous stream of input and output products with no clearly defined start or
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end time. Alternatively, small quantities of a large number of products are
preferably produced using multi-purpose equipment which are operated in
batch mode, i.e., there is a well-defined start-up, e.g., filling in some prod-
ucts, well-defined follow-up steps defined by specific recipes, e.g., heating
the product, adding other products and let them react, and a clearly de-
fined end, e.g., extracting the finished product. Batch production involves
an integer number of batches where a batch is the smallest quantity to
be produced, e.g., 500 kg. Several batches of the same product following
each other immediately establish a campaign. Production may be subject
to certain constraints, e.g., campaigns are built up by a discrete number of
batches, or a minimal campaign length (or production quantity) has to be
observed. Within a fixed planning horizon, a certain product can be pro-
duced in several campaigns; this implies that campaigns have to be modelled
as individual entities.

Another special feature in the refinery or petrochemical industry or pro-
cess industry in general is the pooling problem (see, for instance, [28], or
Chapter 11 in [42]), an almost classical problem in nonlinear optimization.
It is also known as the fuel mixture problem in the refinery industry but it
also occurs in blending problems in the food industry. The pooling prob-
lem refers to the intrinsic nonlinear problem of forcing the same (unknown)
fractional composition of multi-component streams emerging from a pool,
e.g., a tank or a splitter in a mass flow network. Structurally, this prob-
lem contains indefinite bilinear terms (products of variables) appearing in
equality constraints, e.g., mass balances. The pooling problem occurs in all
multi-component network flow problems in which the conservation of both
mass flow and composition is required and both the flow and composition
quantities are variable.

Non-linear programming (NLP) models have been used by the refining,
chemical and other process industries for many years. These nonlinear prob-
lems are non-convex and either approximated by linear ones and solved by
linear programming (LP) or approximated by a sequence of linear mod-
els. This sequential linear programming (SLP) technique is well established
in the refinery industry but suffers from the drawback of yielding only lo-
cally optimum solutions. Although many users may identify obviously sub-
optimal solutions from experience, there is no validation of those which are
not obviously so, as this would require truly globally optimal solutions. From
an end-user point of view, the problems of existing technology are becoming
ever more acute. Since the market for products such as gasoline and chemi-
cals are becoming increasingly amalgamated, many planning problems now
necessarily involve multiple production facilities in geographically separate
sites, with concomitant interactions and interconnections. These are hard
to solve and much more prone to giving sub-optimal local solutions, partic-
ularly if they stretch over many time periods. However, recent advances in
optimization algorithms have yielded experimental academic codes which
do find truly globally optimal solutions to these NLP models. Non-convex
nonlinear models are not restricted to the oil refining and petrochemical sec-
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tor, but arise in logistics, network design, energy, environment, and waste
management as well as finance and their solution asks for global optimiza-
tion.

In the chemical process industry, the proper description of the reaction
kinetics leads to exponential terms. If, in addition, plants operate in discrete
modes or connections between various units, e.g., tanks and crackers or
vacuum columns have to be chosen selectively, then mixed-integer nonlinear
optimization problems need to be solved. Process network flow or process
synthesis problems [30] usually fall into this category, too. Examples are
heat exchanger or mass exchange networks.

Planning and scheduling is part of company-wide logistics and supply
chain management. However, to distinguish between those topics, or even
to distinguish between planning and scheduling is often a rather artificial
approach. In reality, the border lines between all those areas are diffuse.
There are strong overlaps between scheduling and planning in production,
distribution or supply chain management and strategic planning.

1.2 Some Comments on Planning and Scheduling in the Process Industry

Although the boundary between planning and scheduling is diffuse let us
try to work out a few structural elements of planning and scheduling, which
may include the following features:

• multi-purpose (multi-product, multi-mode) reactors,
• sequence-dependent set-up times and cleaning cost,
• combined divergent, convergent and cyclic material flows,
• non-preemptive processes (no-interruption), buffer times,
• multi-stage, batch & campaign production using shared intermediates,
• multi-component flow and nonlinear blending,
• finite intermediate storage, dedicated and variable tanks.

Structurally, these features often lead to allocation and sequencing prob-
lems, knapsack structures, or to the pooling problem. As there is no clear
definition of the border line between planning and scheduling problems, we
try to illuminate the subject from different angles by summarizing a few
aspects and objectives of planning and scheduling and try to develop a kind
of an informal definition serving as a platform. In production or supply
chain planning, we usually consider material flow and balance equations
connecting sources and sinks of a supply network. Time-indexed models us-
ing a relative coarse discretization of time, e.g., a year, quarters, months
or weeks are usually accurate enough. LP, MILP and MINLP technologies
are often appropriate and successful for problems with a clear quantitative
objective function as outlined in Section 2, or quantitative multi-criteria
objectives.

In scheduling problems the focus on time is more detailed and may
require even continuous time formulations. Furthermore, one faces rather
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(conflicting) goals than objectives: the optimal use of resources, minimal
makespan, minimal operating cost or maximum profit versus more qualita-
tive goals such as reliability (meet demand in time, proper quality, etc.) and
robustness; such qualitative goals are often hard to quantify. The short-term
operational aspects of operating a set of chemical reactors, food producing
machines or distillation columns in a refinery are of primary interest. Users
are mostly interested in feasible, acceptable and robust schedules, the ob-
jectives are usually somewhat vague, but it is common that the possibility
to interact and to re-schedule, as well as the stability of solutions in cases of
re-scheduling are highly appreciated. Scheduling problems are usually NP-
hard, no standard solution techniques are available and, actually, in many
cases we are facing feasibility problems rather than optimization problems.
The solution approaches found in the literature are:

– exact and deterministic methods such as mathematical optimization in-
cluding MILP and MINLP, graph theory (GT) or constraint program-
ming (CP), or hybrid approaches in which MILP and CP are integrated,

– meta-heuristics (evolutionary strategies, tabu search, simulated anneal-
ing, ....) as described briefly in Section 4.2.4 or [48].

In addition to these remarks it is worthwhile to comment on the difference
between offline and online scheduling [64]. Offline scheduling as mostly dis-
cussed in this article, in the ideal case, assumes that all data of a problem
are given, i.e., full knowledge of the future (of course, this is also an ap-
proximation since our knowledge of future demand or orders is uncertain),
and is close to planning except for the length of the time horizon and the
resolution of time. Online scheduling as a special case of (combinatorial)
on-line optimization [11] makes decisions based on past events and current
data without information about future events relevant for the current deci-
sion problem; many decisions have to be made before all data are available
and decisions once made cannot be changed. It may involve current process
control data, updated demand data and orders, but misses orders which
may enter the system in the near future and within the horizon of the cur-
rent schedule to be determined. The goal is to exploit uncertain (w.r.t. the
future) and incomplete information in such a way to improve the final qual-
ity of its overall performance, i.e., the quality of schedules over rolling time
horizons. Unlike in stochastic optimization, where known data are subject to
stochastistic uncertainties, the uncertainty in on-line scheduling only arises
from the uncertainty of future data.

2 Model Features in Planning Problems

Planning in the process industry is used to create production, distribution,
sales and inventory plans based on customer and market information while
observing all relevant constraints. In particular, operational plans have to be
determined which are aimed to structure future production, distribution and



Planning and Scheduling in the Process Industry 5

other related activities according to business objectives. It is common prac-
tice that, based on these operational plans, detailed schedules are worked
out which define the precise timing and sequencing of individual operations
as well as the assignment of the required resources over time. Planning tools
and software packages from various vendors are designed to incorporate new
market and operational information quickly and help business users to keep
their operations performing at their optimum. Especially, nowadays it is
possible to find the optimal way to meet business objectives and to fulfill
all production, logistics, marketing, financial and customer constraints and
especially

– to accurately model single site and multi-site networks;
– to perform capital planning and acquisition or divestiture analysis, i.e.,

to have the possibility to change the structure of a manufacturing pro-
duction network through investment and to determine the best invest-
ment type, size and location based on user defined rules relating to
business objectives and available resources, e.g., Kallrath [40]; the re-
sults of such analysis can lead to non-intuitive solutions that provide
management with scenarios that could dramatically increase profits;

– to produce integrated enterprise solutions and to enable a cross-functional
view of the planning process involving production, distribution and trans-
port, sales, marketing and finance functions.

