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Abstract

We discuss cutting stock problems (CSPs) from the perspective of the paper industry and the financial impact
they make. Exact solution approaches and heuristics have been used for decades to support cutting stock
decisions in that industry. We have developed polylithic solution techniques integrated in our ERP system to
solve a variety of cutting stock problems occurring in real world problems. Among them is the simultaneous
minimization of the number of rolls and the number of patterns while not allowing any overproduction. For
two cases, CSPs minimizing underproduction and CSPs with master rolls of different widths and availability,
we have developed new column generation approaches. The methods are numerically tested using real world
data instances. An assembly of current solved and unsolved standard and non-standard CSPs at the forefront
of research are put in perspective.

Keywords: paper industry, cutting stock, roll production, format production, column generation, column
enumeration, operations research, stochastic demand, real-world optimization

1. Introduction

The pulp and paper industry plays an important
role worldwide. There are in the order of 3000 pa-
per mills, which produced a total of 394 million
tons of paper and paperboard, in 2010. Europe (in-
cluding Russia) has approximately 900 paper mills,
while Germany has about 180. The largest pro-
ducer in the world is the Finnish UPM group with
an annual tonnage of 12.7 million tonnes, followed
by Stora Enso with 11.8 million tons and by In-
ternational Paper with 9.7 million tonnes per year.
Santos and Almada-Lobo (2012) report that in Por-
tugal the pulp and paper industry contributes over
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4% of the GDP and 5% of the active employees. As
it is subject of both local and global environmen-
tal discussions, effective planning and cutting stock
techniques lies at the very heart of the operational
performance of its manufacturing organizations.

Exact solution approaches and heuristics have
been used for decades to support cutting stock deci-
sions in the paper industry. In the standard cutting
stock problem (CSP), the problem input is given by
a set of item sizes and demands, and by a set of mas-
ter rolls of given widths; the simplest case consists
of only one type of master rolls. The task is to de-
cide on how many master rolls are cut to a certain
pattern in order to minimize the total number of
master rolls used.

The pattern minimization problem (PMP) is a
strongly NP-hard cutting problem, which seeks a
cutting plan with the minimum number of differ-
ent patterns, cf. McDiarmid (1999). This objec-
tive, relevant when changing from one pattern to
another, involves a cost for setting up the cutting
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machine, i.e., adjusting the cutting knifes. When
the minimization of the number of different pat-
terns is done by assuming that no more than the
minimum number of rolls can be used, the problem
is also referred to as the cutting stock problem with
setup costs.
The international working group SICUP (Special

Interest Group on Cutting and Packing) founded by
Gerhard Wäscher in 1988, focuses on cutting stock
and packing problems and is a platform for more
than 200 practitioners and scientists to exchange
ideas on these topics. In 2004, SICUP became the
EURO working group ESICUP (EURO Special In-
terest Group on Cutting and Packing).
The main contributions of this paper can be clas-

sified into two categories:

Mathematical optimization: For 1D CSPs with
two criteria, minimizing the number of rolls
and the number of patterns, we develop an Ex-
haustion Method (Sect. 3.4), a column genera-
tion approach allowing underproduction (Sect.
3.5.4) and column generation approach incor-
porating master rolls with different widths and
limited availability (Sect. 3.5.5). We present
a novel polylithic1 solution method towards
2D trim-loss minimization (Sect. 4). Further-
more, we share real data in a 1D cutting stock
benchmark data set (Sect. 3.6.1). For software
products, it is not untypical to combine var-
ious basic algorithms to consistently provide
solutions in acceptable time, with many em-
pirical rules, or even rules of thumb, to decide
which algorithms to use in each circumstance.
We disclose this information instead of keeping
it as a commercial secret, to provide evidence
that there is more exact optimization and less
heuristics involved as one might expect.

Managerial insights for the paper industry:
We present real-world aspects relevant to the
paper industry, which have seen only little
treatment in the scientific literature (Sect.
3.5). We assemble current cutting-edge
standard and non-standard cutting stock
problems relevant to the paper industry (Sect.

1The term polylithic has been coined by Kallrath (2009a)
and explained in greater detail in Kallrath (2011); it refers
to modeling and solution approaches in which mixed integer
or nonconvex nonlinear optimization problems are solved by
tailor-made methods involving several models and/or solve
statements or algorithmic components.

5) and illuminate at length the variants and
issues present in real-world problems. We
discuss the financial impact mathematical
programming-based solutions to cutting stock
problems have in the paper industry (Sect. 6).

The remainder of the paper is structured as fol-
lows: After a literature review in Section 2, we dis-
cuss the 1D CSP and its variants in Section 3 along
with different solution techniques. A presentation
of 2D polylithic solution methods in Section 4 is fol-
lowed by a discussion of current-edge CSPs in Sec-
tion 5 and our views on optimization in the paper
industry in Section 6. Conclusions are in Section
7. Two appendices, post-processing (Appendix A)
and guidelines on how to derive the pricing prob-
lems (Appendix B) complete this paper.

2. Literature Review

There is a rich body of literature available on
CSPs; cf. Haessler and Sweeney (1991) and
Haessler (1992) for reviews on 1D cutting stock
problems and solution procedures. We find heuris-
tic solution approaches (cf. Haessler (1971)), exact
MILP-models (cf. Johnston and Sadinlija (2004)),
column generation approaches, among them the
classical paper by Gilmore and Gomory (1961),
Branch&Price algorithms (cf. Belov and Schei-
thauer (2006)), reviews as by Amor (2005) who put
column generation and Branch&Price algorithms in
perspective, and classification papers (cf. Dyckhoff
(1990) and Wäscher et al. (2007)).
Most of the approaches described in the literature

for solving the PMP are based on heuristics. As the
PMP has been proven strongly NP-hard by McDi-
armid (1999), it is not a surprise that solving the
problem exactly has been a real challenge, and only
very few exact solution methods have been reported
so far in the literature; among them Vanderbeck
(2000). Alves et al. (2009) explore an integer pro-
gramming model that can be solved using column
generation, and they describe different strategies to
strengthen it, among which are constraint program-
ming and new families of valid inequalities. Lower
bounds for the pattern minimization problem are
derived from the new integer programming model,
and also from a constraint programming model.
Beyond a vast body of literature on the stan-

dard CSP, there are a few publications on a gen-
eralized CSP with great practical significance: The
multiple-width CSP with master rolls of different
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widths (and equal lengths assumed to be infinite).
An early work on this topic is by Holthaus (2002),
who solves the relaxation of the CSP by the column
generation technique and uses three procedures for
rounding the solution, leading in a final residual
problem, which is solved by an ILP-solver. Al-
though his technique is suitable for solving medium-
size and large instances of the one-dimensional CSP,
the paper does not consider supply limitation on
the different stock lengths availability. Alves and
de Carvalho (2007) developed strategies to stabi-
lize and accelerate the column generation method
by introducing dual-optimal inequalities, reducing
the number of column generation iterations and run
time. Finally, Poldi and Arenales (2009) provide
a heuristic to solve the CSP with multiple stock
lengths with limited availability.
Although production planning or scheduling and

CSPs are usually treated separately, we find early
articles in which both aspects are combined; cf.
Haessler and Talbot (1983) or Li (1996) who pro-
vide LP-based and non-LP-based heuristics to solve
2D multi-job cutting stock problems with due dates
and release dates. The combined cutting stock and
lot-sizing problem in industrial processes has at-
tracted several authors in the last decade, among
them Arbib and Marinelli (2005), Gramani and
França (2006), Yanasse and Pinto Lamosa (2007),
Trkman and Gradisar (2007), Poltroniere et al.
(2008), Gramani et al. (2009) and most recently
Reinertsen and Vossen (2010) who treat the 1D
CSP with due dates. Trkman et al. (2009) treat cut-
ting stock as a continuous business process which
is incorporated into an entire supply chain.
General cutting and packing problems are related

to CSPs. The most important difference between
cutting and packing problems is that in cutting
problems, the number of objects are given and the
task is to minimize trim-loss or area, while pack-
ing problems aim to fit as many objects as possible
in a predefined area or volume. For example, one
may want to cut orientation free polygons (Kall-
rath, 2009b) or ellipses (Kallrath and Rebennack,
2014) into one rectangle, or circles into several rect-
angles (Rebennack et al., 2009). A significant dif-
ference between these cutting problems cited and
the 2D cutting problems described in Section 4 is
that the latter allow only a horizontal or vertical
orientation of the objects to be cut.
We conclude our literature review by pointing

the reader to a few articles which give some excel-
lent insights into the field: Rodŕıguez and Vecchi-

etti (2008) for practical application with very good
illustrations, and similarities to our 2D problem de-
scribed in Section 4, Harjunkoski et al. (1998) and
Pörn et al. (1999) for exact MILP and MINLP ap-
proaches, and also, a very recent paper on heuristics
by Cui and Zhao (2013).

3. 1D Cutting Stock Problem

Our discussion of the one-dimensional cutting
stock problem starts with the standard problem
formulation in Section 3.1, followed by three solu-
tion methods: the widely used approach by Gilmore
& Gomory (Sect. 3.2), a column enumeration
(Sect. 3.3), and an Exhaustion Method (Sect.
3.4). We summarize important practical aspects
for one-dimensional CSPs for the paper industry
and present extensions to the column generation
approach addressing these practical aspects (Sect.
3.5). We conclude this section with some computa-
tional benchmarking (Sect. 3.6).

3.1. The Standard Problem and its Mathematics

The mathematical model for minimizing the
number of rolls or trim-loss in the standard problem
with one master roll of width B is characterized by
the following indices, data and variables.

3.1.1. Indices

p ∈ P := {p1, . . . , pNP} cutting patterns; NP is
the number of patterns in P . If NP is not
known, as it happens in the Gilmore and Go-
mory approach, we set NP to a sufficiently
large number.

i ∈ I := {i1, . . . , iN I} given orders or widths; N I

is the number of (orders) widths in I.

3.1.2. Input Data

B [L] width of the master rolls (raw material
rolls).

Di [-] demand; the requested number of pieces of
width i.

Wi [L] width of order type i.

3.1.3. Integer Variables

µp ∈ IN0 := {0, 1, 2, 3, . . .} [−] indicates how of-
ten pattern p is used; µp = 0 if p is not used.

