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Abstract

This contribution gives a brief overview on nonlinear constrained least
squares methods. The focus is on data fitting problems in which the
models include ordinary or partial differential equations.

1 Introduction

Legendre (1805) first published the method of least squares, applying it to data
from the 1795 French meridian arc survey as an example. In 1809, Gauß in
“Theoria motus corporum coelestium” (Gauß, 1809) derived the justification
for the method in terms of the normal error law, showed how to obtain the
errors of the estimated parameters, and also how nonlinear problems could be
linearized, so that the method could be applied to the problem of nonlinear
parameter estimation. He also claimed he had been using the method since
1795, ten years before Legendre’s work was published. It appears that Gauß
had indeed been using the method as he claimed, but had not appreciated its
wider importance until Legendre’s publication. For a more detailed discussion
of this priority conflict we refer the reader to Stigler (1986) or Schneider (1988).

Since the time of Gauß, numerical methods for solving several types of least
squares problems have been developed and improved, and there is still much
active research in that area. For a review of the methods of least squares
as known and used in astronomy, especially astrometry, we refer to Eichhorn
(1993).
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The unconstrained least squares problem can be expressed by 1

min
p

l2(p) , l2(p) := ‖r1 [x(t1), . . . ,x(tk),p]‖22 =
N

∑

k=1

[r1k(p)]2 , r1 ∈ IRN .

(1.1)
This structure may arise either from a nonlinear over-determined system of
equations

r1k(p) = 0 , k = 1, ..., N , N > n , (1.2)

or from a data fitting problem with N given data points (tk, Ỹk) and variances
σν , a model function F̃ (t,p), and n adjustable parameters x:

r1k := r1k(p) = Yk − Fk(p) =
√

wk

[

Ỹk − F̃ (tk,p)
]

. (1.3)

The weights wk are related to the variances σk by

wk := β/σ2
k . (1.4)

Traditionally, the weights are scaled to a variance of unit weights. The factor
β is chosen so as to make the weights come out in a convenient range. In short
vector notation we get

r1 := Y − F(p)= [r11(p), . . . , r1N (p)]T , F(p),Y ∈ IRN . (1.5)

Our least squares problem requires us to provide the following input:
1. model,
2. data,
3. variances associated with the data,
4. measure of goodness of the fit, e.g., the Euclidean norm.

In many practical applications, unfortunately, less attention is paid to the vari-
ances. It is also very important to point out that the use of the Euclidean norm
requires pre-information related to the problem and statistical properties of the
data.

A popular method to solve unconstrained least squares problems is the
Levenberg-Marquardt algorithm proposed independently by Levenberg (1944)
and Marquardt (1963) and sometimes also called “damped least squares”. It
modifies the eigenvalues of the normal equation matrix and tries to reduce the
influence of eigenvectors related to small eigenvalues [cf. Dennis and Schn-
abel (1983)]. Damped (step-size cutting) Gauß-Newton algorithms combined

1The minimization of this functional, i.e., the minimization of the sum of weighted
quadratic residuals, under the assumption that the statistical errors follow a Gaußian dis-
tribution with variances as in (1.4), provides a maximum likelihood estimator (Brandt, 1976,
Chp.7) for the unknown parameter vector p. This objective function dates back to Gauß
(1809) and in the mathematical literature the problem is synonymously called least squares
or `2 approximation problem.
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with orthogonalization methods control the damping by natural level functions
[Deuflhard and Apostolescu (1977, 1980), Bock (1987)] seem to be superior to
Levenberg-Marquardt type schemes and can be more easily extended to nonlin-
ear constrained least squares problems.

A common basic feature and limitation of least squares methods used in
astronomy, but seldom explicitly noted, is that they require some explicit model
to be fitted to the data. However, not all models are explicitly available. For
example, some pharmaceutical applications for receptor-ligand binding studies
are based on specifically coupled mass equilibrium models. They are used,
for instance, for the radioimmunological determination of Fenoterol or related
substances, and lead to least squares problems in systems of nonlinear equations
(Schittkowski, 1994), in which the model function F(p) is replaced by F(t;p, z)
which, besides the parameter vector p and the time t, depends on a vector
function z = z(t;p) implictly defined as the solution of the nonlinear equations

F2(t;p, z) = 0 , F2(p) ∈ IRn2 . (1.6)

This is a special case of an implicit model. There is a much broader class of
implicit models. Most models in science are based on physical, chemical and
biological laws or include geometry properties, and very often lead to differential
equations which may, however, not be solvable in a closed analytical form. Thus,
such models do not lead to explicit functions or models we want to fit to data.
We rather need to fit an implicit model (represented by a system of differential
equations or another implicit model). The demand for and the applications of
such techniques are widespread in science, especially in the rapidly increasing
fields of nonlinear dynamics in physics and astronomy, nonlinear reaction kinet-
ics in chemistry (Bock, 1981), nonlinear models in material sciences (Kallrath
et al., 1998) and biology (Baake and Schlöder, 1992), and nonlinear systems
describing ecosystems [Richter and Söndgerath (1990), Richter et al. (1992)] in
biology, or the environmental sciences. Therefore, it seems desirable to focus on
least squares algorithms that use nonlinear equations and differential equations
as constraints or side conditions to determine the solution implicitly.

