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LEAST SQUARES PARAMETER ESTIMATION IN CHAOTIC
DIFFERENTIAL EQUATIONS

JOSEF KALLRATH*
BASF-AG, ZXTIC, Kaiser-Wilhelm-Str.52, D-6700 Ludwigshafen, Federal Republic of
Germany
and

JOHANNES P. SCHLODER and HANS GEORG BOCK

IWR and Institut fiir Angewandte Mathematik, Universitdit Heidelberg, Im Neuenheimer
Feld 368, D-6900 Heidelberg, Federal Republic of Germany

Abstract. A recent least squares algorithm, which is designed to adapt implicit models to given sets
of data, especially models given by differential equations or dynamical systems, is reviewed and used
to fit the Hénon-Heiles differential equations to chaotic data sets.

This numerical approach for estimating parameters in differential equation models, called the
boundary value problem approach, is based on discretizing the differential equations like a boundary
value problem, e.g. by a multiple shooting or collocation method, and solving the resulting constrained
least squares problem with a structure exploiting generalized Gauss-Newton-Method (Bock,1981).

Dynamical systems like the Hénon-Heiles system which can have initial values and parameters
that lead to positive Lyapunov exponents or phase space filling Poincaré maps give rise to chaotic time
series. Various scenarios representing ideal and noisy data generated from the Hénon-Heiles system
in the chaotic region are analyzed w.r.t. initial conditions, parameters and Lyapunov exponents.
The original initial conditions and parameters are recovered with a given accuracy. The Lyapunov
spectrum is then computed directly from the identified differential equations and compared to the
spectrum of the “true” dynamics.

Key words: least squares techniques — numerical parameter estimation — boundary value problem
approach — dynamical systems — Hénon-Heiles system — Lyapunov spectrum

1. Introduction

The method of least squares, introduced by Gauss (1809) to determine the orbits
of Ceres and Pallas, is still of great significance for the analysis of observations,
in astronomy as well as in experimental sciences in general. Since the time of
Gauss, numerical methods for solving several types of least squares problems have
been developed and improved, and there is still active research in that area. For a
review on the methods of least squares as known and used in astronomy we refer
to Eichhom (1992).

A common basic feature and limitation of least squares methods used in as-
tronomy, which is however seldom explicitly noted, is that they require an explicit
model which is fitted to the data. Most models have a well founded base in physics,
and are often described in terms of differential equations, which are often not solv-
able in a closed analytical form. Therefore, it seems desirable to develop solution
algorithms that require only the statement of the model equations as a side con-
dition, which implicitly determines the solution. The demand for such techniques
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becomes even stronger when considering the rapidly increasing field of non-linear
dynamics in physics and astronomy, non-linear reaction kinetics in chemistry, and
non-linear systems describing ecosystems in biology or environmental sciences.

In this paper, a boundary value problem approach is reviewed and used to fit
a four dimensional, quadratic system of Hamiltonian differential equations with
four unknown initial values 19, 220, 30 and x40 and three unknown parameters
a, b and c to chaotic time series. Fora = 1, b = 1 and ¢ = —1 the equations (see
section 5 for details)

T =23
Ty = T4
T3 = —ax) — 21123
G4 = —bxy — 212 — cx? (1.1)

are identical to the system investigated by Hénon and Heiles (1964) describing the
motion of a star within the potential of a cylindrical galaxy.

Usually, experimental data from dynamical systems in the chaotic region are
analyzed with time series analysis techniques (Eckmann and Ruelle, 1985), and
the goal is to identify basic characteristic quantities of the system like Lyapunov
exponents A;, or in dissipative systems the dimension of the attractor. These proce-
dures, however, have the disadvantage that in order to obtain the A; from time series
one may easily need a few thousand data points according to Zeng et al.(1991) or
Holzfuss and Parlitz (1991). ,

While the A; are certainly a useful tool to distinguish between quasi-periodic or
chaotic orbits, it still seems to be a greater advantage if the underlying dynamical
system of the time series could be derived from the data. Therefore, one objective
of this paper is to demonstrate that it is actually possible to fit the solution of a
differential equation system to a chaotic time series and estimate the parameters,
and that a few hundred data points are sufficient to reach that goal. In addition,
we use the differential equations and the identified parameters to compute the
Lyapunov spectrum by the algorithm of Bennetin et al. (1980).

Since a dynamical system at first sight has the structure of an initial value
problem, an obvious approach is to integrate the equations with some initial values
and parameters, to insert the trajectories into the least squares function, and to
correct the unknowns by an iterative procedure till a minimum is reached. However,
the numerical error propagation involved in the numerical integration of dynamical
systems with a strong sensitivity to changes ininitial values, e.g. those with positive
Lyapunov exponents A;, prohibits the link of an initial value problem solver to a
least squares solver in this fashion.

