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1 Introduction

Least squares problems and solution techniques to solve them have a long his-
tory briefly addressed by Björck (2001, [4]). In this article we focus on two
classes of complex least squares problems. The first one is established by mod-
els involving differential equations. The other class is made by least squares
problems involving difficult models which need to be solved for many indepen-
dent observational data sets. We call this least squares problems with massive
data sets.

1.1 A Standard Formulation for Unconstrained Least Squares
Problem

The unconstrained least squares problem can be expressed by

min
p

l2(p) , l2(p) := ‖r1 [x(t1), . . . ,x(tk),p]‖22 =
N∑

k=1

[r1k(p)]2 , r1 ∈ IRN .

(1)
The minimization of this functional, i.e., the minimization of the sum of weighted
quadratic residuals, under the assumption that the statistical errors follow a
Gaußian distribution with variances as in (4), provides a maximum likelihood
estimator (Brandt, 1976, [7] Chp.7) for the unknown parameter vector p. This
objective function dates back to Gauß (1809, [14]) and in the mathematical lit-
erature the problem is synonymously called least squares or `2 approximation
problem.

The least squares structure (1) may arise either from a nonlinear over-
determined system of equations

r1k(p) = 0 , k = 1, ..., N , N > n , (2)
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or from a data fitting problem with N given data points (tk, Ỹk) and variances
σν , a model function F̃ (t,p), and n adjustable parameters p:

r1k := r1k(p) = Yk − Fk(p) =
√

wk

[
Ỹk − F̃ (tk,p)

]
. (3)

The weights wk are related to the variances σk by

wk := β/σ2
k . (4)

Traditionally, the weights are scaled to a variance of unit weights. The factor
β is chosen so as to make the weights come out in a convenient range. In short
vector notation we get

r1 := Y − F(p)= [r11(p), . . . , r1N (p)]T , F(p),Y ∈ IRN .

Our least squares problem requires us to provide the following input:
1. model,
2. data,
3. variances associated with the data,
4. measure of goodness of the fit, e.g., the Euclidean norm.

In many practical applications, unfortunately, less attention is paid to the vari-
ances. It is also very important to point out that the use of the Euclidean norm
requires pre-information related to the problem and statistical properties of the
data.

1.2 Solution Methods

Standard methods for solving linear version of (1), i.e., F(p) = Ap , are reviewed
by Björck (2001, [4]). Nonlinear methods for unconstrained least squares prob-
lems are covered in detail by Xu (2001a, 2001b, 2001c; [36], [35], [37]). In addi-
tion, we mention a popular method to solve unconstrained least squares prob-
lems: the Levenberg-Marquardt algorithm proposed independently by Leven-
berg (1944, [21]) and Marquardt (1963, [22]) and sometimes also called “damped
least squares”. It modifies the eigenvalues of the normal equation matrix and
tries to reduce the influence of eigenvectors related to small eigenvalues [cf.
Dennis and Schnabel (1983, [8])]. Damped (step-size cutting) Gauß-Newton
algorithms combined with orthogonalization methods control the damping by
natural level functions [Deuflhard and Apostolescu (1977, 1980, [9][10]), Bock
(1987)] seem to be superior to Levenberg-Marquardt type schemes and can be
more easily extended to nonlinear constrained least squares problems.

1.3 Explicit Versus Implicit Models

A common basic feature and limitation of least squares methods, but seldom
explicitly noted, is that they require some explicit model to be fitted to the
data. However, not all models are explicit. For example, some pharmaceutical
applications for receptor-ligand binding studies are based on specifically coupled
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mass equilibrium models. They are used, for instance, for the radioimmunolog-
ical determination of Fenoterol or related substances, and lead to least squares
problems in systems of nonlinear equations [31], in which the model function
F(p) is replaced by F(t;p, z) which, besides the parameter vector p and the time
t, depends on a vector function z = z(t;p) implictly defined as the solution of
the nonlinear equations

F2(t;p, z) = 0 , F2(p) ∈ IRn2 . (5)

This is a special case of an implicit model. There is a much broader class of
implicit models. Most models in science are based on physical, chemical and
biological laws or include geometry properties, and very often lead to differen-
tial equations which may, however, not be solvable in a closed analytical form.
Thus, such models do not lead to explicit functions or models we want to fit
to data. We rather need to fit an implicit model (represented by a system of
differential equations or another implicit model). The demand for and the ap-
plications of such techniques are widespread in science, especially in the rapidly
increasing fields of nonlinear dynamics in physics and astronomy, nonlinear re-
action kinetics in chemistry [5], nonlinear models in material sciences (Kallrath
et al., 1998, [16]) and biology [2], and nonlinear systems describing ecosystems
[Richter and Söndgerath (1990, [29]), Richter et al. (1992, [28])] in biology,
or the environmental sciences. Therefore, it seems desirable to focus on least
squares algorithms that use nonlinear equations and differential equations as
constraints or side conditions to determine the solution implicitly.