2 Parameter Estimation in ODE Models

Consider a differential equation with independent variable t for the state variable

x′(t) =
dx
dt

= f(t,x,p) , x ∈ IRnd , p ∈ IRnp (2.1)

with a right hand side depending on an unknown parameter vector p. Addi-
tional requirements on the solution of the ODE (2.1) like periodicity, initial or
boundary conditions or range restrictions to the parameters can be formulated
in vectors r2 and r3 of (component wise) equations and inequalities

r2 [x(t1), . . . ,x(tk),p] = 0 or r3 [x(t1), . . . ,x(tk),p] ≥ 0 . (2.2)
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The multi-point boundary value problem is linked to experimental data via
minimization of a least squares objective function

l2(x,p) := ‖r1 [x(t1), . . . ,x(tk),p]‖22 . (2.3)

In a special case of (2.3) the components ` of the vector r1 ∈ IRL are “equations
of condition” and have the form

r1` = σ−1
ij [ηij − gi(x(tj),p)] , ` = 1, . . . , L :=

Nj
∑

i=1

Ji . (2.4)

This case leads us to the least squares function

l2(x,p) :=
ND
∑

j=1

Nj
∑

i=1

σ−2
ij [ηij − gi(x(tj),p)]2 . (2.5)

Here, ND denotes the number of values of the independent variable (here called
time) at which observed data are available, Nj denotes the number of observ-
ables measured at time tj and ηij denotes the observed value which is com-
pared with the value of observable i evaluated by the model where the functions
gi(x(tj),p) relate the state variables to x this observable

ηij = gi(x(tj),p) + εij . (2.6)

The numbers εij are the measurement errors and σ2
ij are weights that have to be

adequately chosen due to statistical considerations, e.g. as the variances. The
unknown parameter vector p is determined from the measurements such that
the model is optimally adjusted to the measured (observed) data. If the errors
εij are independent, normally distributed with the mean value zero and have
variances σ2

ij (up to a common factor β2), then the solution of the least squares
problem is a maximum likelihood estimate.

2.1 The Initial Value Problem Approach

An obvious approach to estimate parameters in ODE which is also implemented
in many commercial packages is the initial value problem approach. The idea is
to guess parameters and initial values for the trajectories, compute a solution
of an initial value problem (IVP) (2.1) and iterate the parameters and initial
values in order to improve the fit. Characteristic features and disadvantages are
discussed in, e.g., (Bock, 1987) or Kallrath et al. (1993). In the course of the
iterative solution one has to solve a sequence of IVPs. The state variable x(t)
is eliminated for the benefit of the unknown parameter p and the initial values.
Note that no use is made of the measured data while solving the IVPs. They
only enter in the performance criterion. Since initial guesses of the parameters
may be poor, this can lead to IVPs which may be hard to solve or even have
no solution at all and one can come into badly conditioned regions of the IVPs,
which can lead to the loss of stability.
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2.2 The Boundary Value Problem Approach

Alternatively to the IVP approach, in the “boundary value problem approach”
invented by Bock (1981), the inverse problem is interpreted as an over-determined,
constrained, multiple-point boundary problem. This interpretation does not de-
pend on whether the direct problem is an initial or boundary value problem. The
algorithm used here consists of an adequate combination of a multiple shooting
method for the discretization of the boundary value problem side condition in
combination with a generalized Gauss-Newton method for the solution of the
resulting structured nonlinear constrained least squares problem [Bock (1981,
1987)). Depending on the vector of signs of the state and parameter dependent
switching functions Q it is even possible to allow piecewise smooth right hand
side functions f , i.e., differential equations with switching conditions

x′ = f(t,x,p; sign(Q(t,x,p))) , (2.7)

where the right side may change discontinuously if the vector of signs of the
switching functions Q changes. Such discontinuities can occur, e.g. as a result
of unsteady changes of physical values. The switching points are in general given
by the roots of the state-dependent components of the switching functions

Qi(t,x,p) = 0 . (2.8)

Depending on the stability behavior of the ODE and the availability of in-
formation about the process (measured data, qualitative knowledge about the
problem, etc.) a grid Tm