Planning as part of the supply chain management may focus on short and
mid-term sales and operations planning or long-term acquisition, consolida-
tion, and capacity analysis with a strategic focus. In the literature and in
available software packages we usually find time-indexed models supporting
multi-period analysis, i.e., nearly all the data may vary over time and allow
to evaluate scenarios that involve time dependent aspects such as seasonal
demand patterns, new product introductions, shutdown of production fa-
cilities for maintenance periods. These models include the following main
structural objects:

– Locations can be production or storage sites, hosting plants and tanks,
or demand points hosting tanks.

– Facilities typical are production, wrapping or inventory units that are
characterized by their functional properties. Especially, in the process
industry we find multi-stage production systems involving units with
general product-mode relationships. Their functional properties are at-
tributes such as capacity, throughput rates, product recipes, yields, min-
imum production utilization rates, fixed and variable costs, or storage
limitations. Facilities can be existing or potential (for design studies).
Production facilities may be subject to batch and campaign constraints
across periods.

– Demand Points may represent customers, regional warehouse loca-
tions or distributors who specify the quantity of a product they request.
A demand point can be also seen as a sink of the planning model, i.e.,
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a point where a product leaves the system and is not further traced.
Demand may be subject to certain constraints, e.g., satisfying a mini-
mum quantity of demand, observing origins of production or supplying
a customer always from the same origin.

– Inventories may be physically fixed entities such as tanks or warehouses
but also moveable entities (e.g., drums, containers, boxes, etc.). They can
be defined as dedicated
1. to a single product from one production source,
2. dedicated to a specific product, or
3. free to accept any product from any source or origin.
We may encounter tank farms, and especially multi-purpose storage en-
tities, i.e., variable and multi-product tanks.

– Products may be classified as raw materials, intermediates, finished
and salable products. A product may have several of these attributes,
and it can be purchased from suppliers, produced or sold. Products are
produced according to the capabilities at the facilities and the recipes
assigned. Products may establish a product group, e.g., additives. Prod-
uct requirements are based on market demand which is characterized by
volume, selling price, package type, time, origin and location or by other
products in which they are used as intermediate products.

– Suppliers or vendors may provide products for purchase under differ-
ent offering schemes. This includes the ability to link the product supply
to locations and describe contractual pricing mechanisms or availability.
The solver may choose the optimal supplier.

Regarding the overall business and strategic objectives the model needs to
incorporate data describing the

– costs, i.e., certain fixed costs, variable costs (production, transportation,
inventory, external product purchase, energy, resources and utilities),
and further

– commercial aspects: financial aspects such as depreciation plans, dis-
count rates, investment plans, foreign currency exchange rates, duties
and tariffs, as well as site dependent taxes.

Maximize operating cash flow and maximize net present value (NPV) ob-
jective functions are used to determine the financial and operating impacts
of mergers, acquisitions, consolidation initiatives, and capital spending pro-
grams effecting business. In detail this may include:

1. maximize the net profit (free design reactors; open and close facilities),
2. maximize the contribution margin for a fixed system of production units,
3. maximize the contribution margin while satisfying a minimum percent-

age of demand,
4. minimize the cost while satisfying full demand (allow external purchase

of products),
5. maximize total sales neglecting cost,
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6. maximize total production for a fixed system of production reactors,
7. maximize total production of products for which demand exists,
8. minimize energy consumption or the usage of other utilities,
9. minimize the deviation of the usage of resources from their average usage,

10. multi-criteria objectives, e.g., maximize contribution margin and mini-
mize total transportion volume.

Planning involves the determination of operational plans that support differ-
ent short- or mid-term objectives for the current business. By using different
objective functions it is possible to create operational plans that support
strategies such as market penetration, top-line growth, or maximization of
cash flow to support other business initiatives.

If, besides this broad structure, the focus is on a more detailed represen-
tation of physical entities, we find that planning models and their constraints
may involve the following features (in alphabetic order):

– Batch production: The quantity of a specific product being produced
in a campaign possibly over several periods must be an integer multiple
of some pre-defined batch size.

– Buy, build, close or sell specific production assets: This feature is
used for closing, or selling acquisition, consolidation and capacity plan-
ning to determine the NPV and operational impacts of adding or remov-
ing specific assets or groups of assets to the network.

– Campaign production: This allows to impose a lower and/or an up-
per bound on a contiguous production run (campaign) possibly across
periods; this feature is also known under the name minimal runs.

– Delay cost: Penalty cost apply if customer orders are delivered after
the requested delivery date.

– Minimum production requirements: Minimum utilization rates mod-
elled as semi-continuous variables have to be observed for specific pro-
duction units and/or entire production locations for each production
time period.

– Multi-locations: This can be production sites, storage sites, and de-
mand points.

– Multi-purpose production units: If a unit is fixed to a certain mode,
several products are produced (with different mode-dependent daily pro-
duction rates), and vice-versa, a product can be produced in different
modes. Daily production can be less than the capacity rates. A detailed
mode-changing production scheme may be used to describe the cost and
time required for sequence-dependent mode-changes.

– Multi-stage production: Free and fixed recipe structures allow for the
production of multiple intermediate products before the manufacture
of the final product with convergent and divergent product flows. The
recipes may depend on the mode of the multi-purpose production unit.

– Multi-time periods: Non-equidistant time period scales are possible
for commercial and production needs. For instance, demand may be
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forecast weekly for the first quarter of the year and then quarterly for
the remainder of the year.

– Nonlinear pricing for the purchase of products or utilities (energy,
water, etc.) or nonlinear cost for inventory or transportation may lead
to convex and concave structures in order to model volume and price
discount schemes for the products or services purchased, while in ad-
dition, contract start-up and cancellation fees may lead to additional
binary variables.

– Order lost cost: Penalty cost are incurred if products are not delivered
as requested and promised.

– Packaging machines are optimized to increase machine throughput and
assure that priority is given to the most profitable products.

– Product swaps: With the objective of saving transportation and other
cost companies often arrange joint supply agreements called swaps. For
example: Company 1 based in Europe as well in the US has a production
shortage of product A in the US and thus purchases a defined quantity
of product A in the US from company 2. Company 2 (also located in the
US and Europe) has a customer in Europe requesting product A and
thus purchases a defined quantity product A from company 1 in Europe.
Both companies get product A where they need it and avoid the cost of
shipping the product. Without this type of supply agreement company
1 would have to ship product A from its European plant to the US, and
company 2 would have to ship product A from its US manufacturing
plant to Europe.

– Production origin tracing: It is possible to define fixed, free or unique
origins for specific demands. For example, a customer may require that
his demand is satisfied only from a specific plant in the network, or it
may not be supplied from a set of plants, or the customer only requests
that he is supplied from one unique plant during the whole planning
horizon.

– Shelf-life time: Product aging time can be traced. This allows for the
application of constraints such as: maximum shelf-life time, disposal
costs for time expired products, and the setting of selling prices as a
function of product life.

– Transportation and logistics: Transportation quantities are appropri-
ately modelled by the use of semi-continuous variables. This allows mini-
mum and maximum shipment quantities to be defined for each source lo-
cation, destination location, product, and transport mean combination.
The logistics involves the costs and lead times and constraints (minimum
shipment quantities) associated with moving intermediate and finished
products between facilities and demand points. The mean of transport
may be chosen by the optimizer and nonlinear cost functions have to be
considered as well.

This list covers many features but may be incomplete.
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3 Types of Scheduling Problems in the Process Industry

In this review, we present some typical structures and categories of schedul-
ing problems. Their treatment differs by the mathematical techniques ap-
plied:

– batch and campaign planning,
– scheduling problems in the chemical process industry including lot-sizing

and sequencing,
– time-precedence and aggregate resource constraints,
– nonlinear scheduling problems including blending.

3.1 Batch and Campaign Planning

For a given planning problem formulated as a time-indexed model, it may
be desirable to include certain constraints in the model which allow to in-
corporate batch and campaign features. To be as general as possible we
might want to consider batch reactors which can be, for example, operated
in different modes producing, at a given time, several products in each mode
with different free or fixed recipes leading to a general mode-product rela-
tion ([42], pp.153-155, 320-324). Thus, in a certain mode several products
are produced (with different daily production rates), and vice-versa, a prod-
uct can be produced in different modes. Daily production can be less than
the capacity rates. This is an important feature in demand-driven joint pro-
duction in which several products are produced in fixed or variable ratios
to each other.

