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1 Introduction

We define difficult optimization problems as problems which cannot be
solved to optimality or to any guaranteed bound by any standard solver
within a reasonable time limit. The problem class we have in mind are mixed
integer programming (MIP) problems. Optimization and especially mixed
integer optimization is often appropriate and frequently used to model real
world optimization problems. While its origin started in the 1950s models
became larger and more complicated.

A reasonable general framework is mixed integer nonlinear programming
(MINLP) problems. They are specified by the augmented vector xT

⊕ = xT⊕
yT established by the vectors xT = (x1, ..., xnc) and yT = (y1, ..., ynd

)
of nc continuous and nd discrete variables, an objective function f(x,y),
ne equality constraints h(x,y) and ni inequality constraints g(x,y). The
problem

min
{

f(x,y)
∣∣∣∣h(x,y) = 0
g(x,y) ≥ 0,

h : X × U → IRne

g : X × U → IRni ,
x ∈ X ⊆ IRnc

y ∈ U ⊆ ZZnd

}
(1.1)

is called Mixed Integer Nonlinear Programming (MINLP) problem, if at
least one of the functions f(x,y), g(x,y) or h(x,y) is nonlinear. The vec-
tor inequality, g(x,y) ≥ 0, is to be read component-wise. Any vector xT

⊕
satisfying the constraints of (1.1) is called a feasible point of (1.1). Any fea-
sible point, whose objective function value is less or equal than that of all
other feasible points is called an optimal solution. From this definition it
follows that the problem might not have a unique optimal solution.

Depending on the functions f(x,y), g(x,y), and h(x,y) in (1.1) we get
the following structured problems known as
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acronym type of optimization f(x,y) h(x,y) g(x,y) nd

LP Linear Programming cTx Ax− b x 0
QP Quadratic Programming xTQx + cTx Ax− b x 0
NLP Nonlinear Programming 0

MILP Mixed Integer LP cTx⊕ Ax⊕ − b x⊕ ≥ 1

MIQP Mixed Integer QP xT
⊕Qx⊕ + cTx⊕ Ax⊕ − b x⊕ ≥ 1

MINLP Mixed Integer NLP ≥ 1

with a matrix A of m rows and n columns, i.e., A ∈M(m×n, IR), b ∈ IRm,
c ∈ IRn, and n = nc + nd. Real-world problems lead much more frequently
to LP and MILP than to NLP or MINLP problems. QP refers to quadratic
programming problems. They have a quadratic objective function but only
linear constraints. QP and MIQP problems often occur in applications of
the financial service industries.

While LP problems as described in Pardalos (2001, [31]) or Anstreicher
(2001, [1]) can be solved relatively easily (the number of iterations, and
thus the effort to solve LP problems with m constraints grows approxi-
mately linearly in m), the computational complexity of MILP and MINLP
grows exponentially with nd but depends strongly on the structure of the
problem. Numerical methods to solve NLP problems work iteratively and
the computational problems are related to questions of convergence, getting
stuck in bad local optima and availability of good initial solutions. Global
optimization techniques can be applied to both NLP and MINLP problems
and its complexity increases exponentially in the number of all variables
entering nonlinearly into the model.

While the word optimization, in nontechnical or colloquial language, is
often used in the sense of improving, the mathematical optimization com-
munity sticks to the original meaning of the word related to finding the best
value either globally or at least in a local neighborhood. For an algorithm
being considered as a (mathematical, strict or exact) optimization algorithm
in the mathematical optimization community there is consensus that such
an algorithm computes feasible points proven globally (or locally) optimal
for linear (nonlinear) optimization problems. Note that this is a definition
of a mathematical optimization algorithm and not a statement saying that
computing a local optimum is sufficient for nonlinear optimization problems.
In the context of mixed integer linear problems an optimization algorithm
(Grötschel, 2004, [12] and Grötschel, 2005, [13]) is expected to compute a
proven optimal solution or to generate feasible points and, for a maximiza-
tion problem, to derive a reasonably tight, non-trivial upper bound. The
quality of such bounds are quantified by the integrality gap – the difference
between upper and lower bound. It depends on the problem, the purpose
of the model and also the accuracy of the data what one considers to be
a good quality solution. A few percent, say, 2 to 3%, might be acceptable
for the example discussed Kallrath (2007, Encyclopedia: Planning). How-
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ever, discussion based on percentage gaps become complicated when the
objective function includes penalty terms containing coefficients without a
strict economic interpretation. In such cases scaling is problematic. Goal
programming as discussed in Kallrath & Maindl (2006, [23], pp. 294) might
help in such situations to avoid penalty terms in the model. The problem is
first solved with respect to the highest priority goal, then one cares about
the next level goal, and so on.

For practical purposes it is also relevant to observe that solving mixed
integer linear problems and the problem of finding appropriate bounds is
often NP complete, which makes these problems hard to solve. A conse-
quence of this structural property is that these problems scale badly. If the
problem can be solved to optimality for a given instance, this might not
be so if the size is increased slightly. While tailor-made optimization algo-
rithm such as column generation, Branch&Price techniques can often cope
with this situation for individual problems, this is very difficult for standard
software.