Tm : τ1 < τ2 < ... < τm , ∆τj := τj+1 − τj , 1 ≤ j ≤ m− 1, (2.9)

of m multiple shooting nodes τj (m − 1 subintervals Ij) is chosen. The grid
is adapted to the problem and data and is defined such that it includes the
measuring interval ([τ1, τm] = [t0, tf ]). Usually, the grid points τ correspond
to values of the independent variable t at which observations are available but
additional grid points may be chosen for strongly nonlinear models. At each
node τj an IVP

x′(t) = f(t,x,p) , x(t = τj) = sj ∈ IRnd (2.10)

has to be integrated from τj to τj+1. The m − 1 vectors of (unknown) initial
values sj of the partial trajectories, the vector sm representing the state at the
end point and the parameter vector p are summarized in the (unknown) vector
z

zT := (sT
1 , ..., sT

m,pT ) . (2.11)

For a given guess of z the solutions x(t; sj ,p) of the m − 1 independent initial
value problems in each sub interval Ij are computed. This leads to an (at first
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discontinuous) representation of x(t). In order to replace (2.1) equivalently by
these m− 1 IVPs matching conditions

hj(sj , sj+1, p) := x(τj+1; sj ,p)− sj+1 = 0 , hj : IR2nd+np → IRnd (2.12)

are added to the problem. (2.12) ensures the continuity of the final trajectory
x(t).

Replacing x(ti) and p in (2.5) by z the least squares problem is reformulated
as a nonlinear constrained optimization problem with the structure

min
z

{

1
2
‖F1(z)‖22 |F2(z) = 0 ∈ IRn2 , F3(z) ≥ 0 ∈ IRn3

}

, (2.13)

wherein n2 denotes the number of the equality and n3 the number of the in-
equality constraints. This usually large constrained structured nonlinear prob-
lem is solved by a damped generalized Gauss-Newton method (Bock, 1981). If
J1(zk) := ∂zF1(zk), J2(zk) := ∂zF2(zk) vis. J3(zk) := ∂zF3(zk) denote the
Jacobi matrices of F1, F2 vis. F3, then the iteration proceeds as

zk+1 = zk + αk∆zk (2.14)

with damping constant αk, 0 < αmin ≤ αk ≤ 1, and the increment ∆zk deter-
mined as the solution of the constrained linear problem

min
z

{

1
2
‖J1(zk)∆zk + F1(zk)‖22

∣

∣

∣

∣

J2(zk)∆zk + F2(zk) = 0
J3(zk)∆zk + F3(zk) ≥ 0

}

. (2.15)

Global convergence can be achieved if the damping strategy is properly chosen
(Bock, 1987).

The inequality constraints that are active in a feasible point are defined by
the index set

I(zk) := {i|F3i(zk) = 0 , i = 1, ..., n3} . (2.16)

The inequalities which are defined by the index set I(zk) or their derivatives
are denoted with F̂3 or Ĵ3 in the following. In addition to (2.16) we define

Fc :=
(

F2

F̂3

)

, Jc :=
(

J2

Ĵ3

)

. (2.17)

In order to derive the necessary conditions that have to be fulfilled by the
solution of the problem (2.13) the Lagrangian

L(z, λ, µ) :=
1
2
‖F1(z)‖22 − λT F2(z)− µT F3(z) (2.18)
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and the reduced Lagrangian

L̂(z, λc) :=
1
2
‖F1(z)‖22 − λT

c Fc(z) , λc :=
(λ
µc

)

(2.19)

are defined. The Kuhn-Tucker-conditions, i.e. the necessary conditions of first
order, are the feasibility conditions

F2(z∗) = 0 , F3(z∗) ≥ 0 (2.20)

ensuring that z∗ is feasible, and the stationarity conditions stating that the
adjoined variables λ∗, µ∗ exist as solution of the stationary conditions

∂L
∂z

(z∗, λ∗, µ∗) = FT
1 (z∗) · J(z∗)− (λ∗)T J2(z∗)− (µ∗)T J3(z∗) = 0 (2.21)

and

µ∗ ≥ 0 , i /∈ I(z∗) ⇒ µi
∗ = 0 . (2.22)

If (z∗, λ∗, µ∗) fulfills the conditions (2.20), (2.21) and (2.22), it is called a Kuhn-
Tucker-point and z∗ a stationary point. The necessary condition of second order
means that for all directions

s ∈ T (x∗) :=
{

s 6= 0
∣

∣

∣

∣

J2(z∗)s = 0
J3(z∗)s ≥ 0 , µiJ3i(z∗)s = 0

}

(2.23)

the Hessian G(z∗, λ∗, µ∗) of the Lagrangian is positive semi-definite:

sT G(z∗, λ∗, µ∗)s ≥ 0 , G(z∗, λ∗, µ∗) :=
∂2

∂z2 L(z∗, λ∗, µ∗) . (2.24)