αip ∈ IN0 [−] indicates how often order type i is
contained in pattern p; 0 ≤ αip ≤ Di.
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3.1.4. Mathematical Programming Model Formula-
tion

A suitable objective function

z∗ := min
αip,µp

∑

i∈I

∑

p∈P

f(αip, µp) , (1)

is subject to the restrictions (fulfillment of the de-
mand)

∑

p∈P

αipµp = Di , ∀i , (2)

feasibility of pattern p
∑

i∈I

Wiαip ≤ B , ∀p , (3)

and the integrality constraints

αip ∈ IN0 , ∀{ip} (4)

and

µp ∈ IN0 , ∀p . (5)

Formulated via (1)-(5), the standard CSP is a
mixed integer nonlinear (nonconvex) optimization
problem (MINLP), a problem class which is diffi-
cult in itself. As the problem may easily encounter
several million variables αip, it cannot be solved ef-
ficiently in this form. Another complication results
from equation (2) with exact demand fulfillment,
as it is rare to find feasible solutions to the CSP.
Therefore, in practical situations, (2) is relaxed to

DL
i ≤

∑

p∈P

αipµp ≤ DU
i , ∀i , (6)

with lower and upper bounds, DL
i and DU

i , on the
demand Di. Usually, underproduction is less ac-
cepted as light overproduction; see also the discus-
sion in Section 3.5.4.

3.2. Gilmore & Gomory Approach (GGA)

The idea of column generation by Gilmore and
Gomory (1961) is to dynamically add variables
(“columns”) which are good candidates to be in-
cluded in an optimal solution. This is achieved by
decomposing the CSP into a master problem (MP)
and a sub-problem (SP), also called pricing prob-
lem. For a predefined set of patterns P ′ ⊆ P , the
MP decides how often each pattern has to be used
and provides input data for the SP via dual infor-
mation. It minimizes the number of rolls

min
µp

∑

p∈P′

µp , (7)

with the demand-fulfill inequalities (note that it is
allowed to produce more than requested)

∑

p∈P′

Nipµp ≥ Di , ∀i , (8)

where Nip is the number of times order i is con-
tained in pattern p ∈ P ′. The integrality con-
straints

µp ∈ IN0 , ∀p ∈ P ′ . (9)

complete the model. Replacing the integrality re-
quirement (9) on µp by a non-negative constraint,
we obtain the so-called relaxed master problem
(RMP).
In the SP, new patterns (variables αi, the multi-

plicity of width i) are calculated by exploiting the
dual values πi (pricing information) of the RMP
associated with (8). The objective function

min
αi

(

1−
∑

i∈I

πiαi

)

,

involves the integer variables αi. To ensure that, in
the new pattern, the roll width, B, and the number,
K, of knives are not exceeded we add the knapsack
inequalities

∑

i∈I

Wiαi ≤ B ,
∑

i∈I

αi ≤ K . (10)

Numerical experiments without the knife constraint
are indicated byK = ∞. For completeness, we note
the integrality conditions

αi ∈ IN0 , ∀i . (11)

The αi become the Nip coefficients of the new pat-
tern in (8). In some cases, αi could be additionally
bounded, for instance, by the number, K, of avail-
able knives, or by the demand, Di.
Once the optimal objective function value of the

SP is non-negative, then the RMP for pattern set
P ′ has been solved to optimality over all possible
patterns. The optimal objective function value of
the RMP provides a lower bound on z∗; solving the
MP for the available set of patterns P ′ yields an
upper bound on z∗.
In this context, the absolute difference (i.e., gap)

between the RMP and the MP, once GGA con-
verges, is of great interest. A well known conjecture
states that the 1D cutting stock problem (when
minimizing the number of patterns used) has the
so-called modified round-up property, i.e., the gap
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is at most 2, cf. Scheithauer and Terno (1995). No
instance of the 1D cutting stock problem has been
reported so far which has a greater gap. To the
best knowledge of the authors, the conjecture has
not been proven, yet.

3.3. Column Enumeration

As the expression “column enumeration” (CE)
suggests, the set of possible columns (e.g., patterns)
is enumerated. As such, CE is a special variant of
column generation and is applicable when a small
number of columns is sufficient. For instance, this is
the case in real-world cutting stock problems when
it is known that the optimal solutions have only a
small amount of trim-loss, eliminating most of the
patterns. CE naturally leads to a type of select-
ing columns or partitioning models: problem (7)-
(9) with P ′ being the set of all generated columns.
Despite the limitations with respect to the number
of columns, CE has some advantages: No pricing
problem, easily applicable to MILP problems, much
easier to implement (compared to column genera-
tion), and allows the straight forward incorporation
of demand stochasticities (cf. Sect. 5.1). In the
context of cutting stock problems, we sometimes
can use the maximum permissible trim-loss to re-
strict the number of patterns to be considered in
CE (cf. Sect. 3.5).

3.4. An Exhaustion Method

This method combines a constructive heuristic
with exact MILP techniques. We illustrate the
exhausting method by the CSP described in Sec-
tion 3.1; assigning orders in a scheduling problem
would be another example of an exhaustion ap-
proach. The elegant GGA is known for produc-
ing minimal trim-loss solutions withmany patterns.
Often this corresponds to setup changes on the ma-
chine and therefore is not desirable. A solution
with a minimal number of patterns minimizes the
machine setup costs of the cutter. Minimizing si-
multaneously trim-loss and the number of patterns
is possible for small cases of a few orders only, ex-
ploiting the MILP model by Johnston and Sadinlija
(2004). It contains two conflicting objective func-
tions. Therefore one could resort to goal program-
ming. Alternatively, we produce a pool of several
parameterized solutions leading to different number
of rolls to be used and patterns to be cut from. It
is up to the user to choose the best solution from
that pool; cf. Section 3.6.4.

Note that the Branch&Price algorithm described
in Vanderbeck (2000) or Belov and Scheithauer
(2006) can be used to solve the 1D CSP with mini-
mal numbers of patterns. However, these methods
are not easy to implement. Therefore, depending
on the number of orders, we use the following ap-
proaches:

• V1: Direct usage of the model by Johnston and
Sadinlija (2004), for a small number of orders,
e.g., N I ≤ 14 and Dmax ≤ 10, to minimize the
number of patterns or the number of rolls. In a
preprocessing step, we compute valid inequal-
ities as well as tight lower and upper bounds
on the variables.

• V2: Exhaustion procedure in which we cover
the orders and their demands by generating
successively new patterns with maximal mul-
tiplicities (phase V2-1). If only a small num-
ber of orders is left over, we use V1 to minimize
the number of rolls (phase V2-2). In phase V2-
3, we exploit the MIPSTART feature of CPLEX

and start with the best solution found (small-
est number of patterns) and use again V1 to
minimize the number of patterns with the aim
to compute an improved lower bound, NP

2−,
smaller than our initial lower bound, NP

1−,
which we obtained by solving the correspond-
ing bin packing problem (BPP, resulting from
setting all CSP demands to 1), and to find a
better solution.

3.4.1. Indices and Sets

In this model, we use the indices listed in John-
ston and Sadinlija (2004):

i ∈ I := {i1, . . . , iN I} the index set of (order)
widths.

p ∈ P := {p1, . . . , pNP} the set of all possible pat-
terns; NP ≤ N I. The patterns are generated
by V1, or dynamically by maximizing the mul-
tiplicities of a pattern used. Note that in John-
ston and Sadinlija (2004), the index j is used
instead of p.

k ∈ K := {k1, . . . , kNK} the multiplicity index to
indicate how often a width is used in a pattern.
The multiplicity index can be bounded by the
ratio of the widths of the orders and given rolls.
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3.4.2. Variables

The following integer or binary variables are
used:

αip ∈ IN [−] specifies how often width i occurs
in pattern p; 0 ≤ αip ≤ Di (item–in-pattern
multiplicity).

αipk ∈ IN [−] auxiliary variable connected to
δipk; 0 ≤ αipk ≤ Dmax := maxi Di.

δAp ∈ {0, 1} [−] indicates whether pattern p is
used at all.

δipk ∈ {0, 1} [−] indicates whether width i ap-
pears in pattern p at level k; δipk = 0 implies
aipk = 0.

µp ∈ IN [−] specifies how often pattern p is used.
If pattern p is not used, we have µp = δAp = 0.

3.4.3. The Idea of the Exhaustion Method

In our exhaustion procedure, we cover the or-
ders and their demands by generating successively
new patterns with maximal multiplicities. If only a
small number of orders is left over, we switch to V1.
This method is parameterized by the initial per-
missible percentage waste Wmax, 1 ≤ Wmax ≤ 99.
To populate the pool, we use six parameterizations
with the following values: Wmax = 20, 15, 10, 8,
6 and 4. The usage of different parametrizations is
motivated by the hope to obtain different solutions.
This allows the user to select the best combination
of number of rolls and number of patterns.
We start with iteration m = 0. In each iteration

m, we generate at most 2 new patterns by maximiz-
ing the multiplicities of these patterns allowing no
more than a maximum percentage waste,Wmax, rel-
ative to the width of the master roll. The solution
generated in iteration m is preserved in iteration
m + 1 by fixing the appropriate variables. If the
problem turns out to be infeasible (this may hap-
pen if Wmax turns out to be restrictive; we observed
this to happen occasionally for Wmax < 8), we in-
crease the permissible waste by 10% and proceed
to the next iteration. If only a few orders remain,
we switch to V1 to cover the remaining unsatisfied
orders; note that V1 works without the Wmax re-
striction.
Our model is based on the MILP model devel-

oped by Johnston and Sadinlija for solving the
1D-CSP problem, especially on their inequalities
(1,2,3,5-8). Their main idea is to replace the nonlin-
ear terms in (2) by binary variables δipk, which take

value 1 if item i occurs in pattern p with multiplic-
ity k. Similar transformations have been presented
before by Harjunkoski et al. (1998). The model by
Johnston and Sadinlija can work efficiently, if we ex-
pect to have only reasonably small item-in-pattern
multiplicities k and not too many items and pat-
terns.

It helps, and is also necessary, to provide lower
and upper bounds, NP

− and NP
+ , on the number of

patterns expected to be used in an optimal solution.
If N I is the number of items (order widths), then
NP

1+ := N I is a weak upper bound. We compute
a weak lower bound, NP

1−, by applying the GGA
towards a BPP associated with the CSP problem.

The great strength of the model by Johnston and
Sadinlija is that it allow us to implement differ-
ent objective functions and constraints much easier
than in a MINLP model or in column generation
approaches. Therefore, it even allows for sequenc-
ing production by exploiting a one-to-one corre-
spondence between pattern and manufacturing se-
quence. We briefly summarize the relevant relations
we implemented in our exhaustion; note that we
partially adjusted the nomenclature used by John-
ston and Sadinlija to be consistent with our paper.