We define difficult optimization problems as problems which cannot be
solved to optimality or within a reasonable integrality gap by any standard
MIP solver within a reasonable time limit. Problem structure, size, or both
could lead to such behavior. However, in many cases these problems (typi-
cally mixed integer programming or non-convex optimization problems fall
into this class) can be solved if they are individually treated and we resort
to the art of modeling.

The art of modeling includes choosing the right level of detail imple-
mented in the model. On the one hand, this needs to satisfy the expectations
of the owner of the real world problem. On the other hand we are limited
by the available computational resources. We give reasons why strict opti-
mality or at least safe bounds are essential when dealing with real world
problems and why we do not accept methods which do not generate both
upper and lower bounds.

Mapping the reality also enforces us to discuss whether deterministic
optimization is sufficient or whether we need to resort to optimization under
uncertainty. Another issue is to check whether one objective function suffices
or whether multiple criteria optimization techniques need to be applied.

Instead of solving such difficult problems directly as, for example, a
stand alone mixed integer linear programming problem we discuss how the
problems can be solved equivalently by solving a sequence of models.

Efficient approaches are:

– column generation with a master and subproblem structure,
– branch-and-price,
– exploiting a decomposition structure with a rolling time horizon,
– exploiting auxiliary problems to generate safe bounds for the original

problem which then makes the original problems more tractable, or
– exhaustion approaches,
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– hybrid methods, i.e., constructive heuristics and local search on subsets
of the difficult discrete variables leaving the remaining variables and
constraints in tractable MILP or MINLP problems which can be solved.

We illustrate various ideas using real world planning, scheduling and cutting
stock problems.

1.1 Models and the Art of Modeling

We are here concerned with two aspects of modeling and models. The first
one is to obtain a reasonable representation of the reality and mapping
it onto a mathematical model, i.e., an optimization problem in the form
of (1.1). The second one is to reformulate the model or problem in such
equivalent forms which makes it numerically tractable.

1.1.1 Models The terms modeling or model building are derived from the
word model. Its ethymological roots are the Latin word modellus (scale,
[diminutiv of modus, measure]) and what was to be in the 16th century
the new word modello. Nowadays, in scientific context the term is used to
refer to a simplified, abstract or well structured part of the reality one is
interested in. The idea itself and the associated concept is, however, much
older. The classical geometry and especially Phythagoras around 600 B.C.
distinguish between wheel and circle, between field and rectangle. Around
1100 D.C. a wooden model of the later Speyer cathedral was produced; the
model served to build the real cathedral. Astrolabs and celestial globes have
been used as models to visualize the movement of the moon, planets and
stars on the celestial sphere and to compute the times of rises and settings.
Until the 19th century mechanical models were understood as pictures of
the reality. Following the principals of classical mechanics the key idea was
to reduce all phenomena to the movement of small particles. Nowadays, in
physics and other mathematical sciences one will talk about models if

– one, for reasons of simplifications, restricts oneself to certain aspects of
the problem (example: if we consider the movement of the planets, in a
first approximation the planets are treated as point masses),

– one, for reasons of didactic presentation, develops a simplified picture
for the more complicated reality (example: the planetary model is used
to explain the situation inside the atoms),

– one uses the properties in one area to study the situation in an analogue
problem.

A model is referred to as a mathematical model of a process or a problem
if it contains the typical mathematical objects (variables, terms, relations).
Thus, a (mathematical) model represents a real world problem in the lan-
guage of mathematics using mathematical symbols, variables, equations,
inequalities and other relations.
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It is very important when building a model to define and state precisely
the purpose of the model. In science, we often encounter epistemological
arguments. In engineering, a model might be used to construct some ma-
chines. In operations research and optimization, models are often used to
support strategic or operative decisions. All models enable us to

– learn and understand situations which do not allow easy access (very
slow or fast processes, processes involving a very small or very large
region);

– avoid difficult, expensive or dangerous experiments; and
– analyze case studies and What-If-When scenarios.

Tailored optimization models can be used to support decisions (that is the
overall purpose of the model). It is essential to have a clear objective de-
scribing what is a good decision. The optimization model should produce,
for instance, optimal solutions in the following sense:

– to avoid unwanted side products as much as possible,
– to minimize costs, or
– to maximize profit, earnings before interest and taxes (EBIT), or con-

tribution margin.

The purpose of a model may change over time.
To solve a real-world problem by mathematical optimization, at first we

need to represent our problem by a mathematical model, that is, a set of
mathematical relationships (e.g., equalities, inequalities, logical conditions)
representing an abstraction of our real-world problem. This translation is
part of the model building phase (which is part of the whole modeling
process), and is not trivial at all because there is nothing we could consider
an exact model. Each model is an acceptable candidate as long as it fulfills
its purpose and approximates the real world accurately enough. Usually, a
model in mathematical optimization consists of four key objects:

– data, also called the constants of a model,
– variables (continuous, semi-continuous, binary, integer), also called de-

cision variables,
– constraints (equalities, inequalities), also called restrictions, and
– the objective function (sometimes even several of them).

