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Abstract

This contribution gives an overview on the state-of-the-art and recent advances in
mixed integer optimization to solve planning and design problems in the process in-
dustry. In some case studies specific aspects are stressed and the typical difficulties of
real world problems are addressed.

Mixed integer linear optimization is widely used to solve supply chain planning prob-
lems. Some of the complicating features such as origin tracing and shelf life constraints
are discussed in more detail. If properly done the planning models can also be used to
do product and customer portfolio analysis.

We also stress the importance of multi-criteria optimization and correct modeling for
optimization under uncertainty. Stochastic programming for continuous LP problems
is now part of most optimization packages, and there is encouraging progress in the
field of stochastic MILP and robust MILP.

Process and network design problems often lead to nonconvex mixed integer nonlinear
programming models. If the time to compute the solution is not bounded, there are
already a commercial solvers available which can compute the global optima of such
problems within hours. If time is more restricted, then tailored solution techniques are
required.

Keywords: Global Optimization, mixed integer programming, portfolio optimiza-
tion, trilinear terms, concave objective functions, convex underestimators, origin trac-
ing, shelf life time, petro-chemical industry, optimization under uncertainty, stochastic
mixed integer optimization, robust mixed integer optimization

1



1 Introduction

The paper reviews some progress and the current state of planning and design in the pro-
cess industry as far as mixed integer linear programming (MILP) ([91],[120]), mixed inte-
ger quadratic programming (MIQP), mixed integer nonlinear programming (MINLP) and
global optimization techniques ([37],[112]) are concerned. We might touch certain aspects
of scheduling, as the border line between planning and scheduling is vague [74]. However,
scheduling is not the main focus and we refer the reader to Floudas & Lin (2004, [42]), Jia
and Ierapetritou (2004,[65]), Janak et al. (2004,[64]), and Floudas & Lin (2005,[43]) for up-
to-date reviews on scheduling using MIP and, in particular, continuous-time formulations.
Readers interested in some excellent reviews on retroperspective and future perspectives of
a broader set of optimization techniques are referred to [19] and [50]. In particular, for
logic-based modeling and nonlinear discrete/continuous optimization problems we refer the
reader to [81].

Planning is part of company-wide logistics and supply chain management. However, to
distinguish or separate between planning and design, or even to distinguish between operative
planning and strategic planning is often a rather artificial approach leading to unneccessary
bottlenecks in operative planning. In reality, the border lines between those areas are diffuse
and there are strong overlaps between planning in production, distribution or supply chain
management and strategic planning. Kallrath (2003b,[72]) describes a successful case study
in which operative and strategic planning aspects are combined in one MILP model. The
client reports cost savings of several millions of US$. These cost savings were achieved via a
reduction in transportation cost compared to the previous year when the model was not in
use. The solution for a one year planning horizon allowed the company to better understand
and forecast the flow of products between North America, Europe and Asia. This knowledge
was then used to reduce the need and cost of urgent shipments. Moreover, it was beneficial
to the client to see that the design solutions (which reactors to be opened or to be closed)
were stable against up to 20% changes in the demand forecast.

After a brief discussion of special features and general comments on planning and design
in the process industry this paper provides in Section 2 detailed MILP models to add three
special features (origin tracing, shelf-life, and customer portfolio optimization) to MILP
production and distribution problems. As the authors sees optimization under uncertainties
and MINLP/global optimization as the two disciplines which will have a strong impact on
planning in the process industry section 3 and 4 focus on these topics. Various case studies
are discussed in Section 5. Section 6 provides a generic description of a challenging problem
which might involve both optimization under uncertainties and MINLP/global optimization
and attract the attention of researchers in those fields.

1.1 Special Features in the Process Industry

The production methods in the process industry but also the production facilities and their
connections lead to a number of complications and to mixed integer linear and nonlinear
optimization problems. The table summarizes the most frequent features; some of them are
described in more detail in this paper):
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LP production planning simple blending ([76], Section 5.1),
enterprise-wide annual planning (Section 5.2),

NLP production planning blending accessing concentrations explicitly [68]
multi-component flows pooling problem ([36], Chap. 11 in [76], or [39])
process design reaction kinetics [68]

MILP production planning multi-purpose reactors with mode changes [71]
batch and campaign planning [69], [52], [16] or [86]
origin tracing (Section 2.1)

logistics variable tanks [113], semi-continuous transport [71]
shelf-life (Section 2.2)

marketing customer portfolio analysis (Section 2.3)
supply chain optimiz. planning & distribution (Section 5.1)
process operations hybrid dynamic optimization problems [31]

MIQP process operations hybrid dynamic optimization problems [31]
predictive control predictive control of mixed logical dynamic systems [31]

MINLP process design process optimization [68], process synthesis and design [14]
lay-out of reactors (Section 5.5)
process systems engineering [51]

network design topology of production facilities and tanks [68]
waste water treatment network ([79],[68])

supply chain optimiz. short term planning for petrochemical complexes [29]

One of the special features in the process industry is related to the multi-stage continuous and
batch production systems involing multi-purpose equipment subject to sequence-dependent
mode changes. Plants producing only a limited number of products each in relatively high
volume typically use special purpose equipment allowing a continuous flow of materials in
long campaigns, i.e., there is a continuous stream of input and output products with no
clearly defined start or end time. Alternatively, small quantities of a large number of prod-
ucts are preferably produced using multi-purpose equipment which are operated in batch
mode, i.e., there is a well-defined start-up, e.g., filling in some products, well-defined follow-
up steps defined by specific recipes, e.g., heating the product, adding other products and
let them react, and a clearly defined end, e.g., extracting the finished product. Batch pro-
duction involves an integer number of batches where a batch is the smallest quantity to be
produced. Several batches of the same product following each other immediately establish a
campaign. Production may be subject to certain constraints, e.g., campaigns are built up by
a discrete number of batches, or a minimal campaign length (or production quantity) has to
be observed. Within a fixed planning horizon, a certain product demand can be covered by
producing that product in several campaigns; this implies that campaigns have to be mod-
eled as individual entities of unknown size. Determining the optimal size of such campaigns
is referred to as the lot sizing or campaign planning problem (cf., [52], [16] or [86]), a chal-
lenging problem in (supply chain) planning and design planning leading to MILP or MINLP
problems. Kallrath (1999,[69]) shows how these features can be covered within MILP models
based on time-discrete formulations. The lot-sizing problem usually occurs in (supply chain)
planning problems, but it can also occur in design problems; the design problem posed in
Section 6 contains a lot-sizing problem as a subproblem.
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Another special feature in the refinery or petrochemical industry or process industry in
general is the pooling problem (cf., [36], or Chapter 11 in [76]), an almost classical problem
in nonlinear optimization resulting from models describing multi-component mass flow prob-
lems in which several units of a production network are connected. It is also known as the fuel
mixture problem in the refinery industry but it also occurs in blending problems in the food
industry. The pooling problem refers to the intrinsic nonlinear problem of forcing the same
(unknown) fractional composition of multi-component streams emerging from a pool, e.g., a
tank or a splitter in a mass flow network. The pooling problem occurs in all multi-component
network flow problems in which the conservation of both mass flow and composition is re-
quired and both the flow and composition quantities are variable. Structurally, this problem
contains bilinear terms (products of variables) appearing in equality constraints, e.g., mass
balances. It is therefore a nonconvex nonlinear problem. Nowadays the target is to solve
larger pooling problems with global optimization techniques. Especially, the refinery indus-
try due to decreasing margins is strongly interested in computing the global optimum and
might benefit from current research activities on solving larger pooling problems (cf., [1],
[39], or [80]).

