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1 Introduction

Since there has been tremendous progress in planning in the process industry
during the last 25 years, it might be worthwhile to give an overview of
the current state-of-the-art of planning problems in the process industry.
This is the purpose of the current contribution which has the following
structure: we start with some conceptional thoughts and some comments
on special features of planning in the process industry. What is said in
this article applies to the chemical but also to the pharmaceutical as well
as to the food industry. The reader will find an orientation on production
planning, strategic and design planning, planning under uncertainty and
multi-objective planning. In Section 2 the focus is on planning features one
would expect in a process industry planning model. Section 3 and 4 address
planning under uncertainty and multi-criteria planning.

1.1 A Definition of Planning

A definition of the term planning leads to a group of related terms such
as strategic planning, design planning, master planning, operative plan-
ning, and production planning. Planning needs also be distinguished from
scheduling.

A starting point could be Pochet and Wolsey (2006, [21], p. 3) in their
definition of production planning: Production planning is defined as the
planning of the acquisition of the resources and raw materials, as well as
the planning of the production activities, required to transform raw mate-
rials into finished products meeting customer demand in the most efficient
or economical way. Note that this does not say anything about the length
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of the time horizon. Their definition of supply chain planning is similar
to production planning, but extends its scope by considering and integrat-
ing procurement and distribution decisions. They distinguish supply chain
design problems which cover a longer time horizon and include additional
decisions such as the selection of suppliers, the location of production facil-
ities, and the design of the distribution system.

In this article we use planning for any type of strategic, design or oper-
ative planning. We always assume that we are dealing with multi-site pro-
duction networks. Operative planning includes production planning within
multi-site production networks and scheduling of individuals sites. While in
production planning the focus is rather on optimizing the trade-off between
economic objectives such as cost minimization or maximization of contribu-
tion and the less tangible objective of customer satisfaction, in scheduling
due dates, makespan, or machine utilization become more relevant. So, in-
stead of the term production planning we use the term operative planning
(or just, planning) targeting in supporting decision which have an opera-
tive impact on a time scale of several months, may be up to a year. Plan-
ning involves the determination of operational plans that support different
short- or mid-term objectives for the current business and for a given multi-
site topology. Planning covers a horizon from a few months to 12 months,
and can be extended to cover years (when it comes to strategic or design
planning) and time-discrete models are used. If the time horizon becomes
smaller we are in the realm of scheduling where time-continuous models
become more efficient. When we extend the time-horizon we are dealing
with strategic planning or design planning covering a year up to 20 years.
Design planning includes those parts of the Pochet-Wolsey definition above
allows beyond the topology also for the design of production units, or the
capacity of warehouses. Strategic planning is more on product and customer
portfolio optimization but also on the acquisition of whole production sites.
Kallrath (2007, [16]) elaborates more on the concept of operative planning
and design planning problem and promotes the idea to combine both in one
single model.

1.2 Special Planning Features in the Process Industry

In the process industry continuous and batch production systems can be
distinguished. There exists also semi-batch production which combines fea-
tures from both. Plants producing only a limited number of products each
in relatively high volume typically use special purpose equipment allowing
a continuous flow of materials in long campaigns, i.e., there is a contin-
uous stream of input and output products with no clearly defined start
or end time. Alternatively, small quantities of a large number of products
are preferably produced on multi-purpose equipment which are operated
in batch mode. Batch production is characterized by well-defined start-ups,
e.g., filling in some products and follow-up steps defined by specific tasks for
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heating, mixing and reaction, and a clearly defined end for extracting the
finished product. Batch production involves an integer number of batches
where a batch is the smallest quantity to be produced; the batch size may
also vary between a lower and upper bound. Several batches of the same
product following each other immediately establish a campaign. Produc-
tion may be subject to certain constraints, e.g., campaigns are built up by
a discrete number of batches, or a minimal campaign length (or minimal
production quantity) has to be observed. Within a fixed planning horizon,
a certain product can be produced in several campaigns; this implies that
campaigns have to be modeled as individual entities. One might argue that
details of the batch production could be rather found in a scheduling model
than in scheduling. However, the model provided in Kallrath & Maindl
(2006, [17], Chap. 8) is a clear example where batch and campaign features
have been incorporated into a time-discrete planning model enhancing it by
some continuous time aspects. This problem has been solved the first time
by Kallrath (1999, [10]). An elegant and numerically more efficient formu-
lation to add time continuity to discrete-time models has been developed
more recently by Sürie (2005, [24]). However, it seems that this formulation
yet needs to be extended to support multi-stage production.