In time-indexed model formulations where variables ppt define the pro-
duction quantity [e.g., in tons] of a product p in period (time-interval) t it
is not easy to model batch or campaign restrictions if the batch or minimal
campaign size is larger than the capacity per period. Assume that produc-
tion is performed in batches of 200 tons, and that the time intervals have
a length of ten days with a daily production rate of 10 tons/day. The min-
imum time to produce the batch would cover 20 days, or exactly two time
intervals. A plan looking like pp4 = 45 tons, pp5 = 100 tons, and pp6 = 55
tons covers three periods (the first and third only partial) to produce exactly
200 tons, and thus provides more degrees of freedom.

Brockmüller and Wolsey [12] solved the problem for a special case (daily
production equals the capacity rates). Their approach, which falls into the
class of discrete lotsizing and scheduling problems (DLSP, [20, p.146]), uses
explicitly the feature that production equals the capacity rates in order to
determine a priori the number of periods to produce a campaign of speci-
fied minimal size. However, if daily production can take any value between a
lower bound, e.g., zero, and the capacity rate per day, or if a product is pro-
duced, for example, according to general mode-product relations, then this
a priori information is not available. Kallrath [38] overcomes this restric-
tion and has developed an extension which can be added to any production
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planning model formulated as a proportional lotsizing and scheduling prob-
lem (PLSP, [24]), i.e., based on time-indexed formulations with at most
one setup- or mode-change per period. It allows to add constraints involv-
ing accumulated quantities over several time-slices thus implementing the
concept of contiguity into the model. This feature is relevant to any kind
of process industry. It allows to model batch and campaign production or
to require that a certain time-lag between successive mode-changes is ob-
served. The key idea used in the technical approach is to identify which
time-indexed production contributions belong to certain contiguous compo-
nents, e.g., campaigns, over several time slices and to replace products of
continuous and binary variables, or absolute value terms by linear relations
involving additional binary variables. This approach has successfully been
applied to production planning problems in the chemical industry. Other
approaches are described by [31], [7] or [47].

3.2 A Typical Scheduling Problem in the Chemical Industry

Westenberger and Kallrath (1994) in a cooperational work of Bayer AG
and BASF Aktiengesellschaft formulated a typical but generic schedul-
ing problem with the objective to push the development of algorithms
for scheduling problems in process industry. Their proposal to establish
a working group to develop standardized benchmark problems for plannig
and scheduling in the chemical industry initiated many research projects
and activities. The Westenberger-Kallrath problem has been understood as
a typical scheduling problem occurring in process industry including the
major characteristics of a real batch production process (involving multi-
product facilities, multi-stage production, combined divergent and conver-
gent product flows, variable batch sizes, non-preemptive processes, shared
intermediates, alternative recipes, flexible proportions of output products,
blending processes, sequence and usage dependent cleaning operations, fi-
nite intermediate storage, cyclic material flows, re-usage of carrier sub-
stances, and no-wait production for certain types of products) so as to
encourage researchers and engineers to test their algorithms and software
tools by applying them to this test case. Solutions based on mathematical
programming techniques, heuristics, simulation, genetic algorithms, evolu-
tionary strategies etc. may be sent to the author. Contributions and results
are collected under http://www.math.tu-berlin.de/chemical-benchmarks/; the
problem is summarized in the appendix of this review paper. A mathemati-
cal description has been given in order to guarantee a unique interpretation
of the test problem. The problem description contains all data necessary
to perform own test calculations; no special chemical knowledge is needed.
Everybody should feel free to transform it to his needs as long as equiva-
lency is guaranteed. Mathematical methods and typical results for related
problems can be found in literature [21], [41], [60], [17].

The test and benchmark problem includes all features described above
and should be solved for a set of different objective functions among them:
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1. minimization of makespan,
2. maximization of profit by optimizing the product mix,
3. minimization of investment cost by optimization of stock and production

capacities.

Over the last 6 years many publications ([3], [8], [10], [14], [15], [43], [54],
[58], [63], [69], [9], [52]) appeared in which different techniques have been
applied to produce solutions to the problem; some results are summarized
in [52].

3.3 Time-Precedence and Aggregate Resource Constraints

For a general discussion of such problems see, for instance, [56], [53] and
[13]. A complex scheduling problem in the process industry [42] containing
precedence and aggregate resource constraints has been tackled by many
authors and is briefly summarized below.

The client uses a set of machines and employs a number of workers. He
receives orders from his customers. Each order demands a certain quantity
of a product which can be produced on the client’s machines. The machines
are operated and supervised by the workers. Orders are often split up into
several identical jobs, which are necessary in order to produce the required
quantity of the product, because, typically, orders demand a larger quantity
of a specific product than the machine capacity allows to produce in one job.
A job for a given order is processed on a machine according to a specific
procedure or process plan. It consists of a deterministic sequence of tasks
defining how to produce a specific product. The size of a job is limited by the
capacity of the machine. Each task has a pre-defined demand for labour and
a certain duration. The workers are allocated to different tasks in order to
keep the jobs running. Allocation of the workers has to comply with working
regulation rules, e.g., taking breaks, washing, equally spread labour among
the workers, limits on labour intensive work, over-occupation rate and over-
time. The objective is to minimize the makespan and/or to minimize the
(variation in the) number of workers. In [42] we find a model including
assignment and sequencing decisions, and a time-indexed formulation to
describe the detailed personnel requirements. Another solution technique
to solve the problem is described in Section 4.2.3.

3.4 Nonlinear Scheduling Problems in Refineries

Planning and scheduling has a long history in the refinery industry and
dates back to the 1950s. If treated in the context of mathematical optimiza-
tion, refinery scheduling leads to MINLP problems due to the presence of
the pooling problem. It is common practice in the refinery industry that the
scheduling problem usually comes up after a production planning problem
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based on mass balances has been solved for a medium time horizon, consist-
ing of monthly or quarterly periods. The data generated by the production
planning problem are input data to the scheduling problem which deter-
mines a detailed crude oil processing schedule, process unit schedule and
blending and shipping schedules. The purpose of the scheduling problem is
to transform the production plan into a schedule useful for all operations
within a time horizon of a few days. In that sense the scheduling problem
is rather a feasibility problem than an optimization problem. While in typ-
ical production scheduling problems degeneracy and symmetry cause large
problems, the nonlinear features in the refinery scheduling problems could
destroy some symmetry and may lead to useful relaxations.

A typical example is a medium-sized refinery which schedules the pro-
duction and the storage of oil products for the next two to four weeks. The
input data for the scheduling problem are provided by production plans gen-
erated by solving an LP problem. The model describes the typical processes
in a refinery, e.g., the flows of crude oil from tankers to crude oil tanks, from
the tanks to the initial production units, i.e., top distillation units, and the
distribution to intermediate tanks or to further production units, e.g., vac-
uum distiller or thermal cracker, and finally, filling the product tanks and
the delivery of the final products. The model takes into account that there
are several types of oils and blending components (intermediate products)
with different chemical or physical properties and that they are treated dif-
ferently by the production units. In addition the model considers minimum
and maximum capacity restrictions for tanks and production units. Besides
this the units require a minimal run time period once they are activated.

The model includes logical constraints determining the daily production
schedule and the assignment of raw material and intermediates to tanks and
production units. The objective of the optimization problem is to minimize
deviations from targets, e.g., deviations from the pre-determined production
plan, or, alternatively, to minimize the use of blending components instead
of crude oil products. For a case study within a confidential research project,
the model included 16 crude oils, 4 blending components, 17 crude oil tanks,
5 production units and 8 final products.

The features and the constraints of the refinery model described above
can be summarized and classified into the following groups:

– flow of oils and blending components (linear mass balance equations),
– quality constraints and capacity limits of production units and tanks

(inequalities),
– proportional composition of streams (nonlinear equations),
– assignment of tanks and production units (equation & inequalities in-

volving binary variables).

For a 30-days scenario the model contains 80,000 constraints, 70,000 con-
tinuous variables, 2,500 binary variables and 130,000 nonzero entries in the
matrix. The problem is very difficult to solve not only because of its size but,
primarily, because of the combination of nonlinear constraints and binary
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variables. The nonlinear character of the mathematical model is caused by
the fact that different types of crude oils or blending components of dif-
ferent properties are mixed, whereas the decisions on the daily production
schedule and the assignment of crude oils and intermediates to tank and
production units require the use of binary variables.

The solution of this MINLP problem has been derived using the software
package XPRESS-MP by Dash Optimization. For this problem, Dash had ex-
tended their Branch&Bound-facilities by a special recursion algorithm for
the nonlinear terms. Solutions have been obtained on a PC with Pentium
I processor within acceptable time (approximately one hour for a 17-days
scenario).