Nonlinear programming (NLP) models have been used by the refining, chemical and
other process industries for several decades. State-of-the art NLP solvers use either sequen-
tial quadratic programming (SNOPT [47] is an example), advanced interior point methods
([118], [18], [50]), or generalized reduced gradient methods implemented in the commercial
solver CONOPT [30]. In the refinery industry sequential linear programming (SLP) techniques
are still in use. SLP solves NLP problems by solving a sequences of LP problems. All the
approaches mentioned above suffer from the drawback of yielding only locally optimum so-
lutions. Although many users may identify obviously sub-optimal solutions from experience,
there is no validation of those which are not obviously so, as this would require truly globally
optimal solutions. However, recent advances in optimization algorithms have yielded exper-
imental academic and commercial codes which compute global optima of such problems and
prove their global optimality.

In the chemical process industry, the proper description of the reaction kinetics leads
to exponential terms. If, in addition, plants operate in discrete modes or connections be-
tween various units, e.g., reactors, tanks and crackers or vacuum columns have to be chosen
selectively [68], then mixed-integer nonlinear optimization problems need to be solved. Pro-
cess network flow ([79],[80]) or process synthesis problems usually fall into this category,
too. Examples are heat exchanger or mass exchange networks. Hybrid models describing
process operations involving transitions between operating modes described by their own dy-
namic models, constraints and specifications lead to MILP or MIQP problems with special
structure [31]. Recent reviews on process systems engineering with a focus on optimization
applications are Grossmann et al. (1999,[51]), Floudas (2000,[38]) and Biegler and Gross-
mann (2004,[19]). Many design problems in the process industry including process, network,
or facility design lead to nonconvex MINLP problems. Thus, they provide a fruitful terrain
for global optimization techniques (cf., [48], [19] and [50]). Current challenges in process
design optimization are reviewed by Biegler and Grossmann (2004,[18]), and a yet unsolved
problem is briefly described in Section 6 to attract researchers’ attention.

Nonconvex nonlinear models are, of course not restricted to the oil refining and petro-
chemical sector, but arise in logistics, network design, energy, environment, and waste man-
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agement as well as finance and their problems ask for global optimization; see Section 4 and
Section 6.

1.2 Comments on Planning and Design in the Process Industry

Typical design problems in the process industry are related to the choice of chemical reactor
technology, their size and number, and the production topology, i.e., process design and
network design. These design problems often lead to MINLP problems and are ideal to
use global optimization techniques. The network design problem may involve the pooling
problem described above.

Planning in the process industry is used to create production, distribution, sales and
inventory plans based on customer and market information while observing all relevant con-
straints. In particular, operational plans have to be determined which are aimed to structure
future production, distribution and other related activities according to business objectives.
It is common practice that, based on these operational plans, detailed schedules are worked
out which define the precise timing and sequencing of individual operations as well as the
assignment of the required resources over time. Planning tools and software packages from
various vendors are designed to incorporate new market and operational information quickly
and help business users to keep their operations performing at their optimum. Especially,
nowadays it is possible to find the optimal way to meet business objectives and to fulfill all
production, logistics, marketing, financial and customer constraints.

Regarding the production facilities the planning (and also the scheduling) problems con-
tain the following structural features:

• multi-purpose (multi-product, multi-mode) reactors,
• sequence-dependent set-up times and cleaning cost,
• combined divergent, convergent and cyclic material flows,
• non-preemptive processes (no-interruption), buffer times,
• multi-stage, batch & campaign production using shared intermediates,
• multi-component flow and nonlinear blending,
• finite intermediate storage, dedicated and variable tanks.

In production or supply chain planning, we usually consider material flow and balance equa-
tions connecting sources and sinks of a supply network. Time-indexed models using a relative
coarse discretization of time, e.g., a year, quarters, months or weeks are usually accurate
enough. LP, MILP and MINLP approaches are often appropriate and successful for problems
with a clear quantitative objective function (net profit, contribution margin, cost, total sales
neglecting cost, total production for a fixed system of production reactors, energy consump-
tion or the usage of other utilities, deviation of the usage of resources from their average
usage), or quantitative multi-criteria objectives usually a subset of those just listed. The
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supply chain planning problems may contain many special features such as

batch production order lost cost
buy or sell assets product swaps
campaign production production origin tracing
delay cost shelf-life
nonlinear pricing transportation and logistics
multi objectives intermittent deliveries

This list covers many features but may be incomplete. In particular we stress that accord-
ing to our experience several objectives or criteria need to be considered simultaneously
(contribution margin, total production, totals sales, total turnover, costs, stocked products,
transported products, etc.). Lexicographic goal programming seems to be a reasonable ap-
proach to deal with such situations because it leads to clear interpretations of the solutions.

For design as well as for planning problem one usually assumes that all data of a problem
are given, i.e., full knowledge of the future (of course, this is also an approximation since our
knowledge of future demand or orders is uncertain), and that they are accurate. However,
in reality, the input data are often subject to uncertainties. Those uncertainties can arise
for many reasons:

• Physical or technical parameters or process control data, which are only known to a
certain degree of accuracy. Usually, for such input parameters safe intervals can be
specified.

• In strategic design optimization problems such as described and solved, for instance, by
Kallrath (2002, [71]), demand and price forecast are used over a long planning horizon
of 10 to 20 years. These predictions are subject to all sorts of uncertainties and can
be at best quantified with some probability distribution or scenario approach.

Despite possible uncertainties in some input data, there are optimization problems which
can be solved under the assumption of deterministic data without serious problems. Either
the data show only small errors or uncertainties, or the problem and its structure is not
sensitive with respect to such variations.

However, especially in long term or strategic planning the deterministic assumption is
clearly not reasonable, but the results obtained at least provide enough intuition into the
problem to justify the model. This reflects the fact that a clear decision on what approach is
the best for solving a problem under uncertainty cannot be made a priori but rather after the
problem is solved. Unfortunately, it may also happen, that assuming deterministic data does
not provide accurate enough results to justify the model. Sometimes making that assumption
can even be the reason that misleading results are obtained. The goal of optimization under
uncertainty is to exploit uncertain data (w.r.t. the future) and incomplete information in
such a way to improve the final quality of its overall performance, i.e., the quality of decisions
over rolling time horizons, or to increase robustness.
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2 Special Features in Planning in the Process Industry

The features described in this section are extensions to the models and real world cases
described in Kallrath & Wilson (1997,[76]), Timpe & Kallrath (2000,[113]) and Kallrath
(2002,[71]). In several projects these features and their corresponding model formulations
have been requested by clients. While there are better sources on modeling (cf., [76], or [75])
the following sections are quite detailed stressing the importance of good modeling practice
and formulations.

2.1 Keeping Track of the Origin of Products

In some cases customers assign an attribute to their orders. They may wish to get a product
from a certain plant only, or that do not want to get it from a particular one, or that shipment
should come from one plant only without specifying this plant explicitly. Thus the model
incorporates the input data DA1

dpo and DA2
dp , which have the following meaning: if DA1

dpo is
specified for a combination of demand point d, product p, and origin o then it is interpreted
as follows:

DA1
dpo =

{
1 : shipment of p is allowed to come from origin o
2 : shipment of p must not come from origin o

.

If DA2
dp is specified, i.e., it exists, and has one of the following value

DA2
dp =

{
1 : at least one constraint is specified in DA1

dpo

2 : shipment of p always come from same origin
.

If DA2
dp is specified the feasible set of origins Odp (note, it does not depend on time) for

demand Ddpt is calculated according to the following scheme:

Odp = ∪
{
o|DA1

dpo = 1
}

or, alternatively,

Odp = O
∖
∪

{
o|DA1

dpo = 2
}

.

Note the in both cases we exploit full complementarity, i.e., the demand attributes for a
certain order or demand should, for several origins o, only have DA1

dpo = 1 or DA1
dpo = 2 values.