Chemical products produced on different production equipment could
lead to different performance when further used. Therefore, customers might
require that a product always is produced on one particular machine, or at
least it is always produced on the same machine. This features is called
origin-tracing and is treated in Kallrath (2005, [15]). Certain performance
chemicals or goods in the food industry have a limited shelf-life and are
subject to an expiration date, or can only be used after a certain aging
time. To trace those time stamps requires that individual storage means
are considered, e.g., containers or drums, which carry the time stamp or
the remaining shelf-life. A model formulation is provided in Kallrath (2005,
[15]).

Another special feature in the refinery or petrochemical industry or pro-
cess industry in general is the pooling problem (see, for instance, [1], or
Chapter 11 in [18]). This is an almost classical problem in nonlinear opti-
mization. It is also known as the fuel mixture problem in the refinery indus-
try but it also occurs in blending problems in the food industry. The pooling
problem refers to the intrinsic nonlinear problem of forcing the same (un-
known) fractional composition of multi-component streams emerging from a
pool, e.g., a tank or a splitter in a mass flow network. Structurally, this prob-
lem contains indefinite bilinear terms (products of variables) appearing in
equality constraints, e.g., mass balances. The pooling problem occurs in all
multi-component network flow problems in which the conservation of both
mass flow and composition is required and both the flow and composition
quantities are variable.

Non-linear programming (NLP) models have been used by the refining,
chemical and other process industries for many years. These nonlinear prob-
lems are non-convex and either approximated by linear ones which can be
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solved by linear programming (LP) or approximated by a sequence of linear
models. This sequential linear programming (SLP) technique is well estab-
lished in the refinery industry but suffers from the drawback of yielding only
locally optimum solutions. Although many users may identify obviously sub-
optimal solutions from experience, there is no validation of non-obviously
sub-optimal solutions, as this would require truly globally optimal solutions.
Recent advances in optimization algorithms have yielded experimental aca-
demic codes which do find globally optimal solutions to large scale pooling
NLP models (Meyer & Floudas (2006, [20]). Non-convex nonlinear models
are not restricted to the oil refining and petrochemical sector, but arise in
logistics, network design, energy, environment, and waste management as
well as finance and their solution asks for global optimization.

1.3 Some Comments on Planning and Scheduling in the Process Industry

Planning and scheduling is part of company-wide logistics and supply chain
management. Planning and scheduling are often treated as separate ap-
proaches to avoid mathematical complexity. Depending on the level of de-
tail required, the border lines between planning and scheduling are diffuse.
There could be strong overlaps between scheduling and planning in produc-
tion, distribution or supply chain management and strategic planning. The
main structural elements of planning and scheduling in the process industry
are:

• multi-purpose (multi-product, multi-mode) reactors,
• sequence-dependent set-up times and cleaning cost,
• combined divergent, convergent and cyclic material flows,
• non-preemptive processes (no-interruption), buffer times,
• multi-stage, batch & campaign production using shared intermediates,
• multi-component flow and nonlinear blending,
• finite intermediate storage, dedicated and variable tanks.