4 Solution Approaches

4.1 Solution Approaches Used in Planning

Most of the planning problems in the process industry lead to MILP or
MINLP models and contain the following building blocks: tracing the states
of plants, modeling production, balance equations for material flows, trans-
portation terms, consumption of utilities, cost terms, and special model fea-
tures. Mode-changes, start-up and cancellation features, and nonlinear cost
structures require many binary variables. Minimum utilization rates and
transportation often require semi-continuous variables. Special features such
as batch and campaign constraints across periods require special constraints
to implement the concept of contiguity. The model, however, remains linear
in all variables. Only if the pooling problem occurs, e.g., in the refinery
industry or the food industry, we are really facing a MINLP problem. For
a review on algorithms used in LP, MILP, NLP, and MINLP the reader is
referred to [39].

Using state-of-the art commercial solvers, e.g., XPRESS-MP [XPRESS-MP
is by Dash Optimization, http://www.dashoptimization.com] or CPLEX [CPLEX
is by ILOG, http://www.ilog.com], MILP problems can be solved quite effi-
ciently. In the case of MINLP, the solution efficiency depends strongly on
the individual problem and the model formulation. However, as stressed in
[39] for both problem types, MILP and MINLP, it is recommended that
the full mathematical structure of a problem is exploited, that appropriate
reformulations of models are made and that problem specific valid inequal-
ities or cuts are used. Software packages may also differ with respect to the
ability of pre-solving techniques, default-strategies for the Branch&Bound
algorithm, cut generation within the Branch&Cut algorithm, and last but
not least diagnosing and tracing infeasibilities which is an important issue
in practice.

Current activities to solve planning problems more efficiently are focused
on the construction of useful valid inequalities for certain substructures of
planning problems. Those inequalities may a priori be added to a model,
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and in the extreme case they would describe the complete convex hull. As
an example we consider the mixed-integer inequality

x ≤ Cλ , 0 ≤ x ≤ X ; x ∈ IR+
0 , λ ∈ IN (1)

which has the valid inequality

x ≤ X−G(K−λ) where K :=
⌈

X

C

⌉
and G := X−C (K − 1) (2)

This valid inequality (2) is the more useful, the more K and X/C deviate.
A special case arising often is the situation λ ∈ {0, 1}. Another example,
taken from ([70], p. 129) is

A1α1+A2α2 ≤ B+x x ∈ IR+
0 α1, α2 ∈ IN (3)

which for B /∈ IN leads to the valid inequality

bA1cα1+
(
bA2cα2 +

f2 − f

1− f

)
≤ bBc+ x

1− f
(4)

where the following abbreviations are used:

f := B−bBc , f1 := A1−bA1c , f2 := A2−bA2c (5)

The dynamic counterpart of valid inequalities added a priori to a model
leads to cutting plane algorithms which avoid adding a large number of
inequalities a priori to the model (note, this can be equivalent to finding
the complete convex hull). Instead, only those useful in the vicinity of the
optimal solution are added dynamically. For the topics of valid inequalities
and cutting plane algorithms the reader is referred to the well written book
by Wolsey [70].

Using these techniques, for some BASF planning problems including up
to 100,000 constraints and up to 150,000 variables with several thousand
binary variables, good solution with integrality gaps below 2% have been
achieved within 30 minutes on standard Pentium machines [39].

4.2 Solution Approaches Used in Scheduling

The complexity of scheduling problems can easily exceed today’s hardware
and algorithmic capabilities. Nevertheless, there are numerous promising
contributions (see, for instance, [67], [45], [55], [4], [65], [63], [52], [69]) for
problems in the process industry. What makes scheduling problems so dif-
ficult? Using exact methods such as MILP, in some cases it is not even
possible to find feasible integer solutions because feasible integer solutions
exist often only very deep in the B&B tree. In many cases it is very difficult
to derive useful upper and/or lower bounds. Scheduling problems usually
suffer from poor LP relaxations. Resource constraints can easily be fulfilled
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with fractional values of the binary variables used in time-indexed formula-
tions and thus lower bounds are very weak. Even using parallel algorithms
and powerful hardware, scheduling problems might be too complex, and
often cannot be solved with MILP methods, at least not yet. If we meet
such cases, it is also worthwhile to apply another exact method: constraint
programming (CP). Heipcke [33] investigated successfully a very difficult
scheduling problem (Section 10.5 in [42]), which became a benchmark prob-
lem in both the MIP and CP community as well as amongst scientist using
graph theory or meta-heuristics. Heipcke originally applied both methods,
CP versus MILP, to this problem and later contributed to the combina-
tion of both techniques [34]. Timpe [68] reports a successful application of
a combined MIP-CP approach to a scheduling problem in the chemical in-
dustry. CP [46] has been developed in the 1980s out of Logic Programming
and Constraint Solving and has been applied successfully to a large range of
industrial applications, especially to discrete (optimization) problems. CP
is a technique for discrete optimization that uses a tree search and performs
domain reduction at each node. CP models typically include a wide range of
constraint types, e.g., special global constraint operators such as all different
or cumulative. Unfortunately, in the CP community the motivation is low to
develop a common language which would allow to formulate a problem in a
very compact way as is the case for mathematical programming languages.
Instead, most and generic CP applications require the users to program in C
or C++; this makes it very difficult to port the model to different hardware
platforms and to maintain the software over a longer period.

If CP also fails, the last resort might be to use heuristic approaches [48],
e.g., simulated annealing or tabu search. Heuristics exploiting the structure
of scheduling chemical batch processes can also lead to good results as the
two-stage solution procedure by Blömer and Günther [10]) demonstrates.
In the first stage, an LP-based heuristic produces an initial solution. The
proposed time grid heuristic defines a time grid that includes only a limited
number of feasible periods in which a processing task is allowed to start.
Thus, the size of the original multi-period MILP model is reduced in a
controlled manner and optimal solutions of the relaxed model are obtained
within reasonable computational time.

4.2.1 Processes and the state-task network (STN) representation The ap-
proaches developed at Imperial College have at their heart novel process rep-
resentations which allow to apply several exact optimization methods and
decomposition techniques. The first approach was the mathematical pro-
gramming approach of Kondili et al. [44] based on a discrete representation
of time and the newly introduced state-task network (STN) representation
of the process. The STN representation has three main advantages:

– it distinguishes the process operations from the resources that may be
used to execute them, and therefore provides a conceptual platform in
which the unique assignment assumption is relaxed and unit-to-task al-
location is optimized;
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– it avoids the use of task precedence relations which become very compli-
cated in multipurpose plants (a task can be scheduled to start if its input
materials are available in the correct quantities and other resources, e.g.,
processing equipment and utilities, are also available, regardless of the
plant history);

– it provides a means of describing very general process recipes, involving
batch splitting and mixing and material recycles, as well as storage poli-
cies including zero-wait, no-intermediate storage, multipurpose storage
tanks and so on.

The formulation of Kondili et al. [44] (described in more detail in Kondili et
al. [45] is based on the definition of binary variables that indicate whether
tasks start in specific units of equipment at the beginning of each time pe-
riod, together with associated variable batch sizes. Other key variables are
the quantity of material in each state held in dedicated storage devices over
each time interval, and the quantity of each utility required for process-
ing tasks. Their key constraints are related to equipment and utility usage,
material balances and capacity constraints. The common, discrete time grid
captures all the plant resource utilizations in a straightforward manner; dis-
continuities in these are forced to occur at the predefined interval bound-
aries. Their approach was hindered in its ability to handle large problems
by the weakness of the allocation constraints and the general limitations
of discrete-time approaches such as the need for relatively large numbers
of grid points to represent activities with significantly different durations.
Shah et al. [66] modified the model to improve its relaxation properties
significantly and therefore increase the scope of applicability considerably.

Pantelides [55] presented a critique of the STN and associated schedul-
ing formulations and argued that despite its advantages, it suffers from a
number of drawbacks:

– the model of plant operation is somewhat restricted (each operation is
assumed to use exactly one major item of equipment throughout its
operation);

– tasks are always assumed to be processing activities which change ma-
terial states (changeovers or transportation activities have to be treated
as special cases);

– each item of equipment is treated as a distinct entity (this introduces
solution degeneracy if multiple equivalent items exist);

– different resources (materials, units, utilities) are treated differently, giv-
ing rise to many different types of constraints, each of which must be for-
mulated carefully to avoid unnecessarily increasing the integrality gap.

