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Abstract. The dynamical and geometrical aspects of two quasi
radial supersonic counter streaming gas flows are investigated
numerically. Analytical approximations of the boundary-layer as
an envelope are derived from trajectorial models (two-fixed-
centre problem, restricted three-body problem) and pressure
equilibrium surfaces derived from an extended Newtonian ap-
proximation are used as initial data for the hyperbolic system of
equations describing the conservation of mass, momentum and
energy. The equations are solved by using a 2-D axial symmetric
second order explicit Godunov scheme set up as a finite volume
method on a 100 x 100 grid. By choice of a flux source term we
have modeled a free flow pattern, and the flow in the field of the
(repulsive) two-fixed centre problem, which is used as a highly
simplified model for the radiation field, for a set of parameters of
a model (Wolf-Rayet/O) binary. In that test case a subsonic
region with an extension of about six solar radii at the head-on
collision point is established. The flow pattern visualized as
contour plots of density, logarithmic pressure, and Mach number
clearly shows the shock fronts and the contact discontinuity.
Particularly, the physical parameters within the sub-sonic region
are briefly discussed with respect to the possibility of emitting
X-ray bremsstrahlung.

Key words: binaries — stellar wind — shock waves — hydro-
dynamics — Wolf-Rayet

1. Introduction

Under strong radiation pressure the physics of stellar atmosphere
and stellar envelopes implies the existence of a radiatively driven
wind as observed in O-, B- or WR-stars (Underhill 1986). Typical
parameters characterizing such a wind are mass loss rates of
107° —10"* Mg yr~! (Doom 1988) and asymptotic wind velo-
cities of about 1000-3500 km s~ *. The details of the acceleration
mechanism of this wind are not discussed in this paper. If there
are two stellar winds in hot (WR + O-star) binary systems as for
example V444 Cygni, y? Vel or HD 152270, one has to model
colliding supersonic flows with Mach numbers of about 100
leading to shock- and contact surfaces. Due to the binary stars’
orbital motion those surfaces are subject to non-inertial forces.
Until now, there has not been any complete hydrodynamical
simulation of the boundary-layer concerning its geometrical and
physical properties accounting appropriately for shock waves
and contact discontinuities.

In some previous works (Kallrath 1989, 1991a), this task, i.e.
the binary stellar wind problem (BSWP) has been attacked in two

first steps in the frame-work of trajectorial models, i.e. the two
fixed-centre problem (TFCP) and the restricted three-body
problem, and in terms of pressure equilibrium models.

The effect of non-inertial forces in a system like HD 152270
was found to be responsible for a minor turn of the boundary
layer by a small angle of only about 10° against the symmetry line
connecting both stars. This result, i.e. the small influence of the
non-inertial forces, justifies the use of axisymmetric models for
further analysis.

Therefore, in this paper, only the axisymmetric BSWP is
attacked by numerical integration of the hyperbolic system of
equations describing the conservation of mass, momentum and
energy, which govern the stellar wind fluid dynamics. The inte-
gration procedure is borrowed from numerical gas dynamics and
is capable to model an ideal, compressible gas and to capture
shocks and contact discontinuities.

During the last years, the importance of numerical gas dy-
namics has been increased for the modeling of astrophysical
problems (van Albada et al. 1982, VA), e.g. the analysis of mass
and angular momentum loss in binary star system (Sawada et al.
1984), the numerical simulation of the interaction between the
solar wind and the interstellar medium (Matsuda et al. 1988) or
the dynamical modeling of barred spiral galaxies (England 1989).
The BSWP has not yet been analyzed with such methods.

The astrophysical problems mentioned above require a nu-
merical algorithm which can treat discontinuities in the fluid
distribution. Such “shock-capturing methods” are well known in
mechanical engineering problems describing airplane profiles or
re-entry problems. In our work we choose the method of
Godunov (1959) in its extended second-order (see van Leer 1979
for instance) by giving a piecewise linear distribution of the
physical variables within each cell. The procedure is formulated
as a finite-volume method. The Godunov method (GM) is a
monotone upwind scheme which, in its second-order finite-
volume form, is in its efficiency and stability comparable to some
more recent algorithms by Osher & Chakravarthy (1983) or the
TVD schemes (Yee 1987). It has already been applied in astro-
physics for instance to simulate time-dependent cosmic rays
(Falle & Giddings 1986) or to investigate shock-cloud inter-
actions in supernova remnants (Falle & Giddings 1987).