To model the case DA2
dp = 2 the sales variables sL

dpot are coupled to the binary variables

δT
dpo

δT
dpo :=

{
1, product p at demand point d can be taken from origin o
0, otherwise

; ∀{dpo} ,

which control the flow of product p from origin o to demand point d. Note that there must
be at least one possible origin for the demand, defined in table DA1

dpo, and that these binary
variables do not depend on time, i.e., they either enable a connection from an origin o to
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demand point d for product p, or they forbid it for the whole planning horizon. This is
ensured by the equations ∑

o∈Odp

δT
dpo = 1 ; ∀{dp} . (2.1)

Let us now couple δT
dpo and sL

dpot. The inequalities

sL
dpot ≤ MδT

dpo ; ∀{dpot} (2.2)

ensure that no sale of product p from origin o at demand point d is possible if δT
dpo = 0.

If δT
dop = 1 then the inequalities (2.2) produce the redundant bounds sL

dpot ≤ M . Here,
M is a sufficiently large upper bound. The best choice [see Kallrath & Wilson (1997,[76]),
Section 9.1] is M = Ddpt. Note that sales variables cannot be created for origin “unknown”
(o = “X”), if DA2

dp is specified.

2.2 Shelf Life Time - Keeping Track of Time Stamps

Certain performance chemicals or goods in the food industry have a limited shelf-life and
are subject to an expiration date, or can only be used after a certain aging time. To trace
those time stamps requires that individual storage means are considered, e.g., containers or
drums, which carry the time stamp or the remaining shelf-life.

Therefore, most of the data associated with inventories have to be duplicated for problems
involving shelf-life w.r.t. to an additional shelf-life index. Other data are required in addition,
e.g., besides the amount given for the initial inventory we need to know when the product
has been produced.

If the shelf-life of products expires, we assume that they have to be disposed. That might
require them to be shipped to a certain disposal site. However, it is not necessary to model
this process in details if we just restrict ourselves to some variable disposal cost ($/ton)
associated with each tons left over in an inventory and therefore identified as an amount to
be disposed.

When product moves from a location to another location, a portion of the shelf-life is
used for transport. When it arrives at the demand point its effective shelf-life is the total
life minus the transport time.

The practical use of such the shelf-time feature would be if a customer (e.g., food or a
pharmaceutical company) ordered a batch of 200 kg of product that had a shelf-life of 6
months. If the product were not consumed by the customer in the 6 month window, then
the product would be disposed at a cost of x $/kg. Depending on the remaining shelf-life
time h, a price of Ep

dpth can be achieved.
As an example we discuss the vitamin example in which vitamin tablets are made. The

produce would mix pure vitamins A, B12, C, etc. per a defined recipe in a blender to create
200 kg of a blend. The blend would then be packaged and a time stamp applied. The shelf-
life in this case is one year and the manufacturer must sell the product within this window or
dispose of the product at a cost of CD

lph $/kg. The vitamin producer would be able to sell the
blends per a nonlinear schedule that is a function of the age of the product or the remaining
shelf-life time, resp., e.g., he receives 100% of the selling price if the product is sold from
1-6 months of its production, 80% within 7-10 months and 50% within 11-12 months. If the
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product is stocked longer than 12 months then the disposal costs of CD
lph $/kg need to be

paid.
Let us add the shelf-life aspect to some dedicated product tanks. If for each product

p there is an own tank available attached to each production site s then we talk about a
dedicated product tank i with no restriction on origin o (note that the index o can take the
value “free” or any value i). Such inventory entities are called fixed-product variable-origin
tanks and are described by the balance equation for time period k

sS
sipok = sP

sipok +
∑

v∈V
pE

spvk + tIS
spk − tOS

spk

− ∑
r|IPipi

sr =1

us
srpk +

∑
r∈R|(ISRP

srp =1∧IPipi
sr =1)

pT
srpok

, ∀{sipok|o = “free”} (2.3)

with the source, sP
sipok, entering from initial stock or stock from the previous time slice, k−1

sP
sipok :=

{
S0

sipo , k = 1
sS

sipok−1 , 2 ≤ k ≤ NK
s

(2.4)

with the initial product stock, S0
sipo, and stock, sS

sipok−1, from the previous time slice. External
purchase from vendor v is denoted by pE

spvk, while us
srpk and pT

srpik are used to describe the
consumption and generation of products in the production process. The most complicated
terms are tIS

spk (tOS
spk) denoting all incoming (outgoing) transport at site s. The incoming

transport, tIS
spk, at site s includes all incoming transport from other locations as well as

shipment in transit from previous periods prior to the beginning of the planning horizon.
This is a generic description of shelf-life used to outline the concept. Products subject to

shelf-life constraints are indicated by the table ISLP
p ; if ISLP

p = 1 then p is a shelf-life product,
otherwise it is not. It is assumed that within the whole production network a product p is
either a shelf-life product or it is not.

Let pPM
srpmk be the production variable. A part (or all) of this amount of product p may

be charged to tank i at site s. This amount is denoted by pTS
srpikSLT

srpm
where SLT

srpm is the

shelf-life of product p if it is produced on reactor r in mode m at site s. Note that the
shelf-life depends on mode m, and the that the charge-to-tank variable pTS also to depends
on h = SLT

srpm to have a clear assignment to the appropriate tank (may be this is not really
necessary). Therefore, the inventory balance equations which distributes products to tanks
needs to be modified in order to account for the additional index shelf-life.

Now let us consider the tank balance equations at site s for a shelf-life product for a
dedicated product tank (no restriction on origin). The original inventory balance equation
(2.3) is modified and looks like

sSH
sipokh = sPH

sipok +
∑

v∈V
pEH

spvkh

− ∑
r|IPipi

sr =1

uSH
srpkh +

∑
r∈R|(ISRP

srp =1∧IPipi
sr =1)

pTS
srpikh

+tISH
lspykh − tOSH

lspykh

,
∀{sipok|o = ”free”}
∀{1 ≤ h ≤ SLT

p }

with

sPH
sipok :=

{
S0

sipo , k = 1
sS

sipok−1 , 2 ≤ k ≤ NK
s

, (2.5)
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and appropriately modified expressions for incoming and outgoing transport.
The sales variable sL

srpt can extract product from all tanks with appropriate shelf-life

sL
srpt =

Lsrpm∑
u=1|

sL
srptu ,

where sL
srptu denotes the amount of product taken from storage tank ssrptu with remaining

shelf-life u. The balance equations for these tanks read

ssiptu−1 = ssipt−1u + f+
spt − sL

srptu − f−spt , u = 2, . . . , L

For u = 1 this balance equation involves a disposal variable sW
srpt and the balance equation

reads
sW

srpt = ssrpt−1u + f+
spt − sL

srptu − f−spt , u = 1 .

Note that f+
spt and f−spt denote the material flow entering the inventory (production, incoming

transport from the production sites or other sales points, external purchase, etc.) and leaving
the inventory (sales, outgoing transport to other sales points, etc.), respectively. The model
might associate disposal or penalty costs with the variable sDISP

srpt .
Example 1 : Consider a fixed site s, reactor r, product p with shelf-life time u = 6 weeks,

20 tons produced in mode m = 3 in week τ = 2 (this means it still can be sold in week 8)
put into inventory ssp26, 10 tons produced in mode m = 2 in week τ = 4 put into inventory
ssp46; no more of product p is produced. Now consider sales in week t = 5. So the total
amount of sales sL

srpt can be covered by what can be extracted from appropriate tanks, in
this case ssp53 = 20 and ssp55 = 10.