On the other hand, however, one may expect that the trajectories are very
sensitive to perturbations of the parameters which is another way of saying that the
problem of parameter estimation itself may be especially well-posed.
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The problem remains to find adequate numerical methods that are able to cope
with parameter-dependent instabilities in differential equations and are thus capable
to recover parameters from given noisy chaotic trajectories.

It will be shown that on numerical methods based on the boundary value problem
(BVP) approach as described in section 4 are indeed able to solve such problems
(section 5) because of their stability properties. The suitability of this class of
methods for the identification of unstable and chaotic processes was explained in
Bock and Schléder (1986), a thorough investigation to chaotic data from dissipative
systems is given in Baake et al. (1992).

2. The Structure of the Problem

Parameter estimation means to optimally adapt models to given data by determining
their parameter values such that the deviation of model and data is minimized in a
suitable norm. In this paper we concentrate on models given by ordinary differential
equations (ODE)

z = f(t,z,p; signQ(t,z,p)), =eR™, peR"? (2.1)

where t is the independent variable, zeR™¢ are the states, and peR" is the vector
of unknown parameters. Depending on the vector of signs of the state and parameter
dependent switching functions @ the right hand side f is defined piecewise smooth.
At a root 7 of a component of @, jumps of the states

:B(T+) =z(t7)+s(v,z(t7),p) (2.2)
are admitted, and the right hand side f may change discontinuously
I fi (t7w’p)a t<rT
v {fi+1(t,iv,p), i>T (2.3)

Additional requirements on the solution of the ODE (2.1), like periodicity, initial
or boundary conditions, range restrictions to the parameters can be formulated in a
vector of (component wise) equality and inequality conditions

raft1, 2(t1), s thy 2(tk),p) =00r > 0 (2.4)

All in all we arrive at a fairly general boundary value problem with jumps (2.1)
and switching condition (2.2) and (2.3).

More general dynamics (implicit differential equations, differential algebraic
systems, discretized partial differential equations etc.) can often be reduced in
principle to the above form. However, efficient and stable algorithms have to take
into account their special structures. For a treatment of the differential algebraic
case see Bock et al. (1988).

The boundary value problem is linked to experimental data via minimization of
a least squares objective function
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bo(a,p) := ||r1[t1, 2(41), o0 try 2(84), P13 = min (2.5)
b

This includes the probably most common case, where one component of the vector
function 7, is given by

[t (1), oy tr, (), P) = (05 — gi5(8, (), P)]/ 04 (2.6)
leading to

b(z,p) =Y 072 - [mij — gij(ti, 2(t:), p)F (2.7)
]
Here, 7;; is the observed value which is related to states and parameters at time ¢;
by

ni; = gij(ti, 2(:), p) + €;; (2.8)

The numbers ¢;; are the measurement errors, O'{jz are weights that have to be
adequately chosen due to statistical considerations, e.g. as the measurement error
variances. In the case of independent Gaussian N (0, 0;,%) errors and known vari-
ances 0;;2 (up to a common factor 3?) the solution of the least squares problem is
a maximum likelihood estimate.

Note, that also correlated measurements may be considered by (2.5) using an
according formulation of the vector 7,.

Note further, that 7, may be a nonlinear function of states and parameters and
observation times which themselves may be disturbed by measurement errors.
Neither all components of the states nor dense data are required (see sect.5). A
procedure for the solution of such a problem should of course deliver an optimal
fit that satisfies all restrictions. In addition, it is indispensable in practical problems
to deliver also information about the statistical quality of the parameters and the
states (e.g. in terms of a variance — covariance matrix of these quantities).

3. The Initial Value Problem Approach

The obvious approach to estimate parameters in ODE, which is also implemented
in most commercial packages, is to guess parameters and initial values for the
trajectories, compute a solution of an initial value problem (IVP) (2.1) and iterate
the parameters and initial values in order to improve the fit. However, this procedure
often exhibits poor performance or even does not work at all depending on the
(usually parameter dependent) stability behavior of the IVPs that may lead e.g. to
exploding trajectories or solutions that run into steady states with extremely poor
sensitivities w.r.t. parameter variations. In the case of dynamical systems with
positive Lyapunov exponents this approach is not advisable since error propagation
dominates the system.
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On the other hand the parameter estimation problem itself may be very well
posed. Since small perturbations in the parameters may lead to strong perturbations
of the trajectories, given data of a trajectory can be expected to determine the
parameters very well. The next section describes an approach that optimally exploits
the inverse structure of parameter estimation problems and is thus able to cope with
the disastrous error propagation in chaotic systems.