The data may represent cost or demands, fixed operation conditions of a
reactor, capacities of plants and so on. The variables represent the degrees
of freedom, i.e., what we want to decide: How much of a certain product
is to be produced, whether a depot is closed or not, or how much material
will we store in the inventory for later use. Classical optimization (calculus,
variational calculus, optimal control) treats those cases in which the vari-
ables represent continuous degrees of freedom, e.g., the temperature in a
chemical reactor or the amount of a product to be produced. Mixed inte-
ger optimization involves variables restricted to integer values, for example
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counts (numbers of containers, ships), decisions (yes-no), or logical relations
(if product A is produced then product B also needs to be produced). The
constraints can be a wide range of mathematical relationships: algebraic,
analytic, differential or integral. They may represent mass balances, quality
relations, capacity limits, and so on. The objective function expresses our
goal: minimize costs, maximize utilization rate, minimize waste, and so on.
Mathematical models for optimization usually lead to structured problems
such as:

– linear programming (LP) problems,
– mixed integer linear programming (MILP) problems,
– quadratic (QP), and mixed-integer quadratic programming (MIQP)
– nonlinear programming (NLP) problems, and
– mixed integer nonlinear programming (MINLP) problems.

1.1.2 The Art of Modeling How do we get from a given problem to its
mathematical representation? This is a difficult, non-unique process. It is a
compromise between the degree of details required to model the problem and
the complexity which is tractable. However, simplifications should not only
seen as an unavoidable evil. They could be useful to develop understanding
or serve as a platform with the client as the following three examples show:

1. At the beginning of the modeling process it can be useful to start with
a ”down-scaled” version to develop a feeling for the structure and de-
pendencies of the model. This enable a constructive dialog between the
modeler and the client. A vehicle fleet with 100 vehicle and 12 depots
could be analyzed with only 10 vehicles and 2 depots to let the model
world and the real world find to each other in a sequence of discussions.

2. In partial or submodels the modeler can develop a deep understanding of
certain aspects of the problem which can be relevant to solve the whole
problem.

3. Some aspects of the real world problem could be too complicated to
model them complete or exactly. During the modeling process it can be
clarified, using a smaller version, whether partial aspects of the model
could be neglected or whether they are essential.

In any case it is essential that the simplifications are well understood and
documented.

2 Tricks of the Trade for Monolithic Models

Using state-of-the art commercial solvers, e.g., XPressMP [XPressMP is by
Dash Optimization, http://www.dashoptimization.com] or CPLEX [CPLEX is by
ILOG, http://www.ilog.com], MILP problems can be solved quite efficiently.
In the case of MINLP and using global optimization techniques, the solu-
tion efficiency depends strongly on the individual problem and the model
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formulation. However, as stressed in [21] for both problem types, MILP
and MINLP, it is recommended that the full mathematical structure of a
problem is exploited, that appropriate reformulations of models are made
and that problem specific valid inequalities or cuts are used. Software pack-
ages may also differ with respect to the ability of pre-solving techniques,
default-strategies for the Branch&Bound algorithm, cut generation within
the Branch&Cut algorithm, and last but not least diagnosing and tracing
infeasibilities which is an important issue in practice.

Here we collect a list of recommendation tricks which help to improve
the solution procedure of monolithic MIP problems, i.e., stand-alone models
which are solved by one call to a MILP or MINLP solver. Among them are:

– Using bounds instead of constraints, if the dual values are not necessarily
required.

– Apply own pre-solving techniques. Consider for instance a set of inequal-
ities

Bijkδijk ≤ Aijk ; ∀{i, j, k} (2.1)

on binary variables δijk. They can be replaced by the bounds

δijk = 0 ; ∀{(i, j, k) |Aijk < Bijk }

or, if one does not trust the < in a modeling language the bounds

δijk = 0 ; ∀{(i, j, k) |Aijk ≤ Bijk − ε}

where ε > 0 is a small number, say, of the order of 10−6. If Aijk ≥ Bijk

(2.1) is redundant. Note that due to the fact that we have three indices
the number of inequalities can be very large.

– Exploit the pre-solving techniques embedded in the solver; cf. Martin
(2001, [28]).

– Exploiting or eliminating symmetry: Sometimes, symmetry can lead to
degenerate scenarios. There are situations, for instance, in scheduling
that orders can be allocated to identical production units. Another ex-
ample is the capacity design problem of a set of production units to be
added to a production network. In that case, symmetry can be broken
by requesting the capacities of the units are sorted in descending order,
i.e., cu ≥ cu+1. Menon & Schrage (2002, [29]) exploit symmetry in order
allocation for stock cutting in the paper industry; a very pleasant paper
to read.

– Use special types of variables for which tailor-made branching rules exists
(this applies to semi-continuous and partial-integer variables as well as
special ordered sets).

– Experiment with the various strategies offered by the commercial Branch&Bound
solvers for the Branch&Bound algorithm

– Experiment with the cut generation within the commercial Branch&Cut
algorithm among them Gomory cuts, knapsack cuts or flow cuts; cf.
Martin (2001, [28]).
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– Construction of own valid inequalities for certain substructures of prob-
lems at hand. Those inequalities may a priori be added to a model, and
in the extreme case they would describe the complete convex hull. As
an example we consider the mixed-integer inequality

x ≤ Cλ , 0 ≤ x ≤ X ; x ∈ IR+
0 , λ ∈ IN (2.2)

which has the valid inequality

x ≤ X−G(K−λ) where K :=
⌈

X

C

⌉
and G := X−C (K − 1) (2.3)