Now consider the case that a product with remaining shelf-life is shipped to another
inventory; the transport duration is finite. Therefore the balance equation reads

sD
dptu−1 = sD

dpt−1u − sL
dptu −

∑
dd∈Dd

tLL
dddptu +

Lsp∑
µ=1|u=µ−T D

ldp

tLL
ldpt−T D

ldp
µ−T D

ldp
, u = 2, . . . , L

with transport variables tLL
dddptu for shelf-life products and

Lsp := max
{(r,m)|ISR

sr =1∧ISRPM
srpm =1}

{Lsrpm} .

For h = 1 we get again the equation involving the disposal variable

sW
dipt = sD

dipt−1h − sL
dipth −

∑
dd∈Dd

tLL
dddpth +

Lsp∑
µ=1|u=µ−T D

ldp

tLL
ldpt−T D

ldp
µ−T D

ldp
, h = 2, . . . , L

The sales variables sL
dptu associates with shelf-life products also allow to apply nonlinear

specific revenue which might depend on remaining shelf-life:

∑
d∈D

∑
p∈P

∑
o∈O

NT∑
t=1

Lp∑
u=1

SP
dptus

L
dpotu .
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The disposal variable sW
dpt can be associated with disposal cost.

∑
d∈D

∑
p∈P

∑
o∈O

NT∑
t=1

Lp∑
u=1

CW
dptus

W
dpotu .

This model description is minimal with respect to the number of variables. The number of
variables increases with the shelf-life.

2.3 Customer Portfolio Optimization

A more special feature in demand satisfaction is related to semi-continuous requirements on
demand. There is a chance that some customers could be lost completely if they are not
satisfied. This approach is a first step towards customer portfolio optimization.

In a more general framework solution a user might want to enter the percentage, DAF
dp , of

demand (aggregated over the whole planning horizon) that at a minimum must be satisfied
for a customer. The alternative is not to satisfy any of the demand, i.e., we are facing a semi-
continuous constraint. If the percentage to which a certain demand needs to be specified
is not specified, then the model can chose how much and when to supply as is currently
practiced. If the general solution is implemented and the user specifies a percent value less
than 100, then we also need a flag that indicates if the minimum percent of demand should
be applied to all commercial periods equally or if the solver can chose when to supply the
minimum total quantity. For example, if the user selects 50% as the minimum demand that
must be satisfied, the commercial time horizon is 1 year with 12 periods, and the demand is
100 tons/period. Then the model may return the solution where the constraint of 600 tons
is supplied during periods 7 - 12. This may not be practical as the user/customer wants to
take 50 tons per period for periods 1-12.

Another likely scenario is to ask for solution which pick out 2 of 3 customers, i.e., sell all
of customer A and B’s demand but not C. Or all of B and C’s demand but not A. This is a
realistic business scenario that is actually quite common.

We could deal with this type of situation if we classified customers (demand points) with
a flag that indicates the condition that if any demand is satisfied then all demand must be
satisfied. This flag would be active when you have a account that must either always have
its demand satisfied or you make the choice not to sell to the account and therefore do not
satisfy any of the demand.

Of course, this constraint is different from the one that requires a certain percentage of
demand to be satisfied. The new constraint is not time dependant and it lets the solver
choose to supply or not to supply. If supply is chosen then it must be fulfilled to 100% (or
any other pre-fixed percentage, DAF

dp ).
To support customer portfolio optimization, we use at first the real variables, sA, which

express the aggregated sales for a given customer specified by the index combination {dp}.
These variables are generated if the entry DA

dp exist, where DA
dp is generated if

∑
o∈Odp

∑
t=1

sL
dpot >

0. The aggregated sales is just

sA
dp =

∑
o∈Odp

NT∑
t=1

sL
dpot , ∀

{
dp

∣∣∣∃DA
dp

}
.
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A simple customer portfolio analysis is performed by exploiting the input table DAF
dp , 0 ≤

DAF
dp ≤ 1. DAF

dp puts a semi-continuous minimum requirement on the total sales sA
dp for the

total demand DT
dp, i.e.,

sA
dp = 0 ∨DAF

dp DT
dp ≤ sA

dp ≤ DT
dp .

Here, DT
dp is the total demand of product p specified by customer {dp} over the whole

planning horizon, i.e.,

DT
dp =

NT∑
t=1

Ddpt .

The additional parameter MC is used to limit the number of total demands to be delivered.
To model this feature, the binary variables δsA

dp are introduced which indicate whether demand
d for product p should be considered or not. These variables are subject to the inequalities

DAF
dp DT

dpδ
sA
dp ≤ sA

dp ≤ DT
dpδ

sA
dp , (2.6)

and ∑
d∈D

∑
p∈P

δsA
dp ≤ MC . (2.7)

3 Optimization Under Uncertainty

So far, in this article we focussed only on deterministic models. If the assumption that all
data have to be treated as deterministic data is given up, we are lead to optimization under
uncertainty, i.e., optimization problems in which at least some of the input data are subject
to errors or uncertainties, or in which even some constraints hold only with some probability
or are just soft. Those uncertainties can arise for many reasons:

• Physical or technical parameters which are only known to a certain degree of accuracy.
Usually, for such input parameters safe intervals can be specified.

• Process uncertainties, e.g., stochastic fluctuations in a feed stream to a reactor, or
processing times subject to uncertainties.

• Demand uncertainties occur in many situations: supply chain planning [53], invest-
ment planning [24], or strategic design optimization problems [71] involving uncertain
demand and price over a long planning horizon of 10 to 20 years.

Regarding the conceptual problems involved in optimization under uncertainty it is not a
surprise that it took until now that the number of applications using, for instance, stochastic
programming is strongly increasing. The first step to model real world problem involving
uncertain input data is to analyze carefully the nature of the uncertainty. Zimmermann
(2000,[123]) gives a good overview what one has to take into consideration. It is very crucial
that the assumptions are checked which are the basis of the various solution approaches.
Below we list and comment on some techniques which have been used in real world projects
or which one might think of to use.
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• Sensitivity analysis is conceptually a difficult problem in the context of MIP, and
is, from a mathematical point of view, not a serious approach to solve optimization
problems under uncertainty [119]. Nevertheless, it is frequently used by engineers or
logistic people to study the role of certain parameters or scenarios.

• Stochastic Programming, in particular multi-stage stochastic models, also called re-
course models, have been used since long [see, for instance, Dantzig (1955,[28]), Kall
(1976,[66]), Kall & Wallace (1994,[67]), Schultz (1995, [107]), Birge (1997,[20]), Birge
and Louveaux (1997,[21]), or Carøe and Schultz (1999, [23])]. In stochastic program-
ming, the models contain the information on the probability information of the stochas-
tic uncertainty and the distribution does not depend on the decision in most cases. By
now, most of the modeling languages used in mathematical optimization [cf. Kall-
rath (2004,[75])] use scenario-based stochastic programming for LP problems. While
stochastic MILP (S-MILP) is an active field of research [detailed discussions on various
algorithms for stochastic integer optimization can be found in the survey of Klein-
Haneveld & van der Vlerk (1999,[78]) or Sen & Higle (1999,[111]), and, more recently,
in the Handbook of Stochastic Programming [100], Schultz (2003,[108]), or Andrade
et al. (2005,[9])] industrial strength software is still to enter the stage. We refer the
reader also to a review of stochastic integer programming by S. Sen (2004,[110]). In
another recent review Mitra et al. (2004,[89]) describe a classification of stochastic
integer programs and they also describe case studies of solving very large scale SIPs
applying Lagrangean relaxation technologies using serial and parallel machines ([88],
[85]). In this context the work of Alonso-Ayuso et al. ([8], [7]) and Ahmed et al. [6] are
also to be noted. To keep up-to-date, the reader might visit van der Vlerk’s Stochastic
Programming Bibliography [114] from time to time. Finally, a list of stochastic pro-
gramming applications, especially for design and optimization of chemical processes,
is given in [103].