Although a steady state solution for the geometry of the
interface between both wind flows is expected, the hydrodynami-
cal equations are set up with full time-dependence in Sect. 2.1.
They are integrated by a 2"-order axisymmetric Godunov
scheme (Sect. 2.3, 2.4) which advances a given initial solution at
t=t, on a grid through a sequence of time-steps controlled by the
Courant-Friedrichs-Lewy condition (Courant et al. 1928;
Richtmyer & Morton 1967) finally to the steady state character-
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ized by constant values of the conserved quantities in each cell.
The 1%-order scheme by Godunov (1959) can be derived
(Sect. 2.2) in a natural way from the basic conservation laws of
mass, momentum and energy written in divergence form en-
hanced by an equation of state which, in our case, is that of an
ideal gas. The discretization leads to a mesh of cells which in
cylindrical coordinates (CC) are defined by lines of constant r and
constant z parallel and orthogonal to the symmetry axis (SA).
The construction of the numerical flux function and its evalu-
ation is based on 1-D sequence of Riemann problems each de-
scribing the flux across the boundary between adjacent cells. A
Riemann problem (Riemann 1892; Chorin 1976; Sod 1978;
Menikoff 1989) for a system of conservation laws is an initial
value problem with scale-invariant initial data. In one dimension,
these initial data consist of distinct constant states on the left and
right of a jump discontinuity. The solution is constructed by
elementary scale-in-variant waves, i.e. rarefaction waves, shock
waves and contact discontinuities.

Eventually, in Sect. 3 we adapt the general formalism of the
second-order, axisymmetric explicit Godunov scheme (GS) to the
binary system’s geometry, and present the initial and boundary
data of the partial differential equation system. By choice of a flux
source term we model a free flow pattern (S1), and the flow in the
field of the TFCP (S2) for a model binary with a set of parameters
which might be appropriate to the (WR+O-star) binary
HD 152270. However, this paper is not thought to be an inves-
tigation of the individual system HD 152270. The results are
compared with the data derived from the trajectorial analysis and
pressure equilibrium surfaces, and the properties of possible X-
ray emission in the hard keV band are briefly discussed based on
some simple formulae.

2. Numerical gas dynamics based on a second order
Godunov scheme

2.1. The basic system of hydrodynamical equations

The fluid motion is governed by the principals of classical mech-
anics and thermodynamics, and in particular by the conservation
laws of mass, momentum and energy. If viscosity effects are
neglected, the gas is described by the inviscid Eulerian equations.
In an inertial coordinate frame they may be expressed in their
integral form:

d
-—j UdV+J anZ=J Sdv,
dt Jo o0 Q

where the column vector U — here written as a transposed row
vector —

(2.1)

U=[p, pv, ]’ (22)
describes the conserved quantities, and

nF=nF(U)=[pnv, pv(vn)+pn, nv(e+p)] (2.3)
are the related fluxes. The vector

S=[s,, 81, 82, 83, 8.1=[5,, fo, fev]' 2.4)

includes additional source terms for mass, momentum and
energy. The terms s, s, and s; may represent momentum source
terms of the i coordinate caused by a transformation of the
coordinate frame, e.g. the transformation to cylindrical coordin-
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ates. ¢t denotes the time, p the density, v the particles’ velocity and
e is the total energy per unit volume

1
e= +=v2 |,
”[8 2 ]

where ¢ is the specific inner energy. Furthermore, p is the thermal
pressure, f, the vector of the external force per unit volume and n
is a unit vector normal to the surface 0Q. The integral representa-
tion of the conservation laws has the advantage, that it does not
require the continuity of the dynamical variables, p, e and v in
space and time. If those fields are differentiable to a required
order, then (2.1) may be transformed to an equivalent system of
partial differential equations using the divergence theorem

U,+diVF=S©a,U+01F1+02F2+63F3=S,

(2.5)

(2.6

describing the dynamical variables V:=(p, v, p) in the Eulerian
sense as functions of space and time. In Cartesian coordinates x,
y and velocity components u, v we find