1.4 Practical Issues of Solving Least Squares Problems

Solving least squares problems involves various difficulties among them to find
an appropriate model, non-smooth models with discontinuous derivatives, data
quality and checking the assumption of the underlying error distribution, and
dependence on initial parameter or related questions of global convergence.

1.4.1 Models and Model Validation

A model may be defined as an appropriate abstract representation of a real sys-
tem. In the natural sciences (e.g., Physics, Astronomy, Chemistry and Biology)
models are used to gain a deeper understanding of processes occurring in nature
(an epistemological argument). The comparison of measurements and observa-
tions with the predictions of a model is used to determine the appropriateness
and quality of the model. Sir Karl Popper (1980, [26]) in his famous book Logic
of Scientific Discovery uses the expressions falsification and verification to de-
scribe tasks that the models can be used to accomplish as an aid to scientific
process. Models were used in early scientific work to explain the movements of
planets. Then, later, aspects and questions of accepting and improving global
and fundamental models (e.g., general relativity or quantum physics) formed
part of the discussion of the philosophy of science. In science models are usually
falsified, and, eventually, replaced by modified or completely different ones.
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In industry, models have a rather local meaning. A special aspect of reality
is to be mapped in detail. Pragmatic and commercial aspects are usually the
motivation. The model maps most of the relevant features and neglect less
important aspects. The purpose is to

• provide insight into the problem,

• allow numerical, virtual experimentation but avoid expensive and/or dan-
gerous real experiments, or

• tune a model for later usage, i.e., determine, for instance, the reaction
coefficients of a chemical system – once these parameters are known the
dynamics of the process can be computed.

A (mathematical) model represents a real-world problem in the language of
mathematics, i.e., by using mathematical symbols, variables (in this context:
the adjustable least squares parameters), equations, inequalities, and other re-
lations. How does one get a mathematical model for a real-world problem? To
achieve that is neither easy nor unique. In some sense it is similar to solving
exercises in school where problems are put in a verbal way [25]. The following
points are useful to remember when trying to build a model:

• there will be no precise recipe telling the user how to build a model,

• experience and judgment are two important aspects of model building,

• there is nothing like a correct model,

• there is no concept of a unique model, as different models focusing on
different aspects may be appropriate.

Industrial models are eventually validated which means that they reached a
sufficient level of consensus among the community working with these models.

Statistics provide some means to discriminate models but this still is an
art and does not replace the need for appropriate model validation. The basic
notion is: with a sufficient number of parameters on can fit an elefant. This
leads us to one important consequence: it seems to be necessary that one can
interpret these model parameters. A reasonable model derived from the laws of
science with interpretable parameters is a good candidate to become accepted.
Even, if it may lead to a somewhat worse looking fits than a model with a larger
number of formal parameters without interpretation.

1.4.2 Non-Smooth Models

The algorithm reviewed by Xu (2001a, 2001b, 2001c; [36], [35], [37]) for solving
least squares problems usually require the continuous first derivatives of the
model function with respect to the parameters. We might, however, encounter
models for which the first derivatives are discontinuous. Derive-free methods
such as Nelder & Mead’s (1965, [23]) downhill Simplex method, or direction set
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methods; cf. Press et al. (1992, [27], p.406) have been successfully used to solve
least squares problems. The Simplex method provides the benefit of exploring
parameter space and good starting values for derivative based methods. Pow-
ell’s direction set method with appropriate conjugate directions preserve the
derivative free nature of the method.

1.4.3 Global Convergence

Nonlinear least squares algorithms usually converge only if the initial parameters
are close to the best fit parameters. Global convergence can be established for
some algorithms, i.e., they converge for all initial parameters. An essential
support tool accompanying the analysis of difficult least squares problem is to
visualize the data and the fits. Inappropriate or premature fits can easily be
excluded. Inappropriate fits are possible because all algorithms mentioned in
Sect. 1, 2, and 3 are local algorithm. Only if the least squares problem is
convex, they yield the global least squares minimum. Sometimes, it is possible
to identify false local minima from the residuals.

1.4.4 Data and Data Quality

Least squares analysis is concerned by fitting data to a model. The data are
not exact but subject to unknown random errors εk. In ideal cases these errors
follow a Gaussian normal distribution. One can test this assumption after the
least squares fit by analyzing the distrbution of the residuals as described in
Sect. 1.4.5. Another important issue is whether the data are appropriate to
estimate all parameters. Experimental design is the discipline which addresses
this issue.

1.4.5 Residual Distributions, Covariances and Parameter Uncertain-
ties

Once the minimal least squares solution has been found one should at first check
with the χ2-test or Kolmogoroff-Smirnov test whether the usual assumption
that the distribution really follows a Gaussian normal distribution. With the
Kolmogoroff-Smirnov test [see, e.g., Ostle (1963, [24])] it is possible to check as
follows whether the residuals of a least-squares solution are normally distributed
around the mean value 0.

