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Abstract. This paper describes an extension which can be added to any produc-
tion planning model based on time-indexed formulations with at most one setup- or
mode-change per period. It allows to add constraints involving accumulated quanti-
ties over several time-slices implementing the concept of contiguity into the model.
This feature is relevant to any kind of process industry. It allows to model batch and
campaign production, or to require that the minimum time between mode-changes
must be larger than a specified lower bound. The key idea used in the technical
approach is to identify which time-indexed quantities belong to certain contiguous
components, e.g., campagains, over several time slices and to replace products of
continuous variables and binaries, or absolute value terms by linear relations in-
volving additional binary variables. In this contribution we apply this approach to
a special case and extend a production planning problem in chemical industry.

1 Introduction

The motivation for the model extension has its root in batch or campaign
production in the chemical process industry. Batch production in the process
industry operates in integer multiples of batches where a batch is the smallest
unit to be produced, e.g., 200 tons. Several batches following each other
immediately establish a campaign. The production may be subject to certain
restrictions, e.g., campaigns are built up by a discrete number of batches,
or that only campaigns of a minimal size can be produced. Within a fixed
planning horizon, T , a certain product can be produced in several campaigns.

To be as general as possible let us consider batch reactors which can be,
for example, operated in different modes producing several products in each
mode with different free or fixed recipes leading to a general mode-product
relation ([5], pp.153-155, 320-324). Thus, in a certain mode several products
are produced (with different daily production capacity rates), and vice-versa,
a product can be produced in different modes. Daily production can be less
then the capacity rates. This is an important feature in coupled production
if the production planning problem is demand driven.

In the context of time-indexed formulation where variables ppt describe
the production [e.g., in tons] of a product p in period (time-interval) t it
is not easy to model batch or campaign restrictions if the batch or minimal
campaign size is larger than the capacity per period. Assume that production
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is performed in batches of 200 tons, and that our time intervals have a length
of ten days with a daily production rate of 10 tons/day. The minimum time
to produce the batch would cover 20 days, or exactly two time intervals. A
plan looking like pp4 = 45 tons, pp5 = 100 tons, and pp6 = 55 tons covers
three periods (the first and third only partial) to produce exactly 200 tons,
and thus provides more degrees of freedom.

Brockmüller and Wolsey [3] solved the problem for a special case (pro-
duction equals the capacity rates). Their approach uses explicitly the feature
that production equals the capacity rates in order to compute a priori the
number of periods to produce a campaign of specified minimal size.

However, if daily production can take any value between a lower bound,
e.g., zero and the capacity rate, or if a product is produced, for example,
according to general mode-product relation, then this a priori information is
not available.

Our approach does not depend on this a priori information and can be
used for more general cases. It is also possible to model the requirement that
a certain time-lag between successive mode-changes is observed.

2 Modeling Contiguity

To model contiguous quantities, e.g., the amount of production in a certain
campaign extending over several time slices, in the framework of time-indexed
formulations we proceed as follows:

1. we identify or assign a time-indexed quantity, e.g., a production variable,
contributing to a contiguous quantity, e.g., the production in a campaign,
uniquely to a contiguous quantity (this requires that we trace the start-
ups of production in the time-slices, and the start-ups of the contiguous
quantities)

2. we add the values of all contributing quantities belonging to a certain
contiguous quantity (we use indication variables which tell us whether a
certain product amount contributes to a certain campaign)

3. we apply constraints to the contiguous quantities

2.1 Continuous Production Variables and State Variables

An important intermediate goal is to compute the amount, pC
rpnt, of product

p ∈ P produced for a certain campaign n in period t ∈ T . Thus, our idea
is to relate the production prpt to a certain campaign and then to add all
contributions establishing this campaign.

The mathematical model, for this class of production planning problems
in the process industries, is assumed to be, for a certain site, unit, or reactor
r ∈ R, based on some binary state variables δP

rpt indicating whether product
p is produced on r in period t, and binary start-up variables δS

rpt indicating
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whether the production of p is started in period t on r. Let P−
rpt and P+

rpt be
bounds on prpt if prpt > 0. We may choose the upper bound P+

rpt for prpt,
e.g., as the length of the period (in days) times the daily production capacity,
and the lower conditional bound P−

rpt = 0.8P+
rpt.