0,U+0,F+0,G=S§ (2.8)
where

U={p, pu, pv, e], F=A@u), G=A({v), 2.9)
AX)=[pX, puX +pS,x, pvX +pd,x,(e+p) X T. (2.10)

For later application we give a specification of the physical
source term representing the potential of the restricted three-
body problem in the x-y-plane. In the nomenclature of Kallrath
(1991b) (Sect. 4, Egs. 4.14—-15),

S=pl[0, f., f,, ufi+vf], (2.11)

where f, and f, are the force densities in the synodic coordinate
frame

M + iy

x
fi=2v—x+pu,(1—¢g;)

X
(1) @12)
ry r3
y y
f= =2ty (=) (1 =) @13)
r r

1 2

¢, and &, represent the repulsive part of the 1/r? forces. In
addition to this equation one needs an equation of state (EOS)
defining the pressure. For ideal gases characterized by the adia-
batic index y=c,/c, the inner energy

1 p

f=—t (2.14)
y—1p

per unit mass leads to the EOS

—_ 1 1 2
p=(-1 e=5pv° |

For later application of the axisymmetric BSWP we give the
conservation laws in cylindrical coordinates (CC) with coordin-
ates z, r and polar angle ¢

(2.15)

1 1
0,U+-0,(rF,)+-0,F ,+0,F,=S (2.16)
r ¥
where
U=I[p, pv,, pvy, pv., el (2.17)
F,=[pv,, pv}+p, pv,v,, pv,0,, v,(e+p)], (2.18)
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F(p=[pv(p, pvrv(pa Pvgzp+P’ pv(pvz’ v(o(e+p)]t, (219)
Fz=[pvz9 PU,UZ, pv(p027 pvf+l7> vz(e+p)]t’ (220)
S=[s,, g, +5,, go+5¢, Sz, S. 1" (2.21)

Note that there occur now some geometrical source terms g, and
g(p >

1
[9,> 941 =;[p+pv2,, —pu,0,], (222
caused by the transformation to CC. Due to the axial symmetry
the system (2.17-22) degenerates and reduces to a 2-D system
were all term including derivatives d,, or ¢-components drop out
leading to formula (3.7-11).

2.2. The Godunov-scheme ( first order)

The GS is a finite-volume procedure for the numerical modeling
of an ideal, compressible gas described by the inviscid Euler
equation.

Typical for this and other shock-capturing procedures are its
features to start from an initial solution U(x, t") at time ¢" given
on a grid G and advance it to a time ¢"*!'=¢"+r1 using the
discretized form of (2.1) or (2.6) on a grid G. Particularly, if there
are discontinuities to be expected in the solution, it is advantage-
ous to use the conservation laws (2.1) in their integral representa-
tion. Steady state problems are solved by iterating the time-
dependent equations towards large time ¢t [Roe & van Leer
1988].

The basic idea of Godunov’s method and similar algorithms
like those by Osher (1983); Roe (1981) or Roe (1986) is to reduce
the interaction at the boundary between adjacent cells to the
Riemann problem and to describe this problem by discrete wave
of finite amplitudes. By doing so one constructs a numerical flux
function (Lax 1973).

At each time t=t" one assumes that there is a constant
distribution of the dynamical variables p, u, v, e in each cell, i.e. at
the boundaries of adjacent cells there are discontinuities

i+1>x/A>i

u?, i>x/A=i—1

n
Uit 1

Ul(x, t")={

}, A:=linear size of cell

(2.23)

between the i'® and (i + 1)™ cell. Thus, (2.23) defines a sequence of
Riemann Problems (RP). If ¢ denotes the local adiabatic velocity
of sound, we note that for sufficiently small t

h

—= =04

T<T =0
|+ e’

(2.24)
the solution of the RP associates to a pair of cells cannot yet
interact with an adjacent pair of cells. The initial discontinuities
decay by shock waves or rarefaction waves, and in the case of
non-isothermal gases by contact discontinuities. The RP leads to
a system of three transcendental equations. Its solution can be
found for instance in Chorin (1976). After its solution is found,
the fluxes through the boundaries can easily be calculated
according to (2.10-11).