This valid inequality (2.3) is the more useful, the more K and X/C
deviate. A special case arising often is the situation λ ∈ {0, 1}. Another
example, taken from ([39], p. 129) is

A1α1 + A2α2 ≤ B + x x ∈ IR+
0 α1, α2 ∈ IN (2.4)

which for B /∈ IN leads to the valid inequality

bA1cα1 +
(
bA2cα2 +

f2 − f

1− f

)
≤ bBc+

x

1− f
(2.5)

where the following abbreviations are used:

f := B − bBc , f1 := A1 − bA1c , f2 := A2 − bA2c (2.6)

The dynamic counterpart of valid inequalities added a priori to a model
leads to cutting plane algorithms which avoid adding a large number of
inequalities a priori to the model (note, this can be equivalent to finding
the complete convex hull). Instead, only those useful in the vicinity of
the optimal solution are added dynamically. For the topics of valid in-
equalities and cutting plane algorithms the reader is referred to books by
Nemhauser & Wolsey (1988, [30]), Wolsey [39], Pochet & Wolsey (2006,
[32]).

– Disaggregation in MINLP problems. Global optimization techniques are
often based on convex underestimators. Univariate functions can be
treated easier than multivariate terms. Therefore, it helps to represent
the bilinear or multilinear terms by their disaggregated equivalences. As
an example we consider x1x2 with given lower and upper bounds X−

i

and X+
i for xi; i = 1, 2. Where ever we encounter x1x2 in our model we

can replace is by

x1x2 =
1
2
(x2

12 − x2
1 − x2

2)

and

x12 = x1 + x2 .
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The auxiliary variable is subject to the bounds X−
12 := X−

1 + X−
2 and

X−
12 ≤ x12 ≤ X+

12 , X−
12 := X−

1 + X−
2 , X+

12 := X+
1 + X+

2 .

This formulation has another advantage. It allows us to construct easily
a relaxed problem which can be used to derive a useful lower bound.
Imagine a problem P with the inequality

x1x2 ≤ A . (2.7)

Then

x2
12 −X−

1 x1 −X−
2 x2 ≤ 2A (2.8)

is a relaxation of P as each point (x1, x2) satisfying (2.7) also fulfills
(2.8). Note that an alternative disaggregation avoiding an additional
variable is given by

x1x2 =
1
4

[
(x1 + x2)2 − (x1 − x2)2

]
.

However, all of the creative attempts listed above may not suffice to solve
the MIP using one monolithic model. That is when we should start looking
at solving the problem by a sequence of problems. We have to keep in mind
that to solve a MIP problem we need to derive tight lower and upper bounds
with the gap between them approaching zero.

3 Decomposition Techniques

Decomposition techniques decompose the problem into a set of smaller prob-
lems which can be solved in sequence or in any combination. Ideally, the
approach can still compute the global optimium. There are standardized
techniques such as Benders Decomposition [cf., Floudas (1995, [9], Chap. 6)
or ###Dantzig-Wolfe Decomposition###. But often one should exploit
the structure of an optimization to construct tailor-made decompositions.
This is outlined in the following subsections.

3.1 Column Generation

The term column usually refers to variables in linear programming parlance.
In the context of column generation techniques it has wider meaning and
stands for any kind of objects involved in an optimization problem. In vehicle
routing problems a column might, for instance, as described in subsection
represent a subset of orders assigned to a vehicle. In network flow problems
a column might represent a feasible path through the network. Finally, in
cutting stock problems ([10],[11]) a column represents a pattern to be cut.

The basic idea of column generation is to decompose a given problem
into a master and subproblem. Problems which otherwise could be nonlinear
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can be completely solved by solving only linear problems. The critical issue
is to generate master and subproblems which both can be solved efficiently.
One of the most famous example is the elegant column generation approach
by Gilmore & Gomory (1961, [10]) for computing the minimal number of
rolls to satisfy the requested demand for smaller sized rolls. This problem,
if formulated as one monolithic problem, leads to a MINLP problem with a
large number of integer variables.

In simple cases, such as the ones described by Schrage (2006, [35], Sect.
11.7), it is possible to generate all columns explicitly, even within a model-
ing language. Often, the decomposition has a natural interpretation. If not
all columns can be generated, the columns are added dynamically to the
problem. Barnhart et al. [2] give a good overview on such techniques. A
more recent review focussing on selected topics of column generation is [25].
In the context of vehicle routing problems, feasible tours have been added
columns as needed by solving shortest path problem with time windows and
capacity constraints using dynamic programming [7].

More generally, column generation techniques are used to solve well
structured MILP problems involving a huge number, say several hundred
thousand or millions, of variables, i.e., columns. Such problems lead to large
LP problems, if the integrality constraints of the integer variables are re-
laxed. If the LP problem contains so many variables (columns) that it cannot
be solved with a direct LP solver (revised simplex, interior point method)
one starts solving this so-called master problem with a small subset of vari-
ables yielding the restricted master problem. After the restricted master
problem has been solved, a pricing problem is solved to identify new vari-
ables. This step corresponds to the identification of a non-basic variable to
be taken into the basis of the simplex algorithm and coined the term column
generation. The restricted master problem is solved with the new number of
variables. The method terminates when the pricing problems cannot iden-
tify any new variables. The most simple version of column generation is
found in the Dantzig-Wolfe decomposition [6].