1. let M := (x1, x2, ..., xn) be a set of observations for which a given hy-
pothesis should be tested;

2. let G : x ∈ M → IR, x → G(x), be the corresponding cumulative distri-
bution function;

3. for each observation x ∈ M define Sn(x) := k/n, where k is the number
of observations less than or equal to x;

4. determine the maximum D := max(G(x)− Sn(x) | x ∈ M);
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5. Dcrit denotes the maximum deviation allowed for a given significance level
and a set of n elements. Dcrit is tabulated in the literature, e.g., [24,
Appendix 2, p. 560]; and

6. if D < Dcrit, the hypothesis is accepted.

For the least squares problem formulated in Sect. 1.1 the hypothesis is “The
residuals x := r1 = Y − F(p) are normally distributed around the mean value
0.” Therefore, the cumulative distribution function G(x) takes the form

√
2πG(x) =

∫ x

−∞
g(z)dz =

∫ −x0

−∞
g(z)dz +

∫ x

−x0

g(z)dz, g(z) := e−
1
2 z2

.

The value x0 separates larger residuals; this is problem specific control param-
eter.

The derivative based least squares methods usually also give the covariance
matrix from which the uncertainties of the parameter are derived; cf. (Brandt,
1976, [7], Chp.7). Least squares parameter estimations without quantifying the
uncertainty of the parameters are very doubtful.

2 Parameter Estimation in ODE Models

Consider a differential equation with independent variable t for the state variable

x′(t) =
dx
dt

= f(t,x,p) , x ∈ IRnd , p ∈ IRnp (1)

with a right hand side depending on an unknown parameter vector p. Additional
requirements on the solution of the ODE (1) like periodicity, initial or boundary
conditions or range restrictions to the parameters can be formulated in vectors
r2 and r3 of (component wise) equations and inequalities

r2 [x(t1), . . . ,x(tk),p] = 0 or r3 [x(t1), . . . ,x(tk),p] ≥ 0 . (2)

The multi-point boundary value problem is linked to experimental data via
minimization of a least squares objective function

l2(x,p) := ‖r1 [x(t1), . . . ,x(tk),p]‖22 . (3)

In a special case of (3) the components ` of the vector r1 ∈ IRL are “equations
of condition” and have the form

r1` = σ−1
ij [ηij − gi(x(tj),p)] , ` = 1, . . . , L :=

Nj∑
i=1

Ji . (4)

This case leads us to the least squares function

l2(x,p) :=
ND∑
j=1

Nj∑
i=1

σ−2
ij [ηij − gi(x(tj),p)]2 . (5)
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Here, ND denotes the number of values of the independent variable (here called
time) at which observed data are available, Nj denotes the number of observ-
ables measured at time tj and ηij denotes the observed value which is com-
pared with the value of observable i evaluated by the model where the functions
gi(x(tj),p) relate the state variables to x this observable

ηij = gi(x(tj),p) + εij . (6)

The numbers εij are the measurement errors and σ2
ij are weights that have to

be adequately chosen due to statistical considerations, e.g. as the variances.
The unknown parameter vector p is determined from the measurements such
that the model is optimally adjusted to the measured (observed) data. If the
errors εij are independent, normally distributed with the mean value zero and
have variances σ2

ij (up to a common factor β2), then the solution of the least
squares problem is a maximum likelihood estimate.

2.1 The Initial Value Problem Approach

An obvious approach to estimate parameters in ODE which is also implemented
in many commercial packages is the initial value problem approach. The idea is
to guess parameters and initial values for the trajectories, compute a solution
of an initial value problem (IVP) (1) and iterate the parameters and initial
values in order to improve the fit. Characteristic features and disadvantages
are discussed in, e.g., [6] or Kallrath et al. (1993, [18]). In the course of the
iterative solution one has to solve a sequence of IVPs. The state variable x(t)
is eliminated for the benefit of the unknown parameter p and the initial values.
Note that no use is made of the measured data while solving the IVPs. They
only enter in the performance criterion. Since initial guesses of the parameters
may be poor, this can lead to IVPs which may be hard to solve or even have
no solution at all and one can come into badly conditioned regions of the IVPs,
which can lead to the loss of stability.