4. The Boundary Value Problem Approach

In the following we sketch a versatile realization of an alternative method — the
boundary value problem approach introduced in Bock (1981). It consists of a
multiple shooting method for the discretization of the boundary value problem side
condition and a generalized Gauss-Newton-Method for the solution of the resulting
structured nonlinear constrained least squares problem. A detailed description and
analysis of this family of methods is included in Bock (1987).

Depending on the stability behaviour of the ODE and the availability of infor-
mation about the process (measured data, qualitative knowledge about the problem,
etc.) the user chooses a suitable grid 7,,, of m multiple shooting nodes 7; (m — 1
subintervals Z; )

T M <M< ..< Ty, ATji=Tj31—-Tj, 1<3<m-1 (4.1)

covering the interval where measurements are given ([11, 7] 2 [to,ts]). At each
grid point new variables {s; := «(7;)} are introduced and m — 1 initial value
problems

T = f(t,:l:,p), z(7;) = s;, te[Tj,Tj+1] (4.2)
are considered on the subintervals. The m — 1 vectors of initial values s;, the
value s,, at the end point, the parameter vector p and the observation times ¢; are
summarized in an augmented vector

2ti= (s, .., 8, ph e k) (4.3)

The least squares function (2.5) is then regarded as a function of this vector

b(2) = ||M[z(t1, 2), ..., (tk, 2), 2] (4.4)
or in the special case (2.7) £x(2) = ¥, 0i;72 - [mi; — §i5(2(t;, 2), 2)]?, and the
ODE (2.1) is replaced by the matching conditions

2(Tj4158,p) —Sj41 =0, 1<j<m-1 (4.5)

which ensure continuity of the final trajectory. Note, however, that the initial
trajectories provided with initial guesses z; and the trajectories in the course of
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Fig. 1. Data, solution and initial trajectory for z4 in the Hénon-Heiles system gener-
ated with initial values 190 = 220 = 0, z30 = 0.3 and z49 = —0.41 and parameters
2

(a,b,¢) = (+9.2,41,42.1) as initial guesses for the fitting routine. This figure should

demonstrate that the initial trajectories may be discontinuous and deviate significantly from
the solution.

the iterative procedure are allowed to be discontinuous (see Fig.1). By choosing
the multiple shooting intervals Ar; := 1;41 — 7; sufficiently small, existence of
a (discontinuous) initial trajectory can be guaranteed under mild conditions, and
error propagation can be controlled and limited.

Formally, the least squares problem described so far is a constrained optimiza-
tion problem of the type

mzin{||F1(z)||§ | F2(z) =00r > 0e¢R™} (4.6)

where 7. is the number of constraints (continuity constraints (4.5) and additional
constraints (2.4)). This usually large constrained structured non-linear problem is
solved by a damped generalized Gauss-Newton method, which is described here
for the equality constrained case (see Bock (1987), where also the treatment of

inequalities is described). Starting with an initial guess z, the variables are iterated
via

Zky1 = 2k + o - Az (4.7)

with a damping constant ax, 0 < @, < ar < 1. The increment Azy, is the
solution of the problem linearized at z
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min{ || J1(zx)Az + F1(z)|5|T2(26)Azk + Fa(z) = 0, Ji(2k) := 8. Fi(2x)}

(4.8)
Under appropriate assumptions w.r.t. the regularity of the Jacobians J; there
exists a unique solution Az of the linear problem and a unique linear mapping
J 1 obeying the relations

Az = —Jp T F(zg), Jitdpdyt = J0F,  JLi=[J1(zh)f J2(2zk)Y] (4.9)

The solution Az, of the linear problem, or formally the generalized inverse J ™+
(Bock 1981) of J, follows uniquely from the Kuhn-Tucker conditions

Ji T Az — IIX+TiF1 =0, JoAzp+ F, =0 (4.10)

where A.eR" is a vector of Lagrange multipliers. For the numerical solution
Az, of the linear constrained problem (4.8) several structure exploiting methods
have been developed that compute special factorizations of J; and J, and thus
implicitly, but not explicitly the generalized inverse J*. There even exist methods
(Schldder,1988) that generate and decompose the Jacobians simultaneously, and
that require an amount of computing time for the generation of the derivatives that
is proportional only to the number of degrees of freedom and not to the number of
variables.

The availability of the Jacobians J; and J, allows rank checks in every iteration
and automatic detection of violations of the regularity assumptions. In that case
automatic regularization and computation of a relaxed solution is possible.