Gilmore & Gomory ([10], [11]) were the first who generalized the idea of
dynamic column generation to an integer programming (IP) problem: the
cutting stock problem. In this case, the pricing-problem, i.e., the subprob-
lem, is an IP problem itself - and one refers to this as a column generation
algorithm. This problem is special as the columns generated when solving
the relaxed master problem are sufficient to get the optimal integer feasible
solution of the overall problem. In general this is not so. If not only the sub-
problem, but also the master problem involves integer variables, the column
generation part is embedded into a branch-and-bound method: this is called
branch-and-price. Thus, branch-and-price is integer programming with col-
umn generation. Note that during the branching process new columns are
generated; therefore the name branch-and-price.
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3.1.1 Column Generation in Cutting Stock Problems This section describes
the mathematical model for minimization of number of roles or trimloss and
illustrates the idea of column generation.

Indices used in this model:

p ∈ P := {p1, . . . , pNP} for cutting patterns (formats).
Either the patterns are directly generated according to a complete enu-
meration or they are generated by column generation.

i ∈ I := {i1, . . . , iN I} given orders or widths.

Input Data We arrange the relevant input data size here:

B [L] width of the rolls (raw material roles).
Di [-] number of orders for the width i.
Wi [L] width of order type i.

Integer Variables used in the different model variants:

µp ∈ IN0 := {0, 1, 2, 3, . . .} [−] indicates how often pattern p is used.
If cutting pattern p is not used then is µp = 0.

αip ∈ IN0 [−] indicates how often width i is contained in pattern p.
This variable can take values between 0 and Di depending on order
situation.

Model The model contains a suitable object function

min f(αip, µp) ,

as well as the boundary condition (fulfillment of the demand)∑
p

αipµp = Di , ∀i . (3.9)

and the integrality constraints

αip ∈ IN0 , ∀{ip} (3.10)
µp ∈ IN0 , ∀{p} . (3.11)

3.1.2 General Structure of the Problem In this form it is a mixed integer
nonlinear optimization problem (MINLP). This problem class is difficult
in itself. More seriously is, that we may easily encounter several million
variables αip. Therefore the problem cannot be solved in this form.
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Solution Method The idea of the dynamic column generation is based on
the fact to decide in a master problem for a predefined set of patterns how
often every pattern has to be used as well as calculating suitable input data
for a sub-problem. In the mentioned sub-problem new patterns are calcu-
lated.

The master problem solves for the multiplicities of existing pattern and
has the shape:

min
∑

p

µp ,

with the demand-fulfill inequality (note that it is allowed to produce more
than requested)∑

i

Nipµp ≥ Di , ∀i . (3.12)

and the integrality constraints

µp ∈ IN0 , ∀{p} . (3.13)

The sub-problem generates new patterns. Structurally it is a knapsack prob-
lem with object function

min
αi

1−
∑

p

Piαi ,

where Pi are the dual values (pricing information) of the master problem
(pricing problem) associated with (3.12) and αi is an integer variables spec-
ifying how often width i occurs in the new pattern. We add the knapsack
constraint respecting the width of the rolls∑

i

Wiαi ≤ B , ∀i . (3.14)

and the integrality constraints

αi ∈ IN0 , ∀{i} . (3.15)

In some cases, αi could be additionally bounded by the number, K, of
knives.

3.1.3 Implementation Issues The critical issues in this method, in which
we solve the master problem and sub-problem alternating, are the initial-
ization of the procedure (a feasible starting point is to have one requested
width in each initial pattern, but this is not necessarily a good one), ex-
cluding the generation of existing pattern by applying integer cuts, and the
termination.
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3.2 Column Enumeration

Column enumeration is a special variant of column generation and is ap-
plicable when a small number of columns is sufficient. This is, for instance,
the case in real world cutting stock problems when it is known that the
optimal solution have only a small amount of trimloss. This, usually, elim-
inates most of the pattern. Column enumeration naturally leads to a type
of selecting columns or partitioning models. A collection of illustrative ex-
amples contained in Schrage (2006, [35], Sect. 11.7) covers several problems
of grouping, matching, covering, partitioning, and packing in which a set of
given objects has to be grouped into subsets to maximize or minimize some
objective function. Despite the limitations with respect to the number of
columns, column enumeration has some advantages:

– no pricing problem,
– easily applicable to MIP problems,
– column enumeration is much easier to implement.

In the online version of the vehicle routing problem described in Kallrath
(2004, [22]) it is possible to generate the complete set, Cr, of all columns, i.e.,
subsets of orders i ∈ O, r = |O|, assigned to a fleet of n vehicles, v ∈ V. Let
Cr be the union of the sets, Crv, i.e., Cr = ∪v=1...nCrv with Cr = |Cr| = 2rn
, where Crv contains the subsets of orders assigned to vehicle v. Note that
Crv contains all subsets containing 1, 2, or r orders assigned to vehicle v.
The relevant steps of the algorithm are:

1. Explicit generation of all columns Crv; followed by a simple feasibility
test w.r.t. the availability of the cars.

2. Solution of the routing-scheduling problem for all columns Crv using
a tailor-made branch-and-bound approach (the optimal objective func-
tion values, Z(τ c) or Z(τ cv), respectively, and the associated routing-
scheduling plan are stored).