• Chance constrained programming has also a long history and dates back to Charnes and
Cooper (1959,[25]). A more recent overview on general chance-constrained methods
is given by Prékopa (1995,[98]). While usually it is seen as a special approach within
stochastic programming, it is here listed separately because it differs significantly from
the multi-stage recourse approach. Chance constrained programming deals with prob-
abilistically constrained programming problems, i.e., a constraint holds with a certain
probability, and is quite useful to model, for instance, service level features in supply
chain optimization problems [cf., Gupta et al. (2000,[54]), or Gupta and Maranas
(2003,[53])]. Orçun et al. (1996,[94]) considered uncertain processing times in batch
processes and used chance constraints to model the risk of violating temporal con-
straints. Arellano-Garcia et al. (2003,[10]) proposed a systematic approach to solving
approach to solving nonlinear chance constrained optimization problems. In a follow up
paper [11] they present a novel chance constrained optimization approach for solving
optimal process design problem under uncertainty, in which optimal operational as-
pects and robust analysis are simultaneously considered. As stochastic programming,
chance constrained programming also requires probability distributions to be speci-
fied. Unfortunately, chance constrained programming is not yet found in commercial
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software packages.

• Fuzzy set modeling supporting uncertainties which fall into the class of vague informa-
tion and which are expressible as linguistic expressions [fuzzy set theory in the context
of LP problems has been used, for instance, by Zimmermann (1987,[122]; 1991,[121]
and Rommelfanger (1993,[99])]. This methodology is much younger than SP and is
used when, from the SP point of view, the information is incomplete. Balasubrama-
nian and Grossmann (2003,[13]) applied a fuzzy based approach to batch scheduling
with uncertain times. A detailed list of applications of fuzzy programming has been
compiled in the review article by Sahinides (2004,[103]).

• Robust optimization [see, for instance, Ben-Tal et al. (2000, [15])] is a relatively new
approach to deal with optimization under uncertainty in case that the uncertainty
does not have a stochastic background and/or that information on the underlying
distribution is not or hardly available (which is, unfortunately, often the case in real
world optimization problems). The approach replaces linear models by nonlinear ones.
Direct extensions of Ben-Tal’s approach for MILP problems have been developed for
batch scheduling under uncertainty by Lin et al. (2004,[84]). A different approach
to robust optimization has been developed by Bertsimas (2003,[17]). This approach
claims to have the advantage that the type and the complexity of the problem does
not change, and it is applicable to MILP problems. While in stochastic programming
the number of variables increases drastically, in this robust optimization approach the
number of variables approximately only doubles.

• Stochastic decision processes based on Markov processes [87] and/or the control of time-
discrete stochastic processes allow for decision-dependent probability distributions but
typically require stronger assumptions on the stochasticity. The paper by Cheng et
al. (2003,[26]) gives an excellent illustration of such techniques applied to design and
planning under uncertainty.

• Global optimization and the techniques, such as interval arithmetic, used in this field
(cf., [37], [60], [77] and [59]) may, to SP people, not appear as a particular tool to deal
with uncertainties. Indeed, it has nothing to do with uncertainties as such (although
uncertainties can be part of the deterministic equivalent model). However, global
optimization, in particular when based on interval analysis, can provide safe results,
for instance, in safety analysis. The author was once involved in a project modeling a
chemical reactor, in which, under no circumstances, the pressure was allowed to increase
a certain value. Thus, the problem was to establish, for a range of temperatures
and other physical parameters subject to deviations from the nominal value, that
the maximum pressure could never exceed the critical value. The problem briefly
outlined in Section 6 may establish some further research in which optimization under
uncertainty and global optimization will meet each other.

The variety of approaches (the list above is not complete, e.g., Ryu et al. (2004,[101])
treat enterprise-wide supply chain networks under uncertainty by bilevel and parametric
programming) supports the argument that the difficulties in modeling optimization problems
under uncertainty are by far larger than those in deterministic optimization.
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Despite the conceptual difficulties, it is strongly recommended that if some data, e.g., de-
mand forecast in planning models, or production data in scheduling are subject to uncertain-
ties, one should consider whether the assumption that planning and modeling is exclusively
based on deterministic data can be given up and uncertainty can be modeled. If probability
distributions for the uncertain input data can be provided, stochastic programming is the
mean of choice. Nowadays, there exist powerful solution techniques to solve stochastic mixed
integer programming problems [100]. Successful applications of this techniques to scheduling
problems in the chemical process industry are reported, for instance, by Sand et al. [105],
Engell et al. [33], Sand and Engell (2004,[104]) and Lin et al. (2004,[84]); see Section 5.4 for
details.

Process design optimization under uncertainty has also a long history in the process
industry (cf., [55], [97], [26]). Even global optimization techniques have been applied to
design under uncertainty (cf., [56] or [41]). This is another indication that optimization under
uncertainty will play an important role in the near future because the available algorithms
become better and better to address such problems.

Finally, it is worthwhile to mention that in the chemical process industry optimization un-
der uncertainty has not been applied only to planning and scheduling but even to the detailed
modeling of the underlying chemical processes. Henrion et al. (2001,[58]) have developed a
detailed nonlinear physical, differential-equation based model to describe a distillation col-
umn with a feed tank. Process and feed stream uncertainties are modeled by scenario-based
stochastic optimization. Probabilistic constraints are used to control stochastic storage tank
levels. This work serves as a good example illustrating the importance to discuss carefully
the kind of uncertainties occurring in the problem.

4 Mixed Integer Nonlinear and Global Optimization

Mixed integer nonlinear optimization is a field which benefitted strongly from the chemical
engineering community and its process design and process engineering problems. Especially,
Ignacio Grossmann (Carnegie Mellon University), Chris A. Floudas (Princeton University)
and Nick V. Sahinidis (University of Illinois) have provided many fruitful ideas and algo-
rithms to the community. The tremendous effort in this field has been reviewed recently
by Floudas (2000,[37]), Tawarmalani and Sahinidis (2002,[112]), Grossmann (2002,[49]), and
Floudas et al. (2004,[40]). The contributions in the book Frontiers in Global Optimization
edited by Floudas and Pardalos (2004,[44]) give a good overview about trends and activities
in the field. Below we focus on nonconvex NLP and MINLP problems. Here we mention
only briefly that there exist already many algorithms and software packages to solve con-
vex MINLP problems: DICOPT [32], MINOPT [109], or LOGMIP ([115], [116]) to mention a few
which are properly published. Information on other packages, such as AIMMS-OA by Bisshop
& Roelofs, Alpha-ECB by Westerlund & Lundquist, MINLPBB by Fletcher and Leyffer, or SBB
by Bussieck & Drud can be found on the authors’ webpages.

Process design and process engineering problems as well as other nonlinear problems in
the process industry, unfortunately in most cases, are nonconvex problems and thus have
many local optima. The problem of the existence of multiple local optima in nonlinear
optimization is treated in a mathematical discipline of its own: global optimization, a field
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including theory, methods and applications of optimization techniques aimed at detecting
a global optimum of nonlinear problems. Global optimization applies to both, NLP and
MINLP. Problems analyzed in the context of global optimization are seen to be attacked by
stochastic and deterministic solution approaches.

Stochastic methods are based on random sampling the search space providing upper
bounds on nonconvex minimization problems. The metaheuristics genetic algorithms, evolu-
tion strategies, tabu search and simulated annealing are refinement of such random sampling
methods. In the strict sense one might consider such techniques not as optimization methods
at all because, due to the lack of lower bounds, they do guarantee neither optimality nor a
certain quality of feasible points they may find.