A detailed description of the GS for arbitrary 3-D systems is
given by Falle (1991). Basically, the discretization of the system of
conservation laws (2.1) leads, after integral averaging in space
and time, to an expression, which in cartesian coordinates with a

constant ratio A= V/A of volume to surface, for each cell (i, j, k),
reduces to
n+1 n 1 r 1 n+1 n
Ul =U,-jk+tS,.jk——1:XZ Fi—Fi |, ©=t""'—¢", (2.25)
i
where F! and F} are the area- and time-averaged fluxes crossing
the cell-interfaces. The fluxes F!and F! in x-direction, and similar

in y- or z-direction, for each cell (i, j, k) are derived from the
Riemann problem

Ui=U(S)); Si=(pi> i, pis &), X<x;
U={ (S1); Si=(pi i, pi» €:) } . 226)
Uit1=U(S,); §,=(pi+1>Uiv1sPiv1€iv1) X>X; )i

If the solution U*=U(t=1>0, x=0) of the RP has been calcu-
lated, the fluxes are given by

F.=F(U¥*) (227

and corresponding formulas for F}, and F7.

2.3. The Godunov scheme (second order)

Originally, the GS was a first-order procedure based on the
assumption of constant values in each cell. Procedures of higher
order in space need some structure within each cell. Not only the
GS, but each upwind procedure of first order can be extended to
a second-order procedure in time by applying the first order
algorithm to half a time-step, i.. by calculating U"** at time t"**
=4("+"*1). A more detailed structure within each cell is taken
into account by the spatial gradient. In order to avoid numerical
problems near shocks, the construction of a second-order pro-
cedures requires an averaging function “ave”, for instance that of
VA

ave(a, b): =[(b*+¢e?)a+(a® +&2)b]/[a® +b? +26%]. (2.28)

Later, a and b will be replaced by components of a gradient
vector. &2 is a positive number introduced to avoid divisions by
zero. The averaging function “ave” has the property, that for ax b
the result is 3(a+ b), while otherwise min(a, b) is preferred.
Now we can compute the mean gradient of the variables

(2.29)

in a given cell (i, j, k) at %; for instance in the x-direction by

V:=(p9 v, P)‘_—(P’ Uy, V3, U3, P)

n+%
i+1jk— Vi

n+i

ijk .
A A 2
Xit1 =X

the derivatives in y- and z-direction are calculated similarly. The
values %; denote the cell-half points. However, later on in non-
cartesian geometries they will be replaced by the mass centres of
each cell.

Using the gradients, we can transfer the information from the
centre of cell at time t"** to the interface at x=x; by linear
extrapolation. This procedure is performed both, for cell (i, j, k)
and cell (i+1, j, k), leading to different states U' and U" left and
right of the interface

U= U[V?j:%'l'(xi_xi)(l/x)ijk]
Ur=U[V?:?jk"_(xi_)ei-f1)(Vx)i+1jk]»

n+i Vr.u-f-s}

. ijk i-1jk
(Vx)ijk.=ave|: ——
Xi—Xi-1

(2.30)

(2.31)
(2.32)

which again, serve as input data for a RP. In x-direction, and
analogous in y- and z-direction, the fluxes are again

Fr=F[U*U', U"], (2.33)
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and the Godunov-step with those values is formally identical to
(2.25). Concerning the differences in the construction of the
numerical scheme if cylindrical coordinates are used we refer to
Falle (1991).

3. Application of the Godunov-scheme to the geometry
of binary stars

3.1. The basic equations

In principle, the GA could be applied to the full 3-D set of
hydrodynamical equations

0,p+div(pv)=0 3.1
1

O+ (vV)v= —;VIH‘ﬁ f=fo+fz, (32

containing the 1/r? force densities

fo=Dr3r +T,r; %, (3.3)

caused by the gravitation and the repulsive radiation pressure,
and the non-inertial force density

fr=ox(rxo)+2vxe (‘x’ denotes cross product) (3.9

describing the centrifugal force and the Coriolis force appearing
in the synodic coordinate frame. At present, our available com-
puter facilities prevent us from doing so.