As µi = 0 for i /∈ I(z∗) it is sufficient to postulate the stationary condi-
tion for the reduced Lagrangian (2.19). For the linear problem (2.15) follows:
(z∗, λ∗, µ∗) is a Kuhn-Tucker-point of the nonlinear problem (2.13) if and only,
if (0, λ∗, µ∗) is a Kuhn-Tucker-point of the linear problem. The necessary con-
ditions for the existence of a local minimum of problem (2.13) are:

1. (z∗, λ∗, µ∗) is a Kuhn-Tucker-point of the non-linear problem

2. the Hessian G(z∗, λ∗, µ∗) of the Lagrangian is positive definite for all di-
rections s ∈ T (x∗), vis. sT G(z∗, λ∗, µ∗)s > 0

If the necessary conditions for the existence of the local minimum and the con-
dition µi 6= 0 for i ∈ I(z∗) are fulfilled, two perturbation theorems (Bock, 1987)
can be formulated. If the sufficient conditions are fulfilled it can be shown for
the neighborhood of a Kuhn-Tucker-point (z∗, λ∗, µ∗) of the nonlinear problem
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(2.13) that the local convergence behavior of the inequality constrained prob-
lem corresponds to that of the equality constrained problem which represents
active inequalities and equations. Under the assumption of the regularity of the
Jacobians J1 and Jc, i.e.

rank
(

J1 (zk)
Jc (zk)

)

= nd + np , rank(Jc(zk)) = nc , (2.25)

a unique solution ∆zk of the linear problem (2.15) exists and an unique linear
mapping Jk

+ can be constructed which satisfies the relation

∆zk = −Jk
+F(zk) , Jk

+JkJk
+ = Jk

+ , JT
k :=

[

JT
1 (zk), JT

c (zk)
]

.
(2.26)

The solution ∆zk of the linear problem or formally the generalized inverse Jk
+

(Bock, 1981) of Jk results from the Kuhn-Tucker conditions. But it should be
noticed that zk is not calculated from (2.26) because of reasons of numerical
efficiency but is based on a decomposition procedure using orthogonal transfor-
mations.

By taking into consideration the special structure of the matrices Ji caused
by the continuity conditions of the multiple shooting discretization (2.13) can
be reduced by a condensation algorithm described in [Bock (1981, 1987)) to a
system of lower dimension

min
{

1
2
‖A1xk + a1‖22|A2xk + a2 = 0 , A3xk + a3 ≥ 0

}

, (2.27)

from which xk can be derived at first and at last ∆zk. This is achieved by first
performing a ”backward recursion”, the ”solution of the condensed problem”
and a ”forward recursion” (Bock, 1987). Kilian (1992) has implemented an
active set strategy following the description in (Bock, 1987) and (Schlöder, 1988)
utilizing the special structure of J2.

The details of the parameter estimation algorithms which are incorporated in
the efficient software package PARFIT (a software package of stable and efficient
boundary value problem methods for the identification of parameters in systems
of nonlinear differential equations) are found in (Bock, 1987). The damping
constant αk in the k-th iteration is computed with the help of natural level
functions which locally approximate the distance ‖zk − z∗‖ of the solution from
the Kuhn-Tucker point z∗ .

The integrator METANB [for the basic discretization see, for instance, Bader
and Deuflhard (1981)] embedded in PARFIT is also suitable for the integration of
stiff differential equation systems. It allows the user to compute simultaneously
the sensitivity matrixes G,

G(t; t0,x0,p) :=
∂

∂x0
x(t; t0,x0,p) ∈M(nd, nd) (2.28)
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and H,

H(t; t0,x0,p) :=
∂
∂p

x(t; t0,x0,p) ∈M(nd, np) (2.29)

which are the most costly blocks of the Jacobians Ji via the so-called internal
numerical differentiation as introduced by Bock (1981). This technique does
not require the often cumbersome and error prone formulation of the variational
differential equations

G′ = fx(t,x,p) · G , G(t0; t0,x0,p) = 1l (2.30)

and
H′ = fx(t,x,p) · H + fp(t,x,p) , H(t0; t0,x0,p) = 0 (2.31)

by the user.
Using the multiple shooting approach described above, differential equation

systems with poor stability properties and even chaotic systems can be treated
(Kallrath et al., 1993).