Let binary variable δAp indicating whether or not
pattern p ∈ P is used in the optimal solution. The
pattern multiplicity, µp, is subject to lower and up-
per bounds, ML and MU, i.e.,

µp ≥ ML , p ∈ Pact := {1, . . . , NP
−} (12)

and (p ∈ Ppot := {NP
− + 1, . . . , NP

+})

MLδAp ≤ µp ≤ MUδAp . (13)

Johnston and Sadinlija leave it to the user to set
ML and MU. Setting ML = 1 is the easiest choice;
we use MU = maxi{Di}.

The binary variables δipk are accompanied by in-
teger variables αipk which are constructed in such
a way that δipk = 1 implies αipk = µp. Instead of
a fixed demand Di, Johnston and Sadinlija allow
for bounded under- and overproduction, i.e., DL

i ≤
Di ≤ DU

i , and thus

DL
i ≤

∑

p

∑

k

kαipk ≤ DU
i , ∀i . (14)

The various binary and integer variables δipk, αipk,
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and µp are connected by

αipk ≤ MUδipk , ∀{ipk} , (15)
∑

k

δipk ≤ 1 , ∀{ip} , (16)

∑

k

αipk ≤ µp , ∀{ip} , (17)

and

MU
∑

k

δipk −
∑

k

αipk + µp ≤ MU , ∀{ip} .

(18)
Inequalities (15) and (16) guarantee that only one
δipk and its corresponding αipk can be selected for
each pair (ip). Inequalities (17) and (18) guarantee
that αipk > 0 implies αipk = µp.
The proper design of the patterns is ruled by the

knapsack inequalities
∑

i

∑

k

Wikδipk ≤ B , ∀p , (19)

and
∑

i

∑

k

Wikδipk ≥
100−Wmax

100
B , ∀p . (20)

We add additional constraints to the model, e.g.,
the symmetry breaking inequality

δAp ≥ δAp+1 , ∀p , (21)

which ensures that pattern p + 1 can only be used
if p is used. The symmetry breaking inequality

µp ≥ µp+1 , ∀p , (22)

orders the patterns according to their multiplicities.
We exploit the Johnston and Sadinlija model by

three objective functions. In V2-1, we maximize the
multiplicities of the patterns generated

max
µp

∑

p∈Ppot

µp ,

while in (14) we set DL
i = 0 and DU

i = D′
i, where

D′
i is the number of remaining orders of width index

i. In V1, we minimize the number of patterns

NP := min
δp

∑

p∈P′

δp = PL +min
δAp

∑

p∈Ppot

δAp ,

subject to DL
i = DU

i = Di, and in V2-2, we mini-
mize the number of rolls

min
µp

∑

p∈Ppot

µp (23)

subject to DL
i = DU

i = Di. The model is completed
by the integrality conditions (∀{ik} and p ∈ Ppot)

µp, αipk ∈ IN0 , δAp , δipk ∈ {0, 1} .

The model is applied several times with αipk ≤ D′
i.

Especially, the model has to fulfill the relationships
(∀{ik} and p ∈ P ′)

kαipk > D′
i =⇒ αipk = 0 ∧ δipk = 0

as well as (∀{ik} and p ∈ Ppot)

αipk ≤

⌈

D′
i

k

⌉

and αipk ≤

⌈

D′
i + Si

k

⌉

,

where Si denotes the permissible overproduction.
This Exhaustion Method provides an improved

upper bound, NP
2+ = NP

min, NP
2+ ≤ NP

1+, on the
number of patterns, where NP

min is the number of
patterns in the best solution (smallest number of
patterns) of the pool.

3.4.4. Phase V2-3: Computing the Lower Bound on
the Number of Patterns

To compute a lower bound on NP
−, we apply two

methods. The first method is to solve a BPP which
is equivalent to minimizing the number of rolls in
the original cutting stock problem described in Sec-
tion 3.1 for equal demands Di = 1. If solved with
the column generation approach, this method is fast
and cheap (for the cases we are interested in with
up to 80 orders), but the lower bound, NP

1−, ob-
tained is often weak for the PMP, cf. Vanderbeck
(2000)). The second method, used in phase V2-
3, is to exploit the NP

min solution to use the exact
model V1 for minimizing the number of patterns.
This enables us to work with a smaller set of po-
tential patterns Ppot = {1, . . . , NP

min}. It is im-
pressive to see how quickly the commercial solvers
CPLEX and XpressMP improve upon the lower bound
yieldingNP

2−, when we utilize the MIPSTART feature.
For most examples with up to 50 orders we obtain
NP

2+−NP
2− ≤ 2, but in many casesNP

2+−NP
2− = 1 or

evenNP
2+ = NP

2−. Sometimes, in step V2-3, we even
find a better solution, i.e., a solution with fewer
patterns than NP

min.

3.5. Practical Aspects in the Paper Industry: To-
wards an Implementation at GSEmbH

Production in the paper industry is closely con-
nected to the cutting machines and their properties,
e.g., the number of available knifes, or the minimal
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distance to the edges of the master rolls. The pro-
duction philosophy in each company differs. Usu-
ally, the production planning problem and the cut-
ting stock problem are not treated in one consis-
tent MILP or MINLP model. As these two prob-
lems are inseparable, they must be solved somehow
hand-in-hand, if not in one algorithm then at least
iteratively. In some production planning heuristics,
groups of orders are constructed, which become the
input of a CSP. However, it is not unusual to find
people working out the cutting stock pattern to
leave out a few orders as they do not ideally fit into
the patterns constructed or lead to patterns with
too much trim-loss. These missing orders are con-
sidered in later production runs. In the strict sense,
this means that underproduction is allowed. While
the GGA in its standard form assumes that overpro-
duction is allowed, in many practical instances, the
planners are not amused about overproduction and
do not really know what to do with the additional
items. Efficient patterns with only a few percent
trim-loss are an important issue which can easily
conflict with other objectives, e.g., to minimize the
number of patterns used. All these practical issues
require us to apply modifications to the GGA or to
resort to other techniques.

3.5.1. Implementing the Gilmore & Gomory Col-
umn Generation Approach

The GGA requires a few modifications to avoid
the production of unnecessarily many orders:

• Generation of the initial patterns (by solving
a separate knapsack problem which maximizes
the number of used widths in the pattern while
ensuring that each width is used at most twice
i.e., αi ≤ 2, ∀i). If it is desirable to work pri-
marily with efficient patterns, then it is bet-
ter not to restrict αi artificially but only use
the demand, Di, for item i, in the inequality
αi ≤ Di, ∀i, in order to fill the patterns to
the maximum. The initial knapsack problem
is solved N I times. To guarantee feasibility of
the initial master problem, we enforce for the i-
th problem that width Wi is contained at least
once in the pattern.

• When dynamically generating new patterns,
we ensure that each width is not contained
more often than it is ordered. However, this
restriction cannot be used when only efficient
patterns with the minimum waste are consid-
ered.

• Post-processing: Elimination of surplus items
generated by the GGA as described in Ap-
pendix A.

Additional constraints lead to an extension of the
GGA approach, which we refer generally to as col-
umn generation approach (CGA). These constraints
may enter the master problems and/or the pric-
ing problems. Constraints which influence the pat-
tern design show up in the pricing problem. The
restriction of the number of knives is one exam-
ple. Another example is the requirement that very
small strips need to be embedded by normal or-
der widths. As long as such constraints do not re-
quire substantially more effort to solve the pricing
problems they are harmless, i.e., the additional con-
straints do not destroy the structure of the pricing
problems. Constraints showing up in the master
problem tend to produce more difficulties. An ex-
ample are constraints counting and restricting the
number of patterns used in the optimal minimal
trim-loss solution. We discuss two additional ex-
amples and their mathematics in Sections 3.5.4 and
3.5.5.
In general, we observe that the pattern space gen-

erated by the GGA is not complete. Thus, using
the generated patterns by the GGA approach and
changing the objective function or imposing addi-
tional constraints may lead to sub-optimal solutions
or an infeasible problem.
If the CGA, due to additional constraints or a

modified objective function, does not work effi-
ciently anymore, we resort to complete or partial
column enumeration in which we construct reason-
able patterns explicitly. Afterwards, a set parti-
tioning problem is solved for a different objective
function. However, this approach works only if not
too many patterns are generated (in the order of 104

to 5 ·104); otherwise, it may become too difficult to
solve the partitioning problem.

3.5.2. Efficient Patterns

The paper producers very often want to accept
only efficient patterns which do not have more than
a certain trim-loss, Wmax, derived from the toler-
able percent trim-loss, W%

max. Depending on the
order situation, this constraint may lead to infea-
sible situations. This is illustrated by the follow-
ing example (all data carry the same units): A
master roll with width of W = 266, and order
widths W1 = 140, W2 = 138, and W3 = 136
lead to patterns with only one order width. This

8



in turn produces an unacceptable large strip-loss
of (266 − 140)/266 = 47.36%. Thus, for W%

max

≤ 47.36%, the problem becomes infeasible.
In such cases, it is helpful to derive the smallest

value, W%
min, of W

%
max for which a feasible solution

exists at all. What happens in real life is that the
planner changes the order spectrum to leave out one
or several critical orders. Again, this selection can
be supported by appropriate auxiliary models. We
allow underproduction with respect to the given or-
ders but our objective function is to minimize this
underproduction. In order to achieve this, we gen-
erate the patterns by the GGA, followed by a mas-
ter problem in which we minimize the underproduc-
tion. A conceptual problem with this approach is
that we cannot be sure that we really produced all
relevant patterns. Thus, we only obtain an upper
bound on underproduction.

3.5.3. Exact Demand Satisfaction

The demand is usually not met exactly with the
GGA, as the column generation can lead to over-
production. In cases, in which we apply the GGA,
we eliminate superfluous orders where possible with
the heuristics described in Appendix A. How-
ever, these simple heuristics cannot always elimi-
nate overproduction. In these cases, we resort to
the MILP model of Johnston and Sadinlija to com-
pute exact demand solutions.
The simple inequality (∀i and p ∈ P ′)

Nip ≤ Di

in the pricing problem can avoid some overproduc-
tion problems. If the initial patterns also obey this
inequality, at least, it is impossible that the usage
of a single pattern p with µp = 1 exceeds demand.
Partitioning models adhere to the following up-

per bound on µp

µp ≤ max
i | Nip>0

{⌈

Di

Nip

⌉}

, ∀p ∈ P ′ .

This is, however, rather a numerical improvement
when solving the master problem and does not
strictly avoid overproduction. Adding the follow-
ing upper bound on µp

µp ≤ min
i | Nip>0

{⌊

Di

Nip

⌋}

, ∀p ∈ P ′

to the partitioning model may help, but can easily
lead to infeasibility.