Alternatively, according to the argumentation in Kallrath
(1991b) we neglect f;, and make use of the cylindrical symmetry of
the problem where z is the coordinate parallel to the line con-
necting both stars placed at distance d from each other, r denotes
the distance of a given point to that line. The polar angle ¢ does
not occur due to the axial symmetry. The WR-star with mass M,
and the O-component with mass M, have positions
[-M,, —M,] (3.5)

21,2y ] =—
[z1,22] MM,

on the z-axis, i.e. the distances r; and r, of arbitrary point (z, r)
from both stars is

zZ—2Z
ri=le—z, )2+ =——,
0s 0,
zZ—2Z
ri=[z—z)+r*]i=—"2 (3.6)
0s 0,

and its line to star i encloses an angle 0; with the z-axis. In
(2.16—22) we remove all quantities related to ¢ and get the 2-D
set of equations

1
0,U+~0,(rF,)+0,F,=S 3.7
r
where U, F,, F, and S are defined to be
U=[p, pv,, pv,, €T, (3.8)
F,=[pv,, pv} +p, pv,v,,v,(e+p)T, (39
F,=[pv., pv,v., pvi +p, v.(e+p)]’, (3.10)
S=[s,,9,+5,,5:, 51" (3.11)
In addition to the geometrical source term
6,=" (3.12)

r
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caused by the transformation of coordinates, there occurs a
physical source term of momentum and energy depending on the
force f per unit mass and leading to the total source term:

§=[0,g,+pf, ofz, P02 fo+0,1)]; (3.13)

here f, and f, denote the projections of the force f per unit mass
onto the coordinate axes e, and e,.

3.2. The choice of the initial data and boundary conditions

In order to apply the GM, a region of the spatial domain of the
z-r-plan is decomposed into a N, x N,-grid

[@5, b ] x[@,b']1=[z-,2z,]1x[0,R]—~[0,z,,—z_]x[0,R].
(3.14)

To avoid complications near the surfaces of both stars, we choose
the grid such that

z,+R,<z_<z,<z;—Ry, (3.15)

holds, where R; and R, are the radii of the WR-star and the O-
component. The number of cells N,, N, in both directions is
chosen according to the condition

A=(z, —z_)/N,=R/N,. (3.16)

The arithmetic centres and the boundaries of cells are calculated
according to

F=(i—1)A{r=iA}, Z=(k—1)A{z,=kA}. 3.17)

The application of the GA requires the specification of some
initial distribution U}. If we assume that the procedure will
converge towards a unique steady state solution of (3.7), then the
initial solution U}, should not be of great importance. However,
an initial solution close to the steady state Uj; we are seeking for,
will be very important in order to reduce the amount of computer
time needed to integrate (3.7) and advance it in time.

Thus, we choose as initial values U}, those density and
velocity fields

vj:=vj(rj)=vj,wf(rj,Rj)er*rxj, j=12, (3.18)
A — Aj -2 R
pj'_pj(rj)_4nvjwrj /f(rj9 j)9

f(rj,Rj):=[1—(Rj/rj)]% (3.19)

defined in Kallrath (1991a), where the boundary surface derived
in that context distinguishes between points (x, y, z) mainly
influenced by star 1 or star 2. In Kallrath (1991a) the quad-
ratically decreasing acceleration field

1
ai=aj(ri)=ivlg~°°Rjri_2er——r , J=12,

xj

(3.20)

enabled us to compare the trajectory and pressure equilibrium
models. In order to derive the pressure field, according to
Neutsch et al. (1979) we approximate the temperature field by

T*=[(R/ry)* T{ +(Ry/r,)*T51. (3.21)
Now the pressure field
pi(r))=pj(p/p}), pj=n(pj)kT}, j=1,2 (322)

is derived from density and temperature where the reference
values are derived from points near to the boundary surface and
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used for a global polytropic model. We note, that the procedure
is arbitrary to some degree. However, this crude choice of the
initial pressure distribution is justified by the fact, that outside
the interface the thermal pressure is quite negligible when com-
pared to the kinetic pressure pv?; i.e. the energy field (2.5)

1 1 )
ej(rj)=y_—1pj+5p,~v,?, j=12 (3.23)
is mainly dominated by the kinetic pressure. The complete vector

U; of conserved quantities now reads

U;=[p;, pv,j, pv;j, €;], j=1,2. (3.24)

Let now rg(z) be the boundary curve numerically derived in
Kallrath (1991a) and define an auxiliary function

0, if z<z,=stagnation
G(2):= . ) (3.25)
rg(z), if z>z,=stagnation
supporting the assignment of the vector U} :
Ut {Ul [y, K], i 16 K< GLG, 0] 6526
U2 [rl {l7 k}]’ if r(l9 k) > G[Z(l, k)] .