In contrast, deterministic methods are based on progressive and rigorous reduction of the
solution space until the global solution has been determined with a pre-given accuracy closing
the gap between the upper and lower bound. Deterministic methods to solve nonconvex
NLP or MINLP problems may be classified as primal-dual methods, interval methods, and
B&B methods; they have in common that they derive upper and lower bounds including
the objective function value of the global optimum. These methods are quite different
from the classical concepts of gradients and Hessians used by local NLP solvers. Typical
B&B methods, for instance, exploit convex underestimators of the objective function and
convexify the feasible region; they divide the feasible region in subregions, solve the NLP
problem on that reduced set, derive bounds and branch if necessary. While the B&B method
in MILP problem is known to terminate unconditionally after a finite number of steps, B&B
methods in global optimization are subject to convergence proofs. However, if we want to
find the global optimum only up to a small number ε > 0 between the upper and lower
bound, then the B&B will also terminate after a finite number of steps. Not only B&B
methods, but all deterministic algorithms in global optimization have more in common with
what is used in discrete optimization rather than in nonlinear continuous optimization. The
Journal of Global Optimization or the books ([59], [61], [60], [77], [37] or [112]) are good
and recommended starting points. Nowadays, there exist reliable and advanced solution
algorithms and software package to solve nonconvex NLP and MINLP problems (cf., Arnold
Neumaier webpage mentioned below).

The family of products (αBB [4], [2], or [5]; SMIN-αBB and GMIN-αBBB [3]) developed
in Chris A. Floudas’s group at Princeton University is very advanced. Recent efforts at
Princeton University and the Imperial College in London (England) allow it to apply this
techniques also to optimization problems involving ordinary or partial differential equations
[95], parameter estimation problems of differential-algebraic system [34], and optimal control
problems (cf., [35] or [90]).

Another center of activity in global optimization is Arnold Neumaier’s working group at
the University of Vienna. His group developed the global optimization program GLOBT [27]
and his webpage http://www.univie.ac.at/˜neum is best and most informative one on global
optimization and optimization in general – a visit is strongly recommended.

A Branch&Cut&Price algorithms has been developed by Nowak (2004a,[93]) to solve
general nonconvex MINLP. This algorithms has been implemented in his C++ library LaGO

[92] and provides promising results for smaller problems.
Finally, Nick Sahinidis’s effort and progress he achieved with BARON (cf. [102], [46]), a

general Branch&Bound solver based on polyhedral relaxation and box reduction, is remark-
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able and found its way into the GAMS modeling system [22]. Although nowadays the size of
problems which can be solved is limited to a few hundred variables the presence of BARON

in GAMS makes global optimization techniques more accessible to a wider audience of user,
which in turn produces much more feedback leading to improvements in the development of
algorithms.

The field of global optimization is growing. A few commerical solvers are already available:
BARON and LGO by Janos Pintér [96] based on interval arithmetic. The number of applications
is increasing (cf., the case study in Section 5.5) and it is worthwhile at this stage to get in
contact with the field; it may knock at your door tomorrow anyway.

5 Real World Case Studies and Success Stories

This section provides case studies and success studies which give more detail on some of the
features listed in the table in Section 1. They cover problems from three continents, which
have been solved by LP, MILP, global optimization techniques or stochastic programming
and give a good snap shot about real world problem solving in the process industry. It is
remarkable that MILP models in production planning can nowadays be solved so efficiently
and fast that it is possible to integrate them into Web-based optimization tools giving access
to a wide range of end-users. An example related to BASF Corp. is described in Section 5.3.
Another Web interface system has been implemented at DOW Chemicals solving a nonlinear
model for a polymer plant [63].

5.1 BASELL Supply Chain Optimization for Polypropylene Busi-
ness - A Large MILP Problem

In the late 1990’s the author was involved in the development of a MILP model for one of
BASF’s large production units which later became part of BASELL, the world’s largest pro-
ducer of polypropylene, a leading supplier of polyethylene and advanced polyolefin products,
and a global leader in the development and licensing of polypropylene and polyethylene pro-
cesses and catalysts. Some preliminary technical background on this optimization project
has already been described by Kallrath (2000,[70], Sect. 4.2). During the years plants had
been added and the model size increased. The mathematical formulation of the model was
improved and tightened by efficient cuts derived by Laurence Wolsey (CORE, Louvain-la-
Neuve, Belgium). Many of the ideas which made its way into the model can be found in his
book [120]. The case study described below is taken in its present form with kind permission
from Dash Optimization’s home page www.dashoptimization.com/casestudy 7.html.

5.1.1 Problem

The Polypropylene-Business currently has over 10 supply points located in different European
countries such as Benelux, Germany, France, Italy, Spain, United Kingdom. BASELL sells
about 1500 different finished products belonging to a number of different product families
like homopolymer products, impact and random copolymer products, metocene, adstif, and
clyrell products.

17



About 3000 different customers for these products are located in Europe and Overseas.
Customers are in the film, packaging, car supplier, furniture, house ware, paint and other
industries.

Every month, a 3 month sales forecast is provided by the BASELL sales department. This
forecast gives expected sales quantities per customer, product, package, and month. Sales
quantities are qualified by customer categories that distinguish between customers that must
be served from sales opportunities where optimization might or might not decide to serve
depending on profits that can be achieved.

The problem is to find a sales plan and a production plan that takes into account:

• Given minimum and maximum sales quantities

• Production and stock capacities

• Opening stock quantities

• Production constraints such as minimum lot sizes, fixed lot sizes (“batches”), raw
material availability and more

• All relevant costs such as raw material prices, production costs, inventory costs, trans-
port prices

• Sales prices per customer, product, and package

The objective function maximizes the profit: sales income minus costs.

5.1.2 Implementation

The user interface is implemented in MS Access and has interfaces on one hand to the
company’s SAP systems, on the other hand to the MILP solver Xpress-MP [57].

A typical planning session comprises the following steps:

• Load current data from SAP: material and customer master data, production data
(recipes, raw material costs), sales data (forecast and sales prices)

• Verify correctness and completeness of the data: Do all expected sales have a potential
source? Are the raw materials needed during different production steps available? Are
there any contradictions in the constraints? and others.

• Run the optimization and look for “flaws” in the results. Such “flaws” could be: stock
quantities becoming higher or lower than desirable; unbalanced plant utilization rates;
erroneous input data leading to “strange” results; and others.

• Define additional constraints in order to avoid “flaws” described above. Repeat opti-
mization until a satisfactory result is found.

• The final result is documented in reports and sent back to SAP as basis for (1) pro-
duction scheduling executed at the different production plants and (2) reservation of
sales quantities for the specified customers.

The system is built in a way that different versions of the current data can easily be generated
and administered, allowing to create “what-if” analyses and to go back to historical data.
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5.1.3 Details

• In every planning session, about 800 different products, 1,500 different combinations
of product and production plant, 10,000 different combinations of customer, product,
package and month are involved.

• These numbers lead to over 200,000 variables, 380,000 non-zero elements, 400 integer
variables and 900 semi-continuous variables.

• Solution time for the linear solution is about 1 minute; for a “good” integer solution,
that takes into account semi-continuous and integer variables like minimum lot sizes
and fixed lot sizes and that is guaranteed to be within 5% of the best possible solution,
solution time is about 15 minutes.

5.1.4 Summary

The optimization system described above was first implemented in 1996 with the author
being involved, where it had to deal with four production plants and about 100 different
final products only. Through various acquisitions and mergers of the company, the system
grew to the size it has today.

The BASELL planning department says: “It is of major importance for us to have an
instrument that gives us the ability to integrate the complex planning and logistics process.
Our optimization systems for Polypropylene Standard Products has become a key element
in production and logistics planning. During the last big merger in 2001, optimization had
a most prominent role: merge two polypropylene suppliers by first merging their planning
activities!”