One might feel tempted to avoid overproduction
by solving the CGA master problem with the exact
demand constraint

∑

p∈P′

Npiµp = Di , ∀i ,

replacing (8). Unfortunately, this may also lead to
an infeasible partitioning problem as the pattern
space does not allow for this. The resulting GGA
still converges theoretically. However, besides fea-
sibility issues when solving the master problem, the
gap might no longer be small.
The fundamental problem with exact demand

fulfillment is to generate the correct pattern space.
A Branch&Price procedure is able to achieve this
but at significant effort, computationally as well as
implementation wise. For completeness, we note
that if overproduction is allowed, then (p ∈ P ′)

B −
∑

i∈I

Nip ≤ min
i

Di .

3.5.4. Allowing Underproduction

In real-world CSPs, we experience at least two
reasons for allowing or dealing with underproduc-
tion. The first reason is, that the group of orders
could lead to patterns which are not easily accepted
due to large trim-loss. People prefer to leave out
some complicating orders or to fulfill them only par-
tially. The second reason may occur in situations
where overproduction is strictly forbidden. This
may lead to additional patterns or patterns with
large trim-loss. Again, in such situations it may be
better to underfill demand.
However, conceptually, it is not trivial to model

underproduction because it leads to conflicting ob-
jective functions. If we allow one pattern for each
item and pattern multiplicity is not restricted, we
can avoid underproduction completely. This ex-
ample illustrates that we somehow need to balance
underproduction versus the number of rolls we are
willing to use, or equivalently, we need to balance
underproduction versus trim-loss. Therefore, the
objective function (24) contains a term which max-
imizes the production or cutting of items and mini-
mizes the number of rolls weighted by their individ-
uals waste. The weighting factor ρ balances both
aspects.
The objective of the master problem is now to

maximize a weighted total production function

max
∑

p∈P′

(

∑

i∈I

WiNip − ρWp

)

µp , (24)
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with factor ρ and pattern waste Wp, subject to the
demand inequalities allowing underproduction

∑

p∈P′

Nipµp ≤ Di , ∀i , (25)

as well as the integrality constraints (9).

The sub-problem remains structurally a
knapsack-constrained MILP with objective
function

max
α

∑

i∈I

(

Wi − πi

)

αi − ρ

(

B −
∑

i∈I

Wiαi

)

,

where πi are the dual values of the demand inequal-
ity (25), subject to constraints (10) & (11). The
term

B −
∑

i∈I

Wiα
∗
i

defines the wasteWp of the newly generated pattern
p, corresponding to optimal solution α∗

i .

3.5.5. Master Rolls with Different Widths and Lim-
ited Availability

Instead of one roll type with width B and in-
finite length, we now consider NR types of rolls
with width Br, r ∈ R = {r1, . . . , rNR}. Further,
we assume that there are Nr ∈ IN0 rolls of type r
available on stock.

We modify the GGA as follows: The master
problem contains the information of the limited
availability of the rolls while the subproblems gen-
erate new patterns for each roll type. The sub-
problems separate with roll type r. This approach
is similar to the work by Holthaus (2002). How-
ever, we consider a more involved objective func-
tion (leading to different pricing problems) and we
limit the number of available master rolls.

If only one type of master rolls is available and if
overproduction counts as waste, minimizing waste
or number of rolls is equivalent. However, this is not
true any longer for master rolls of different widths.
When minimizing the number of rolls, the optimal
solution is to use the master roll of largest width
as often as possible. Therefore, we select as the
objective function for the master problem the waste
per pattern multiplied by the pattern multiplicity

plus the overproduction:

min
∑

r∈R

∑

p∈P′

r

(

Br −
∑

i∈I

WiNip

)

µp

+
∑

i∈I

(

∑

p∈P′

Nipµp −Di

)

(26)

=
∑

r∈R

∑

p∈P′

r

(

Br −
∑

i∈I

(

Wi − 1
)

Nip

)

µp

−
∑

i∈I

Di . (27)

The master problem (7)-(9) gets extended by the
following constraints

∑

p∈P′

r

µp ≤ Nr , ∀r , (28)

where p is member of subset P ′
r ⊂ P ′, if pattern p

is generated for roll type r; e.g., ∪r∈RP ′
r = P ′.

We obtain one knapsack-type subproblem for
each roll type r with objective function

z∗r := min

(

Br −
∑

i∈I

(

Wi − 1
)

αi − πr −
∑

i∈I

πiαi

)

= min

(

Br − πr −
∑

i∈I

(

Wi − 1 + πi

)

αi

)

,

with dual variable πr associated with constraints
(28). The slightly modified feasibility constraint
for a new pattern for each master roll type r reads

∑

i∈I

Wiαi ≤ Br , αi ∈ IN0 , ∀{i} .

The column generation procedure converges, if

∀r : z∗r ≥ 0 ,

otherwise, for each z∗r < 0, one new pattern p for
roll type r is generated (this yields Nip and pattern
p is included in P ′

r). Note that the computational
effort is only linearly higher than in the column gen-
eration approach for the standard CSP. Instead of
one pricing problem, we have to solve Nr of them.
However, with the objective function change, we
lose the nice modified rounding-up property. There-
fore, we need to watch the gap between the objec-
tive function values of the last relaxed master prob-
lem and the final MILP master problem.
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3.5.6. Alternative Objective Functions

Two examples of alternative objective functions
are: (1) to minimize the number of patterns used,
and (2) to minimize the number of rolls subject to
the constraints that at most a certain number of
patterns could be used.
A change of objective function (or problem struc-

ture) may lead to a large gap between the re-
laxed master problem and the master problem, be-
cause the pattern space generated by a CGA is
not complete. In this case, one can implement a
Branch&Price algorithm or resort to the model by
Johnston and Sadinlija (2004).

3.5.7. Stability and Robustness of Software

Using mathematical optimization algorithms and
software in industrials environments for daily oper-
ational decision support, puts severe requirements
of robustness on the algorithms, in the sense of solu-
tion quality, running time, and code stability. The
user expects a certain time behavior and will be
very irritated if one time a solution appears, for
instance, after 20 seconds, another time after 12
minutes, and then again after 2 minutes. The user
interface may capture very incorrect data. Beyond
this, production strategies and, thus, the number
and size of order widths may change over the years.
This could lead to different behavior of the algo-
rithm resulting in different running times or qual-
ity of results. Therefore, in all our implementa-
tions, we put a strong effort on optimality, strong
bounds and structural independence on the ratio of
typical order widths versus the widths of the master
roll. This also leads to our preference for clean, sim-
ple and robust algorithms. Therefore, we have not
tried to implement Branch&Price algorithms, e.g.,
those excellent scientific pieces of work by Vander-
beck (2000) or Belov and Scheithauer (2006), which
appear to us much harder to deliver in such an in-
dustrial quality.

3.6. Computational Results

We have implemented the algorithms in GAMS
(v. 23.9.1) and use CPLEX (v. 12.4) to solve the re-
sulting LP andMILP problems. The computational
tests are performed on a standard laptop computer
(Intel(R) i7 (dual core) with 3.3 GHz and 12.0 GB
RAM) running a 64-bit Windows 7 operating sys-
tem. We stop our CGA iterations when the pric-
ing problem satisfies the stopping criteria with an
absolute tolerance of 0.001. The purpose of these

numerical test runs is to demonstrate that the al-
gorithms work and produce good or optimal results
in reasonable time. Although, we did not find col-
umn generation approaches in the literature, it is
not our claim that our algorithms and methods are
the best or most appropriate. Therefore, our com-
putational experiments run on a set of real world
test instances with no comparisons against other
authors and techniques. We rather want to present
solutions to relevant real world cutting stock prob-
lems, which can be implemented in relatively short
project time, which are well balanced between exact
optimality and heuristics, and are easy to maintain.

The following abbreviations are used in Tables
1-3:

IT: number of iterations (number of relaxed
master problems solved)

RMP: relaxed master problem optimal objec-
tive function value

IMP: (integer) master problem optimal objec-
tive function value

%G: GAP between IMP and RMP in percent,
i.e., (IMP - RMP) / IMP

DS: demand satisfaction (E = equality, O =
overproduction)

nR: number of rolls

nP: number of patterns

nR*: number of rolls obtained with standard
CGA

nP*: number of patterns obtained with stan-
dard CGA

LnP: lower bound on minimum number of
patterns

MnP: minimum number of patterns (proven)

P*: solution uses minimal number of patterns

R*: solution uses minimal number of rolls

T*: solution uses minimal amount of trim-
loss

B: best solution found: the solution con-
tains the least number of patterns among
all solutions found

%Underprod: total underproduction in percent

%W: total waste in percent

sec.: computational time in seconds

11



3.6.1. Benchmark Data Set

For the 1D CSPs, we use 25 real-world problem
instances from various customers, ranging from 1 to
50 different orders. The instances are characterized
by the master roll width, the number of orders, the
order widths, and the number of requested pieces.
The instances are available in the online supplement
of “EJOR.”

3.6.2. CGA: Minimizing Underproduction

In the weighted objective function, the parame-
ter ρ crucially effects the computed solution. The
results in Table 1 reflect the delicate role of ρ. For
ρ = 0, we obtain exact fulfillment of demand in al-
most all cases. Deviation, as for case 7 with one
piece underfulfilled, can be explained by the differ-
ence between the solution of the restricted master
problem (0.371 in this case) to the MILP master
problem (84 in this case). However, the price to
reach exact demand fulfillment is high, which is re-
flected in the large number of rolls. If we start with
large values of ρ, minimizing the number of rolls
is preferred and thus we are not surprised to see
substantial underproduction. If we decrease ρ, at
some value, we exactly meet demand for the first
time. Usually, the number of rolls needed to fulfill
demand exactly is identical to, or does not deviate
too much from, the value obtained by the standard
GGA. If we further decrease ρ, the number of rolls
increases in most cases.
What is now the conclusion about the value of

ρ? For our problem instances, ρ = 0.000001 turned
out to be the best value, yielding good results in al-
most all situations which occurred at our customer.
However, this might be different in other situations.
Thus, our advise is to experiment and analyze the
results.

3.6.3. CGA: Master Rolls with Different Widths
and Limited Availability

We modified the benchmark instances from Sec-
tion 3.6.1 as follows: All data sets contain 3
master rolls of different widths. The width of
the master rolls were selected as follows: roll 2
has width, B2, of the benchmark data set. The
width of roll 1 was reduced by about 30%, B1 =
max{⌊0.7B2⌋,maxi Wi} allowing that the largest
width can be produced, while the width of roll 3
was set to B3 = ⌊1.2B2⌋.
Table 2 summarizes the computational results for

K = ∞, i.e., the knife constraint has not been con-
sidered, and for master rolls with different widths

and availability (equal to N for the three types);
N1, N2 and N3 denote the number of rolls used. So-
lutions computed with the exact demand constraint
are indicated by an “E” in column “DS”. If no solu-
tions existed with the exact demand constraint or
if the relative gap was larger than 20%, we allowed
overproduction (“G” in column “DS”). However, in
this case, the relative waste (“%W”) does not count
overproduction as waste and is, thus, only of limited
use.