Those cells (i, k) which intersect with the boundary curve rg(z)
will be treated as dominated by the O-star, i.e. UL, =U, [r,(i, k)].

We now have to supply boundary conditions for the spatial
domain D defined by (3.14). Due to the cylindrical symmetry all
fluxes through the z-axis r=0 vanish. This is also realized by
“reflected symmetry”. The external distribution U?, is assumed
to be a mirror image of U}, in the interior, reflected about the
boundary, ie. for the external cells (‘0’, k) adjacent to the
boundary holds:

ng:(p’ Py, pUz, e)'(l)k=(p’ — PV, — PV, e)’;k=ﬁ'ik>

0<k<N,+1, n=0. (3.27)

Note, that the numeration in k also contains the external “left”
and “right” boundary cells. The “left” and “right” boundary of
the domain D should be treated equally. Requiring continuity,
we supply “fluid” boundary conditions, i.e. for all times n and
keR,;:={—1,0} or keR,={N,+1, N,+ 2} we require:

5 (1<i<N,+2 A keR)) or (1 <i< Ngg A keR,).

=

(3.28)

It is this requirement which connects the flow field within our

numerical domain D with that close to the stars. Of course, (3.28)

makes only sense if the contact discontinuity and the shock
curves do not intersect the left or right boundary of D.

At the “top” boundary we assume “free outflow”, i.e. we fix

boundary conditions with vanishing gradients:

U+ 1= Ul OSk SN+ L Ul o 1 =Uly_, Ngg<i< Ng.
(3.29)

Note, that the system (3.27-29) of boundary conditions describes
a grid which in all our applications includes the O-star com-
pletely. However, in order to avoid numerical difficulties near the
surface of the O-star or physical complications arising by the
acceleration mechanism of stellar winds near their origin, i.e.
critical points etc., we cut out a region near the O-star leading to
the geometry plotted in Fig. 1. This region is defined by three
more grid numbers NZ,+ I, NZ,— I and NR,— I indicating the
extreme left, right and top cell of the excluded circle, approxi-

mated by rectangle cells. At this circle boundary we supply “fluid
boundary” condition, which require for the second order scheme
a definition of the gradients, i.e. the next two adjacent cells. The
technical details concerning this subject may be found in
Kalirath (1989). It might be argued, that it would be more
appropriate to choose a grid adapted to the geometrical bound-
aries. Indeed, there are algorithms which support the trans-
formation of cartesian grids to almost arbitrary geometries
(Thompson et al. 1974). However, apart from technical problems,
those grids are subject to an unknown influence of the boundary
conditions to the whole fluid distribution while in our geometry
the boundary influence seems to be more restrained to the
boundary region. Furthermore, there are advantages in the treat-
ment of the Riemann problem. Figure 1 shows the grid chosen for
our numerical treatment.

In order to check the convergence properties of the numerical
integration one needs a well defined criterion. The quantity
5" =max {| (U = Up)/U% |} /de (3.30)

ik

seems to be appropriate for this purpose. This operator is applied
to each element of the vector U,,. Some care has to be taken
when dividing by the elements of U, in case there is an element
with zero-velocity for instance. In case of convergence the se-
quence 6" is monotonically decreasing until it fulfills the condi-
tion 6" ~ 8, where the value §, is of the order of 10~ 2. Besides this
numerical test it was more helpful to inspect coloured contour
plots giving a global impression of the solution.

3.3. Numerical simulations and results

Given typical velocities of the order of 108 cms™!, densities of
1073 gcm ™3 and pressures of 107! —10*3 dyncm ™2, a Courant
number of ¢ =0.4 and an equidistant grid in r and z of mesh size
A=0.04 or A=0.02 one derives time steps according to (2.24)
which are typically of the order of one minute.