5.2 A LP-Based Planning System for the Petro-Chemical Indus-
try

This case study focuses on the IT problems of an optimization project lead by Ikenouye
Susumu (Ike Ltd., Tokyo). It has not so much to say about the mathematics but rather on
the acceptance of optimization, and the importance of graphical user interfaces (GUIs) and
data management.

5.2.1 Current Issues of Enterprise-wide Planning and Scheduling System

There have been many applications of pure LP for practical planning work in the process
industry, such as oil, petrochemistry and chemistry. Even pure LP has a great power to
generate production plans including many trade-off constraints in the production of joint
products through continuous production plants. Current applications of LP in petrochem-
istry are almost completely for the selection of crude naphtha for ethylene cracking.

Now in Japan, the chemical industry is facing very hard problems caused by the com-
petition of Far East Countries producing at much cheaper cost. Therefore, there are many
enhancement projects to improve planning and scheduling procedures in various way. One
of them is to renew planning and scheduling system by utilizing mathematical optimization.
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The oil industry has already sufficient experience in exploiting LP for its planning work.
But most Japanese companies in chemical industry do not have qualified personnel to do
so. For the past 30 years, some companies have installed LP for production planning. But
many of these implementations covered only partial aspects.

From 2001 to 2003, Ike Ltd. and a client in the petrochemical industry have been
closely cooperated. This case study reviews briefly the project in which an LP model has
been developed for enterprise-wide production planning, including both business planning
including budget planning.

A first analysis yielded the following results:

1. There is no full model application to cover an enterprise-wide model for the petro-
chemical industry.

2. There is no strong relationship between production control and budget control in the
practical work process and in planning methods.

3. There is no good software for LP modeling and LP data handling for the petrochemical
industry.

4. A lot of days are required to generate production plans and annual budget plans.

5. Consideration for work process of planning work is not sufficient from the point of
collaboration.

5.2.2 Approach of Enhancement in Enterprise-wide Planning and Scheduling
Work

To enhance planning and scheduling functions, we considered two approaches, re-organizing
the business process and improving the information system including LP.

Re-organization of the business process in practice means to establish a cross functional
team. Members of this team are selected from departments that have strong responsible
to generating plans from each function of the enterprise, such as crude purchasing, market-
ing, production management (head quarter and chemical farm) and budget control. These
members are working in a collaborative atmosphere supported by information systems and
planning tools as a task force team.

Improvements of the information systems are planned including the following items:

1. establish a enterprise-wide LP model,

2. install a GUI to make the LP model easier to use for person unfamiliar with the LP
technology

3. set up a database to manage all data related to the LP case study, and

4. combine these LP functions and the estimation function of enterprise profit.
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Figure 1: The Three Levels of the Planning and Scheduling System

We structured the planning and scheduling work process according to the three levels shown
in Fig. 1: annual production plan (budget plan and profit estimation), monthly production
plan and monthly production schedule.
Annual production plans for budget planning are computed based on a 12-months multi-
period LP model. The result of this LP yields the profit estimation function. Monthly
production planning is presented by a three-months multi-period LP model for each monthly
planning work. Monthly (day-by-day) production schedules are prepared for chemical farm
production management.

These LP models contain several ten thousands of variables and constraints. There should
be some data management function to keep integrity and accuracy of huge data for LP model
and results of many case studies. In real world, unexpected changes happen so often and
the LP models must be adjusted to those changes as soon as possible. We feel a strong need
to produce an easy-to-use a GUI to develop and adjust the LP model for planners without
mathematical modeling knowledge.

In big companies, the collaboration between production management work and budget
control is in general not too smooth. From the need of real-time performance (profit) man-
agement, there should be practical combined functions for both management works. We are
preparing a system of planning LP and Profit/Loss calculation in one box.

5.2.3 Technical Enhancement in Planning Systems

(Graphical LP Model Generator) In this case study it is very complicated to develop
and to solve the LP problem, but is not difficult mathematically. The most important point
is how to design a GUI which allows to develop the LP model for persons unfamiliar with
LP. This GUI should allow and support that the process flow is drawn on PC’s panel by
mouse, selecting box and drawing line. A box represents specific parts of the matrix set
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by the operator to define the process units including yields of material balance. Upper and
lower bounds, costs and prices are set in this box to convert to the LP mathematical model.
Process flow and matrix (data table) are very clear and acceptable for the operator who
has enough knowledge of production planning. We are developing a Graphical LP Model
Generator for this function.

(Data Base System for planning work) The LP models developed for chemical pro-
duction planning in this case study contain several ten thousands of variables and constraints.
We have to prepare some data management functions to keep integrity and accuracy of huge
data for LP model and results of case studies. Advanced data handling functions, such as
data inputting format editing, free reporting editor and coping model data are developed
with a database management software [Fig. 2].

Figure 2: The Architecture of the Planning System

5.2.4 Improvement of the Planning Work

(Planning Work Process) Cross Functional Term uses this system to combine with
business sense and engineering sense, at the same time, with accounting and production
management. Now in Japan, every open company is forced to disclose it’s business perfor-
mance to stock market four times a year. From this reason, budgeting work is so busy to
complete. Production planning work should be done more frequently than budgeting work.
To make planning time short is necessarily needed besides improvement of integrity and
accuracy of plan. At the same time, optimization of plan should be done as possible. We
estimate that planning work time will be 1/3 comparing than current procedure.

This system we presented is qualified to become a very good supporting tool for the
decision makers. In our feasibility study, the optimization tool produced schedules reducing
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the cost by 1% compared to hand-made plans.

(Improvement of the quality of the plan) In our feasibility study, we were able to
compute schedules reducing the cost by 1% compared to hand-made plans. This system
can brash up accuracy, integrity and optimality in practical planning work of petrochemical
enterprise.

5.3 BASF’s Web-based Production Optimization Tool

Lee & Cheng (2002,[82]) developed a computational framework for optimization based prac-
tical production planning tools on the internal BASF Intranet. This framework enables users
equipped with standard web browsers to access complex optimization tools to interactively
compute production plans on any computer platform. Lee & Cheng provided a MILP model
for a production planning problem for one of BASF’s multi-purpose chemical manufacturing
plants with multiple production lines. During mode changes the quality of the products
allows to sell the product only at a reduced price. Thus there is an inclination to avoid or at
least to minimize mode changes. Each production line has a minimum length for production
campaigns during which product change overs are not allowed. The goal of the production
planning is to compute a production plan that minimizes the inventory holding costs and
mode changing cost while satisfying all demand for finished goods and the other production
constraints. The implemented model contains only 1,452 variables (308 of them are binary
variables) and 1,113 constraints. While, without this optimization based approach, it took
several days to generate a production schedule it is now possible to compute it within sec-
onds. The short response time of the integrated model has allowed the production plant
to adjust its production schedule to accommodate quickly to sudden market changes. The
quality of production planning and the use of production and inventory capacity improved;
especially, the storage levels have been decreased.

5.4 Scheduling Under Uncertainty - Industrial CaseStudies

Besides several publications on several approaches to solve scheduling problems in the pro-
cess industry (cf., [62], [106], [117], [12]), there are also industrial success stories. Successful
applications of stochastic optimization to production scheduling problems in the chemical
process industry are reported, for instance, by Sand et al. [105] and Engell et al. [33].
They describe the production of an expandable polystyrene in a plant which consists of a
preparation stage operated in a batch mode, a polymerization stage with four batch reac-
tors and two continuously operating finishing lines. This recipe-driven multi-product batch
process is subject to limited capacity of equipment items, shared and non-shared inter-
mediates, different types of storage policies, and the following uncertainties: unknown or
varying demands, customer orders are uncertain, the chemical reactions are not completely
reproducible, stochastic changes of the plant capacity, and varying process times as well as
breakdown or reactors or storage tanks. As usually in production planning and scheduling
one wants to know the starting times of certain acting, batch sizes and in this case choices
of recipes. There is a list of objectives to be reached. Highest priority is on fulfilling de-
mand without any or with minimal delay. Next comes cost efficiency and shut down of the
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finishing lines should be avoided. A monolithic model of the decision problem for a horizon
of several weeks, parameterized by the data available online about the demands and the
process state as well as by probability distributions of the uncertain parameters would lead
to a large-scale mixed-integer and nonlinear real-time optimization problem. Instead the
authors propose a telescopic decomposition with a number of layered sub-models of different
degrees of temporal aggregation.