Structurally, in scheduling these features often lead to allocation and se-
quencing problems, knapsack structures, or to the pooling problem. Al-
though the horizon of scheduling problems is usually only days to a few
weeks, time-discrete models lead to too many binary variables. Thus, time-
continuous formulations are preferable; cf. Janak et al. (2004, [8]) or the
reviews by Floudas & Lin (2004, [4]) or Floudas (2007, [2]). The largest
scheduling problem using a continuous-time approach has been solved by
Janak et al. (2006a, b; [6], [7]). It includes over 80 pieces of equipment, con-
siders the processing recipes of hundreds of different products and leads to
a MILP problems with up to 463,025 constraints, 55,531 variables among
them 8,981 binary variables, and 1,472,365 non-zeroes.

In production or supply chain planning, we usually consider material
flow and balance equations connecting sources and sinks of a supply net-
work avoiding some of the complicating details of scheduling. Time-indexed
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models using a relative coarse discretization of time, e.g., a year, quar-
ters, months or weeks are usually accurate enough. LP, linear mixed integer
programming (MILP) and nonlinear mixed integer programming (MINLP)
technologies are often appropriate and successful for problems with a clear
quantitative objective function as outlined in Section 2, or quantitative
multi-criteria objectives. A typical size planning problem with 4 sites, 800
different products, 1,500 different combinations of product and produc-
tion plant, 10,000 different combinations of customer, product, package and
month are involved is reported in Kallrath (2005, [15], Sect. 5.1). This prob-
lem leads to over 200,000 variables, 380,000 non-zero elements, 400 integer
variables and 900 semi-continuous variables. The number of discrete vari-
ables usually can reach a few thousand.

2 Model Features in Planning Problems

In the literature and in available software packages we usually find discrete-
time models supporting multi-period analysis, i.e., nearly all the data may
vary over time and allow to evaluate scenarios that involve time depen-
dent aspects such as seasonal demand patterns, new product introductions,
shutdown of production facilities for maintenance periods. These models
include the following main structural objects which are represented by the
corresponding indices of the model:

– Locations can be production or storage sites, hosting plants and tanks,
or demand points hosting tanks.

– Facilities typical are production, wrapping or inventory units that are
characterized by their functional properties. Especially, in the process
industry we find multi-stage production systems involving units with
general product-mode relationships. Their functional properties are at-
tributes such as capacity, throughput rates, product recipes, yields, min-
imum production utilization rates, fixed and variable costs, or storage
limitations. Facilities can be existing or potential (for design studies).
Production facilities may be subject to batch and campaign constraints
across periods.

– Demand Points may represent customers, regional warehouse loca-
tions or distributors who specify the quantity of a product they request.
A demand point can be also seen as a sink of the planning model, i.e.,
a point where a product leaves the system and is not further traced.
Demand may be subject to certain constraints, e.g., satisfying a mini-
mum quantity of demand, observing origins of production or supplying
a customer always from the same origin.

– Inventories may be physically fixed entities such as tanks or warehouses
but also moveable entities (e.g., drums, containers, boxes, etc.). They can
be defined as dedicated
1. to a single product from one production source,
2. dedicated to a specific product, or
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3. free to accept any product from any source or origin.
We may encounter tank farms, and especially multi-purpose storage en-
tities, i.e., variable and multi-product tanks.

– Products may be classified as raw materials, intermediates, finished
and salable products. A product may have several of these attributes,
and it can be purchased from suppliers, produced or sold. Products are
produced according to the capabilities at the facilities and the recipes
assigned; they may establish a product group, e.g., additives. Product
requirements are based on market demand which is characterized by
volume, selling price, package type, time, origin and location or by other
products in which they are used as intermediate products.

– Suppliers or vendors may provide products for purchase under differ-
ent offering schemes. This includes the ability to link the product supply
to locations and describe contractual pricing mechanisms or availability.
The solver may choose the optimal supplier.

Regarding the overall business and strategic objectives the model needs to
incorporate data describing the

– costs, i.e., certain fixed costs, variable costs (production, transportation,
inventory, external product purchase, energy, resources and utilities),
and further

– commercial aspects: financial aspects such as depreciation plans, dis-
count rates, investment plans, foreign currency exchange rates, duties
and tariffs, as well as site dependent taxes.