According to Neutsch et al. (1979) we choose the set of
parameters listed in Table 1 which might be appropriate for the
WR/O-star binary HD 152270. These values are also typical for
several others WR/O-binaries. In Doom (1988) we find observed
mass loss rates for WR-stars between 107 ° and 10™* M yr ™ };
Underhill (1986) gives a review of observed temperatures. Similar
candidates as HD 152270 are V444 Cygni and y? Vel (Prilutzki
& Usov 1976).

For the parameter set given in Table 1 we computed the
solution for a 50 by 50 grid with mesh size A=0.02 and another
100 by 100 defined by A=0.02. The calculation on both grids
were performed both with the physical source term switched
OFF (S1) and ON (S2). Already with the first grid we achieved a
estimation of the width of the subsonic interface near the z-axis of
about 7R. But it became also obvious that a finer grid was
needed.

Color contour plot of the solutions on the 100 by 100 grids
are available from the author and show the density field p, the
logarithm log, ,p of the pressure, log;, M of the Mach number,
and the velocity fields v,, v, and v. In this paper, in Figs. 2—4, only
the contour lines of p, log,,p and log;, M can be shown. The
shock fronts are clearly seen in those diagrams. They become also
obvious in Fig. 5 showing the velocity direction field, repre-
senting the solution after 300 121 s. The contact discontinuity is
best seen in the density contour plot. With time steps derived
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Fig. 1. This figure shows the grid [ —0.2,
1.76] x [0, 2] containing NRNZ cells of
width dx. The grey area around the O-star
is, on the left, and limited by the boundary
curve derived from a pressure equilibrium
model. The initial values within this part of
the grid correspond to that distribution of
density-, velocity- and pressure-field of an
undisturbed O-star stellar wind. The other
part, denoted by “Domain of the Wolf-
Rayet star” is initially dominated by the
Wolf-Rayet star. The numbers NZL,
NZR, and NRU characterize a region

which is occupied by the O-star and thus is
. excluded from the grid
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Table 1. System parameters for a model (Wolf-Rayet/O-star)
binary. The data may be appropriate for HD 152270 (see
Neutsch et al. 1979 and Neutsch 1986)

Binary parameter

Orbital period T=9%07
Distance d=60.0 Ry
5

Adiabatic index y =5

WR-star  O-star
7/1000 K 30 40
R/Rg 12 10
M/M 10 25
e 8.462 7.249
A/1073 Mgyr™1) 2.221 4.064

from the CFL condition between 1 and 80 (in the average 60, in
the final part of the calculations 120 s), we performed about 7000
time steps. Let us now discuss the solution S2 which accounts
also for the physical source term caused by the force field (3.3).
We will comment on the solution S1 later. Near the z-axis there
are nearly normal shocks enclosing a subsonic region of the

interface. At greater distances we observe oblique shocks.
External to the interface the flow field shows almost radial
symmetry. Small deviations are caused by the two-fixed-centre
force field.

The width A, of the interface reaches its maximum value at
the z-axis and can be “measured” from Figs. 5-7, leading to
6.0 R ; the subsonic region extends about A, =25 R, far away
from the z-axis. Useful quantities are also the distances
rsw=30R and rgo =24 R, of both stars to their shocks fronts.
The condition v, =0in Fig. 6 leads to a distance rg=33 R, of the
stagnation point from the WR-star. The strength of the shocks
and some further physical data can be extracted from Figs. 67
showing the functional relationships p (r=0,z),p(r=0,z), v, (¥
=0,z), M(r=0,z), T(r=0,z), and [pv*+p](r=0,z=0).
Actually, these data represent the values of the bottom row of the
grid domain D. Attention should also be paid to the temperature
distribution. There are temperatures of the order of some 107 K.
We will comment on that later. Note that the total pressure pv?
+p in Fig. 7 (bottom) is not identical at both shock positions of
the interface since the external force also has to be taken into
account. In the “free-flow” model discussed below, however, the
requirement of equal pressure at both foot points of the interface
is fulfilled. This result is the expected one in case of a steady
solution since otherwise the interface would move to the left and
right. Figures 6—7 also show that the initial distributions in the
density and velocity fields outside of the interface are almost
conserved identically which proves the quality of the initial flow

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991A%26A...247..434K&amp;db_key=AST

FTI91ARA © Z 2477 A34K

440

0.96

0.82

0.69

0.55

0.42

0.28

0.15

0.01

-0.19 -0.03 0.13 0.30 0.46 062 078 094 110 1.27 1.43 159 1.