The iteration (4.7) can be forced to converge globally to a stationary point of
the problem if the damping factors «y, are chosen appropriately. In the treatment of
a large number of practical problems strategies based on “natural level functions”
have proven to be very successful (see Appendix A). In the region of local conver-
gence of the full step method, the algorithm converges linearly to a solution that
is stable to statistical variations in the observations. An iterate 2z is accepted as
solution z* of the nonlinear constrained problem, if a scaled norm of the increments
Az, is below a user specified tolerance (107>, say).

As the Jacobians and their decompositions are available in each iteration, co-
variance and correlation matrices are easily computable for the full variable vector
z. In large scale problems this is usually not desirable since sparsity is destroyed.
Therefore very fast algorithms have been developed that compute only the diagonal
elements of the covariance matrix. For details of the algorithms, the treatment of
more general classes of problems and the properties of the optimization package
PARFIT we refer to Bock (1987).

The integrator, which is also used for the computations of the Lyapunov spec-
trum, is based on an extrapolation method by Bulirsch and Stoer (1966). In addition,
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Fig. 2. Poincaré map z4 versus z; in the Hénon-Heiles system generated with initial values
(210, 220, £30, Z40) = (0,0,+40.3, —0.41) and parameters (a, b, c) = (1,1, —1). The plane
of section is defined by z; = 0 and z3 > 0. The ranges of the plotare —0.5 < z; < +0.7
and —0.5 < z4 < 40.5.

it allows the user to compute simultaneously the sensitivity matrices G or H which
are the most costly part in computing the Jacobians J;

0
G(t; to, o, p) := e z(t; 1o, o, P)

0
H(t; tp,xo,p) := m—x(t; to, To, P) (4.11)
op
via the so-called internal numerical differentiation (Appendix B) as introduced
by Bock (1981), which does not require the often cumbersome and error prone
formulation of the variational differential equations

dG dH
pr f(t,z,p) -G, e f.(t,z,p)- H+ f,(t,z,p) (4.12)
by the user.

5. Results for the Hénon-Heiles System

In this section, we consider the Hamiltonian
1
H(z,y,8,9) = 5(2* +3°) + U(z,9) (5-1)
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Fig. 3. Trajectories in the Hénon-Heiles system generated with initial values z10 = 220 = 0,
z3p = 0.3 and x4 = —0.41 and parameters (a,b,c¢) = (1,1, —1). Gaussian random
numbers with standard deviation ¢ = 0.05 are added to the trajectories generated by
integration of the dynamical system.

and the potential function
U(z,y) = %(az2+by2+2$2y+ %cy3) (5.2)
From that we derive the equations of motion
i=-Uy = —az —2zxy (5.3)

j=-U, = -by— 2% — cy2 (5.4)

or—via(z) ==z, 2 =y, x3 = &, r4 = ) — the equivalent first-order system

i = f(2)

T = T3
.’152 = T4
X3 = —ax) — 21123
T4 = —bxy — 1% — cxp? (5.5)
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For the sake of computing the Lyapunov spectrum in a later section we also write
down the linearized or variational differential equations along a given nominal
trajectory @

& =&
L=
& = 5161 + b, fu=—(a+2x3), fr =21

b= b+ fob, fun=-2z1, frn=—(b+2cx) (5.6)

Choosing the parameters p = (@a,b,¢) = (+1,+1,—1) we get the system
investigated by Hénon and Heiles (1964). For energies between £~ = 1/12
and ET = 1/8 one observes a transition from regular behavior characterized
by a family of curves which almost completely fill the available space in the
(22, z4)-Poincaré surface of section (z; = 0,3 > 0) to ergodicity. As shown
in Figure 2 one ergodic trajectory [e.g. initial values x, = (z10, 20, £30, Z40) =
(0,0,0.3,-0.41)] may cover large parts of the permissible area

1
U(0,22) + 5 - 242 < E =0.12905 (5.7)

in the 21 = 0 plane.

In order to set up interesting scenarios for our parameter fitting algorithm we
have varied the parameters (a,b, ¢), have inspected the Poincaré’s surfaces of
section and have chosen the initial conditions x, such that they are placed in the
chaotic region.

The generation of simulated data is performed in two steps starting with the
choice of (z,p),. By integration of (5.5) we generate a simulated trajectory. Since
we expect to have a strong error propagation due to the chaoticity we choose
a very stringent local error bound for the integrator (€;,; = 10713) and restrict
the integration interval such that the global error remains significantly below the
intended accuracy of the estimation problem (¢ = 10~3). To simulate noisy data
we add Gaussian random numbers of standard deviation o within a 3¢ strip to our
fiducial trajectory. Alternatively, we might use a generalization of the boundary
value problem approach to multiple experiments (Schldder, 1988), in which the
time range is split and the according data are treated as separate time series.