Maximize operating cash flow and maximize net present value (NPV) ob-
jective functions are used to determine the financial and operating impacts
of mergers, acquisitions, consolidation initiatives, and capital spending pro-
grams effecting business. In detail this may include:

1. maximize the net profit (free design reactors; open and close facilities),
2. maximize the contribution margin for a fixed system of production units,
3. maximize the contribution margin while satisfying a minimum percent-

age of demand,
4. minimize the cost while satisfying full demand (allow external purchase

of products),
5. maximize total sales neglecting cost,
6. maximize total production for a fixed system of production reactors,
7. maximize total production of products for which demand exists,
8. minimize energy consumption or the usage of other utilities,
9. minimize the deviation of the usage of resources from their average usage,

10. multi-criteria objectives, e.g., maximize contribution margin and mini-
mize total volume of transport.

The objective function 2 to 10 support different short- or mid-term objec-
tives for the current business. By using different objective functions it is
possible to create operational plans that support strategies such as market
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penetration, top-line growth, or maximization of cash flow to support other
business initiatives.

If, besides this broad structure, the focus is on a more detailed represen-
tation of physical entities, we find that planning models and their constraints
may involve the following features (in alphabetic order):

– Batch production [cf. Kallrath (1999, [10])]: The quantity of a specific
product being produced in a campaign possibly over several periods must
be an integer multiple of some pre-defined batch size.

– Buy, build, close or sell specific production assets [cf. Kallrath
(2002, [12])]: This feature is used for closing, or selling acquisition, con-
solidation and capacity planning to determine the NPV and operational
impacts of adding or removing specific assets or groups of assets to the
network.

– Campaign production [cf. Kallrath (1999, [10])]: This allows to im-
pose a lower and/or an upper bound on a contiguous production run
(campaign) possibly across periods; this feature is also known under the
name minimal runs.

– Delay cost: Penalty cost apply if customer orders are delivered after
the requested delivery date.

– Minimum production requirements: Minimum utilization rates mod-
elled as semi-continuous variables have to be observed for specific pro-
duction units and/or entire production locations for each production
time period.

– Multi-locations: This can be production sites, storage sites, and de-
mand points.

– Multi-purpose production units [cf. Kallrath & Wilson (1997, [18]),
or Kallrath & Maindl (2006, [17]), Chap. 8]: If a unit is fixed to a certain
mode, several products are produced (with different mode-dependent
daily production rates), and vice-versa, a product can be produced in
different modes. Daily production can be less than the capacity rates. A
detailed mode-changing production scheme may be used to describe the
cost and time required for sequence-dependent mode-changes.

– Multi-stage production [cf. Kallrath & Maindl (2006, [17]), Chap.
8]: Free and fixed recipe structures can be used for the production of
multiple intermediate products before the production of the final product
with convergent and divergent product flows. The recipes may depend
on the mode of the multi-purpose production unit.

– Multi-time periods [cf. Timpe & Kallrath (2000, [25])]: Non-equidistant
time period scales are possible for commercial and production needs. For
instance, demand may be forecast weekly for the first quarter of the year
and then quarterly for the remainder of the year.

– Nonlinear pricing for the purchase of products [cf. Kallrath (2002,
[12])] or utilities (energy, water, etc.) or nonlinear cost for inventory or
transportation may lead to convex and concave structures in order to
model volume and price discount schemes for the products or services
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purchased, while in addition, contract start-up and cancellation fees may
lead to additional binary variables.

– Order lost cost: Penalty cost are incurred if products are not delivered
as requested and promised.

– Packaging machines are optimized to increase machine throughput and
assure that priority is given to the most profitable products.