Note that: (1) the CGA converges after a few
iterations (“IT”) leading to running times of a few
seconds. (2) Forcing exact demand satisfaction in
the master problem (MILP) for the patterns com-
puted leads to relatively large GAPs. Allowing
overproduction results generally in smaller GAPs,
but the modified round-up property does not hold
(cf. Sect. 3.2). (3) The percentage waste (“%W”),
when forcing exact demand satisfaction, is for most
instances (except for “C01,” “C02,” “C03,” “C07,”
“C49,” and “C50”) competitive and acceptable by
practitioners. The percentage waste for the cases of
overproduction excludes the overproduced pieces.

The limits, Nr, on the number of available master
rolls requires us to think about the computation of
an initially feasible set, P0, of patterns. To generate
P0, we solve the unlimited CSPs for each master roll
width Br separately by the GGA. If P∗

r denotes the
set of patterns in the optimal solution obtained for
width Br, we obtain P0 as the union P0 := ∪rP

∗
r .

If
∑

r Nr is not too small, P0 allows us to compute
an initial feasible solution to the overall problem.
Columns 3 to 5 in Table 2 shows that, in most cases,
the larger master rolls are used up to their limits.

3.6.4. Exhaustion Method: Minimizing the Number
of Rolls and Patterns

The Exhaustion Method is designed to overcome
the two main drawbacks of the GGA: The number
of patterns required tends to be too large and we
have overproduction. Table 3 summarizes the re-
sults of the Exhaustion Method. We report on the
solution computed by the GGA; GGA provides an
upper bound both on the minimal number of rolls
and on the minimal number of patterns. Theoreti-
cal lower bounds on the number of patterns derived
from the bin packing problem (the number of rolls is
not restricted) are reported in column “LnP” while
the minimal number of patterns required is given in
column “MnP” for the cases where the Exhaustion
Method was able to prove them.
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10+5
ρ

nR* 0 0.001 0.01 0.1 0.5 1 5 10 20 30 40 100 1000

C01 1 5r 5r 5r 5r 1r 1r 1r 1r 1r 1r 1r 1r 1r
C02 11 21r 11r 11r 11r 11r 11r 11r 11r 11r 11r 11r 11r 1
C03 4 14r 8r 8r 8r 8r 7r 4r 2 4r 2 4r 2 2
C04 453 1313r 468r 467r 524r 524r 527r 467r 467r 467r 467r 467r 467r 453r
C05 4 12r 5r 5r 5r 4r 4r 4r 4r 4r 3 5r 3 3
C06 17 61r 40r 1 1 1 17r 4 4 17r 4 4 46 73
C07 66 1 84r 1 1 1 1 1 1 1 1 1 1 1
C09 27 34r 27r 27r 27r 14 14 14 14 14 14 14 14 14
C10 27 37r 1 27r 27r 27r 27r 10 10 8 8 8 22 22
C11 47 60r 60r 60r 52r 52r 52r 52r 52r 52r 52r 52r 52r 52r
C12 30 1 32r 1 1 2 2 36 39 25 30 33 39 39
C13 44 99r 44r 44r 44r 44r 44r 44r 44r 44r 44r 44r 44r 44r
C14 7 1 6 3 6 6 6 6 6 6 6 4 3 5
C15 31 56r 33r 32r 34r 32r 31r 1 1 1 1 1 4 4
C16 19 32r 1 1 2 20 23 23 23 26 26 26 26 26
C17 7 15r 3 3 3 3 4 4 4 4 4 4 2 8
C18 97 179r 99r 99r 13 19 34 m m m m m m m
C19 19 8 16 11 15 24 14 13 14 15 15 14 14 13
C27 28 168r 9 9 16 8 8 14 17 12 12 28 28
C28 31 35r 32r 32r 31r 32r 32r 32r 31r 32r 31r 31r 5 13
C29 119 119r 119r 119r 119r 119r 119r 119r 119r 119r 119r 119r 119r m
C32 21 68r 16 8 11 9 7 4 4 7 7 6 8 8
C42 33 113r 8 10 12 9 17 8 10 9 9 9 10 10
C49 440 847r 446r 445r 447r 442r 59 m m m m m m m
C50 453 984r 464r 3 2 1 80 m m m m m m m

Table 1: The number of underproduced pieces, or the number of rolls in case demand is exactly fulfilled, as a function of the
weighting parameter ρ is listed. Note that in the first line we have listed 10+5ρ instead of ρ. Entries such as 44r indicate
that demand has been fulfilled exactly with 44 the number of rolls which can be compared to the number of rolls displayed
in the second column (the values of the standard GGA). The flag “m” indicates runs which had underproduction with more
than 100 pieces; this happens for larger values of ρ minimizing the number of rolls with significant individual wastes. In these
computations we neglected the knife constraint, i.e., K = ∞.
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RC N N1 N2 N3 IT RMP IMP %G DS nR nP nR* nP* %W sec.

C01 1 0 1 0 1 405 405 0.00 E 1 1 1 1 7.92 0.26
C02 4 3 4 4 1 8109 10466 22.51 E 11 5 11 2 18.97 0.54
C03 2 2 2 0 3 714.8 910 21.45 E 4 4 4 3 10.80 0.49
C04 165 90 164 165 2 2286.3 2289.0 0.11 E 419 6 453 4 2.30 0.82
C05 2 1 1 2 3 87.95 783 87.95 E 4 4 4 4 3.69 0.77
C06 7 7 7 4 1 355.5 569.0 37.52 E 18 9 17 9 1.16 0.32
C07 24 19 24 24 1 3156.3 3260.0 3.18 E 67 10 66 9 10.62 0.28
C09 11 4 11 11 2 4383 4383 0.00 E 26 8 27 7 3.17 0.51
C10 11 5 10 11 5 2379.1 2953 19.43 E 26 9 27 6 1.77 1.68
C11 17 10 16 17 3 9140.4 10686 14.46 E 43 18 47 11 5.70 0.74
C12 11 10 8 11 3 4115.5 4318.0 4.69 E 29 12 30 8 3.37 2.71
C13 18 11 16 17 4 220 460 52.17 E 44 22 44 4 0.23 11.39
C15 12 7 12 11 2 150.6 267 43.58 E 30 17 31 16 0.33 4.67
C16 7 6 5 7 7 479.3 2346 79.57 E 18 16 31 16 0.33 4.67
C18 38 20 35 38 13 1094.9 1656 33.88 E 93 21 97 17 0.29 13.54
C28 13 3 13 10 12 225 267 15.73 E 26 19 31 18 3.84 2.57
C29 27 15 24 22 6 4656.5 4724 1.42 E 61 6 119 24 2.31 1.64
C49 177 128 177 177 1 253360 254539 0.46 E 482 38 440 32 10.48 0.25
C50 182 110 182 182 33 173297 174472 0.67 E 474 32 453 33 7.21 0.21

C02 4 3 4 4 2 8109 8467 4.22 G 11 4 11 2 15.34 0.31
C03 2 2 1 2 2 688 732 6.01 G 5 4 4 3 6.08 0.53
C05 2 1 2 2 3 75 88 14.77 G 5 4 4 4 0.25 0.79
C06 7 7 7 7 3 174.2 195.0 10.67 G 21 6 17 9 0.17 0.84
C13 18 8 17 18 5 220 224 1.78 G 43 14 44 4 0.00 1.84
C14 3 2 3 3 4 44 50 12.00 G 8 8 7 6 0.00 1.32
C15 12 7 12 12 4 109.5 115 4.76 G 31 17 31 16 0.00 1.09
C16 7 7 7 7 16 177.9 266 33.12 G 21 11 19 13 0.30 1.74
C17 3 1 3 3 17 27.2 31 12.41 G 7 7 7 7 0.00 5.50
C18 38 31 38 38 11 512.4 518 1.08 G 107 14 97 17 0.29 13.54
C19 5 4 4 1 5 67 111 39.64 G 9 9 6 6 0.02 1.37
C27 12 12 12 6 3 212 233 9.01 G 30 24 28 19 0.01 8.66
C32 8 8 8 8 7 117 135 13.33 G 24 20 21 19 0.01 7.71
C42 21 20 13 5 44 165 188 12.23 G 35 29 33 11 0.01 14.33

Table 2: CSP with three different widths for the master rolls and limited roll availability. Solutions computed with the exact
demand constraint are indicated by an “E” in column “DS”. If no solutions existed with the exact demand constraint or if the
relative gap was larger than 20%, we allowed overproduction (“G” in column “DS”). However, in this case, the relative waste
(“%W”) does not count overproduction as waste and is, thus, only of limited use.
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For the 25 real data instances tested, we observe
that the Exhaustion Method finds a solution with
(1) proven minimal number of rolls and proven min-
imal number of patterns in 10 cases (“C01,” “C02,”
“C03,” “C04,” “C06,” “C13,” “C14,” “C15,”
“C17,” “C19”),
(2) proven minimal number of rolls while reducing
the number of patterns used by at least 1 compared
to the GGA in 14 cases.
The computational times never exceed 3 minutes,
even for the largest instances with 50 orders.

4. 2D trim-loss Minimization

In this section, we derive optimal patterns to sat-
isfy demand for orders consisting of rectangles to
be cut from rolls. Note that general 2D cutting
(or packing) problems require completely different
methods; cf. Vanderbeck (2001) or Lodi et al.
(2002). However, in the current case we need to
minimize the total trim-loss, resulting from hori-
zontal and vertical cuts. Therefore, in our solution
method we exploit the order of the cuts and solve
a multi-step cutting stock problem with guillotine-
cuts, which enables us to avoid the general 2D case
and instead rather resort to solving the standard
CSP as a subproblem. Figure 1 shows the geome-
try and structure of that problem. We want to cut
rectangles, also called formats, from master rolls
of different widths. In order to cut these rectan-
gles, a sufficient number of sheets, whose lengths
has to be determined, is cut from the selected mas-
ter roll. The sheets have the same width as the
master rolls, but they may not use up the whole
length of the master rolls. Sheets host longitudi-
nal stripes (longitudinal patterns), and the stripes
hosts the formats (rectangles) for which we have to
satisfy demand. Thus, the sequence of cuts is: ver-
tical guillotine cuts from the master roll to produce
the sheets, longitudinal guillotine cuts in the sheets,
and again vertical guillotine cuts in the strips. The
longitudinal patterns are subject to a practical re-
strictions that they should not have more than S%
strip-loss.