In the different scenarios summarized in Tables I to III we vary the parameters
P, and initial conditions x, for the integration as well as the noise o added to the
simulated trajectories. Figure 3 shows the trajectories in the Hénon-Heiles system
generated with initial values z, = (0,0,0.3,-0.41), parameters p = (1,1,-1)
and Gaussian random numbers with standard deviation ¢ = 0.05 added to generate
the simulated data.
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TABLE I

This table defines the setup for generating trajectories with energy E, = 0.125,
i.e. initial values zo, = (0.00,0.00,1/0.1275 =~ 0.35707,—0.35) and parameters
(a,b,¢)s = (1,1,-1), and contains different scenarios with 400 ‘ezact’ data points in
the first part. Given some initial guesses a;, b; and c;, the original parameters are recovered
with an absolute error less than 5 - 10~°. The second part of the table contains simulated
data. In both cases we used 100 multiple shooting nodes. The length of the data series is
tend = (n — 1) - At. The estimated parameters and their statistical errors derived from
the covariance matrix are listed as well as the initial guesses. The estimated errors can be
transformed to confidence intervals by multiplying them with the Fisher factor v = 3.75.
All Lyapunov exponents have been computed but we write down only A; = 0.044, )\, and
)3 are of opposite sign with absolute values of the order of 10~7 while we find Ay = —);
with five digits accuracy.

S11 S12 S13 S14 S15 S16 S17 S18 S19

Interv. At 04 04 04 02 02 0.2 0.2 0.2 0.2
Nodes: n 100 100 100 100 100 100 100 100 100
St.dev: o 0.01 0.03 0.05
Guess:  a; 5 5 10 10 10 20 10 10 10
b; 5 10 10 10 20 10 10 10

¢ -2 2 2 2 10 10 2 2 2

E; FE, E, FE, E, E, E, 0.124 0.122 0.130

Iter.: k 6 6 6 6 6 16 6 11 14
Estim.: 29 -0.0003 -0.0017 -0.0036
20 0.0006 0.0031 0.0067

Z30 0.3574 0.3585 0.3603

Za0 -0.3496 -0.3479 -0.3455

Estim.: a 0.9999 0.9995 0.9989
b 0.9995 0.9969 0.9926

c -1.0062 -1.0335 -1.0764

Estim.: F 0.1250  0.1248 0.1246
Estim.: Az 76D—4 39D-3 84D-3
A:l?zo 7.6D—4 3.9D-3 8.1D-3
Azsg 4.1D—-4 2.1D-3 4.5D-3
Az4g 46D—-4 24D-3 5.1D-3
Aa 32b—-4 17D-3 3.6D-3
Ab 2.5D-3 13D-2 2.7D--2

Ac 1.2D-2 6.3D-2 14D-1
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TABLE II
This table defines the setup for generating trajectories with energy £, = 0.12905, i.e.
initial values xo, = (0,0,0.3, —0.41) and parameters (a, b, c), = (1,1, —1), and contains
different scenarios for generating simulated data. The estimated parameters and their
statistical errors derived from the covariance matrix (Fisher factor v = 3.75 to convert to
confidence intervals) are listed as well as the initial guesses. As in Table 1 we only write
down A; = 0.053.

S21 S22 S23 S24 S25 S26
Intervals: At 0.2 0.2 0.2 0.2 0.2 0.2
Nodes: n 50 50 100 100 100 100
Range: tend 9.8 9.8 19.8 19.8 19.8 19.8
Points: n 200 200 400 400 400 400
St. dev.: o 0.050 0.020 0.020 0.050 0.025 0.050
Guess: a; +9.2 +1.2 +1.2 +1.2 +10.0 +10.0
b; +1.0 +1.0 +1.0 +1.0 +10.0 +10.0
C; +2.1 2.0 -2.0 -2.0 +20.0 +20.0
E; 0.124 0.124 0.124 0.111 0.127 0.148
Iter.: k 7 5 5 6 7 14

Estim.: Z10 -0.0036 -0.0009 -0.0013 -0.0049 -0.0018 -0.0049
z20 0.0036 0.0009 0.0016 0.0062 0.0022  0.0062
Z30 02963  0.2991  0.2997 0.2988  0.2996  0.2988
Z40 -0.4060 -04090 -0.4081 -0.4024 -04073 -0.4024

Estim.: a 09958 09989 09986 09944 09980  0.9944
b 1.0047 1.0011 1.0007 1.0030 1.0010 1.0030
c -0.9815 -09957 -1.0079 -1.0317 -1.0111 -1.0317