– Product swaps: With the objective of saving transportation and other
cost companies often arrange joint supply agreements called swaps. For
example: Company 1 based in Europe as well in the US has a production
shortage of product A in the US and thus purchases a defined quantity
of product A in the US from company 2. Company 2 (also located in the
US and Europe) has a customer in Europe requesting product A and
thus purchases a defined quantity product A from company 1 in Europe.
Both companies get product A where they need it and avoid the cost of
shipping the product. Without this type of supply agreement company
1 would have to ship product A from its European plant to the US, and
company 2 would have to ship product A from its US manufacturing
plant to Europe.

– Production origin tracing [cf. Kallrath (2005, [15])]: It is possible to
define fixed, free or unique origins for specific demands. For example, a
customer may require that his demand is satisfied only from a specific
plant in the network, or it may not be supplied from a set of plants, or
the customer only requests that he is supplied from one unique plant
during the whole planning horizon.

– Shelf-life time [cf. Kallrath (2005, [15])]: Product aging time can be
traced. This allows for the application of constraints such as: maximum
shelf-life time, disposal costs for time expired products, and the setting
of selling prices as a function of product life.

– Transportation and logistics [cf. Kallrath (2002, [13])]: Transporta-
tion quantities are appropriately modeled by the use of semi-continuous
variables. This allows minimum and maximum shipment quantities to
be defined for each source location, destination location, product, and
transport mean combination. The logistics involves the costs, lead times
and constraints (minimum shipment quantities) associated with moving
intermediate and finished products between facilities and demand points.
The mean of transport may be chosen by the optimizer and nonlinear
cost functions have to be considered as well.

This list covers many features but may be enhanced depending on the plan-
ning problem at hand. A model supporting this features caters to the over-
all business and strategic objectives. The model incorporates data describ-
ing the variable costs for production, transportation, inventory, external
product purchase, energy, resources and utilities, and further commercial
aspects: financial aspects such as depreciation plans, discount rates, invest-
ment plans, foreign currency exchange rates, duties and tariffs, as well as site
dependent taxes. Maximize operating cash flow and maximize net present
value (NPV) objective functions can also be used to determine the finan-
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cial and operating impacts of mergers, acquisitions, consolidation initiatives,
and capital spending programs effecting business. One would expect that a
planning model supports various objective functions among them net profit
(free design reactors; open and close facilities), contribution margin, cost,
sales, total production, or multi-criteria objectives, e.g., maximize contri-
bution margin and minimize total transportation volume.

A possible extension which could relatively easy connected to such a
model are customer or product portfolio features as described in Kallrath
(2005, [15]).

3 Planning Under Uncertainty

In many instances, the data are not in a deterministic form and this natu-
rally leads to optimization under uncertainty, that is, optimization problems
in which at least some of the input data are subject to errors or uncertain-
ties, or in which even some constraints hold only with some probability or
are just soft. Those uncertainties can arise from many reasons:

– Physical or technical parameters which are only known to a certain de-
gree of accuracy. Usually, for such input parameters safe intervals can
be specified.

– Process uncertainties, e.g., stochastic fluctuations in a feed stream to a
reactor, processing times.

– Demand and price uncertainties occur in many situations: supply chain
planning, investment planning, or strategic design optimization problems
involving uncertain demand and price over a long planning horizon of
10 to 20 years.

For planning, the third point is most relevant. It is difficult to predict de-
mand and prices, especially in strategic or design planning problems where
the time horizon covers several years. Scenario based optimization in the
sense of stochastic optimization leads to large number of variables. A de-
cision taker might be more inclined to hedge against certain risks than to
find the most probable scenario. Therefore, the robust optimization frame-
work developed by Floudas and co-workers seems to be more appropriate;
cf. Lin et al. (2004, [19]) and Janak et al. (2007, [9]). It provides a) an ex-
plicit trade-off between the effect of uncertainties on the objective function
of choice, (b) the unified treatment of uncertainties in product demands,
processing times, processing rates, prices of products, and prices of raw
materials, (c) the alternative deterministic equivalent models for a variety
of types of representations of uncertainties through bounded, symmetric,
normal, difference of normal, binomial, discrete, and Poisson probability
distributions.
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4 Multi-Criteria Planning Problems