2.2 The Boundary Value Problem Approach

Alternatively to the IVP approach, in the “boundary value problem approach”
invented by Bock (1981), the inverse problem is interpreted as an over-determined,
constrained, multiple-point boundary problem. This interpretation does not de-
pend on whether the direct problem is an initial or boundary value problem. The
algorithm used here consists of an adequate combination of a multiple shooting
method for the discretization of the boundary value problem side condition in
combination with a generalized Gauss-Newton method for the solution of the
resulting structured nonlinear constrained least squares problem [Bock (1981,
1987); [5], [6]). Depending on the vector of signs of the state and parameter
dependent switching functions Q it is even possible to allow piecewise smooth
right hand side functions f , i.e., differential equations with switching conditions

x′ = f(t,x,p; sign(Q(t,x,p))) , (7)
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where the right side may change discontinuously if the vector of signs of the
switching functions Q changes. Such discontinuities can occur, e.g. as a result
of unsteady changes of physical values. The switching points are in general given
by the roots of the state-dependent components of the switching functions

Qi(t,x,p) = 0 . (8)

Depending on the stability behavior of the ODE and the availability of in-
formation about the process (measured data, qualitative knowledge about the
problem, etc.) a grid Tm

Tm : τ1 < τ2 < ... < τm , ∆τ j := τ j+1 − τ j , 1 ≤ j ≤ m− 1, (9)

of m multiple shooting nodes τ j (m − 1 subintervals Ij) is chosen. The grid
is adapted to the problem and data and is defined such that it includes the
measuring interval ([τ1, τm] = [t0, tf ]). Usually, the grid points τ correspond
to values of the independent variable t at which observations are available but
additional grid points may be chosen for strongly nonlinear models. At each
node τ j an IVP

x′(t) = f(t,x,p) , x(t = τ j) = sj ∈ IRnd (10)

has to be integrated from τ j to τ j+1. The m − 1 vectors of (unknown) initial
values sj of the partial trajectories, the vector sm representing the state at the
end point and the parameter vector p are summarized in the (unknown) vector
z

zT := (sT
1 , ..., sT

m,pT ) . (11)

For a given guess of z the solutions x(t; sj ,p) of the m − 1 independent initial
value problems in each sub interval Ij are computed. This leads to an (at first
discontinuous) representation of x(t). In order to replace (1) equivalently by
these m− 1 IVPs matching conditions

hj(sj , sj+1, p) := x(τ j+1; sj ,p)− sj+1 = 0 , hj : IR2nd+np → IRnd (12)

are added to the problem. (12) ensures the continuity of the final trajectory
x(t).

Replacing x(ti) and p in (5) by z the least squares problem is reformulated
as a nonlinear constrained optimization problem with the structure

min
z

{
1
2
‖F1(z)‖22 |F2(z) = 0 ∈ IRn2 , F3(z) ≥ 0 ∈ IRn3

}
, (13)

wherein n2 denotes the number of the equality and n3 the number of the in-
equality constraints. This usually large constrained structured nonlinear prob-
lem is solved by a damped generalized Gauss-Newton method [5]. If J1(zk) :=
∂zF1(zk), J2(zk) := ∂zF2(zk) vis. J3(zk) := ∂zF3(zk) denote the Jacobi matri-
ces of F1, F2 vis. F3, then the iteration proceeds as
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zk+1 = zk + αk∆zk (14)

with damping constant αk, 0 < αmin ≤ αk ≤ 1, and the increment ∆zk deter-
mined as the solution of the constrained linear problem

min
z

{
1
2
‖J1(zk)∆zk + F1(zk)‖22

∣∣∣∣ J2(zk)∆zk + F2(zk) = 0
J3(zk)∆zk + F3(zk) ≥ 0

}
. (15)

Global convergence can be achieved if the damping strategy is properly chosen
[6].

The inequality constraints that are active in a feasible point are defined by
the index set

I(zk) := {i|F3i(zk) = 0 , i = 1, ..., n3} . (16)

The inequalities which are defined by the index set I(zk) or their derivatives
are denoted with F̂3 or Ĵ3 in the following. In addition to (16) we define

Fc :=
(

F2

F̂3

)
, Jc :=

(
J2

Ĵ3

)
. (17)

In order to derive the necessary conditions that have to be fulfilled by the
solution of the problem (13) the Lagrangian

L(z,λ,µ) :=
1
2
‖F1(z)‖22 − λT F2(z)− µT F3(z) (18)

and the reduced Lagrangian

L̂(z,λc) :=
1
2
‖F1(z)‖22 − λT

c Fc(z) , λc :=
(

λ
µc

)
(19)

are defined. The Kuhn-Tucker-conditions, i.e. the necessary conditions of first
order, are the feasibility conditions

F2(z∗) = 0 , F3(z∗) ≥ 0 (20)

ensuring that z∗ is feasible, and the stationarity conditions stating that the
adjoined variables λ∗, µ∗ exist as solution of the stationary conditions

∂L

∂z
(z∗,λ∗,µ∗) = FT

1 (z∗) · J(z∗)− (λ∗)T
J2(z∗)− (µ∗)T J3(z∗) = 0 (21)

and

µ∗ ≥ 0 , i /∈ I(z∗) ⇒ µi
∗ = 0 . (22)