Pantelides [55] then proposed an alternative representation, the resource-
task network (RTN), based on a uniform description of all resources. In con-
trast to the STN approach, where a task consumes and produces materials
while using equipment and utilities during its execution, in this representa-
tion, a task is assumed only to consume and produce resources. Processing
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items are treated as though consumed at the start of a task and produced
at the end. Furthermore, processing equipment in different conditions (e.g.,
”clean” or ”dirty”) can be treated as different resources, with different ac-
tivities (e.g., ”processing” or ”cleaning”) consuming and generating them -
this enables a simple representation of changeover activities. He also pro-
posed a discrete-time scheduling formulation based on the RTN which, due
to the uniform treatment of resources, only requires the description of three
types of constraints, and does not distinguish between identical equipment
items.

4.2.2 Decomposition: Batching and Batch Scheduling The scheduling prob-
lem described in Appendix A has also been tackled by the decomposition
approach developed by Schwindt and Trautmann [63] and Trautmann [69].
The basic idea of this approach is to decompose the problem into batch-
ing and batch scheduling. In the first step, the number and the size of the
batches to be produced is determined. The second step generates a feasible
schedule and computes the start and end times of the batches.

The approach considers multi-stage production using multi-purpose equip-
ment. Final products are produced according to a sequence of tasks. Pro-
duction requires reactor time, utilities (such as energy, water, etc.), storage
capacities, and possibly personnel. The connections between reactors and
storage devices are described by a fixed topology which allows divergent,
convergent and cyclic material flows. For further details and underlying as-
sumptions see Neumann et al. [52].

The batching step decomposes the demand into feasible and appropriate
batches. The decision variables associated with this step are the number of
batches per task, the size of the batches, and the production or conversion
rates between input and output product flows. In this step, the objective is
to minimize the number of batches weighted by the process times of those
batches subject to the constraints:

– the remaining quantity of pre-products not consumed in the production
process has to observe the lower and upper storage limits (safety stock,
storage capacity);

– the size of the batches has to fulfill the just-in-time constraints for those
intermediate products for which no storage capacity is available (reactors
charge directly to reactors of the next production stage);

– the size of batches and the production or conversion rates have to be
within the technological limits.

In [69] and Neumann et al. [52] we find a mixed-integer formulation of the
batching problem with nonlinear constraints assuming that for all batches of
a task the same size is chosen. The batching problem is solved approximately
within seconds.

During the second step, batch scheduling, a feasible schedule of mini-
mal makespan is generated providing the start and end times of all tasks as
well as the assignment of resources to the task. The Branch&Bound method
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presented in Trautmann [69] and Schwindt and Trautmann [63] for solving
the batch-scheduling problem, is based on models and methods of resource-
constrained project planning (see, for instance, [13] or [62]). The key idea
of this method is a decomposition of the problem into temporal scheduling
and generation of additional constraints. Time planning corresponds to the
solution of a problem with relaxed resource constraints, i.e., initially it is
assumed that all resources are available without any limit. The remaining
constraints are time-window constraints originating from production breaks,
earliest time for delivering a product, due dates, expiration dates of stored
products etc. This temporal scheduling problem corresponds to the determi-
nation of the longest path in a graph and can (when appropriately modified
to account for forced production breaks and calendar conditions, e.g., re-
specting holidays) be solved by an extended label–correcting-algorithm [69],
i.e., computing a schedule whose activities start as early as possible while
observing all lower and upper bounds on the differences between termi-
nation and starting times is equivalent to compute the longest path from
the source to all nodes in a graph [51]. If the plan generated is feasible
for the whole problem, the algorithm stops. Otherwise, a point in time is
determined at which, now considering the limited resources, a resource con-
straint would be violated or a batch is started without having uniquely fixed
all resources. In the first case, the violation of the resource constraints is
eliminated by adding precedence relations between activities; in the second
case, the resources are selected. In both cases, the alternative precedence
relations or the alternative resources are enumerated by adding them to the
search tree. The new subproblem, differing from the previous one by the
constraints added, is solved as a temporal scheduling problem. If this prob-
lem is not feasible, another subproblem of the tree is chosen. If it is solvable,
the scheme of adding additional constraints is continued until a feasible plan
is found. The first feasible plan already imposes an upper bound but the
search tree might be further explored. In order to restrict the computing
time, only a partial search is applied namely to that part of the tree in
which one might expect to find good solutions (filtered beam search).

Although Trautmann and Schwindt only consider the makespan objec-
tive, their approach is open to account for other objective functions, e.g.,
to minimize the delay with respect to some due dates. Another advantage
of their approach is that re-scheduling is supported, for instance, if some
resources suddenly fail.

4.2.3 Special algorithms for problems with time-precedence and aggregate
resource constraints Some algorithms applied successfully to the problem
described in Section 3.3 are based on the original work by Bartusch et al.
[5]. The basic idea is to permit temporal constraints in the form of arbi-
trary, context-sensitive time lags between start and/or completion times of
activities and time-dependent resource requirements and availabilities in the
form of piece-wise constant step functions. The B&B algorithm constructs
feasible schedules along the time axis, starting at time 0 and, at every de-
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cision time t, branches into feasible decisions (about which set of jobs to
start at t) with respect to the resource constraints, while always observing
the temporal constraints. It thus always maintains a set of best possible
feasible partial schedules for the different subproblems created by these de-
cisions and seeks to either complete them into a full schedule, or to discard
a branch because the best value that can be obtained by this branch exceeds
the current best objective value.

This approach is combined with heuristics to generate good feasible so-
lutions in order to start with good upper bounds, different strategies for ex-
ploring the subproblems created (best-first-search, depth-first-search, user-
defined search), and several methods for generating good lower bounds for
best possible value of the subproblems. In addition, it uses a powerful domi-
nation rule which permits discarding a subproblem if the currently “active”
jobs in the partial schedule have been encountered already in a different
branch with a better lower bound. This domination rule is based on an ef-
ficient search tree implementation of all sets of active jobs encountered so
far. The most recent progress and results have been achieved by the group
around R. Möhring at TU Berlin and are based on Lagrangian Relaxation
and Branch&Bound techniques.

Lagrangian Relaxation: In order to compute lower bounds on the optimal
objective function value for resource-constrained project scheduling prob-
lems, an approach via Lagrangian relaxation has been suggested [49]. The
Lagrangian relaxation is based on a well-known time-indexed integer lin-
ear programming formulation of the problem [57]. The same Lagrangian
relaxation has been used before [18]. The basic idea is to relax the resource-
constraints, and to penalize their violation in the usual Lagrangian fash-
ion. This results in a Lagrangian subproblem which is a so-called project
scheduling problem with start-time dependent costs. In this problem, each
job incurs a cost which depends on its start time, the jobs are subject to
precedence constraints (or arbitrary time lags), and the objective is to find
a schedule which has minimal costs. This problem, or special cases thereof,
has been addressed frequently in the literature. [50] give an overview of
these results. As it turns out, the project scheduling problem with start-
time dependent costs can be efficiently solved as a minimum cut problem
in a directed graph. This insight is the key to the practical efficiency of
the Lagrangian approach, which uses a sub-gradient method to iterate the
Lagrangian multipliers and provides reasonable strong lower bounds within
very moderate computation times. Note that the lower bounds are theoreti-
cally the same as those obtained by the LP-relaxation of the problem, but in
the current case the Lagrangian relaxation method works much faster than
Simplex type algorithms or interior point methods. In addition, [49] propose
to exploit the dual information from solutions of the Lagrangian relaxation
in order to compute also feasible solutions to resource-constrained project
scheduling problems. The basic idea is borrowed from previous work on ap-
proximation algorithms for machine scheduling problems. In this context,
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it was shown by various authors that LP-based list-scheduling, combined
with the concept of so-called α-completion times, can lead to schedules with
constant worst-case performance guarantees. The rationale behind this ap-
proach is that a solution of a relaxed problem also holds valuable information
to compute feasible solutions to the original, resource-constrained problem.
[49] use simple list scheduling algorithms which are based on priority lists
according to α-completion times of jobs in the solutions of the Lagrangian
subproblems. Feasible solutions are computed in each iteration of the sub-
gradient optimization. The computational experiments with this approach
are very promising in terms of both computation time and solution quality.
In fact, on a set of well established benchmark instances, the Lagrangian
based approach provides solutions which are comparable to those of state-
of-the-art algorithms from the literature. Moreover, for instances close to
real-world scenarios, the results are clearly favorable to those obtained with
a constraint propagation approach by [34], or a branch-and-bound algorithm
by [27]. Note that the Lagrangian approach can handle many regular, and
also non-regular objective functions.