In planning we may encounter the situation that there are conflicting ob-
jectives. Maximizing contribution margin and minimizing the amount of
stocked material might conflict. The novice might think if the storage costs
are appropriately included in the objective function both objectives would
go along with each other very well. However, some promising sales could be
lost because not enough material had been stocked. Thus, the goal to mini-
mize the amount of stock is different from maximizing contribution margin.
At least in this example it might be possible to measure both goals in the
same unit of measure, in this case a monetary unit. The more general situ-
ation is that we are facing conflicting goals which cannot even be measured
on a common scale.

Multi-objective optimization, also called multi-criteria optimization or
vector minimization problems, allows to involve several objective functions.
A simple approach to solve such problems is to express all objectives in terms
of a common measure of goodness leading to the problem how to compare
different objectives on a common scale. Basically, one can distinguish two
cases. Either the search is for Pareto optimal solutions, or the problem has
to be solved for every objective function separately.

When minimizing several objective functions simultaneously the concept
of Pareto optimal solutions turns out to be useful. A solution is said to be
Pareto optimal iff no other solution exists that is at least as good according
to every objective, and is strictly better according to at least one objective.
When searching for Pareto optimal solutions, the task might be to find one,
find all, or cover the extremal set.

A special solution approach to multiple objective problems is to require
that all the objectives should come close to some targets, measured each
in its own scale. The targets we set for the objectives are called goals. Our
overall objective can then be regarded as to minimize the overall deviation of
our goals from their target levels. The solutions derived are Pareto optimal.

Goal programming can be considered as an extension of standard op-
timization problems in which targets are specified for a set of constraints.
There are two basic approaches for goal programming: the preemptive (lex-
icographic) approach and the Archimedian approach. In the Archimedian
approach weights or penalties are applied for not achieving targets. A lin-
ear combination of the violated targets weighted by some penalty factor
is added, or establishes the objective function. We consider only the first
approach.

In preemptive goal programming, goals are ordered according to impor-
tance and priorities. Especially, if there is a ranking between incommensu-
rate objectives available, this method might be useful. The goal at priority
level i is considered to be infinitely more important than the goal at the
next lower level, i+1. But they are relaxed by a certain absolute or relative
amount when optimizing for the level i + 1. In a reactor design problem we
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might have the following ranking: reactor size (i = 1), safety issues (i = 2),
and eventually production output rate (i = 3).

Here we provide an illustrative example for pre-emptive (lexicographic)
goal programming with two variables x and y subject to the constraint
42x+13y ≤ 100 as well as the trivial bounds x ≥ 0 and y ≥ 0. We are given

name criterion type A/P ∆
goal 1 (OBJ1): 5x + 2y − 20 max P 10
goal 2 (OBJ3): −3x + 15y − 48 min A 4
goal 3 (OBJ2): 1.5x + 21y − 3.8 max P 20

.

where the attribute A or P indicates whether we have to interpret ∆ as an
absolute value, or percentage-wise. The multi-criteria LP or MILP problem
is converted to a sequence of LP or MILP problems. The basic idea is to
work down the list of goals according to the priority list given. Thus we
start by maximizing the LP w.r.t. the first goal. This gives us the objective
function value z∗1 . Using this value z∗1 enables us to convert goal 1 into the
constraint

5x + 2y − 20 ≥ Z1 = z∗1 −
10
100

z∗1 . (1)

Note how we have constructed the target Z1 for this goal (P indicates that
we work percentage wise). In the example we have three goals with the op-
timization sense {max,min,max}. Two times we apply a percentage wise
relaxation, one time absolute. Solving the original problem with the addi-
tional inequality (1) we get:

z∗1 = −4.615385 ⇒ 5x+2y− 20 ≥ −4.615385− 0.1 · (−4.615385) (2)