If (z∗,λ∗,µ∗) fulfills the conditions (20), (21) and (22), it is called a Kuhn-
Tucker-point and z∗ a stationary point. The necessary condition of second
order means that for all directions

s ∈ T (x∗) :=
{
s 6= 0

∣∣∣∣ J2(z∗)s = 0
J3(z∗)s ≥ 0 , µiJ3i(z∗)s = 0

}
(23)
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the Hessian G(z∗,λ∗,µ∗) of the Lagrangian is positive semi-definite:

sT G(z∗,λ∗,µ∗)s ≥ 0 , G(z∗,λ∗,µ∗) :=
∂2

∂z2
L(z∗,λ∗,µ∗) . (24)

As µi = 0 for i /∈ I(z∗) it is sufficient to postulate the stationary condition for
the reduced Lagrangian (19). For the linear problem (15) follows: (z∗,λ∗,µ∗) is
a Kuhn-Tucker-point of the nonlinear problem (13) if and only, if (0,λ∗,µ∗) is
a Kuhn-Tucker-point of the linear problem. The necessary conditions for the
existence of a local minimum of problem (13) are:

1. (z∗,λ∗,µ∗) is a Kuhn-Tucker-point of the non-linear problem

2. the Hessian G(z∗,λ∗,µ∗) of the Lagrangian is positive definite for all di-
rections s ∈ T (x∗), vis. sT G(z∗,λ∗,µ∗)s > 0

If the necessary conditions for the existence of the local minimum and the con-
dition µi 6= 0 for i ∈ I(z∗) are fulfilled, two perturbation theorems [6] can
be formulated. If the sufficient conditions are fulfilled it can be shown for the
neighborhood of a Kuhn-Tucker-point (z∗,λ∗,µ∗) of the nonlinear problem (13)
that the local convergence behavior of the inequality constrained problem cor-
responds to that of the equality constrained problem which represents active
inequalities and equations. Under the assumption of the regularity of the Jaco-
bians J1 and Jc, i.e.

rank

(
J1 (zk)
Jc (zk)

)
= nd + np , rank(Jc(zk)) = nc , (25)

a unique solution ∆zk of the linear problem (15) exists and an unique linear
mapping Jk

+ can be constructed which satisfies the relation

∆zk = −Jk
+F(zk) , Jk

+JkJk
+ = Jk

+ , JT
k :=

[
JT
1 (zk), JT

c (zk)
]

. (26)

The solution ∆zk of the linear problem or formally the generalized inverse Jk
+

[5] of Jk results from the Kuhn-Tucker conditions. But it should be noticed that
zk is not calculated from (26) because of reasons of numerical efficiency but is
based on a decomposition procedure using orthogonal transformations.

By taking into consideration the special structure of the matrices Ji caused
by the continuity conditions of the multiple shooting discretization (13) can
be reduced by a condensation algorithm described in [Bock (1981, 1987)) to a
system of lower dimension

min
{

1
2
‖A1xk + a1‖22|A2xk + a2 = 0 , A3xk + a3 ≥ 0

}
, (27)

from which xk can be derived at first and at last ∆zk. This is achieved by first
performing a ”backward recursion”, the ”solution of the condensed problem”
and a ”forward recursion” [6]. Kilian (1992, [20]) has implemented an active set
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strategy following the description in [6] and [33] utilizing the special structure
of J2.

The details of the parameter estimation algorithms which are incorporated in
the efficient software package PARFIT (a software package of stable and efficient
boundary value problem methods for the identification of parameters in systems
of nonlinear differential equations) are found in [6]. The damping constant αk

in the k-th iteration is computed with the help of natural level functions which
locally approximate the distance ‖zk − z∗‖ of the solution from the Kuhn-Tucker
point z∗ .

The integrator METANB [for the basic discretization see, for instance, Bader
and Deuflhard (1981, [3])] embedded in PARFIT is also suitable for the inte-
gration of stiff differential equation systems. It allows the user to compute
simultaneously the sensitivity matrixes G,

G(t; t0,x0,p) :=
∂

∂x0
x(t; t0,x0,p) ∈M(nd, nd) (28)

and H,

H(t; t0,x0,p) :=
∂

∂p
x(t; t0,x0,p) ∈M(nd, np) (29)

which are the most costly blocks of the Jacobians Ji via the so-called internal
numerical differentiation as introduced by Bock (1981, [5]). This technique does
not require the often cumbersome and error prone formulation of the variational
differential equations

G′ = fx(t,x,p) · G , G(t0; t0,x0,p) = 1l (30)

and
H′ = fx(t,x,p) · H + fp(t,x,p) , H(t0; t0,x0,p) = 0 (31)

by the user.
Using the multiple shooting approach described above, differential equation

systems with poor stability properties and even chaotic systems can be treated
(Kallrath et al., 1993, [18]).