3. Solving the partitioning model:

min
γcv

Crv∑
c=1

NV∑
v=1

Z(τ cv)γcv , (3.16)

s.t.

Cr∑
c=1

NV∑
v=1

Ii(τ cv)γcv = 1 , ∀i = 1, ..., r (3.17)

ensures that each order is contained exactly once, the inequality

Cr∑
c=1

γcv ≤ 1 , ∀v ∈ V , (3.18)
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ensuring that at most one column can exists for each vehicle, and the
integrality conditions

γcv ∈ {0, 1} , ∀c = 1, ..., Cr . (3.19)

Note that not all combinations of index pairs {c, v} exist; each c corre-
sponds to exactly one v, and vice versa. This formulation allows us to
find optimal solutions with the defined columns for a smaller number
of vehicles. The objective function and the partitioning constraints are
just modified by replacing

NV∑
v=1|v∈V

−→
NV∑

v=1|v∈V∗

,

the equations

Crv∑
c=1

NV∑
v=1|v∈V∗

Ii(τ cv)γcv = 1 , ∀i = 1, ..., r ,

and the inequality

Crv∑
c=1

γcv ≤ 1 , ∀v ∈ V∗ ,

where V∗ ⊂ V is a subset of the set V of all vehicles. Alternatively, if it
is not pre-specified which vehicles should be used but it is only required
that not more than NV

∗ vehicles are used, then the inequality

Cr∑
c=1

NV∑
v=1|v∈V

γcv ≤ NV
∗ (3.20)

is imposed.
4. Re-constructing the complete solution and extracting the complete so-

lution from the stored optimal solutions for the individual columns.

3.3 Branch&Price

Branch&Price (often coupled with Branch&Cut) are tailor-made implemen-
tations exploiting a decomposition structure. This efficient method for solv-
ing MIP problems with column generation has been well described by Barn-
hart et al. (1998, [2]) and has been covered by Savelsbergh (2001, [34]) in
the first edition of the Encyclopedia of Optimization. Here, we give a list of
more recent successful applications in various fields.

Cutting Stock : Vanderbeck (2000, [38]), Belov & Scheithauer (2006, [3])
Engine Routing and Industrial In-Plant Railroads: Lübbecke & Zimmer-

mann (2003, [26])
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Network design: Irnisch (2002, [16])
Lot-Sizing : Vanderbeck (1998, [38])
Scheduling (staff planning): Eveborn & M. Ronnqvist (2004, [8])
Scheduling of Switching Engines: Lübbecke & Zimmermann (2001, [24])
Supply chain optimization (pulp industry): Bredström et al. (2004, [5])
Vehicle Routing : Desrochers et al. (1992, [7]), Irnisch (2000, [15])

3.4 Rolling Time Decomposition

The overall methodology for solving the medium-range production schedul-
ing problem is to determine the large and complex problem into smaller
short-term scheduling subproblems in successive time horizons, i.e., we de-
compose according to time. Large-scale industrial problems have been solved
by Janak et al. (2006a, b; [18], [19]). A decomposition model is formulated
and solved to determine the current horizon and corresponding products
that should be included in the current subproblem. According to the solution
of the decomposition model, a short-term scheduling model is formulated
using the information on customer orders, inventory levels, and processing
recipes. The resulting MILP problem is a large-scale complex problem which
requires a large computational effort for its solution. When a satisfactory
solution is determined, the relevant data is output and the next time horizon
is considered. The above procedure is applied iteratively in an automatic
fashion until the whole scheduling period under consideration is finished.

Note that the decomposition model determines automatically how many
days and products to consider in the small scheduling horizon subject to an
upper limit on the complexity of the resulting mathematical model. How-
ever, the complexity limit can be violated in order to ensure that each small
scheduling filled to produce a final product.

4 An Exhaustion Method

This method combines aspects of an constructive heuristics and of exact
model solving. We illustrate the exhausting method by the cutting stock
problem described in Sect. 3.1.1; assigning orders in a scheduling problem
would be another example. The elegant column generation approach by
Gilmore & Gomory (1961, [10]) is known for producing minimal trimloss
solutions with many patterns. Often this corresponds to setup changes on
the machine and therefore is not desirable. A solution with a minimal a
number of patterns minimizes the machine setup costs of the cutter. Min-
imizing simultaneously trimloss and the number of patterns is possible for
small case of a few orders only exploiting the MILP model by Johnston &
Salinlija (2004, [20]). It contains two conflicting objective functions. There-
fore one could resort to goal programming. Alternatively, we produce several
parameterized solutions leading to different number of rolls to be used and
patterns to be cut from which the user extract the one he likes best.
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# of # output file flag Wmax comment
rolls pat
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
0 5 8 99 lower bound: minimal # of patterns
30 10 pat00.out 9 99 lower bound: minimal # of rolls
34 7 pat01.out 0 20
31 9 pat02.out 1 15
30 8 pat03.out 0 10 minimal number of rolls
32 9 pat04.out 1 8
30 8 pat05.out 0 6 minimal number of rolls
31 8 pat06.out 1 4

The best solution found contains 7 patterns !
Solution with minimal trimloss contain 30 rolls !

Improvement of the lower bound of pattern : 6 !
Solutions with 6 patterns are minimal w.r.t.
to the number of patterns.