Now we minimize w.r.t. to goal 2 adding (2) as an additional constraint.
We obtain:

z∗2 = 51.133603 ⇒ −3x + 15y − 48 ≥ 51.133603 + 4 (3)

Similar as the first goal, we now have to convert the second goal into a
constraint (3) (here we allow a deviation of 4) and maximize according to
goal 3. Finally, we get z∗3 = 141.943995 and the solution x = 0.238062 and
y = 6.923186. To be complete, we could also convert the third goal into a
constraint giving

1.5x + 21y − 3.8 ≥ 141.943995− 0.2 · 141.943995 = 113.555196 .

Note that lexicographic goal programming based on objective functions pro-
vides a useful techniques to tackle multi-criteria optimization problems. The
great advantage is that the absolute or percentage-wise deviations used in
lexicographic goal programming based on objectives are easy to interpret.
However, we have to keep in mind that the sequence of the goals influences
the solution strongly. Therefore, the absolute or percentage deviations have
to be chosen with care. It is very important that the optimization problem
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can be solved to exact optimality or at least closely to optimality because
otherwise the interpretation of the permissible deviation from targets be-
comes difficult if not impossible.

Goal programming offers an alternative approach but should not be
regarded as without defects. The specific goal levels selected greatly deter-
mine the answer. Therefore, care is need when selecting the targets. It is also
important in which units the targets are measured. Detailed treatment of
goal programming appears in such books as Ignizio (1976, [5]) and Romero
(1991, [22]) who introduce many variations on the basic idea, as well as in
Schniederjans (1995, [23]).

5 Solution Approaches

Most of the planning problems in the process industry lead to MILP or
MINLP models and contain the following building blocks: tracing the states
of plants, modeling production, balance equations for material flows, trans-
portation terms, consumption of utilities, cost terms, and special model fea-
tures. Mode-changes, start-up and cancellation features, and nonlinear cost
structures require many binary variables. Minimum utilization rates and
transportation often require semi-continuous variables. Special features such
as batch and campaign constraints across periods require special constraints
to implement the concept of contiguity; cf. Kallrath (1999, [10]) and Sürie
(2005, [24]). The model, however, remains linear in all variables. Only if the
pooling problem occurs, e.g., in the refinery industry or the food industry,
we are really facing a MINLP problem. For a review on algorithms used in
LP, MILP, NLP, and MINLP the reader is referred to [11]. State-of-the art
global solution techniques to non-convex nonlinear problems are reviewed
by Floudas et al. (2004, [3]).

It is very convenient and saves a lot of maintenance work if the plan-
ning model is implemented in an algebraic modeling language. In modeling
languages one stores the knowledge about a model. A model coded in a mod-
eling language defines the problem; it usually does not specify how to solve
it. Unlike procedural languages such as Fortran or C, modeling languages
are declarative languages containing the problem in a declarative form by
specifying the properties of the problem. Algebraic modeling languages –
cf. Kallrath (2004, [14]) – are a special subclass of declarative languages,
and most of them are designed for specifying optimization problems, i.e., the
model can be written in a form which is close to the mathematical notation.
Usually they are capable of describing problems of the form

min f(x) (4)
s.t. g(x) = 0 (5)

h(x) ≥ 0 , (6)

where x denotes a subset of X = IRm × Zn.
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The problem is flattened, i.e., all variables and constraints become essen-
tially one-dimensional, and the model is written in an index-based formula-
tion, using algebraic expressions in a way which is close to the mathematical
notation. Typically, the problem is declared using sets, indices, parameters,
and variables.

In a modeling language, model and model data are kept separately. There
is a clear cut between the model structure and the data. Thus, many dif-
ferent instances of the same model class with varying data can be solved.
Many systems provide an ODBC (open database connectivity) interface for
automatic database access and an interface to the most widely used spread-
sheet systems. This relieves the user from the laborious duty of searching
for the relevant data every time the model is used. A second advantage of
this concept is that during the development phase of the model (in the cy-
cle) the approach can be tested on toy problems with small artificial data
sets, and later the model can be applied without change for large scale
industry-relevant instances with real data.