4.1. Indices and Sets

We use the following indices:

a ∈ A := {a1, . . . , aN I} the given order rectangles;
NA ≤ 25.
The rectangles (also called, formats) are given

in a generic way with respect to their orienta-
tion in the longitudinal strip. We denote this
by [Aa, Ba], we do not distinguish the ordering,
i.e., [Aa, Ba] = [Ba, Aa]. Thus, the notation
[Aa, Ba] or [Ba, Aa] just refers to the rectangles
with sides Aa and Ba without paying attention
to the specific length and width. An additional
attribute signals whether the rectangles should
be considered as oriented (1) or whether they
could be rotated (2).

i ∈ I := {i1, . . . , iN I} the given, oriented order
rectangles; N I ≤ 50. Here, the orientation is
fixed. The oriented order rectangles are ob-
tained by duplicating the unordered order rect-
angles. The side Ai is measured parallel to the
width Wr of a sheet; the side Bi is parallel
to the longitudinal stripe. We denote this by
[Ai ×Bi] where the ordering is important.

j ∈ J := {j1, . . . , jNJ} longitudinal patterns of
sheets; NJ = 4000 – J generated via CE. The
value NJ = 4000 was sufficient for a particular
customer case; it might be adjusted in other
situations.

r ∈ R := {r1, . . . , rNR} roll types; NR = 10.
The master rolls are given by their width Wr

and their inventory stock Sr not modeled ini-
tially.

Note that as the longitudinal patterns should not
have more than S% strip-loss (S = 2), for a specific
customer project and the size of the rectangles to be
cut, NJ was sufficient, and larger than the number
of longitudinal patterns.

4.2. Input Data

These are the relevant input data used:

Br [L] the width of the master rolls.

Bmin, Bmax [cm] minimal and maximal width of
the sheets; Bmax = maxr{Br}.

Da [-] requested number of orders (demand) for
order rectangle a.

IRa [-] indicator, whether (IRa = 2) or not (IRa =
1) order rectangle a can be rotated.

Lmin, Lmax [L] minimal and maximal length of
the sheets.

M [-] the number of available knives.
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GGA LnP MnP sec. Solution(s) computed
nR nP nR nP P* R* T* B

C01 1 1 1 3 X X X

C02 11 2 2 4 X X X

C03 4 3 2 4 4 2 X X X

C04 453 4 4 4 X X X

C05 4 4 2 5 4 3 X

5 2 X

C06 17 9 4 10 17 4 X X X

C07 66 9 4 12 70 4 X

66 5 X X

C09 27 7 4 13 27 4 X X

C10 27 6 5 14 33 5
C11 47 11 8 15 51 8
C12 30 8 6 46 30 7 X

39 6 X X

C13 44 4 4 16 X X X

C14 7 6 4 16 7 4 X X X

C15 31 16 7 43 31 7 X X X

C16 19 13 7 137 19 9 X

20 8 X

C17 7 7 5 9 7 5 X X X

C18 97 17 9 141 98 10 X

97 12 X X

C19 6 6 4 32 6 4 X X X

C27 28 19 5 142 27 7 X X

C28 31 18 18 24
C29 119 24 24 5
C32 21 19 8 150 22 9
C42 32 27 10 157 33 11 X

32 12 X X

C49 440 32 12 157 446 17
452 16 X

C50 453 26 10 152 471 18 X

459 19
457 20

Table 3: Computational results for the Exhaustion Method (EM). The knife constraint has been considered. Theoretical lower
bounds on the number of patterns derived from the bin packing problem (the number of rolls is not restricted) are reported in
column “LnP” while the minimal number of patterns required is given in column “MnP” for the cases where the Exhaustion
Method was able to prove them. For the cases “C01,” “C02,” “C03,” “C04” and “C05,” we applied the model by Johnston
and Sadinlija directly to compute the minimum number, “nP,” of patterns; “nR” is the associated number of rolls - both listed
in the Solution(s) computed part of the table. For each solutions of the EM, the columns “nP,” “nR,” “nT,” and “B” have the
following meaning: “P ∗” indicates that number of patterns is minimal, “nR” indicates that the number of rolls is minimal, “T”
indicates that the solution has minimal trim-loss, and “B” indicates the best solution found (not proven optimal) in case we
display several solutions. If “nR” and “nP” are missing, the GGA produced a solution in which the number of patterns agrees
with the proven value of “MnP.” Note that C27 is one of the cases in which the GGA produces a solution with a minimum
number of rolls which can be improved by one.
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strip-loss

vertical trim-loss

sheet 1 sheet 2

Figure 1: 2D paper cutting in three steps: 1st guillotine-cut (dotted line), 2nd longitudinal cuts, 3rd guillotine- cut (dashed
vertical lines).

4.3. Variables

We use the following – mostly integer – variables:

µrj ∈ IN0 [−] states how often the sheet j can
be cut from roll r; only used in the master
problem.

αrij ∈ IN0 [−] states how often the rectangle
[Ai ×Bi] is contained in the sheet j of roll r.
This variable is used in the subproblem and is
the only independent variable of the subprob-
lem and can be obtained explicitly.

ℓrj ∈ IN0 [mm] specifies the length of the sheet
j of roll r; ℓrj depends on all αrij .

wp ≥ 0 [−] states the trim-loss of pattern p; 0 ≤
wp ≤ B.

4.4. Overview of the Algorithmic Components

The algorithm is structured as follows:

1. The order rectangles [Aa, Ba], given through
their length and width, are duplicated and
yield the oriented rectangles [Ai × Bi]. The
indices i and a are connected as follows

a(i) :=

{

i , 1 ≤ i ≤ NA

i−NA , NA + 1 ≤ i ≤ 2NA

which yields

[Ai ×Bi] :=
{

[Aa(i) ×Ba(i)] , 1 ≤ i ≤ NA

[Ba(i) ×Aa(i)] , NA + 1 ≤ i ≤ 2NA .

or (∀{i | 1 ≤ i ≤ NA})

[Bi′ ×Ai′ ] = [Ai ×Bi] , i′ := i+NA .

The demand for order rectangle [Aa, Ba] can
thus be fulfilled the by orientated rectangles i
and i′.

2. For each master roll r with width Wr, enumer-
ation is used to

(a) generate up to NJ stripe partitions (lon-
gitudinal patterns) which are compatible
to {Ai} (the width of the stripes corre-
spond to the width Ai) – thus, the strip-
loss and the width of each longitudinal
strip are known – and

(b) solve the corresponding subproblem (min-
imization of the vertical trim-loss of a
stripe partition, see Section 4.5.2) – thus,
the vertical trim-loss and the total trim-
loss of each roll as well as its length ℓrj are
known. In addition, the solution of the
subproblem gives us the number, N tot

raj, of
order rectangles [Aa, Ba] covered by sheet
rj.

3. The master problem is a partitioning prob-
lem. This MILP problem calculates how many
sheets of length ℓrj are required in order to
meet the demand for order rectangles [Aa, Ba].

4.5. Master- and Subproblem

4.5.1. The Master Problem: Partitioning Model

The master problem minimizes the total trim-
loss, i.e., the model makes use of the following ob-
jective function

min
∑

r∈R

∑

j∈J

Wrjµrj , (29)

with trim-lossWrj for the sheet rj; the integer vari-
able µrj denotes its multiplicity. The demand equa-
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tion reads

Da ≤
∑

r∈R

∑

j∈J

N tot
rajµrj ≤ Da +Dover

a , ∀a (30)

or

Di ≤
∑

r∈R

∑

j∈J

N tot
rijµrj +

∑

r∈R

∑

j∈J

N tot
r,i+NA,jµrj

≤ Di +Dover
i , ∀{i | 1 ≤ i ≤ NA} . (31)

The multiplicity variables can be bounded by

µrj ≤ max
a

{⌈

Da +Dover
a

max{1, N tot
raj}

⌉}

, ∀{rj} .

(32)
The integrality constraints are given by

µrj ∈ IN0 , ∀{rj} . (33)

For operative reasons, it might be useful to use only
rolls of a particular width r∗, because several of such
rolls might be cut on top of each other simultane-
ously (e.g., up to four rolls can be cut at the same
time in our case). In this case, model (29)-(33)
is substituted by a sequence of NR models, where
each time only one of the NR roll widths is used; the
user can then select the appropriate solution. Care
has to be taken when restricting overproduction;
this can lead to infeasibilities when considering a
single roll width. It might be useful to consider a
goal programming approach which first minimizes
the overproduction and second the trim-loss, or vice
versa.
Alternatively, we introduce the binary variables

δr which is 1 if a roll of width r is used and 0 oth-
erwise. The following equation

∑

r∈R

δr = 1

and inequalities

µrj ≤ δr , ∀{rj}

need to be added to the model.
The inventory stock can be modeled with the fol-

lowing approach: Each individual master roll t by
its roll type r (width) and its (remaining) length
Lt. Then, the following constraints

µrj =
∑

t | Rt=ord(r)

µrjt , ∀{rj}

and
∑

t | Rt=ord(r)

Lrjµrjt ≤ Lt , ∀{rjt}

need to be satisfied. The integer variable µrjt de-
scribes, how many sheets of type rj are to be cut
from master roll t.

4.5.2. The Subproblem

For a given distribution of longitudinal cuts for a
sheet rj – i.e., a system of values Ai, 1 ≤ i ≤ 2NA

– the task is to decide on the lengths ℓrj of the sheet
such that the vertical trim-loss wver

rj , the total trim-

loss wtot
rj , or the wrel

rj striploss is minimized. The
integer variable αrij defines the amount of times
the oriented rectangle [Ai ×Bi] is contained in the
longitudinal stripe i (defined through Ai) with mul-
tiplicity Npat

rij . This enables us to express the verti-
cal trim-loss as

wver
rj :=

∑

i | Npat
rij

>0

(

Npat
rij Ai

)

srij ,

srij := ℓrj −Biαrij .

The absolute and relative trim-loss – the latter lead-
ing to a MINLP problem – are given through

wtot
rj := Wrℓrj + wver

rj

and
wrel

rj := Wr + wver
rj /ℓrj .

The relative trim-loss measure for the objective
function leads to more large sheets close to the limit
Lmax. However, they will contain more formats.
The model is restricted by

Lmin ≤ ℓrj ≤ Lmax

and (∀{rij | Npat
rij = 0})

αrij = 0 ,

αmin
rij :=

⌈

Lmin

Bi

⌉

≤ αrij ≤

⌊

Lmax

Bi

⌋

=: αmax
rij .