Found new solution with only 6 patterns and 36 rolls: patnew.out
36 6 patnew.out 0 99

As the table above indicates we compute tight lower bounds on both trimloss
and the number of patterns. Even for up to 50 orders feasible, near-optimal
solutions are construct in less than a minute.

Note that it would be possible to use the Branch&Price algorithm de-
scribed in Vanderbeck (2000, [38]) or Belov & Scheithauer (2006, [3]) to
solve the one-dimensional cutting stock problem with minimal numbers of
pattern. However, these methods are not easy to implement. Therefore, we
use the following approaches which are much easier to program:

– V1: Direct usage of the model by Johnston & Salinlija (2004, [20]) for a
small number, say, N I ≤ 14 of orders and Dmax ≤ 10. In a preprocess-
ing step we compute valid inequalities as well as tight lower and upper
bounds on the variables.

– V2: Exhaustion procedure in which we generate successively new pat-
terns with maximal multiplicities. This method is parametrized by the
permissible percentage waste Wmax , 1 ≤ Wmax ≤ 99. After a few pat-
terns have been generated with this parameterization, it could happen
that is is not possible to generate any more pattern with waste restric-
tion. In this case the remaining unsatisfied order are generated by V1
without the Wmax restriction.
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4.1 Indizes and Sets

In this model we use the indices listed in Johnston & Salinlija (2004):

i ∈ I := {i1, . . . , iN I} the sets of width.

j ∈ | := {j1, . . . , jNP} the pattern; NJ ≤ N I .
The pattern are generated by V1, or dynamically by maximizing the
multiplicities of a pattern used.

k ∈ K := {k1, . . . , kNP} the multiplicity index to indicate how often a
width is used in a pattern.
The multiplicity index can be restricted by the ratio of the width of the
orders and the width of the given rolls.

4.2 Variables

The following integer or binary variables are used:

aijk ∈ IN [−] specifies the multiplicity of pattern j.
The multiplicity can vary between 0 and Dmax := max{Di}. If pattern
j is not used, we have rj = pj = 0.

pj ∈ {0, 1} [−] indicates whether pattern j is used at all.
rj ∈ IN [−] specifies how often pattern j is used.

The multiplicity can vary between 0 and Dmax := max{Di}. If pattern
j is not used, we have rj = pj = 0.

αip ∈ IN [−] specifies how often width i occurs in pattern p.
This width-multiplicity variable can take all values between 0 and Di.

xijk ∈ {0, 1} [−] indicates whether width i appears in pattern j at level
k.
Note that xijk = 0 implies aijk = 0.

4.3 The Idea of the Exhaustion Method

In each iteration we generate m at most 2 or 3 new patterns by maximizing
the multiplicities of these pattern allowing not more than a maximum waste,
Wmax. The solution generated in iteration m is preserved in iteration m+1
by fixing the appropriate variables. If the problem turns out to be infeasible
(this may happen if Wmax turns out to be restrictive) we switch to a model
variant in which we minimize the number of patterns subject to satisfying
the remaining unsatisfied orders.

The model is based on the inequalities (2,3,5,6,7,8,9) in Johnston &
Salinlija (2004, [20]), but we add a few more additional ones or modify the
existing ones. We exploit two objective functions: maximizing the multiplic-
ities of the patterns generated

max
πu∑
j=1

rj ,
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where πu specifies the maximal number of patterns (πu could be be taken
from the solution of the column generation approach, for instance), or min-
imizing the number of patterns generated

min
πu∑
j=1

pj .

The model is completed by the integrality conditions

rj , aijk ∈ {0, 1, 2, 3, . . .} (4.21)
pj , xijk, yjk ∈ {0, 1} . (4.22)

The model is applied several times with aijk ≤ D̃i, where D̃i is the num-
ber of remaining orders of width i. Especially, the model has to fulfill the
relationships

kaijk > D̃i =⇒ aijk = 0 , xijk = 0

and

aijk ≤

⌈
D̃i

k

⌉
bzw. aijk ≤

⌈
D̃i + Si

k

⌉
,

where Si denotes the permissible overproduction.
The constructive method described so far provides an improved upper

bound, π′u, on the number of pattern.

4.4 Computing Lower Bounds

To compute a lower bound we apply two methods. The first method is to
solve a bin packing problem which is equivalent to minimize the number of
rolls in the original cutting stock problem described in Sect. 3.1.1 for equal
demands Di = 1. If solved with the column generation approach this method
is fast and cheap, but the lower bound, π′l, is often weak. The second method
is to exploit the upper bound, π′u, on the number of patterns obtained and
to call the exact model as in V1. It is impressive how quickly the commercial
solvers CPLEX and XpressMP improve the lower bound yielding π”

l . For most
examples with up to 50 orders we obtain π′u − π′l ≤ 2, but in many cases
π′u − π′l = 1 or even π′u = π”

l .

5 Primal Feasible Solutions and Hybrid Methods

We define hybrid methods as methods based any combination of exact MIP
methods with constructive heuristics, local search, metaheuristics, or con-
straint programming which produces primal feasible solutions. Dive-and-fix,
near-integer-fix, or fix-and-relax are such a hybrid methods. They are user
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developed heuristics exploiting the problem structure. In their kernel they
use a declarative model solved, for instance, by CPLEX and XpressMP.