Branch-and-Bound: For resource-constrained problems with arbitrary min-
imal and maximal time lags, also called time windows or generalized prece-
dence constraints, it is already NP-hard to compute a feasible schedule.
Many order theoretic insights into the structure of optimal solutions have
been already obtained by [5]. Partially based on ideas of their work, branch-
and-bound algorithms have been proposed and evaluated more recently by
[19], [62], and [27]. The underlying idea of the algorithms is that time-
feasible schedules are enumerated by systematically resolving resource con-
flicts. Here, a time-feasible schedule denotes a schedule which does not vio-
late the time lag constraints, and a resource conflict is a time phase during
which the schedule violates the resource constraints. The resource conflicts
are resolved by introducing additional precedence relations between jobs, or
sets of jobs ([19], [62]), a concept which is based on an order theoretic repre-
sentation theorem of optimal schedules (see Theorem 3.8 in [5]). In contrast,
[27] resolve resource conflicts by a dynamic update of release dates instead
of introducing precedence relations. Thus, their algorithm is not based on
the order theoretic concept described in [5], but on a very simple dominance
property instead. At a first glance, this technique has the drawback that re-
source conflicts are resolved only locally. Nevertheless, subject to several
additional features which help to truncate large parts of the enumeration
tree, the computational results show that the algorithm performs better
than previous algorithms which are based on the idea to resolve resource
conflicts. Compared to the previous branch-and-bound approaches, the effi-
ciency is partly due to the efficient update of the time-feasible schedules in
each node of the enumeration tree. Other branch-and-bound algorithms by
[34], [22], and [23] are based on constraint propagation. These algorithms
rely on the idea to reduce the possible start times of jobs as much as possible
by propagating corresponding lower and upper bounds in every node of the



Planning and Scheduling in the Process Industry 21

enumeration tree. The results with these algorithms are also very good. As
a rule of thumb, however, for large-scale instances, the computation times
of all available branch-and-bound implementations are prohibitive. In these
cases the algorithms are generally used as heuristics by only evaluating parts
of the enumeration tree.

4.2.4 Heuristics and Meta-Heuristics Besides the exact methods described
so far, a variety of heuristics, according to Glover [29] better called meta-
heuristics, are used to solve scheduling problems [21] by simulating a given
system and evaluating its function of merit (the objective function in exact
optimization). Some well known meta-heuristics, i.e., techniques which are
not problem specific and are based on generic principles and schemes which
can be used to construct problem-specific heuristics are: genetic algorithms
(GA), simulated annealing (SA) and tabu search (TS). All meta-heuristics
have in common that they usually lack the proof of convergence and the
proof of optimality. However, they can be effectively used to improve a
given solution by performing a local search coupled with some exchange
mechanisms based on appropriate neighborhood relations. SA and TS have
the advantage that they can leave poor local optima and move to better
solutions.

SA (see, for instance, [1], [25] or [2]) links the probability of accepting
a solution which is worse than the reference solution to a temperature-
like parameter which describes the cooling of metals. This approach which
introduces a non-deterministic argument for accepting an inferior solution
is the key-element to leave poor local optima.

TS [29] is a meta-strategy for guiding known heuristics past the traps
of local optimality. It exploits knowledge from previous solutions and thus
uses an abstract memory. Popularized by Glover in the early 90s, TS has
been applied to integer programming problems involving scheduling, rout-
ing, traveling salesman and related problems.

GA ([35], [36]) – an algorithm in the class of evolutionary algorithms
– uses population of solutions subject to survival of the fittest criteria,
mutation and recombination of positive properties in very solutions.

5 Conclusions and summary

We have provided an overview of planning and scheduling in the process
industry. The state-of-the-art technology based on mathematical, especially
mixed-integer optimization for planning is quite advanced and appropriate
for solving real world planning problems. Mixed integer optimization can
provide a quantitative basis for decisions and allow to cope most successfully
with complex problems and it has proven itself as a useful technique to
reduce costs and to support other objectives. Despite that, this technology
has not yet found its way into many commercial software packages. For
scheduling problems, there is not yet a commonly accepted state-of-the-
art technology although some promising approaches have been developed,
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especially for job shop problems. Nevertheless, the majority of software
packages is still based on pure heuristics.

What will the future hold for us in planning and scheduling? There is
a growing number of software packages available which support - at least
to some extent - the application of exact methods for a variety of planning
problems. That way, planning based on mathematical, especially mixed-
integer optimization becomes more and more the state-of-the art in the
chemical, food and pharmaceutical industry and as well in refineries. For
scheduling this is not yet the case. Most approaches are still based on heuris-
tics. But there is light at the end of the tunnel: hybrid approaches in which
MILP, constraint programming and graph theory are used together are in
the process of being developed, and may be a common language for schedul-
ing problems.

There is a trend over the last few years bringing mathematical pro-
gramming and the constraint programming community closer to each other.
This results in hybrid approaches (see, for instance, [32] and [37]), i.e.,
in a language and algorithms combining elements from both communities.
This may have a great impact on supply chain problems and scheduling. In
1999, the European Commission awarded the project LISCOS (Large In-
tegrated Supply Chain Optimization Software) with several million Euros.
The technical core of this project initiated by BASF’s mathematical con-
sultant group and 8 other partners is the development of MIP-CP hybrid
techniques (http://www.liscos.fc.ul.pt). Timpe [68] describes a successful ap-
plication of this techniques to a real world planning and scheduling problem
in the process industry.

Another focus of modeling which is possible now due to increased com-
puter power available is the opportunity to solve design and operational
planning problems, or strategic and operational planning problems simulta-
neously in one model. The motivation, ideas how to to this and successful
examples are provided by [40].

Finally, it is now also possible to give up the assumption that all data
have to be treated as determinstic data – note that in this article we focussed
only on deterministic models. However, as some data, e.g., demand forecast
in planning models, or production data in scheduling may be subject to un-
certainties, is seems to be advantegous if we could give up the assumption
that planning and modeling is exclusively based on deterministic data. In
that case, stochastic optimization is the mean of choice. Nowadays, there ex-
ist powerful solution techniques to combine mixed-integer programming and
stochastic optimization (see, for instance, Schultz [61] or Carøe & Schultz
[16]) when data are subject to uncertainties. Successful applications of this
techniques to scheduling problems in the chemical process industry are re-
ported, for instance, by Sand et al. [59] or Engell et al. [26]. Alternatively,
to these techniques there exists an approach [6] to find robust solutions to
LP-problems including uncertain data.

While MIP has already well established itself in planning, further quan-
tum leaps in scheduling are to be expected from the combination of several
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techniques such as mathematical optimization, graph theory and constraint
programming, and to exploit problem specific structures. Exact, or at least
much better scheduling techniques knock at our doors and might, say, within
5 to 10 years, play a similar role as does MIP in planning nowadays.

Appendix - A Benchmark Problem (Westenberger & Kallrath)

Due to the increasing interest in the benchmark scheduling problem formu-
lated by Westenberger and Kallrath (1994) in a joint internal publication by
Bayer AG (Leverkusen) and BASF Aktiengesellschaft (Ludwigshafen), this
appendix summarizes it and thus makes it available to a broader audience.
The case study covers most of the features that contribute to the complex-
ity of batch process scheduling in industry. The problem is to some extent
presented in the language of an MILP model. This is to guarantee unique-
ness in the interpretation. Nevertheless, people interested in the problem
should be encouraged to try other approaches, e.g., time-continuous formu-
lations. A state-task-network representation of the production process and
the possible assignment of tasks to production units are given in Fig. 3 in
[10].

1 Description of the problem

The production process considered consists of a network of 17 processing
tasks, 19 states, 9 production units, and 37 divergent, convergent and cyclic
material flows. Moreover, the production process includes flexible propor-
tions of output goods (see Task 2/2), cyclical material flows (recycling of
output from Task 3/3 into State 1), and several intermediates (see state
nodes 5, 9, 10, and 12), which do not allow storage between processing
steps. All processing tasks are performed in batch mode with lower and
upper bounds on the batch sizes. These bounds are pre-determined from
properties of the processes and the capacities of the reactors. Batch sizes
are treated as decision variables and may be different even for the same
type of product or the same production unit.