4.5.3. Explicit Solution of the Subproblems

For computational efficiency, we suggest to calcu-
late the solution of the subproblems and all derived
data (αrij , ℓrj) simultaneously with CE. The struc-
ture of the subproblem allows us to compute the
optimal values of αrij analytically. The flowchart
for the explicit calculation of αrij for sheet rj is
summarized in Algorithm 4.1.
Note that this explicit solution method works for
the absolute as well as the relative trim-loss.
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Algorithm 4.1 Explicit solution of the subproblem

1: zmin := +∞ // Initialization of the trim-loss
2: for all i = 1, . . . , NW = 2NA do
3: if Npat

ij = 0 goto line 26

4: αmin
i :=

⌈

Lmin

Bi

⌉

, αmax
i :=

⌊

Lmax

Bi

⌋

5: // loop over all feasible αi

6: for all k = max{1, αmin
i }, . . . , αmax

i do
7: αi := k, ℓ := Bik, wstrip := Wℓ, wver := 0
8: // inner loop over all i′ 6= i
9: for all i′ = 1, . . . , 2NA do

10: if Npat
ri′j = 0 or i′ = i goto line 15

11: αi′ :=
⌊

ℓ
Bi′

⌋

, wver
i′ := Npat

ij Ai (ℓ−Bi′αi′), wver := wver + wver
i′

12: end for
13: z := wstrip + wver // absolute trim-loss

14: z := wstrip+wver

ℓ
// relative trim-loss

15: // check, whether or not z leads to an improvement compared to zmin

16: if z < zmin then
17: ℓ∗ := ℓ, wstrip

∗ := wstrip, wver
∗ := wver

18: for all i” = 1, . . . , 2NA | Npat
i”j > 0 do

19: α∗
i” := αi”, wver

i” := Npat
ri”jAi”

(

ℓ∗ −Bi”

⌊

ℓ∗
Bi”

⌋)

20: end for
21: end if
22: end for
23: end for
24: return α∗ and ℓ∗
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4.5.4. Assignment of Sheets to the Orders

If rolls and sheets are treated as individuals, a
result such as

Order A25022007 is satisfied by:

Sheet 1-433 of roll R102-stock0017

Sheet 22-40 of roll R152-stock0002

enables us to know how the orders are satisfied.
Further, we might be interested what happens with
each rectangle cut from a roll and sheet, i.e., for
which order it is intended.
The assignment of rectangles in the sheets to the

original orders is done after optimizing the trim-
loss. The algorithm does not require any additional
data or results other than the ones provided for
the trim-loss minimization problems. However, the
following derived data are necessary:

i = i(a) [-] rectangle i, corresponding to order a
[derived entry date].

i′ = i′(a) [-] rectangle i′, obtained through rota-
tion of rectangle i and corresponding to order
a [derived entry date].

Da [-] the order quantity for order a [derived en-
try date].

Nrji [-] the quantity how often rectangle i is con-
tained in sheet rj.

Nrji′ [-] the quantity, how often rectangle i as-
sociated with rectangle i′ is contained in sheet
rj.

µrj [-] the quantity, how often sheet rj is used.

Xrja := µrj (Nrji +Nrji′) [-] the quantity, how
often the order a corresponding to rectangles i
and i′ are produced by sheet rj.

The model and algorithm requires the following
variables:

xarj ∈ IN [−] the number of rectangles, cut from
the sheet rj, used for order a.
The variables can assume values between 0 and
Xrj (Nrji +Nrji′ ).

yarj ∈ {0, 1} [−] indicates, whether (1) or not
(0) order a is served by sheet rj.

The goal is to minimize the sum over all quantities
sa :=

∑

rj yarj, which measures how many sheets
serve order a, i.e.,

min
∑

a∈A

sa =
∑

a∈A

∑

rj

yarj .

The demand satisfaction is a constraint

min
∑

rj

xarj = Da .

The variables xarj are restricted by

xarj ≤ min{Xarj, Da}yarj ; ∀{arj} .

Note: This assignment problem is solved after the
minimization problem. The quality of the results
with respect to trim-loss and the quantity of sheets
is not affected.

4.6. Computational Results

We use the same computational framework as for
the 1D case (cf. Sect. 3.6). The details of the
12 test instances used are summarized in Table 4.
Each 2D instance is characterized by the number
of orders, NA, and the size of the rectangles to be
cut (i.e., length and width), quantity of requested
pieces, number of different-size master rolls, NR,
and their widths. Each master roll is assumed to
have infinite length.

The results for the 2D test instances are summa-
rized in Table 5. For the reported optimal solu-
tion, NS is the number of different sheets required,
“S” (surplus) indicates the number of overproduced
pieces, “%W” is the relative waste in percent and
“T” shows the time in milliseconds. The interpre-
tation of the “Optimal Solution” is illustrated by
the example 1,213×[4A2·3+A1r·5]→2: The “→2”
indicates that this sheet is cut from roll type 2 with
multiplicity 1,213. “4A2·3” expresses that order A2
enters Npat

rij = 3 times and that αrij = 4; the to-
tal contribution of that sheet to order A2 is thus
1, 213 · 4 · 3 = 14, 556 pieces. The term “A1r·5”
indicates that the sheet contains order A1 in ro-
tated placement and contributes 1, 213·1·5 = 6, 065
pieces.

The table shows that the model and algorithm
can handle various different situations regarding
size of the rectangles and from small demand num-
bers to large ones reaching up to 1,000,000. All re-
sults were obtained in fractions of one second. From
a practical point, sheets which are used only once or
with small multiplicity, are not desirable. As they
do not contribute many pieces, they are usually ne-
glected – little underproduction is not a problem.
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Orders Master Roll

NA Dimensions [mm] Quantity NR Width [mm]

2D01 2 21×22, 25×27 20,812 21,367 3 102 122 152
2D02 3 36×80, 26×85, 24×33 8,000 8,000 20,000 2 102 152
2D03 9 24×36, 36×80, 29×100 20,000 15,000 5,000 3 152 122 102

39×103, 29×100, 39×93 5,000 5,000 5,000
19×75, 29×68, 19×29 5,000 15,000 15,000

2D04 1 101×43.5 10,500 1 127
2D05 3 48×110, 43.5×101, 37.5×87 15,000 15,000 20,000 1 122
2D06 1 3×2 “Schnipselfall” 1,000,000 1 102
2D07 6 43.5×101, 33.5×79, 28×68 10,500 70,500 43,000 2 127 122

23×58, 48×110, 53×122 21,500 2,000 4,500
2D08 1 3×2 “Schnipselfall” 1,000,000 1 102
2D09 2 as 1 but 85% striploss, 100 pc overproduction 3 102 122 152
2D10 6 as 7 but 82% striploss as 7 2 127 122
2D11 1 as C08 10 pc overproduction 1 102
2D12 1 50×50 5556 8 102 112 122 152

162 182 203 228

Table 4: Data for the 2D test instances.

NS Optimal Solution S %W T

2D01 6 1×[3A2·2+A2r·2]→1 , 2×[4A2·4+A1r·5]→2 0 0.65 78
290×[6A1·5+A1·4]→3 , 1×[6A2·2]→3
1×[3A1·6+3A1·5]→3 , 1,007×[4A2·6+A1r·5]→3

2D02 5 1×[3A2·1+A3·2]→1 , 1,996×[3A2·2]→1 , 1×[2A2·1+3A3·4]→2 0 3.87 109
2,665×[2A1·1+3A2·2]→2 , 1,335×[1A1r·1+2A3r·3]→2

2D03 9 625×[8A7·1]→1 , 1,000×[A2·1+2A2r·1]→1 0 1.84 125
2,750×[2A2r·4+A8r·5]→1 , 1,000×[A9·5+A1·6+A3·5]→1
1,000×[A9·5+A1·6+A5·5]→1 , 50×[A1·2]→2 , 2,500×[A1·3+A4·1]→3
2,500×[A6r·1+A9r·2]→2 , 1,250×[A8·1+A9r·2]→2

2D04 1 10,500×[A1r·1]→1 0 20.47 47
2D05 3 10,000×[1A2·1+2A3·1]→1 , 5,000×[A2r·1]→1 , 15,000×[A1r·1]→1 0 11.47 47
2D06 1 258×[102A1·38]→1 8 0 50
2D07 8 1×[2A2·1+2A3·1]→1 , 8,350×[3A2·1+A3·1]→1 , 0 4.30 47

1,852×[2A2·2+A4r·7]→1 , 4,777×[2A3·2+A3r·5]→1 ,
1×[2A3r·5+A4r·6]→1 , 10,500×[A1·1+A2r·3]→1 ,
2,000×[A5·1+A2r·3]→1 , 4,500×[A6·1]→2

2D08 1 1,548×[34A1·19]→1 8 0 47
2D09 2 1,213×[4A2·4+A1r·5]→2 , 492×[6A1·5+A2·4]→3 3 9 0.66 62
2D10 8 6,382×[2A2·1+2A3·1]→1 , 17,494×[3A2·1+A4·1]→1 , 0 8.08 62

2,000×[A4·2+A5·1+A6·1]→1 , 7,559×[4A3·1]→2 ,
5,250×[2A1·5+A2·6]→2 , 1×[3A4·1+A6·3]→2 ,
1×[2A2·1+A6·3]→2 , 1,249×[2A6·1]→2

2D11 1 as C08 8 0 47
2D12 1 1,852×[3A1·1]→4 0 1.32 312

Table 5: Optimal solutions computed by the polylithic solution method for the test instances of Table 4.
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5. Current-Edge Cutting Stock Problems

We assemble various CSPs which are at the fore-
front of research or cannot be found in the litera-
ture.

5.1. CSPs Under Uncertainty

An important practical challenge is how to deal
with variations in demand. We follow the spirit by
Beraldi et al. (2009) and treat the demand stochas-
tically: In the first stage, decisions on the choice of
patterns have to be made to satisfy first stage de-
mand (Di) while their multiplicity can be adjusted
in a second-stage when the stochastic second-stage
demand (Dis) unfolds. The task is then to minimize
the total expected number of patterns used.
The column enumeration procedure (cf. Sect.