In constructive heuristics we exploit the structure of the problem and
compute a feasible point. Once we have a feasible point we can derive safe
bounds on the optimum and assign initial values to the critical discrete
variable which could be exploited by the GAMS/CPLEX mipstart option. Fea-
sible points can sometimes be generated by appropriate sequences of relaxed
models. For instance, in a scheduling problem P with due times one might
relax these due times obtaining the relaxed model R. The optimal solution,
or even any feasible point of R is a feasible point of P if the due times are
models with appropriate unbounded slack variables.

Constructive heuristics can also be established by systematic approaches
of fixing crtitical discrete variables. Such approaches are dive-and-fix and
relax-and-fix. In dive-and-fix the LP relaxation of an integer problem is
to be solved followed by fixing a subset of fractional variables to suitable
bounds. Near-integer-fix is a variant of dive-and-fix which fixes variables
with fractional values to the nearest integer point. Note that these heuristics
are subject to the risk of becoming infeasible.

The probability of becoming infeasible is less likely in relax-and-fix. In
relax-and-fix following Pochet & Wolsey (2006, [32], pp.109) we suppose
that the binary variables δ of a MIP problem P can be partitioned into
R disjoint sets S1; . . . ;SR of decreasing importance. Witin these subsets
Ur with U ⊆ ∪R

u=r+1S
u for r = 1; . . . ;R − 1 can be chosen to allow for

somewhat more generality. Based on these partitions, R MIP problems are
solved, denoted Pr with 1 ≤ r ≤ R to find a heuristic solution to P. For
instance in a production planning problem, S1 might be all the δ variables
associated with time periods in {1, . . . , t1}, Su those associated with periods
in {tu +1, . . . , tu+1}, whereas Ur would would be the δ variables associated
with the periods in some set {tr + 1, . . . , ur}.

In the first problem, P1, one only imposes the integrality of the impor-
tant variables in S1 ∪U1 and relax the integrality on all the other variables
in S. As P1 is a relaxation of P, for a minimization problem, the solution of
P1 provides a lower bound of P. The solution values, δ1, of the discrete vari-
ables are kept fixed when solving Pr. This continues and in the subsequent
Pr, for 2 ≤ r ≤ R, we additionally fix the values of the δ variables with
index in Sr−1 at their optimal values from Pr−1, and add the integrality
restriction for the variables in Sr ∪ Ur.

Either Pr is infeasible for some r ∈ {1, . . . , R}, and the heuristic failed,
or else (xR,δR) is a relax-and-fix solution. To avoid infeasibilities one might
apply a smoothed form of this heuristic which allows for some overlap of
Ur−1 and Ur. Additional free binary variables in horizon r − 1 allow to
link the current horizon r with the previous one. Usually this suffices to
ensure feasibility. Relax-and-fix comes in various flavours exploiting time
decomposition or time partitioning structures. Other decompositions, for
instance, plants, products, or customers, are possible as well.
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Local search can be used to improve the solution obtained by the relax-
and-fix heuristic. The main idea is to solve repeatedly the subproblem on
small number of binary variables reoptimizing, for instance, the produc-
tion of some products. The binary variables for resolving could be chosen
randomly, or by a meta-heuristic such as simulated annealing. All binary
variables related to them are released the other ones are fixed to the previous
best values.

Another class of MIP hybrid method is established by algorithms which
combine a MIP solver with another algorithmic method. A hybrid method
obtained by the combination of mixed-integer and constraint logic program-
ming strategies has been developed and applied by Harjunkoski et al. (2000,
[14]) as well as Jain & Grossmann (2001, [17]) for solving scheduling and
combinatorial optimization problems. Timpe (2002, [37]) solved a mixed
planning and scheduling problems with mixed MILP branch-and-bound and
constraint programming. Maravelias & Grossmann (2004, [27]) proposed
a hybrid/decomposiiton algorithm for the short term scheduling of batch
plants, and Roe et al. (2005, [33]) presented a hybrid MILP/CLP algorithm
for multipurpose batch process scheduling, in which MILP is used to solve
an aggregated planning problem while CP is used to solve a sequencing
problem. Other hybrid algorithms combine evolutionary and mathematical
programming methods, see, for instance, the heuristics by Till et al. (2005,
[36]) for stochastic scheduling problems and by Borisovsky et al. (2006, [4])
for supply management problems.

Finally, one should not forget to add some algorithmic component, which
for the minimization problem at hand, would generate some reasonable
bounds to be provided in addition to the hybrid method. The hybrid meth-
ods discussed above provide upper bounds by constructing feasible points.
In favourate cases, the MIP part of the hybrid solver provides lower bounds.
In other case, lower bounds can be derived from auxiliary problems which
are relaxations of the original problem, and which are easier to solve.

6 Summary

If a given MIP problem cannot be solved by an available MIP solver exploit-
ing all its internal presolving techniques, one might reformulate the problem
and getting an equivalent or closely related representation of the reality.
Another aproach is to construct MIP solutions and bounds by solving a
sequence of models. Alternatively, individual tailor-made exact decomposi-
tion techniques could help as well as primal heuristics such as relax-and-fix,
or local search techniques on top of a MIP model.
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25. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper.
Res., 53(6):1007–1023, 2005.
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