3 Parameter Estimation in DAE Models

Another, even more complex class of problems, are parameter estimation in
mechanical multibody systems, e.g., in the planar slider crank mechanisms, a
simple model for a cylinder in an engine. These problems lead to boundary
problems for higher index differential algebraic systems (Schulz et al., 1998).
Singular controls and state constraints in optimal control also lead to this struc-
ture. Inherent to such problems are invariants that arise from index reduction
but also additional physical invariants such as the total energy in conservative
mechanical systems or the Hamiltonian in optimal control problems.

A typical class of DAEs in mechanical multibody systems is given by the
equations of motion

ẋ = v (3.32)

M(t,x)v̇ = f(t,x)−∇xg(t,x)λ ,

0 = g(t,x)

where x = x(t) and v = v(t) are the coordinates and velocities, M is the mass
matrix, f denotes the applied forces, g are the holonomic constraints, and λ are
the generalized constraint forces. Usually, M is symmetric and positive definite.
A more general DAE system might have the structure

ẋ = f(t,x, z;p) (3.33)

0 = g(t,x, z;p) ,

where p denotes some parameters and z = z(t) is a set of algebraic variables,
i.e., the differentials ż do not appear; in (3.32) λ is the algebraic variable.
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In addition we might have initial values x0 and z0. Obviously, some care is
needed regarding the choice of z0 because it needs to be consistent with the
constraint. In some exceptional cases (in which Z := ∇zg has full rank and
can be inverted analytically) we might insert z = z(t,x;p) into the differential
equation. DAE systems with a regular matrix Z are referred to as index-1
systems. Index-1-DAEs can be transformed into equivalent ordinary differential
equations by differencing the equations w.r.t. t. At first we get the implicit
system of differential equations

gt + Xẋ+Zż = 0 , X := ∇xg (3.34)

which, according to the assumption of the regularity of Z, can be written as the
explicit system

ż = Z−1 (gt + Xf) . (3.35)

Many practical DAEs have index 1, e.g., in some chemical engineering prob-
lems, where algebraic equations are introduced to describe, for instance, mass
balances or the equation of state. However, multibody systems such as (3.32)
have higher indices; (3.32) is of index 3. The reason is, that the multiplier vari-
ables, i.e., the algebraic variables, do not occur in the algebraic constraints and
it is therefore not possible to extract them directly without further differentia-
tion. If Z does not have full rank the equations are differentiated successively,
until the algebraic variables can be eliminated. The smallest number of differ-
entiations required to transform the original DAE system to an ODE system is
called the index of the DAE.

The only numerical approach capable to handle least squares problems with-
out special assumption to the index seems to be the one developed and described
by Schulz et al. (1998).

4 Parameter Estimation in PDE Models

Finally, we reach data fitting problems in partial differential equations based
models. These include eigenvalue problems, as well as initial and boundary
value problems and cover problems in atomic physics, elasticity, electromagnetic
fields, fluid flow or heat transfer. Some recent problems are, for instance, in
models describing the water balance and solid transport used to analyze the
distributions of nutrients and pesticides (Arning, 1994), in the determination of
diffusive constants in water absorption processes in hygroscopic liquids discussed
in Section 4.2, or in multispecies reactive flows through porous media (Zieße
et al., 1996). Such nonlinear multispecies transport models can be used to
describe the interaction between oxygen, nitrate, organic carbon and bacteria
in aquifers. They may include convective transport and diffusion/dispersion
processes for the mobile parts (that is the mobile pore water) of the species.
The immobile biophase represents the part where reactions caused by microbial
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activity take place and which is coupled to transport through mobile pore water.
The microorganisms are assumed to be immobile. The model leads to partial
differential algebraic equations

M∂tu−∇(D∇u) + q∇u = f1(u,v, z,p) , (4.36)
∂tv = f2(u,v, z,p) ,

0 = g(u,v, z,p) ,

where D and q denote the hydraulic parameters of the model, p denotes a set
of reaction parameters, u and v refer to the mobile and immobile species, and
z is related to source and sink terms.

4.1 Methodology

To solve least squares problems based on PDE models requires sophisticated
numerical techniques but also great attention with respect to the quality of
data and identifiability of the parameters. To solve such problems we might use
the following approaches:

1. Unstructured approach: The PDE model is, for fixed parameters p, inte-
grated by any appropriate method yielding estimations of the observations.
The parameters are adjusted by a derivative-free optimization procedure,
e.g., by the Simplex method by Nelder and Mead (1965). This approach
is relatively easy to implement, it solves a sequence of direct problems,
and is comparable to what in Section 2 has been called the IVP approach.
Arning (1994) uses such an approach.