Let us, at first, connect δP
rpt to the production variables prpt starting with

the inequalities
prpt ≤ P+

rptδ
P
rpt , ∀{rpt} . (1)

If ∆rp tells us whether product p is produced at the beginning of the first
period, and

∑
p ∆rp = 1, then for the first period we have

P−
rp1δ

P
rp1 − P+

rp1(1 − ∆rp) − P+
rp1

(
1 − δP

rp2

)
≤ prp1, ∀{rp} , (2)

and for all other period (except the last one) T1 := {2, . . . , T − 1}

P−
rptδ

P
rpt − P+

rptδ
S
rpt − P+

rpt

(
1 − δP

rpt+1

)
≤ prpt, ∀{rpt ∈ T1} . (3)

The inequalities (1) to (3) hold the positivity conditions (δP
rpt = 0 ⇔ prpt = 0)

and (δP
rpt = 1 ⇔ P−

rpt ≤ prpt ≤ P+
rpt) for all inner periods of a campaign. The

second and third term on the left-hand side of (3) ensure that the positivity
conditions is not applied to the first and last period of campaigns.

2.2 State Variables and Start-Up Variables

Now we need to relate the start-up variables to the state variables. This part
depends on the problem considered. A formulation, valid for any continuous
variable (e.g., the production variable prpt or the variable mD

rmt denoting the
time spent in mode m both used in [5], Section 10.4; we refer to that model as
M1 from now on) subject to constraints cross periods, and the conditions that
we can produce only one product per time and that at most two products can
be produced during one period (i.e., at most one setup-change per period),
needs to represent the following set of implications for δS

rpt:

δP
rpt−1

∖
δP
rpt 0 1

0 0 1
1 0 µrpt

, (4)

with

µrpt :=
{

1, if any other production p′ 6= p is started in period t − 1
0, if no other production started in period t − 1 (5)

These rules, for δP
rpk + δP

rpk−1 6= 2 are enforced by

δS
rpt = δP

rpt , ∀{rp} , t = 1 , (6)
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for the first period, and for all other periods TT := {2, . . . , T} by

δS
rpt ≤ δP

rpt , δS
rpt ≥ δP

rpt − δP
rpt−1 , ∀{rpt ∈ TT } . (7)

The case δP
rpk−1 = δP

rpt = 1 is properly described by additional inequalities

δS
rpt ≥ −2 +

∑
p′ 6=p

δS
rp′t−1 + δP

rpt + δP
rpt−1 , ∀{rpt ∈ TT } , (8)

and
δS
rpt ≤ 2 +

∑
p′ 6=p

δS
rp′t−1 − δP

rpt − δP
rpt−1 , ∀{rpt ∈ TT } . (9)

If, in a general mode-product relation several products can be produced si-
multaneously, we may want that the case δP

rpt−1 = δP
rpt = 1 also leads to

δS
rpt = 0; this can easily be realized by neglecting the second term on the

right-hand sides of (8) and (9). Alternatively, we may require that µ = 1 if
any other more complicated rule than the above (6) is fulfilled.

2.3 Counting and Identification of Campaigns

Let us from now on assume that δP
rpt and δS

rpt are available. The production of
product p may start in several time periods, i.e., we have several product-p-
campaigns within the planning horizon T . Therefore we introduce continuous
variables, crpt ≥ 0, counting the number of start-ups and related to the start-
up variables δS

rpt by

crp1 = δS
rp1 , ∀{rp} ; crpt = crpt−1 + δS

rpt , ∀{rpt ∈ TT } . (10)

Now we introduce continuous variables νrptn indicating whether a certain
campaign, n ∈ IN0, could be active (crpt = n) or not, i.e., whether crpt is
equal to a certain fixed integer n ∈ IN0, or not. νrptn represents the nonlinear
function

νrptn = 1 − θ (|crpt − n|) , θ(x) :=
{

1, if x > 0
0, if x = 0 . (11)