3 Parameter Estimation in DAE Models

Another, even more complex class of problems, are parameter estimation in
mechanical multibody systems, e.g., in the planar slider crank mechanisms, a
simple model for a cylinder in an engine. These problems lead to boundary
problems for higher index differential algebraic systems (Schulz et al., 1998).
Singular controls and state constraints in optimal control also lead to this struc-
ture. Inherent to such problems are invariants that arise from index reduction
but also additional physical invariants such as the total energy in conservative
mechanical systems or the Hamiltonian in optimal control problems.
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A typical class of DAEs in mechanical multibody systems is given by the
equations of motion

ẋ = v (32)
M(t,x)v̇ = f(t,x)−∇xg(t,x)λ ,

0 = g(t,x)

where x = x(t) and v = v(t) are the coordinates and velocities, M is the mass
matrix, f denotes the applied forces, g are the holonomic constraints, and λ are
the generalized constraint forces. Usually, M is symmetric and positive definite.
A more general DAE system might have the structure

ẋ = f(t,x, z;p)
0 = g(t,x, z;p) ,

where p denotes some parameters and z = z(t) is a set of algebraic variables,
i.e., the differentials ż do not appear; in (32) λ is the algebraic variable. In
addition we might have initial values x0 and z0. Obviously, some care is needed
regarding the choice of z0 because it needs to be consistent with the constraint.
In some exceptional cases (in which Z := ∇zg has full rank and can be inverted
analytically) we might insert z = z(t,x;p) into the differential equation. DAE
systems with a regular matrix Z are referred to as index-1 systems. Index-
1-DAEs can be transformed into equivalent ordinary differential equations by
differencing the equations w.r.t. t. At first we get the implicit system of differ-
ential equations

gt + Xẋ+Zż = 0 , X := ∇xg

which, according to the assumption of the regularity of Z, can be written as the
explicit system

ż = Z−1 (gt + Xf) .

Many practical DAEs have index 1, e.g., in some chemical engineering prob-
lems, where algebraic equations are introduced to describe, for instance, mass
balances or the equation of state. However, multibody systems such as (32) have
higher indices; (32) is of index 3. The reason is, that the multiplier variables,
i.e., the algebraic variables, do not occur in the algebraic constraints and it is
therefore not possible to extract them directly without further differentiation. If
Z does not have full rank the equations are differentiated successively, until the
algebraic variables can be eliminated. The smallest number of differentiations
required to transform the original DAE system to an ODE system is called the
index of the DAE. The approach developed and described by Schulz et al. (1998,
[34]) is capable to handle least squares problems without special assumption to
the index.

An essential problem for the design, optimization and control of chemical
systems is the estimation of parameters from time-series. These problems lead
to nonlinear DAEs. The parameters estimation problem leads to a non-convex
optimization problem for which several local minima exist. Esposito & Floudas
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(2000, [13]) developed two global branch&bound and convex-underestimator
based optimization approaches to solve this problem. In the first approach, the
dynamical system is converted into an algebraic system using orthogonal collo-
cation on finite elements. In the second approach, state profiles are computed
by integration. In Esposito & Floudas (2000, [12]) a similar approach is used to
solve optimal control problems.

4 Parameter Estimation in PDE Models

A very complex class of least squares problems are data fitting problems in
partial differential equations based models. These include eigenvalue problems,
as well as initial and boundary value problems and cover problems in atomic
physics, elasticity, electromagnetic fields, fluid flow or heat transfer. Some re-
cent problems are, for instance, in models describing the water balance and solid
transport used to analyze the distributions of nutrients and pesticides (Arning,
1994, [1]), in the determination of diffusive constants in water absorption pro-
cesses in hygroscopic liquids discussed in Kallrath (1999, [15]), or in multispecies
reactive flows through porous media (Zieße et al., 1996, [38]). Such nonlinear
multispecies transport models can be used to describe the interaction between
oxygen, nitrate, organic carbon and bacteria in aquifers. They may include con-
vective transport and diffusion/dispersion processes for the mobile parts (that
is the mobile pore water) of the species. The immobile biophase represents the
part where reactions caused by microbial activity take place and which is cou-
pled to transport through mobile pore water. The microorganisms are assumed
to be immobile. The model leads to partial differential algebraic equations

M∂tu−∇(D∇u) + q∇u = f1(u,v, z,p) , (33)
∂tv = f2(u,v, z,p) ,

0 = g(u,v, z,p) ,

where D and q denote the hydraulic parameters of the model, p denotes a set
of reaction parameters, u and v refer to the mobile and immobile species, and
z is related to source and sink terms.

4.1 Methodology

To solve least squares problems based on PDE models requires sophisticated
numerical techniques but also great attention with respect to the quality of
data and identifiability of the parameters. To solve such problems we might use
the following approaches:

1. Unstructured approach: The PDE model is, for fixed parameters p, in-
tegrated by any appropriate method yielding estimations of the obser-
vations. The parameters are adjusted by a derivative-free optimization
procedure, e.g., by the Simplex method by Nelder & Mead (1965, [23]).
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This approach is relatively easy to implement, it solves a sequence of di-
rect problems, and is comparable to what in Section 2 has been called the
IVP approach. Arning (1994) uses such an approach.