In this production planning problem a variety of products are produced
by a process plant consisting of a number U of production units RP

u , u =
1, . . . , U . We suppose an one-to-one relation of process steps and production
units in the plant. Every production unit RP

u contains Lu production lines
RL

ul, l = 1, . . . , Lu. In the current benchmark example we have U = 7 and
the vector Lu specified in Table 1. Each production unit RL

u generates a
number Pu of products Pup, p = 1, . . . , Pu. The number of products per
production unit is given in Table 1 as well.
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Table 1: Description of Production Units

Production number of number of maximum minimum
unit processing lines products batch size batch size

RP
u Lu Pu / unit A+

u / kg A−
u / kg

R1 1 1 10 3
R2 1 2 20 5
R3 1 2 10 4
R4 1 4 10 4
R5 1 2 10 4
R6 2 3 7 3
R7 2 5 12 4

Remark: The production is realized in batch mode, i.e., certain quantities
of ingredients are processed by a given process time per batch process Tulp.
Process times depend on the production line RL

ul used for processing and
the product to be made (see Table 2), but in our case, not on actual batch
sizes.

In our example we have at most two different ingredients per batch (see
product P73) and at most 2 generated products per batch. For instance,



Planning and Scheduling in the Process Industry 25

productions of P21 and P22 are coupled. The same holds for P31 and P32.

Table 2: Description of Batch Processes

Pup Pup′ F o1
ulpn rP

u RL
ul Tulp Pvr Pv′r′ F i1

ulpn

P11 - 1. R1 RL
11 0.05 d P0 - 1.

P21 P22 F o1∗
211n R2 RL

21 0.1 d P11 - 1.
P31 P32 F o1∗∗

311n R3 RL
31 0.05 d P22 - 1.

P41 - 1. R4 RL
41 0.1 d P21 - 1.

P42 - 1. R4 RL
41 0.1 d P21 - 1.

P43 - 1. R4 RL
41 0.1 d P31 - 1.

P44 - 1. R4 RL
41 0.1 d P31 - 1.

P51 - 1. R5 RL
51 0.15 d P21 - 1.

P52 - 1. R5 RL
51 0.15 d P31 - 1.

P61 - 1. R6 RL
61 0.100 d P42 - 1.

P62 - 1. R6 RL
61 0.125 d P43 - 1.

P63 - 1. R6 RL
61 0.150 d P44 - 1.

P61 - 1. R6 RL
62 0.125 d P42 - 1.

P62 - 1. R6 RL
62 0.150 d P43 - 1.

P63 - 1. R6 RL
62 0.150 d P44 - 1.

P71 - 1. R7 RL
71 0.100 d P51 - 1.

P72 - 1. R7 RL
71 0.100 d P52 - 1.

P73 - 1. R7 RL
71 0.100 d P41 P61 1/2

P74 - 1. R7 RL
71 0.150 d P62 - 1.

P75 - 1. R7 RL
71 0.150 d P63 - 1.

P71 - 1. R7 RL
72 0.150.d P51 - 1.

P72 - 1. R7 RL
72 0.150 d P52 - 1.

P74 - 1. R7 RL
72 0.150 d P62 - 1.

P75 - 1. R7 RL
72 0.150 d P63 - 1.

The columns in this table have the following meaning:
main and side product, fraction of main product, production unit
process time per batch, ingredient 1 and 2, fraction of ingredient 1

Remark: Note that F o1
211n is restricted by 0.2 ≤ F o1

211n ≤ 0.7 and that F o1
311n

is explained in Section 5 of this appendix. Only those processing lines are
allowed to make product Pup which have a process time Tulp for this product
declared in Table 2. For example, production of P73 is allowed to run on
RL

71, but not to run on RL
72.

We refer to batch processes as Bulpn, where Bulpn is a pointer to the
nth batch process Pup running on production RL

ul. The integer variable
νulp ∈ IN0 describes the total number of batch processes to be performed
for product Pup in production line RL

ul. In case of two products we declare
the first one as the main product and the second one as a side product. The
side product can be interpreted as a less attractive product or as a waste
product. Each batch has a specific batch size described by the variable aulpn
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subject to a maximum size A+
u and a minimum size A−

u . Values for A+
u and

A−
u are given in Table 1.

The fraction of the kth ingredient of a batch Bulpn is specified by F ik
ulpn.

The fraction of kth output is given by F ok
ulpn. Because of a maximum of

two ingredients and a maximum of two output components, it is sufficient
to specify the fraction of the first ingredient and the fraction of the main
product only.

If we introduce the variables mik
ulpn and mok

ulpn with

mi1
ulpn = F i1

ulpnaulpn , mi2
ulpn = (1−F i1

ulpn)aulpn (6)

mo1
ulpn = F o1

ulpnaulpn , mo2
ulpn = (1−F o1

ulpn)aulpn (7)

to describe the quantities of ingredients and output of products in a batch
process Bulpn, the mass conservation reads

mi1
ulpn+mi2

ulpn = aulpn = mo1
ulpn+mo2

ulpn (8)

Each batch Bulpn has a unique start time tSulpn and a unique end time tEulpn

related by

tEulpn = tSulpn +Tulp , ∀{ulpn} (9)

Remark : For the sake of simplicity we assume that process time Tulp does
not depend on the actual batch size of any batch job Bulpn.

Call a batch Bu′l′p′n′ the successor to batch Bulpn if both batches have
to run on the same production line and if there is no other job in between
them running on the same processing line. We can express this condition
mathematically.

A batch job Bu′l′p′n′ is called successor to batch Bulpn if u = u′, l = l′

and tSulpn ⊂ tSulp′n′ is true and for each Bulp′′n′′ with p′′ ⊂ Pu + 1 and
n′′ ⊂ Nulp′′ + 1 one of two relations (10) or (11){

(tSulp′′n′′ ≤ tSulpn) ∧ (tSulp′′n′′ ≤ tSulp′n′)
}

(10)

{
(tSulp′′n′′ ≥ tSulpn) ∧ (tSulp′′n′′ ≥ tSulp′n′)

}
(11)

is true. In an MILP model we could use an auxiliary binary variable αulpnp′n′

αulpnp′n′ =
{

1, if batch Bu′l′p′n′ is the successor to batch Bulpn

0, otherwise

to indicate a predecessor-successor relation of two batches Bulpn and Bu′l′o′n′

and to describe this feature.
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2 Cleaning processes

Sometimes a batch process requires a cleaning process CP
ulpn. We define a

slack variable ηulpn′ ≥ 0, n′ ≤ Nulp measuring the machine time of produc-
tion line RL

ul that is not used for production or cleaning processes between
a batch Bulpn and its successor. The auxiliary binary variable βulpn is a
decision variable with

βulpn :=
{

1, if a batch Bulpn is followed by a cleaning process
0, otherwise (12)

For all αulpnp′n′ = 1 we require that

eulpn+βulpn(FCTulp+ηulpn) = tSulp′n′ (13)

where FC is a factor used to describe the cleaning time: FCTulp.
Two conditions enforce cleaning processes (βulpn = 1): (i) if αulpnu′n′

= 1 and p ⊂ p′ then a cleaning process has to be included. (ii) if a batch is
the last batch process on a processing line a cleaning process has to follow.

Remark 1: A sequence of products with decreasing quality requirements
can help to avoid cleaning processes. This viewpoint motivates condition (i)
in our example. For this reason a schedule should prefer batch sequences
p ≥ p′ for predecessor-successor-pairs (αulpnp′n′ = 1).

Remark 2: Normally, cleaning time depends on the specific batch prod-
uct and production line. For the sake of simplicity we assume a cleaning
time that depends only on the duration of the predecessor batch and on a
given factor FC .

Remark 3: Production lines which are not in use should be cleaned to
avoid ongoing reactions of residues. Equation (13) models this requirements
because (13) can only be fulfilled if a positive slack time is combined with
a cleaning process.

Remark 4: Different batch processes cannot run on the same production
line simultaneously, i.e., tEulpn ≤ tSulp′n′ for all (u, l, p, n, p′, n′|αulpnp′n′ =
1).

3 Stock conditions and plant input/output

The storable products Pup are given by the index set (u, p) ∈ S with

S = {(1, 1), (2, 2), (3, 1), (4, 2), (4, 3), (4, 4), (6, 1), 6, 3)} (14)

The products P41, P51, P52, P62 cannot be stored.
The quantity of product Pup stored at time t is described by the stock

function jup(t). jup(t) is completely defined by the initial value jup(0) and
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the cumulative mass inflow qi
up(t) and outflow qo

up(t) following from the
schedule of all batches Bu′l′p′n′ of all products:

qi
up(t) = f(t, sulpn) , qo

up(t) = f(t, eulpn) (15)

with

f(t, tr) :=
Lu∑
l=1

Nulp∑
n=1

H(t, tr)aulpn, H(t, tr) =
{

1, if t ≥ T
0, else (16)

j0(t) describes the time evolution of raw material requirement, i.e., j0(t) =
qi
11(t). The product outflow j7p of end products is given by j7p(t) = qo

7p(t)
for all p = P1, . . . , P7.