Let us assume that at most N+
rp ∈ IN0 campaigns of product p can be pro-

duced within the planning horizon; a typical value in the current planning
problem is N+

rp = 6. A special case is N+
rp = 1 enforcing that a product can

be produced in only one campaign.
The relation (11) is enforced by

1 =
N+

rp∑
n=0

νrptn and
N+

rp∑
n=0

nνrptn = crpt , ∀{rpt} , (12)
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i.e., one campaign has to be chosen in any case (possibly, the “0” campaign),
and if campaign n is selected then crpt = n. The sets

Srpt :=
{
νrptn

∣∣0 ≤ n ≤ N+
rp

}
, ∀{rpt} (13)

form a special ordered set of type 1. We use the second equation of (12) as
the reference row for efficient branching.

The total amount, pC
rpn, of product p produced within campaign n is given

by

pC
rpn =

NT∑
t=1

pC
rptn , ∀{rp} , ∀n ∈ N1 := 1, . . . , N+

rp , (14)

where pC
rptn is the amount of product p produced for campaign n in period t,

i.e.,
pC

rptn = prptνrptn , ∀{rptn ∈ N1} . (15)

Applying the formalism described in Section 3 with K = 1 we replace (15)
by

pC
rptn ≤ P+

rptνrptn , pC
rptn ≤ prpt ,

pC
rptn ≥ prpt − P+

rpt + P+
rptνrptn , ∀{rptn} . (16)

With the formalism at hand described above we reached our goal: the com-
putation of the amount, pC

rpn, of product p produced for campaign n. pC
rpn

may be now subject to specific batch or campaign constraints.

2.4 Batch and Campaigns Conditions

We are now in a position to formulate that, e.g., a campaign may just consist
of one single batch of fixed batch size Brp,

pC
rpn = Brp , ∀{rpn ∈ N1} . (17)

Alternatively, campaigns may be built up by a discrete number of batches
following each other immediately, i.e.,

pC
rpn = Brpβrpn , ∀{rpn ∈ N1} , (18)

where the integer variable βrpn indicates the number of batches of size Brp

within campaign n. Finally, pC
rpn, may behave like a semi-continuous vari-

ables, i.e.,

pC
rpn = 0 or C−

rp ≤ pC
rpn ≤ C+

rp , ∀{rpn ∈ N1} , (19)

where C−
rp and C+

rp are lower and upper bounds if production takes place.
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3 Modeling Product Terms Including One Continuous
& Several Binary Variables

To model products like xΠK
k=1δk, where δk are binary variables and x is any

kind of non-negative variable, let us assume that X+ is a valid upper bound
on x. The product ΠK

k=1δk is exactly represented by the variable y subject
to the inequalities

∀k : y ≤ X+δk , y ≤ x , y ≥ x − X+

(
K −

K∑
k=1

δk

)
. (20)

The first inequality of (20) has the implications (δk = 0 ⇒ y = 0) and
(y > 0 ⇒

∑K
k=1 δk = K), while the second and third inequality give us

(
∑K

k=1 δk = K ⇒ y = x) and (y = 0 ⇒
∑K

k=1 δk < K). Note that if we want
to know the product y = xΠK

k=1δk explicitly we do not need to introduce an
extra variable.

4 Implementation and Results

If we want to add the batch constraints in Section 2 to the production plan-
ning model M11, it is not strictly necessary to use (2)-(9) to compute δP

rpt

and δS
rpt. Alternatively, we can derive δP

rpt and δS
rpt from the mode state vari-

ables αrmt and start-up variables βrmt used in the model M1 by [4] and ([5],
pp.320-324). If P is the union of disjunctive sets Pm of products produced
in mode m and Irmp indicates whether product p can be produced in mode
m on reactor r, (in the current case we have even

∑
p Irmp = 1, i.e., exactly

one product per mode) we just have

δP
rpt =

∑
m|Irmp=1

αrmt , δS
rpt =

∑
m|Irmp=1

βrmt , ∀{rpt} . (21)