Estim.: E 0.1263  0.1284  0.1282  0.1256  0.1278  0.1256
Estim.: Azyy 9.5D-3 24D-3 1.6D-3 63D-3 23D-3 6.3D-3
Azy,y 87D-3 22D-3 1.7D-3 6.6D-3 24D-3 6.6D-3
Azzy 39D-3 98D-4 7.6D—4 3.0D-3 1.1D-3 3.0D-3
Azsy 4.8D-3 12D-3 84D—-4 33D-3 1.2D-3 3.3D-3
Aa 84D-3 20D-3 84D-3 33D-3 12D-3 33D-3
Ab 34D-2 9.1D-3 1.1D-3 45D-3 1.5D-3 4.5D-3
Ac 1.7D-1 42D-2 7.5D-3 3.0D-3 1.1D-2 3.0D-3

In order to demonstrate the robustness of the algorithm in Figure 4 we present
trajectories obtained with initial values z, = (0,0,0.3,—-0.41) and parameters
pi = (9.2,1,2.1) as initial guesses for the fitting routine. As listed in Table II,
the original parameters p = (1,1,—1) are well recovered although the initial
trajectories correspond to escape orbits and are far off from the solution.

Tables I to ITI contain three different scenarios, and in each of them we have tried
to identify the parameters under different circumstances, :.e. different distances
between the initial parameters and solution parameters, different noise and available
data for fitting, and different lengths t.,4 of the time series.

The parameter estimations listed in Table I have been derived from exact data,
i.e. from trajectories not disturbed by noise. These experiments demonstrate the
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TABLE III

This table defines the setup for generating trajectories with energy F, = 0.1849, i.e.
initial values o, = (0,0,0.43,0.43) and parameters (a,b,c), = 1.3 - (1,1,—1), and
contains different scenarios for re-estimating the parameters from simulated data. The
initial parameter guess is p; = (5,5, 5) corresponding to a guess energy of F; = 0.2027.
The estimated parameters and their statistical errors are listed as a function of the data points
considered for fitting. If a curve has weight O then it is not considered in the least-squares
problem. As in Table I we only write down A; = 0.037.

S31 S32 S33 S34 S35 S36
Intervals: At 0.2 0.2 0.2 0.2 04 04
Nodes: n 100 100 100 100 100 100
Range: tend 19.8 19.8 19.8 19.8 39.6 39.6
St. dev.: o 0.05 0.05 0.05 0.05 0.05 0.07
Weight: w 1111 1110 1100 1000 1000 1111
Iter.: k 5 5 5 11 7 6

Estim.: Z10 0.0017 0.0041 -0.0030 -0.0144 -0.0066 0.0083
20 0.0110 0.0054 0.0042 0.0362 0.0509 -0.0080
z30 04023 04324 04338 04433 04322 04329
T40 04834 04367 04371 04272 04276 04292

Estim.: a 1.3010  1.2965 13024  1.3618 1.2984 1.2997
b 12905 13000 13019 1.2021 1.3150  1.2937
c -1.2683  -1.2848 -1.2882 -0.9491 -1.3957 -1.2669

Estim.: E 0.1868 0.1889  0.1896  0.1900 0.1854  0.1859

Estim.: Az p 6.0D-3 63D-3 90D-3 17D-2 1.2D-2 8.5D-3
Azyp 69D-3 9.6D-3 10D-2 40D-2 3.5D-2 12D-2
Az3y 3.3D-3 3.6D-3 48D-3 1.2D-2 63D-3 6.0D-3
Azs 3.0D-3 42D-3 42D-3 18D-2 92D-3 55D-3
Aa 6.0D-3 69D-3 84D-3 65D-2 43D-3 3.0D-3
Ab 9D-3 12D-2 12D-2 89D-2 13D-2 6.0D-3
Ac 30D-2 39D-2 39D-2 37D-1 7.2D-2 3.1D-2

Fisher: Y 3.75 3.75 3.75 3.90 3.90 3.75

large region of convergence of the method. Table II contains scenarios defined by
time series with 200 or 400 data points perturbed with Gaussian random numbers
varying between o = 0.02 and 0.05. We choose the standard deviation o according
to

o ~ 0.1 -max(|z;(t)|) (5.8)

and use only those perturbed data points which lie within a 3¢ strip. The error
limits given in the tables are derived from the diagonal elements of the covariance
matrix. In order to get confidence intervals based on a 95% confidence level, these
values have to be multiplied with the Fisher factor

yi= /b - F(1-a,b,6), b=n—f, a=095 (5.9)
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Fig. 4. Trajectories in the Hénon-Heiles system generated with initial values z19 = 230 = 0,
z30 = 0.3 and 2490 = —0.41 and parameters (a, b, ¢) = (+9.2, +1, +2.1) as initial guesses
for the fitting routine. As listed in Table I the original parameters (a, b, c) = (1,1, —1) are
well recovered although the trajectories corresponding to the initial parameter guesses are
far of from the solution.