2. Structured approach (for initial value PDE problems): Within the PDE
model spatial coordinates and time are discretized separately. Especially
for models with only one spatial coordinate, it is advantageous to apply
finite difference or finite element discretizations to the spatial coordinate.
The PDE system is transformed into a system of (usually stiff) ordinary
differential equations. This approach is known as the method of lines
[see, for example, Schiesser (1991)]. It reduces parameter estimation prob-
lems subject to time-dependent partial differential equations to parameter
identification problems in systems of ordinary differential equations to be
integrated w.r.t. time. Now it is possible to distinguish again between
the IVP and BVP approach. Schittkowski (1997) in his software package
EASY-FIT2 applies the method of lines to PDEs with one spatial coordi-
nate and uses several explicit and implicit integration methods to solve the

2EASY-FIT offers the method of lines to integrate the parabolic PDEs, several integration
routines for ODEs, different least-squares methods for solving optimisation problems and sta-
tistical subroutines and graphic tools for evaluation and presentation of results. The program
works under WINDOWS-95/NT and has a MS-ACCESS user interface which controls Fortran pro-
grams for integration and optimization. The least squares problem is either solved by DFNLP
or by DN2GB. DFNLP: the original problem is transformed to a more general nonlinear program-
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ODE system. The integration results are used by an SQP optimization
routine or a Gauß-Newton method to estimate the parameters. Zieße et
al. (1996) and Dieses et al. (1999), instead, couple the method of lines
(in one and two spatial coordinates) with Bock’s (1987) BVP approach,
discretize time, for instance, by multiple shooting and use an extended
version of PARFIT.

The method of lines has become one of the standard approaches for solving
time-dependent PDEs with only one spatial coordinate. It is based on a partial
discretization, which means that only the spatial derivative is discretized but not
the time derivative. This leads to a system of N coupled ordinary differential
equation, where N is the number of discretisation points. Let us demonstrate
the method by applying it to the diffusion equation

∂
∂t

c(t, z) = D
∂2

∂z2 c(t, z) ,
0 ≤ t < ∞
0 ≤ z ≤ L (4.37)

with constant diffusion coefficient D. We discretize the spatial coordinate z
according to

zi = i∆z , ∆z :=
L
N

, ci = ci(t) = c(t, zi) , i = 0, . . . , N . (4.38)

If we choose a finite difference approximation we get

∂2

∂z2 c(t, z) ≈ c(t, z −∆z)− 2c(t, z) + c(t, z + ∆z)

(∆z)2
=

ci−1 − 2ci + ci+1

(∆z)2
,

(4.39)
which replaces the diffusion equation (4.37) by N ordinary differential equations

ċi(t) =
ci−1 − 2ci + ci+1

(∆z)2
. (4.40)

4.2 An Example: Parameter Fitting in Hygroscopic Liq-
uids

The water transport and absorption processes within a hygroscopic liquid are
described by a model containing the diffusion equation (4.37) describing the
water transport within the hygroscopic liquid, a mixed Dirichlet-Neumann con-
dition representing a flux balance equation at the surface of the liquid, and an

ming problem but typical features of a Gauss-Newton and quasi-Newton method are retained
(Schittkowski,1986). The resulting optimisation problem is solved using a standard sequential
quadratic programming code [NLPQL, cf. Schittkowski (1983)].

DN2GB: this subroutine (also available in NETLIB-TOMS FORTRAN library) has been
developed by Dennis et al. (1981), and is based on a combined Gauss-Newton and quasi-
Newton approach.
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additional integral relation describing the total amount of water in the liquid.
The model includes three parameters to be estimated.

The available measurement data provide the total time dependent concen-
tration C(t) of water in the liquid. The mathematical solution of the diffusion
equation, however, is the water concentration c(t, z) in the hygroscopic liquid
and it is a function of time and location. To be able to compare the mathemat-
ical solution with the observed data one has to integrate c(t, z) over the space
coordinate z, i.e., the depth of the fluid.

4.2.1 The Description of the Diffusive Process

The PDE in the model is the diffusion equation (4.37), where the diffusion
constant, D, is assumed constant across the whole vessel of depth L.

At the start (t = 0) of the experiments the liquid contains unavoidably
already some initial and known total water concentration C0 of water assumed to
be uniformally distributed. Therefore the initial values for the partial differential
equation are chosen as follows:

c(t, z) = C0 for 0 < z < L and t = 0 . (4.41)

It would be possible to include other assumptions, e.g., initial concentrations
depending on location.