3.3) can be adjusted in a straight forward manner to
deal with demand uncertainty. Once the columns
(collected in set P ′) have been enumerated, we solve
the following MILP:

min
∑

p∈P′

(

µp +
∑

s∈S

psµps

)

,

with probability ps of scenario s occurring, subject
to the first-stage demand-fulfill inequalities (8), the
second-stage demand constraints

∑

p∈P′

Nipµps ≥ Dis , ∀{is} ,

and the connection of the first-stage and second-
stage pattern

δp ≤ µp ≤ Mpδp , ∀p ∈ P ′

and

µps ≤ Mpδp , ∀p ∈ P ′ , ∀s ,

where binary variable δp indicates whether or not
patter p is used in the first stage or not and Mp is
a sufficiently large constant. We require integrality
on the decision variables

µps ∈ IN0 , ∀p ∈ P ′ , ∀s

and

δp ∈ {0, 1} , ∀p ∈ P ′ ,

as well as integrality constraint (9).
Alem et al. (2010) also consider stochastic de-

mand for CSPs. However, the first stage deci-
sion is on the multiplicity and pattern choice where

the recourse decisions determine over- or under-
production of the stochastic demand realized. The
objective is then to minimize the cutting cost plus
penalty cost for over- and under-production. The
resulting problem structure allows us to apply a col-
umn generation approach.

5.2. CSPs with Tolerances

In the literature, cutting stock problems appear
with certain number of order rolls demanded. How-
ever, in reality, the orders are often specified in
weight. If one has master rolls of different lengths
(!) available, the total weight ordered is subject to
different number of rolls cut to a certain pattern.
Both, the ordered weights and widths, are subject
to tolerances.

5.3. CSPs with Limited Inventory

In Section 3.5.5 we have provided a CGA for the
simplest case of master rolls with different widths
and limited stock availability, but under the as-
sumption that all have the same length (usually, in-
finity). However, on stock may imply, that the rolls
on stock have also finite and different lengths. This
case may occur under certain production philoso-
phies and forces us to treat rolls as individuals.

5.4. CSPs and Simultaneous Production Planning
and/or Scheduling

These problems are really hard as we have to de-
liver at certain due dates but there are already ex-
amples in the literature as outlined in Section 2.
Here we find make-to-stock versus make-to-order
(and mixed strategies). This class of problems is
challenging as cutting procedures and production
scheduling vary from case to case.

6. Paper Industry and Optimization

In recent times, the paper industry has vigorously
cut back their capacity, rising the prices. Rising en-
ergy and raw material costs pressure the manufac-
turers. Many machines were shut down worldwide.
Also, the concentration process has continued.

6.1. Optimization Software: Importance and Fi-
nancial Impact

The use of automated, software-based waste opti-
mization provides great benefits to all producers of
rolls or formats such as paper mills, film producers
and steelmakers.
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A manually performed cut plan by a production
planner, even though s/he might have significant
experience and knowledge, is, depending on the
complexity, very time consuming and reaches, as
opposed to a software-based plan, usually not the
optimum. This becomes even more significant for
producers with very different widths or format sizes
and different machines.
Our customers use the trim optimization both

when determining the optimal width of the par-
ent rolls and when planning secondary production
processes. Waste optimization, integrated into the
planning process, is an essential, indispensable ele-
ment of the short- and long-term production plan-
ning. Depending on the complexity of the process,
using the integrated waste optimization, even an
automated production planning is possible, e.g., a
weekly schedule.
For paper factories, which produce only standard

or simple cutting patterns, mathematical optimiza-
tion may not be beneficial. Manual results are hard
to beat for plants with very standardized product
portfolio. In contrast, for plants which encounter a
broad spectrum of products, our experience is a fol-
lows. Depending on the complexity of their produc-
tion structure, our customers confirmed 3-6 % re-
duced trim-loss, comparing mathematical optimiza-
tion based cutting stock solutions to their manual
procedures.
Let us inspect this in detail for a typical customer

producing special paper: For an annual production
of 50,000 tons a trim-loss reduction of 3% saves
1,500 tons per year. Even if the trim loss is used
in a recycling mill as raw material, the total sav-
ing is 285,000 Euro production costs at the paper
machine if we apply typical production cost of 190
Euro per ton of produced paper, not considering
the raw material price. Those paper factories which
cannot recycle the savings are significantly higher.
The one-time purchase cost for our computer-based
solution is about 30,000 to 40,000 Euro. Under the
conditions of this example, the Return of Invest-
ment (ROI) is reached after only two months. A
further advantage is the decrease of dependence on
employees with many years of knowledge and expe-
rience in the creation of manual cutting plans.
On a global scale, the financial benefit of opti-

mization tools in the cutting paper industry varies,
e.g., dependent on the machine type and order va-
riety. In our experience, manual plans exhibit an
average waste of between 3-5%, while optimization
yields in less than 2% waste, often below 1%. One

percentage waste minimization may lead to an an-
nual saving of one million Euro per paper machine.

6.2. Outlook

In our experience, the diversification of our
clients’ products and the industry as a whole in-
creases steadily, so that the use of a software-
supported, automated production planning with in-
tegrated cutting stock optimization becomes more
and more a necessity. Solving cutting stock prob-
lems is not an isolated activity any longer.

7. Conclusions

Motivated by challenges arising in the paper in-
dustry, we have presented various polylithic solu-
tion approaches to model and solve a testbed of 1D
and 2D real-world cutting problems. The meth-
ods are implemented in GSE’s ERP system. We
have developed new column generation approaches
to treat problems with different master roll widths,
limited number of master rolls on stock, or prob-
lems in which underproduction is allowed but to
be minimized. Numerical experiments demonstrate
the value of these approaches and in some data in-
stances also suggest either the use of Branch&Price
techniques or other solution methods like the Ex-
haustion Method, which is very efficient and pro-
duces near optimal solutions for minimizing the
number of patterns. The presented polylithic so-
lution methods yield practically superior solutions
compared to the standard GGA, with practically
feasible computational times.
As each paper producing company has its own

production processes specific cutting machines, the
mapping of reality and abstraction into a mathe-
matical model and algorithm has, to our experience,
the highest priority to receive the appreciation of
our clients. Besides this, future research and ef-
ficient mathematical techniques on the integration
of CSPs into the production planning process and
the incorporation of uncertainty would be very wel-
come.

Appendix A. Post-Processing of Optimal
GGA/CGA Solutions

The GGA/CGA produces solutions which are
minimal in the number of rolls but are occasion-
ally lead to overproduction exceeding the demand
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Di by Si pieces. We have developed three heuris-
tics to eliminate overproduction: The first one just
modifies patterns, the second one modifies patterns
and generates new ones, and the third one is a com-
bination of both.
In Case 1, for a given Si, we can find a pattern p

used with multiplicity Mp and Nip > 0 subject to

∃κ | Si = κMp ∧ κ = 1, 2, . . . , Nip ∈ IN ,
(A.1)

where κ is an integer number. In this simple case,
we modify pattern p as follows:

Nip := Nip − κ and wp := wp + κWi .

This implies that the number of pieces i, produced
by using pattern p Mp times, is reduced by Si =
κMp.
Case 2 is more complicated. Let Rip := NipMp

denote the number of pieces i produced by using
pattern p Mp times. If we allow a new pattern p′,
in which item i occurs µ times, to be used π times,
the reduction condition reads now

(Nip − κ) (Mp − π) + µπ = Rip − Si

or
(κ+ µ−Nip)π = κMp − Si , (A.2)

where π reduces the number of rolls cut to pattern
p. The term µπ considers the number of pieces of
type i produced by using the new pattern π times.
Depending on the solution of (A.2), p′ does not con-
tain item i at all (Np′i = 0) or has a reduced number
of it (Np′i < Nip) while others items i′ remain un-
changed (Ni′p′ = Nip). For π = 0 we obtain the
simple case (A.1) above; it suffices to modify just
one pattern.
We solve the diophantine equation (A.2) by tests

in three nested loops:

π = 0, 1, . . . ,

k = 1, 2, . . . , Npi ,

µ = 0, 1, . . . .

The existing pattern p is modified by

Nip → Nip − κ and Mp → Mp − π .

For p′, item i and all other items i′ 6= i we apply

Ni′p′ → Nip ,

Nip′ → µ ,

Mp′ → π .

Unfortunately, there are still situations not cov-
ered by Case 1 and Case 2. Let us illustrate this
for item i = 14 (also called A14) by the following
example with D14 = 1:

item Nip Mp

p11 A14 1 2
p12 A14 1 5
p23 A14 1 1

We have S14 = 7 surplus items. The patterns p11,
p12 and p23 contain other items not relevant here.
The equality (A.1) Si = κMp does not have a so-
lution for κ ≤ 1; similarly, (A.2) does not have a
solution. The best we could do is to eliminate A14
in p23 which leaves a surplus of S′

14 = 6.
Therefore, we add Case 3. For those widths i

with Si > 0 we generate a list Li := {p′1, p
′
2, p

′
3, . . .},

which contains those patterns in which item i oc-
curs, i.e., for all elements p′m ∈ Li we have: Nipm

>
0 with pm = p(p′m) for all m. Now we check for all
m, whether κ ≥ 1 exists with κMp ≤ Si. If it ex-
ists, item i in pattern pm is eliminated k times and
we obtain S′

i := Si − κMp. If S′
i > 0, we continue

the test for the next m and pattern pm until all
patterns in Li have been tested. If after this, we
still have S′

i > 0, we continue with Case 2.

Appendix B. Deriving the Pricing Problem

In this section, we briefly describe how the pricing
problems of the cutting stock problem are derived.
Let the master problem (minimization problem)

contain all possible patterns P ; the restricted mas-
ter problem the patterns P ′ ⊆ P . An optimal so-
lution of restricted master problem defines also an
optimal solution for the master problem, if all the
reduced cost

cp − πAp ≥ 0 ∀p ∈ P (B.1)

with objective function coefficient cp for variable
µp, (vector of) dual variables π of all functional
constraints and Ap being the constraint coefficient
matrix of variable µp.
Thus the pricing problem is obtained my mini-

mizing (B.1) over all p. Naturally, the constraints
of the pricing problem ensure that the newly com-
puted pattern is feasible, i.e., is part of the set P .
Let us illustrate this by the objective function

term

∑

r∈R

∑

p∈P′

r

(

Br −
∑

i∈I

(

Wi − 1
)

Nip

)

µp (B.2)
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occurring in (27). From this term and the inequal-
ities (28)

∑

p∈P′

r

µp ≤ Nr , ∀r , (B.3)

and (8)
∑

p∈P′

Nipµp ≥ Di , ∀i , (B.4)

we had derived the pricing problem

z∗r := min

(

Br −
∑

i∈I

(

Wi − 1
)

αi − πr −
∑

i∈I

πiαi

)

.

(B.5)
We note in (B.5) that the

∑

p∈P′

r
has disappeared,

and that all occurrences of Nip have been replaced
by αi. Instead of

∑

r∈R we have to deal with r
independent pricing problems to be solved. The
coefficients appearing with the Lagrange multipliers
πr and πi are those in (28) and (8) appearing with
the µp variables.
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