where ¢; = 7 gives the degree of freedom, and F(1—a, {1, {2 ) is the F-distribution
(Abramowitz and Stegun, 1970) for the quantil a. The Fisher factor is also listed
in the tables. As expected the parameters are determined more accurately if the
number 7 of data points or ¢.,4 is increased.

The scenarios in Table III belong to a different set of initial values and parameters
corresponding to an energy of £ = 0.1849 slightly below the escape energy Fes. &
0.21 derived from the contour lines of the potential. Starting with some moderately
perturbed parameter guesses we decrease n by disregarding successively the z4,
z3 and z, data. For this selective procedure we observe, of course, that the sum
of squared residuals also decreases, while the errors of the parameters increase.
Scenario S34 contains only the z; data and the error of parameter ¢ increases to
more than 10%. In scenario S35 the error is reduced again by increasing Af to
0.4, or equivalently Z.,4 to 39.6 which gives a time series of doubled length. This
experiment shows that in order to identify the parameters of the Henon-Heiles
system, two curves, for instance the z; and z; curves, prove to be sufficient, and
even one curve is sufficient if it contains enough data points. This result agrees
well with similar experiences of Baake et al. (1991) in the dissipative Lorenz and
Rossler systems. Eventually, in S36 we contaminated all curves with Gaussian
errors (o = 0.07) which is again 10% of the amplitude of the z;-curves.
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The Lyapunov spectrum A = {1, A2, A3, A4} also contained in Tables I to III
has been computed with the code listed in Wolf et al. (1985). This algorithm is based
on the work of Bennetin et al. (1980). For a continuous dynamical system in an
n-dimensional phase space the long-term evolution of an infinitesimal n-sphere of
initial conditions is obtained by generation of appropriate directional derivatives,
e.g. via the integration of (5.6), or by using internal numerical differentiation
techniques (sect. 4). This sphere will become a n-ellipsoid with principal axes
ri(t) which will lead to the 7** one-dimensional Lyapunov exponent \; (Wolf ez
al., 1985)

A= llm —-logp r,g(t))) Ai =1n(2) - A; = 0.693 - A; (5.10)
In order to get a numcncally stable procedure Bennetin et al. (1980) suggested
that at regular time intervals At,,;; the evolved tangent vectors associated with
the n-sphere mentioned above are replaced by a set of new orthonormal vectors,
using the Gram-Schmidt procedure, which avoids small angles between the vectors
defining the n-ellipsoid.

We would like to stress that the A; are ordered with A being the largest exponent,
and that although they are related to the expanding or contracting nature of different
directions in phase space it is not possible to assign a well-defined direction with a
given exponent. Since the Hénon-Heiles differential equations are derived from a
Hamiltonian system with f = 2 degrees of freedom we use some additional facts
on the Lyapunov spectra of such systems (Froeschlé 1984) such as symmetry with
respect to zero, which in our particular case lead to A; > 0, A\, = A3 = 0 and
A4 = —Ar and A\ + A2 + A3 + Ay = O corresponding to the Liouville theorem.
While the exponents may be interpreted geometrically as average exponential rates
of divergence or convergence of nearby orbits in phase space or growth of an
infinitesimal volume element, the log, function in definition (5.10) allows also to
measure the rate at which the system dynamics creates or destroys information
in bets/orbit. The complete Lyapunov spectra A for the analyzed scenarios were
calculated with an integration time of t;,; = 10° leading to spectra with \; ~
5 - 10~2 while those exponents A, and A3 to be expected to vanish reached values
between 10~7 and 1073 [for comparison in the case E = 0.125 see Bennettin et al.
(1976)]. For regular orbits, identified as closed curves in the Poincaré’s surfaces
of section, we found that all Lyapunov exponents tended to zero as expected, :.e.
their absolute values fell below 1077,