Lin et al. (2004,[84]) present a robust optimization approach applicable to MILP prob-
lems with bounded uncertainty. Their industrial case study considers three of the most
common sources of bounded uncertainties in scheduling: the processing times of tasks, mar-
ket demands for products, and prices of products and raw materials.

5.5 Global Minima in a Nonconvex Portfolio Optimization Prob-
lem

The goal of this problem presented by Kallrath (2003,[73]) was to compute minimal cost
solutions satisfying the demand of pre-given product portfolios and to investigate the depen-
dence of the fix costs and investment costs on the product portfolio. The most important
parameters characterizing the production facilities are the number and the size of the re-
actors. The production is subject to shelf-life constraints, i.e., products cannot be stored
longer than one week.

Even if analyzed under the simple assumption of constant batch sizes and considering
only one time period covering one week, the computation of minimum cost scenarios requires
the determination of global minima of a nonconvex MINLP problem. An objective function
built up by the sum of concave functions and trilinear products terms involving the variables
describing the number of batches, the utilization rates and the volume of the reactor are the
nonlinear features in the model.

A complex portfolio with 40 products leads to more costly scenarios requiring more
reactors. A 20 products scenario requires only two reactors. The 40 product scenario, which
requires the same total production amount cannot be produced on two reactors, but it is
possible to find feasible solutions for three reactors with no surplus production satisfying the
utilization rates.

This result has been obtained by computing the global minimum of the sum of investment
and fixed costs with respect to the number and volume of the reactors. We have successfully
applied four different solution techniques to solve this problem. (1) An exact transformation
allows us to represent the nonlinear constraints by MILP constraints. Using piecewise linear
approximations for the objective function the problem is solved with Xpress-MP [57], a
commercial MILP solver. (2) The local MINLP Branch-and-Bound solver SBB [45] which
is part of the modeling system GAMS [22]. (3) The Branch&Reduce Optimization Navigator
(BARON; cf. [102] or [46]) also called from GAMS. (4) A tailored Branch&Bound approach based
on the construction of a lower bounding problem by underestimating the concave objective
function with piecewise linear approximations described in Lin et al. (2004,[83]).

For the scenarios tested the solution process suffers from weak lower bounds which im-
prove only very slowly. The equivalent linear representation approach provides the global
solution for Scenario 2 within a few minutes while Scenario 2 requires almost 6 hours to
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prove optimality. The commercial solvers, SBB and BARON, produce solutions for the small,
20-product scenario; BARON needs about 12 CPU hours on a Pentium III processor running
at 750 MHz to prove global optimality. For the 40-product scenario no solutions have been
produced with either SBB and BARON, in 40 hours. Only the tailored Branch&Bound coupled
with convex underestimators shows reasonable scaling properties and generates the globally
optimal solution of the 40-product scenario with reactors of size 20, 100 and 250 m3 and the
objective function value 37.1758 in about 13 minutes.

Thus, the overall conclusion is that the problem, for some cases, can be solved with
current standard solvers but it requires a lot of CPU time. Therefore, in order not to cover
only special cases and also to cope with the scaling properties, it is recommended to use
tailored approaches in addition.

6 A Challenge: Global Optimization Under Uncertainty

The purpose of this section is to encourage further research on a problem which may benefit
from both global optimization and optimization under uncertainty. The following decision
problem is kept somewhat generic in order to allow really different solutions approaches.
What are the optimal sizes of tanks (and, possibly in addition: what are the optimal safety
stocks) if for a set of products (case A) continuous demands (mass/time) or (Case B) discrete
demands (mass) in a set of given time slices need to be fulfilled. Demands may be constant
for every day, may show seasonal dependencies and are in any case subject to scenario-based
uncertainties. The demands should be satisfied by extracting the products from dedicated
tanks which are subject to lower bounds (safety stock) and their capacity (a design variable).
The tanks are filled during the production and are charged by a multi-stage production
network (in the simplest case only one stage) of several multi-purpose reactors. The reactors
(in the simplest case: only one) either have a variable continuous output rate (mass/time)
and may be operated in campaign (subject to minimal campaign size) or batch mode. In
case A the time horizon might be determined by a (hard or soft) periodic constraint on the
initial and terminating tank level. The objective function should contain the sum of the
investment costs to built tanks of a certain size, the variable storage costs and sequence-
dependent setup- or cleaning costs after a campaign. It might be normalized by the time
horizon. The tank investments costs are given by concave functions of the tank size. In case
A the variable costs are given by a sum of bilinear terms.

Even for the deterministic case (no uncertainties in the demands) this leads to a non-
convex MINLP problem (binary variables are needed to assign products to campaigns or
batches, nonlinear product terms occur which involve the variable production rates, the
length of the campaign and possibly the binary assignment variables). Due to the embedded
lot-sizing problem (unknown number, lengths and sequence of the campaigns) this problem
has many local minima.

7 Summary

We have provided an overview on mixed integer optimization in the process industry with
a special focus on planning, design, global optimization techniques and optimization under
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uncertainty. The state-of-the-art technology based on mathematical, especially mixed-integer
optimization for planning is quite advanced, is able to map many detailed features such as
tracing mode-changes, product origins and shelf life, and is thus appropriate for solving
real world planning problems. Mixed integer optimization can provide a quantitative basis
for decisions and allow to cope most successfully with complex problems and it has proven
itself as a useful technique to reduce costs and to support other objectives. MILP models
in production planning can sometimes be solved so efficiently and fast that it is possible
to integrate them into Web-based optimization tools giving access to a wide range of end-
users. While for scheduling problems, there is not yet a commonly accepted state-of-the-art
technology and the majority of software packages is still based on pure heuristics there is
light at the end of the tunnel: A promising approach, continuous-time formulation has been
developed [42], and batch scheduling problems leading to MILP problems can be extended
to multi-stage stochastic optimization solved by special decomposition techniques. Solution
techniques for computing robust solutions not requiring probability distributions functions
are now available for MILP problems.

What will the future hold for us in planning and scheduling? There is a growing number
of software packages available which support - at least to some extent - the application of
exact methods for a variety of (deterministic) planning problems. That way, planning based
on mathematical, especially mixed-integer optimization becomes more and more the state-
of-the art in the chemical, food and pharmaceutical industry and as well in refineries. The
same problems will more and more be solved considering input date subject to uncertainties.

Network and process design have been solved using MINLP approaches for a long time
in the process industry. While MILP has already well established itself not only in the
process industry, further quantum leaps in practical optimization of design problems are to
be expected. Global optimization of nonlinear mixed integer nonlinear problems knocks at
our doors and might, say, within 5 to 10 years, play a similar role as does MILP nowadays. It
is remarkable that a substantial part of the progress in the development of exact algorithms in
global optimization comes from the chemical engineering community and the first commercial
packages are available now.

On top of all that, or in addition, not only deterministic planning and design models,
but rather models involving uncertain data will play an increasing role asking for indus-
trial strength solution approaches for optimization under uncertainty, and, in particular,
stochastic and/or robust mixed integer programming.
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