4 Stock balance equations

The current quantity of a certain product in stock is given by its initial
quantity and the cumulative mass inflow and outflow associated with the
production of that product. If we explicitly resolve the production scheme
we get

j11(t) = j11(0)+qo
11(t)−qi

21(t)+
N311∑
n=1

(1−F o1
311n)a311nHe311n(t) (17)

j11(t) takes into account the re-usage of P32 as product P11

j21(t) = j21(0)+
N211∑
n=1

F o1
211na211nHe211n

(t)−qi
41(t)−qi

42(t)−qi
51(t) (18)

j22(t) = j22(0)+
N211∑
n=1

(1−F o1
211n)a211nHe211n

(t)−qi
31(t) (19)

j21(t) = j22(t) share the output of R2

j31(t) = j31(0)+
N311∑
n=1

F o1
311na311nHe311(t)−qi

43(t)−qi
44(t)−qi

52(t) (20)

In j31 the stock input is reduced by the separated quantity of P32 (see j11).

j4k(t) = j4k(0)+qo
4k(t)−qi

6,k−1(t) , k = 2, 3, 4

j61(t) = j61(0)+qo
61(t)−

L7∑
l=1

N713∑
n=1

(1−F i1
713n)a713nHs713n

(t)



Planning and Scheduling in the Process Industry 29

j63(t) = j63(0)+qo
63(t)−qi

75(t)

The products which are not storable, lead to the equality constraints

qo
51(t) = qi

71(t), qo
52(t) = qi

72(t)q
o
62(t) = qi

74(t), qo
41(t) = F i1

713nqi
73(t)

The last equation uses the fact that F i1
713n is a constant and does not depend

on n.

5 Objective functions

Now, several tasks, i.e., optimization problems, can be formulated using the
definitions provided in Section 5.

5.1 Task 1: Minimize makespan - compute a pre-schedule The makespan to
be minimized corresponds to the latest completion time of any of the pro-
cessing tasks or cleaning operation. The rationale for this objective function
is that the plant may be reconfigured at the earliest possible time. The de-
mand DA

7p to be satisfied in time period tT1 , is given in Table 3.

Table 3: Product Demand

j 1 2 3 4 5
DA

7j/kg 0 0 90 50 40
DB

7j/kg 30 30 40 20 40

At time tT1 the stock function j7p(tT1) has to be equal or greater than the
demand DA

7p, o = 1, . . . , 5. In Task 1, we set F o1
311n = 1 for all n, i.e., the

re-usage of P32 as P11 is not considered. Furthermore, cleaning processes
(FC = 0) are neglected.

Bounds, J−up ≤ jup(t) ≤ J+
up, on stock and initial stock conditions for all

storable products (u, p) ∈ S (see Section 3 of this appendix) are given in
Table 4.

Table 4: Stock Conditions (J−up = 0 for all)

[kg] j11 j21 j22 j31 j42 j43 j44 j61 j63
jup(0) 20 20 0 20 0 0 0 0 0
J+

up 30 30 15 30 10 10 10 10 10

Task: Compute the smallest value tT1 for feasible batch plans consistent
with all previous constraints!
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5.2 Task 2: Task 1 considering cleaning times In addition to Task 1, the
cleaning processes described in Section 2 of this appendix should be consid-
ered with FC being set to FC = 0.5. Determine tT2 as small as possible to
satisfy the demands A specified in Table 3.

5.3 Task 3: Task 1 Consideration of a cyclic product flow In addition
to Task 1, take into account re-usage of product P32 as product P11 as
described in Section 1 of this appendix and thereof set F o1

311n = 0.6923 for
all n. Neglect cleaning processes (FC = 0) and minimize tT23 .

5.4 Task 4: Minimize makespan - compute a complete schedule Take into
account cleaning processes and a cycle in product flow and set FC = 0.5
and F o1

311n = 0.6923 for all n. The production requirement DB
7p specified in

Table 3 has to be fulfilled exactly j7p(tT4) = DB
7p for all p = 1, . . . , 5. Stock

limitations are the same as in Task 1, but unlike Task 1, here, initial stock
values jup(0) are not prescribed.

Task: Minimize tT4 so that jup(0) = jup(tT4) for all (u, p) ∈ S with
u ⊂ 7! All batch processes and cleaning processes should be finished at
cycle time tT4 .

5.5 Task 5: Maximize profit Take the parameter values as in Task 4 (cyclic
production, requirement of Table 5 etc.). Here, a time interval of 2 days is
defined (tT5 = 2d). A product requirement which has to be satisfied is not
prescribed. Instead, market prices Cp(Pup) in units of $/kg for raw material
P0 and end products P71, P72, P73, P74, P75 are given as [5, 10, 10, 30, 20, 15].

Task : Find a product mix and a cyclic schedule which maximize the
profit function w

w = −Cp(P0)j0(tc)+
5∑

p=1

Cp(P70)j70(tc) (21)

5.6 Task 6: Minimal cost capacity design Take parameter values as in Task
4. Again, product requirement is given by Table 5. Find appropriate stock
capacities J+

up and appropriate production rates rP
ul for each production line

l. Note that the stock capacities J+
up are variable now.

Here, the production rate of a production line should be the same for
each product manufactured on this line, i.e., the batch process time Tulp

does not depend on product index p. The batch process time should now be
redefined by the maximum batch size A+

u and the production rate rP
ul, i.e.,

Tulp = A+
u rP

ul. For the sake of simplicity we assume the same investment
cost for all production rates (CR =10 $/kg/d) and the same investment
cost of stock capacity for all products (CS = 3 $/kg).

Task : Determine optimal values for all rP
ul and J+

up so that demand spec-
ified in Table 5 under the constraints of Task 4 can be satisfied in time
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intervals of length tT6 = 0.5 days and such that the investment cost c

c =
7∑

u=1

Lu∑
l=1

CRrP
ul +

∑
(u,p)∈S

CSJ+
up (22)

are minimized, where S is the set of all indexes (u, p) of all storable products
Pup defined in Section 3 of this appendix.
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6 List of symbols

symbol description

l = 1, . . . , Lu index referring to processing lines
n = 1, . . . , Nulp index referring to batch processes
p = 1, . . . , Pu index referring to products
u = 1, . . . , U index referring to processing units

A−
u , A+

u minimum and maximum batch size (fixed)
aulpn batch size (variable)
Bulpn pointer to the nth batch of product Pup

running on production line RL
ul

Cp(Pup) product Pup (fixed)
Cr investment cost for additional production capacity
CS investment cost for additional stock capacity
DUp demand for product p
F i1

ulpn (variable) fraction of first ingredient Pvr of batch Bulpn

F o1
ulpn (variable) fraction of first output product Pup of batch Bulpn

FC ≥ 0 factor describing the cleaning time: FCTulp (fixed)
HR(t) Heavyside function
J−up minimum and maximum stock of product Pup

jup(t) (variable) stock as a function of time t
j0(t) cumulative requirement of raw material
mi

ulpn1, mi
ulpn2 quantities of ingredients of batch Bulpn (variable)

mo
ulpn1, mo

ulpn2 quantities of products of batch Bulpn (variable)
Nulp (variable) number of batches of product Pup active on line RL

ul

Pup, p = 1, . . . , P product p made in production unit Ru

qo
up(t), qo

up(t) cumulative mass inflow and outflow (variable)
Ru, u = 1, . . . , U production unit related to a specific process step
RL

ul, l = 1, . . . , L processing line (part of production unit Ru)
rP
ul production rates defined in Task 6 (variable)
S index set of storable products (fixed)
tEulpn, tSulpn end and start time of batches (variable)
Tulp process time per batch process (variable in Task 6)
αulpnp′n′ binary variable to indicate a predecessor-successor

relation of two batches Bulpn and Bulp′n′

βulpn auxiliary binary decision variable with βulpn = 1,
if a batch Bulpn is followed by a cleaning process

ηulpn ≥ 0, n ≤ Nulp slack variable measuring the machine time unused for
production between a batch Bulpn and its successor.

Remark : The values of variables have to be positive or zero. Variables are
usually defined by small letters; small Greek characters denote discrete vari-
ables. Exceptions: The maximum stock capacity, J+

up, is a variable in Task
6. F o1

ulpn is a variable for special values of (u, l, p, n) (see Table 2).
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