2. Structured approach (for initial value PDE problems): Within the PDE
model spatial coordinates and time are discretized separately. Especially
for models with only one spatial coordinate, it is advantageous to apply
finite difference or finite element discretizations to the spatial coordinate.
The PDE system is transformed into a system of (usually stiff) ordinary
differential equations. This approach is known as the method of lines [see,
for example, Schiesser (1991, [30])]. It reduces parameter estimation prob-
lems subject to time-dependent partial differential equations to parameter
identification problems in systems of ordinary differential equations to be
integrated w.r.t. time. Now it is possible to distinguish again between the
IVP and BVP approach. Schittkowski (1997, [32]) in his software package
EASY-FIT applies the method of lines to PDEs with one spatial coordi-
nate and uses several explicit and implicit integration methods to solve
the ODE system. The integration results are used by an SQP optimiza-
tion routine or a Gauß-Newton method to estimate the parameters. Zieße
et al. (1996) and Dieses et al. (1999, [11]), instead, couple the method
of lines (in one and two spatial coordinates) with Bock’s (1987, [6]) BVP
approach, discretize time, for instance, by multiple shooting and use an
extended version of PARFIT.

The method of lines has become one of the standard approaches for solving
time-dependent PDEs with only one spatial coordinate. It is based on a partial
discretization, which means that only the spatial derivative is discretized but not
the time derivative. This leads to a system of N coupled ordinary differential
equation, where N is the number of discretization points. Let us demonstrate
the method by applying it to the diffusion equation

∂

∂t
c(t, z) = D

∂2

∂z2
c(t, z) ,

0 ≤ t < ∞
0 ≤ z ≤ L

(34)

with constant diffusion coefficient D. We discretize the spatial coordinate z
according to

zi = i∆z , ∆z :=
L

N
, ci = ci(t) = c(t, zi) , i = 0, . . . , N . (35)

If we choose a finite difference approximation we get

∂2

∂z2
c(t, z) ≈ c(t, z −∆z)− 2c(t, z) + c(t, z + ∆z)

(∆z)2
=

ci−1 − 2ci + ci+1

(∆z)2
, (36)

which replaces the diffusion equation (34) by N ordinary differential equations

ċi(t) =
ci−1 − 2ci + ci+1

(∆z)2
. (37)
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A detailed example of this method is discussed in Kallrath (1999, [15]). The
water transport and absorption processes within a hygroscopic liquid are de-
scribed by a model containing the diffusion equation (34) describing the water
transport within the hygroscopic liquid, a mixed Dirichlet-Neumann condition
representing a flux balance equation at the surface of the liquid, and an addi-
tional integral relation describing the total amount of water in the liquid. The
model included three parameters to be estimated.

The available measurement data provide the total time dependent concen-
tration C(t) of water in the liquid. A further complication was that the math-
ematical solution of the diffusion equation is the water concentration c(t, z) in
the hygroscopic liquid and it is a function of time and location. Therefore, in
order to compare the mathematical solution with the observed data one had to
integrate c(t, z) over the space coordinate z, i.e., the depth of the fluid.

5 Least Squares Problems with Massive Data
Sets

We motivate the necessity to analyze massive data sets by an example taken
from astrophysics (Kallrath & Wilson, 2007, [19]). We outline the method for
a huge set of millions of observed data curves in which time is the independent
parameter and for each of the N , N ' 106, curves there is a different under-
lying parameter set we want to estimate by a least squares method. Note that
we assume that there is a model in the sense of (1) or (5) available involving
an adjustable parameter vector p. We are further assume that we are dealing
with nonlinear least squares problems which are not easy to solve. The difficul-
ties could arise from the dependence on initial parameters, non-smoothness of
the model, the number of model evalutions, or the CPU time required for one
model evaluation. For each available curve we can, of course, solve this least
squares problem by the techniques mentioned or discussed earlier in this article.
However, the CPU time required to solve this least squares problem for several
million curves is prohibitive. The archive approach described in this section is
appropriate for this situation.

Examples of massive data sets subject to least squares analyses are surveys
in astrophysics where millions of stars are observed over a range of time. About
50% of them are binary stars or multiple systems. The observed data could be
flux of photons (just called light in the discipline of binary star researchers) in a
certain wavelength region or radial velocity as a function of time. Thus we have
to analyze millions of light and radial velocity curves. There are well validated
models and methods (cf., Kallrath & Milone, (1999, [17]) to compute such curves
on well defined physical and geometrical parameters of the binary systems, e.g.,
the mass ratio, the ratio of their radii, their temperatures, inclination, semi-
major axis and eccentricity to mention a few. Thus one is facing the problem
how to analyze the surveys and to derive the stellar parameters P relevant to
astrophysicists. In this eclipsing binary star example it suffices to consider the
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range [0, P ] for the independent parameter time because the observed curves are
periodic with respect to the period P . The period could be determined a priori
from a frequency analysis of the observed curve. Under certain assumptions, in
eclipsing binary star analyses, time can be replaced by phase.