In order to be sure that no liquid leaves the vessel at the bottom (z = L)
we apply the flux condition

∂
∂z

c(t, z) = 0 for z = L and t ≥ 0 . (4.42)

At the upper boundary (z = 0) separating air and liquid we have to describe
a process in which absorption and diffusion act simultaneously. The surface
boundary is not saturated except for a negligible time interval. If it were we
could apply the upper boundary condition of the PDE

c(t, z) = C∞ for z = 0 and t ≥ 0 . (4.43)

Since water is absorbed at the surface on a time-scale comparable to that of the
diffusion process, the surface layer is not always in a saturated status. Therefore
we have to consider absorption and diffusion simultaneously, and to include a
time-dependent water concentration in the surface layer. This feature is modeled
as an equilibrium relation relating the absorption of water by the hygroscopic
liquid to the emission of water. The absorbing flux is kAa whereas the flux vice
versa is kBc(t, z = 0), kA and kB are additional least squares parameters, and
a is the concentration of water in the air, assumed to be constant during the
experiment. The function c(t, z = 0) is the concentration of water at the surface
of the hygroscopic liquid. The upper boundary condition of the PDE can be
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formulated as a flux balance equation

−D
∂
∂z

c(t, z) |z=0 = kAa− kBc(t, z = 0) , (4.44)

which is of the type of a mixed Dirichlet-Neumann condition.
Since the boundary condition (4.44) describes absorption and emission of

water only approximately we included processes of higher order, e.g.,

−D
∂
∂z

c(t, z) |z=0 = kA,0 · a + kA,1 · a2 + ... (4.45)

−kB,0 · c(t, z = 0)− kB,1 · c(t, z = 0)2 − ... .

However, the inclusion of processes of higher order did not improve the least
squares fits. In all least squares fits the higher order coefficients were estimated
to be zero.

4.2.2 Local Concentrations, Total Concentration, and Weights

The diffusion equation (4.37) describes the concentration of water in the hy-
groscopic liquid. However, the result of the experiments is the time-dependent
weight of liquid containing the absorbed water. Therefore, one has to convert
the weight into concentration. This can be done as follows:

W ′ = W0 + ρH2O · S · L · C0 , (4.46)

where W ′ is measured initial weight, W0 is the real initial weight of the liquid
(without contained water), ρH2O is the specific density of water, and S is the
surface area of the liquid.

Using C(t) for the time-dependent total water concentration (relative con-
centration in percent due to the weight of liquid) and W (t) for the time-
depending weight of the liquid one can formulate

C(t) =
W (t)−W0

W0
. (4.47)

After substitution of the unknown terms this formula yields

C(t) =
W (t)−W ′ + ρH2O · S · L · C0

W ′ − ρH2O · S · L · C0
, (4.48)

which converts the weights into relative concentrations.
For the experiments discussed here it was not possible to measure c(t, z)

reliably. Only the total water concentration C(t) can be measured. There-
fore, the solution of the partial differential equation, i.e., the space and time
dependent concentration c(t, z), have to be converted to the time-dependent
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total concentration C(t) in order to be able to compare model function and
measurement data.

For this purpose the calculation of W (t) has to be substituted by

W (t) = W0 + ρH2O · S ·
L

∫

0

c(t, z)dz , (4.49)

which considers the location dependent water concentration c(t, z). Substituting
this expression into (4.48) for C(t) one gets

C(t) =
ρH2O · S

W ′ − ρH2O · S · L · C0
·

L
∫

0

c(t, z)dz . (4.50)

Usually the concentration of water in the air (humidity) is expressed in relative
values, i.e., in percent of the absorption capacity of air due to the temperature.
In order to keep concentrations comparable one has to convert the water con-
centration in air from these relative values to ppm or to relative values related
to the weight. This conversion is based on linear interpolation within the table
of Buchholz (1954).

4.2.3 Constants and Parameters

Besides the measurement data for the total water concentration C(t) in the
hygroscopic liquid one also needs the radius of the vessel (the problem is assumed
to be radially symmetric), the depth of the liquid, the temperature and the
relative humidity. There is an estimate for the diffusion constant which can
serve as an initial value and as a clue for comparison with the result as well.

Based on theoretical considerations the following estimate D ≈ 4.8 · 10−5

[cm2/min] was found using Perry and Green (1984). To avoid being trapped in
local minima several initial values for the diffusion constant D and the velocity
constants kA and kB have been chosen.

4.2.4 Software and Solution Method

To solve the least squares problem and estimate the diffusion coefficient D and
the velocity constants kA and kB we used the software package EASY-FIT. The
ODEs are integrated by RADAU5, a program using an implicit Radau-type Runge-
Kutta method of order five for stiff equations [see, for instance, Hairer and
Wanner (1991)].