This special approach based on (21) is, however, only exactly identical with
the more general approach based on (6)-(9) if P−

rpt = 0.
For the model M1 and a typical reference scenario (S1) covering 12 to 36

production time periods we have used both approaches indicated by indices
s and g to derive production plans maximizing total sales. The scenarios S2

use (19) to model campaigns whose minimum size is 300 tons. The scenarios
S3 include 49 partial integer variables and use (18) to enforce that campaigns
are built up by discrete batches of 100 tons each. Finally, in scenario Sm we
require that if a certain mode is chosen the plant has to stay in that mode

1 Although the problem instance specified by the data leads to a one-to-one relation
between modes and products, the coupling prpt ≤

∑
m

RmpmD
rmt with production

rates Rmp holds for any mode-product relation. Note that in M1 r ↔ i, and t ↔ k.
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for at least 3 days. In this case, the variables mD
imk used in ([5], pp.320-324),

expressing how much time the plant at site i spends in mode m in period k,
play the role of prpt used above; the length of the period (10 to 30 days) is
a useful upper bound on mD

imk. Using Dash’s MILP-solver XPRESS-MP 10.05
([1], [2]) we got the results in Table 1 (including the number of continuous,
binary and semi-continuous variables, constraints, integer solution, number
of nodes nn, running time τ , and gap ∆ in percent) when we applied the
formalism to all possible reactor(site)-product(mode)-time combinations.

Table 1. Experimental Test Runs

P−
rpt nc b s − c c IP nn τ ∆

S1 — 12397 2973 1608 8441 1 440 8m 1.9

S1 — 2 960 +6m 1.4

S1 — 3 1721 +8m 1.0

S2s — 14833 2973 1650 13997 1 786 52m 24.1

S2g 1 15217 2973 1650 14033 1 858 59m 40.5

S2g 0.8P+
rpt 15217 2973 1650 14033 2 3860 5h59m 46.9

S3s — 15687 2973 1608 13855 1 632 58m 4.1

S3g 1 16215 2973 1608 15681 1 907 1h09m 19.7

S3g 0.8P+
rpt 16215 2973 1608 15681 3 18272 39h02m 4.8

Sm — 15333 2973 1650 15681 1 511 28m 4.9

Sm — 3 1943 +40m 1.8

Sm — 4 3972 +2h44m 1.6

The gap ∆ listed in Table 1 has been calculated as

∆ = 100
zUB − zIP

zIP
= 100

(
zUB

zIP
− 1
)

(22)

The upper bound, zUB, unfortunately stays constant in the whole B&B tree
and has always the value zUB = 54479. The use of special ordered sets of
type 1 for the variables νrptn is essential; the model contains 192 sets and
1080 set members. In previous versions when these variables were declared
as binary variables computing times were much larger. In the S3 runs (mul-
tiple batches), the 49 variables βrpn were declared as partial integers (integer
below 10, continuous above 10). Although the variables δS

prt become binary
automatically, it is advantageous to declare them as binary variable explic-
itly because that enables us to prioritize them and to improve branching. The
use of directives in the model was crucial. In the general approach scenarios
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nn, τ , and the quality of the solution indicated by ∆ depended critically on
P−

rpt. Note that the run for P−
rpt = 0.8P+

rpt, (i.e., high utilization rates of
the plant system), shows the third integer solution found and required much
more computing time.

5 Summary and Conclusions

The benefit achieved by the extended model features for the special produc-
tion planning problem discussed is of qualitative nature because it leads to an
improved representation of the real world process. The production plans do
not suffer any longer from the time-indexed formulation and look more sta-
ble avoiding small campaigns and many setup-changes. In practical planning
runs it is sufficient to use the formalism only for a few products or modes,
and sometimes only for one site or reactor. Thus, the Pentium 166 MHz com-
puting time reduces to less than 15 minutes and becomes similar to the one
of the reference scenario S1.

Future direction regarding the problem will focus on special branching
rules and cuts to improve the gap, and to reduce the upper bound. For the
current application this is not a serious problem because only a few products
required constraints across period which leads to reasonable running time
and a gap of at most a few percent.
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