Conceming the interpretation of Lyapunov exponents derived from fitted ODE
we would like to add the following remarks: The tables contain only the spectra
A for the generated trajectories and their associated parameters p,, and not those
for the identified parameters p since for even slightly perturbed parameters P, M
differed by about 20 to 30% from A;. The reason is that slightly different initial
values or parameters may lead to a significantly different energy surface. Similar to
the strong dependence of the Lyapunov exponents on the distance dgp between the
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third object and the second primary in the restricted three body problem investigated
by Gonczi and Froeschlé (1981), in our case we have a strong sensitivity of
the Lyapunov exponents w.r.t. energy E. For the Hénon-Heiles system this is in
particular true when F = 1/8. We are forced to adopt the following point of view:
The Lyapunov spectra derived from fitted ODE can be used to give a qualitative
picture of ergodicity. They are still a quantitative tool to indicate chaos. In particular,
this is important in dynamical systems with more than 2 degrees of freedom since
in those cases the method of Poincaré’s surfaces of section is inconvenient to use.
And, finally, it is still an efficient method to determine the number of isolating
integrals.

The major advantage, however, is that there is no explicit limitation as in a
finite time series. Once the ODE have been identified the computation of the A;
can be performed to any desired degree of accuracy. For some celestial mechanics
problems, for instance that of the stochasticity of the orbit of Halley’s comet
(Froeschlé and Gonczi, 1988), there are typical integration times of 10° years
required to reach convergence. In most cases, however, there is no a priori condition
determining ¢;,,; available. Therefore the only chance is to integrate for along period
until convergence.

6. Conclusions

The boundary value problem approach recovers the parameters of the Hénon-
Heiles system in a variety of scenarios differing in initial values and parameters of
the simulated trajectories, noise of the Gaussian random errors and distance of the
initial guesses of the parameters from the solution. From the identified dynamical
systems the Lyapunov exponents are derived and are found to obey the conditions
for Hamiltonian systems. In order to identify the parameters of the Hénon-Heiles
system two components, e.g. the z; and z curves, prove to be sufficient, and
even one component is sufficient if it contains enough data points. This is a very
advantageous property, since in real experiments measurements, e.g. of instance
population densities in biological systems, concentrations in chemical and pharma-
cokinetical systems, or observations in astronomy or celestial mechanics seldom
yield data for the whole phase space.

Appendix
A. Damping Strategies

Full step (Gauss-)Newton methods usually require unrealistically good initial
guesses to guarantee convergence. To alleviate this problem step size strategies
have been developed. According to an appropriately chosen level function the
damping factor o €(amin, 1]is chosen in every iteration such that the value of the
level function is reduced for the new iterate.
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Depending on the choice of the level function which serves as a measure of the
distance of the actual iterate to the solution different iterates are computed. For
parameter estimation algorithms the following two level functions are important
(Bock, 1981)

Ti(2) = 3 - IFW()B + 3o B - [Foi(2) (A1)
=1

where the weights §; satisfy 8° > |A.(zi)| for all (Azg, Ac(zk)), zxeD :=
{z|T(z) £ T(zx)}. The vector A (zx) is the Lagrange parameter of the problem
linearized at z, Azy the solution of the linearized problem. The damping factor
ay is determined by

Ti(zr + ar -Azg) = n;in (A2)

k

It can be shown under mild conditions that then the Gauss-Newton-Method starting
with an arbitrary initial guess converges to a stationary point.

Unfortunately, the practical benefits of this theoretically elegant result are lim-
ited: Even in mildly nonlinear ill-conditioned problems the direction of steepest
descent of T, and the search direction A z; are nearly orthogonal. Intolerable small
step sizes are computed.

As a remedy to that so called “natural level functions" (cf. Deuflhard, 1974)

T (z) = 1T (z0) F(2)ll3 (43)

have been developed. These iteratively reweighted functions adapt to the local
geometry of the problem. Together with special simplified line searches they allow
significantly larger step sizes than by using the level function T, which are,
in particular independent of the condition number. In the treatment of practical
problems they have proven to be very effective.

B. Internal Numerical Differentiation

Consider the solution y(¢) of an IVP

¥ = f(t,y,p), y(t)=vo (B1)

as a function of the initial values and parameters y(t) := Y (¢, y,, p). Provided
differentiability of this function, the question of reliable and user friendly com-
putation of dY /0y, and 0Y /0p arises. In PARFIT an approximation of these
quantities is generated by numerical differentiation of the approximating scheme
Y (t,y,, p) which is established by an integration procedure in the course of the
computation of an approximation of y(t) =: Y (¢, yo, p). Y is constituted by the
chosen underlying integration method (extrapolation, Runge Kutta, multistep, etc.)
and the step size and order strategies. The derivatives Y /8y, and Y /0p are
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computed by finite differences or by adjoint schemes. This requires no preparation
of the user and is implemented in such a way that even discontinuous dynamics are
tractable. Details and refined variants can be found in Bock (1987) and Schioder
(1988).
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