4.2.5 Results and Interpretation

Due to the nature of nonlinear problems it is possible that the solver finds several
local minima. The problem introduced here has at least two local minima.
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However, there are criteria available which allow to eliminate false ones:
· · the quality of the fitted measurements can be significantly different. We

have chosen to compare the sum of squared deviations divided by the sum of
squared observation values, i.e.,

σfit :=
N

∑

k=1

[

Cobs
k − C(tk)

Cobs
k

]2

(4.51)

· · the user also should compare the fits optically and decide which is the
better one.

· · besides the quality of the fit the solution should be also plausible and
should be realistic. For example, if the value for the diffusion coefficient is much
smaller or larger than one would expect from experiments or other reasoning,
the related solution is not very probable.

For a set of experiments typical results are shown in the table below. There
might be additional solutions, especially for the velocity constants kA and kB ,
as they cannot be calculated uniquely from the equations.

Dim. 08 4 z 16 4 z 24 4 z
104σfit 2.27 1.15 0.679
104D cm2/min 1.65± 0.11 2.12± 0.09 2.25± 0.07
102kA cm/min 12.6± 6.2 1.88± 0.08 1.79± 0.06
103kB cm/min 15.3± 7.4 2.22± 0.09 2.12± 0.07
C∞ ppm 8400 (8420) 8980 (8860) 8970 (8960)

In the last line the calculated asymptotic water concentration C∞ is mentioned
together with its measured value (in brackets).

For testing the reliability of a solution or identifying false local minima one
can consider their asymptotic properties. For the upper boundary condition

−D
∂c
∂z

∣

∣

∣

∣

z=0
= kA · a− kB · c(t, z = 0) (4.52)

the left-hand-side approaches zero for times t because the water concentration
has reached its saturation value and is almost constant. Then this equation can
be reformulated as:

kA

kB
=

c(t →∞, z = 0)
a

. (4.53)

Relation (4.53) could also be added as an equality constraint to the model. The
following table shows the results [c(t, z = 0) and a are specified in ppm] for the
single terms and the quotients mentioned above:
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Dataset kA kB c(t, z = 0) a kA
kB

c(t→∞,z=0)
a

08 4 y 10 1.3 8440 1059 7.69 7.97
24 4 y 9.3 1.1 9180 1059 8.45 8.67
08 4 z 0.12 0.015 8400 1059 8.00 7.93
16 4 z 0.0188 0.00222 8980 1059 8.47 8.48
24 4 z 0.0179 0.00212 8970 1059 8.44 8.47
16a 0.086 0.0097 7046 794 8.87 8.87
16b 0.022 0.00333 8850 1334 6.61 6.63

The ratios deviate for the two first results by less than 5% for all other results
even by less than 1%, which confirms the theoretical considerations well.

Finally, the current software and techniques were used to analyze the tem-
perature dependence of D, kA and kB . One of the anticipated results was that
temperature can affect significantly absorption and diffusion of water.

5 Conclusions

This review demonstrates that ODE and PDE based least squares problems
appear often in the applied sciences. Academic and commercial least squares
solvers as well as software packages are available. The structured methods de-
scribed in this paper are not yet frequently used in astronomy and astrophysics
but there are examples. Kallrath et al. (1993) show how such methods could
be applied to celestial mechanics problems and parameter fitting in chaotic dy-
namical systems. Wehrse and Rosenau (1997) are working on the application
of the boundary value problem approach described in Section 2 to the analysis
of stellar spectra of late type stars. They fit the model flux to the observed flux
at several wavelength, and their least squares problem includes the radiative
transfer equation describing the atmosphere, the energy equation, the hydro-
static equation, the equation of state as well as expressions for the absorption
and scattering coefficients and bounds on gravity, effective temperature and
abundances.

Thus, historically, we see least squares problems and techniques arising in as-
tronomy, and now, after more than 200 years in which these methods saw many
improvements, they still have great relevance in astronomy and astrophysics.

Acknowledgements: Thanks is directed to Anna Schreieck (BASF-AG) for
a careful reading of the manuscript and Johannes P. Schlöder (IWR, Universität
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des Comètes, Courcier, Paris

Levenberg, K.: 1944, A Method for the Solution of Certain Non-Linear Problems
in Least Squares, Quarterly of Applied Mathematics 2, 164–168

Marquardt, D. W.: 1963, An Algorithm for Least Squares Estimation of Non-
linear Parameters, SIAM J. Applied Math. 11, 431–441

Nelder, J. A. and Mead, R.: 1965, A Simplex Method for Function Minimiza-
tion, The Computer Journal 7, 308–313

Perry, R. H. and Green, D.: 1984, Perry’s Chemical Engineering Handbook,
McGraw-Hill, New York, 6th edition

Richter, O., Nörtersheuser, P., and Pestemer, W.: 1992, Non-linear parameter
Estimation in Pesticide Degradation, The Science of the Total Environment
123/124, 435–450
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