The critical issues are speed and stability. Speed is obviously necessary to
analyze large number of data, light and radial velocity curves in the example.
Stability is required to automatize the procedure. Automatization enables the
user to analyze large sets of eclipsing binary data produced by surveys. Stability
and automatization need to overcome the problem of initial parameters usually
experienced in nonlinear least squares. There is a price to be paid in terms of
accuracy. But nevertheless, such an approach will produce good approximate
results and may indicate interesting eclipsing binary stars for detailed follow-up
analysis.

The method we propose to solve least squares problems with massive data
sets is a matching approach: match one or several curves to a large test sets
of pre-computed archive curves for an appropriate set of combinations of |P|
parameters.

5.1 The Matching Approach

Let for a given binary system `o
ic be any observed light value for observable c, c =

1 . . . C, at phase θi, i = 1, . . . , I. Correspondingly, `c
ick denotes the computed

light value at the same phase θi for the archive light curve k, k = 1 . . .K. Note
that K easily might be a large number such as 1010. Each archive light curve k
is computed by a certain parameter combination.

The idea of the matching approach is to pick that light curve from the archive
which matches the observed curve of binary j best. The best fit solution is
obtained by linear regression. The matching approach returns, for each j, the
number of the archive light curve which fits best, a scaling parameter, a, and
a shift parameter, b, (which might be interpreted as a constant third light) by
solving the following nested minimization problem for all j, j = 1, . . . , N :

min
k

{
min

akc,bkc

I∑
i=1

wi [`o
ic − (akc`

c
ick + bkc)]

2

}

Note that the inner minimization problem requires just to solve a linear regres-
sion problem. Thus, for each k, there exists an analytic solution for the unknown
parameters akc and bkc. Further note that the `c

ick values might be obtained by
interpolation. The archive light curves are generated in such a way that they
have a good covering in the eclipses while a few points will do in those parts of
the light curves which show only small variation with phase. Thus, there might
be a non-equidistant distribution of phase grid points. A cubic interpolation
will probably suffice.

Thus, the matching approach requires us to provide the following compo-
nents:
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1. solving linear regression problems determining a and b for all archive
curves and all observed curves (the sequence of the loops is important),

2. generating the archive curves,

3. cubic interpolation in the independent time-like quantity and interpolation
after the best matching solution has been found.

In the sequel we briefly comment on the last two components.

5.1.1 Generating and Storing the Archive Curves

As the number of archive curves can easily reach 1010 one should carefully
think about storing them. That requires also appropriate looping over the
parameters p = 1, . . . , |P|. For the eclipsing binary example the details are
given in Kallrath & Wilson (2007). Among the efficiency issues is the usage of
non-equidistant parameter grids exploiting the sensitivity of the parameters on
the model function `c

ic.
One might think to store the archive light curves in a type of data base. How-

ever, data base techniques become very poor when talking about 1010 curves.
Therefore, it is probably easier to use a flat storage scheme. In the simplest
case, for each k we store the physical and geometric parameters, then those
parameters describing observable c, and then the values of the observable. If we
use the same number of phase values for each observable and each k, we have
the same amount of data to be stored.

5.1.2 Exploiting Interpolation Techniques

Within the matching approach interpolation can be used at two places. The
first occurrence is in the regression phase. The test curves in the archive are
computed for a finite grid of the independent parameter time (phase in this
example). The observed curves might be observed at time values not contained
in the archive. We can interpolate from the archive values by linear or cubic
interpolation to the observed time values. However, it may well pay out to have
some careful thoughts on the generation of the time grid points.

The second occurrence is when it comes to determining the best fit. The
linear regression returns that parameter set which matches the observed one
best. Alternatively, we could exploit several archive points to obtain a better fit
to the observed curve. Interpolation in an appropriately defined neighborhoods
of the best archive solution can improve the fit of the observed curve.

5.1.3 Numerical Efficiency

The efficiency of a least squares method could be measured by the number of
function or model evaluation per unknown parameter. If we assume that for
each model parameter p we generate np archive curves in the archive, the archive
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contains test curves Nc =
∏|P|

p=1
np and thus requires Nc model evaluation; np

is the number of archive grid points of parameter p.

6 Conclusions

This contribution outlines how to solve ODE and PDE based least squares
problems. Academic and commercial least squares solvers as well as software
packages are available. Massive data sets and observations arise in data min-
ing problems, medicine, the stock market, and surveys in astrophysics. The
approach described in Sect. 5.1 has been proven efficient for surveys in astro-
physics. It can also support the generation of impersonal good initial parameter
estimations for further analysis. The archive approach is also suitable for pa-
rameter fitting problems with non-smooth models. Another advantage is that
on the archve grid it provides the global least squares minimum.
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