In an algebraic modeling language, the formulation of the model is inde-
pendent of solver formats. Different solvers can be connected to the model-
ing language, and the translation of models and data to the solver format is
done automatically. This has several advantages. The formerly tedious and
error prone translation steps are done by the computer, and after thorough
testing of the interface errors are very unlikely. There is a clean cut between
the problem definition and the solution approach, i.e., between the mod-
eling and the numerical, algorithmic part. In addition, for hard problems
different solvers can be tried, making it more likely that a solution algo-
rithm is found which produces a useful result. Algebraic modeling languages
such as AIMMS, GAMS, LINGO, MPL, Mosel or OPL studio are well suitable to
implement such models; cf. Kallrath (2004, [14]).

Modern algebraic modeling languages such as AIMMS, GAMS, LINGO, MPL,
Mosel or OPL studio are well suitable to implement such models – cf. Kall-
rath (2004, [14]) to get a flavour of all of them – use state-of-the art commer-
cial solvers, e.g., XPressMP [by Dash Optimization, http://www.dashoptimization.com]
or CPLEX [by ILOG, http://www.ilog.com], and allow to solve even huge MILP
problems with several hundred thousand variables and constraints quite ef-
ficiently. In the case of MINLP, the solution efficiency depends strongly on
the individual problem and the model formulation. However, as stressed in
[11] for both problem types, MILP and MINLP, it is recommended that
the full mathematical structure of a problem is exploited, that appropriate
reformulations of models are made and that problem specific valid inequal-
ities or cuts are used. Software packages may also differ with respect to the
ability of pre-solving techniques, default-strategies for the Branch&Bound
algorithm, cut generation within the Branch&Cut algorithm, and last but
not least diagnosing and tracing infeasibilities which is an important issue
in practice.

There is great progress on solving planning problems more efficiently
by constructing efficient valid inequalities for certain substructures of plan-
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ning problems. The well written book by Wolsey (1998, [26]) and Pochet &
Wolsey (2006, [21]) contain many examples. These inequalities may a priori
be added to a model, and in the extreme case they would describe the com-
plete convex hull. As an example we consider the mixed-integer inequality

x ≤ Cλ , 0 ≤ x ≤ X ; x ∈ IR+
0 , λ ∈ IN (7)

which has the valid inequality

x ≤ X −G(K − λ) where K :=
⌈

X

C

⌉
and G := X −C (K − 1) (8)

This valid inequality (8) is the more useful, the more K and X/C deviate.
A special case arising often is the situation λ ∈ {0, 1}. Another example,
taken from ([26], p. 129) is

A1α1 + A2α2 ≤ B + x ; x ∈ IR+
0 , α1, α2 ∈ IN (9)

which for B /∈ IN leads to the valid inequality

bA1cα1 +
(
bA2cα2 +

f2 − f

1− f

)
≤ bBc+

x

1− f
(10)

where the following abbreviations are used:

f := B − bBc , f1 := A1 − bA1c , f2 := A2 − bA2c (11)

The dynamic counterpart of valid inequalities added a priori to a model
leads to cutting plane algorithms which avoid adding a large number of
inequalities a priori to the model (note, this can be equivalent to finding
the complete convex hull). Instead, only those useful in the vicinity of the
optimal solution are added dynamically.

Using these techniques, for some BASF planning problems including up
to 100,000 constraints and up to 150,000 variables with several thousand
binary variables, good solution with integrality gaps below 2% have been
achieved within 30 minutes on standard Pentium machines [11].

6 Conclusions

Planning is strongly based on mathematical optimization exploiting large
MILP problems. Strategic, design and operative planning models including
several hundred thousand variables and constraints can be solved efficiently
using commercial algebraic modeling languages and attached MILP solvers.
These models are connected to company wide databases.
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