1.90

1.77

1.50

0.01

-0.19 -0.03 0.13 030 046 062 078 094 110 1.27 1.43 1.59

mg

III'\"IIVII!III”IHIIIHTTTHIIIIIIH!IHIHHHIIIIIHIIHIIHIHIH_
2B ANEPE /

@
S

|

Density Contour Plot
10+ p / [g/cm?]

I|IIIIIIII/lllllllllllIIIIHIIH

0.82

0.69

0.55

Loptrerrrererrrrer e e e e e e e

0.42

Ottt
o
(e}

VA

HTTTTNW ITTTTTTITTITTTITTTT T T T TTTTTTTTITI T I I T I T I I T TTI T rrTTT

Pressure Contour Plot
Iog10 (p / [dyn/cm?])

0.42

0.28

[IENANEEEEN]

0.01
5

GOt e e P e o

N

Fig. 2. Contour lines of the density field
calculated within the model S2. In the
units used in this plots, the interval be-
tween adjacent contour lines is 4. The WR-
side shock and the contact discontinuity
are clearly seen. At zx0.22, the O-side
shock fronts has its foot point. Note, that
in the region dominated by the O-star the
radial structure of the density field is al-
most perfect (some slight deviations are
expected from the two-fixed-centre
potential

Fig. 3. Contour lines of the pressure field
calculated within the model S2. Actually,
log,op is shown. The interval between
adjacent contour lines is 0.4. Both shock-
fronts are clearly seen. At zx0.22, the O-
side shock fronts has its foot point
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field. Some minor deviations are of course to be expected because
of the force field (3.3). The initial distribution of the other profiles
are not relevant since the pressure and temperature had been position of the interface and the shock fronts do not change their

approximated somewhat crudely. position and geometry after some time. However, the internal

-1 0 1

Velocity field at time t = 300121.369 sec
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J1.77
-
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4 1.50
4 1.36
41.23
=
4 1.09
- 0.96
- 0.82
- 0.69
4 055
E' Fig. 4. Contour lines of the Mach number
-1 042 calculated within the model S2. Actually,
3 log,oM is shown. The interval between
— 0.28 adjacent contour lines is 0.2. Both shock-
I fronts are clearly seen. The subsonic region
E 0.15 of the boundary interface is limited by the
- log,oM =0 contour line (not explicitly
0oy labeled)
.75

Fig. 5. The flow pattern resulting from S2 is indi-
cated by small lines proportional to the absolute value
of the velocity. From the shadow effect in this picture
the shock surface and the contact surface can be
imagined. NR and NZ give the number of cells in the
r- and z-direction while dx is the linear size of each
cell. The O-side shock front can be easily recognized
as a hyperbola. The foot point of the WR-side shock
front is approximately at z=0.0 from which the shock
front can be traced upwards. The contact discontinu-
ity is also weakly visible in the upper part of the figure.
The velocities in the upper right corner are about
2460 kms ™!, those in the upper left corner of the grid
have values about 1500 kms ™!, and the values in the
smallest part of the interface are between zero and a
few hundreds kms™!

Some caution is required when using the term “steady state”.
As our frequent inspections of the iterations have shown, the
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Fig. 6. This picture shows on top the
density profile p(r=0,z), in the middle
the velocity profile v,(r=0,z), and on
bottom the pressure field p(r=0,z) as
derived from S2. From this plots, the
strength of the shocks and some relevant
physical data can be extracted. Actually,
these data represent the values of bottom
row of the grid domain D. The lower axis
shows the dimensionless coordinates
while the upper axis represents the dis-
tance from the WR-star in solar radii.
v,(r=0,z) yields the stagnation point
2o=33 Rg. There is almost a flat pre-
ssure profile within the interface. How-
ever, there is some structure of the dens-
ity profile
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Fig. 7. This picture shows on top the
Mach number profile M(r=0, z), in the
middle the temperature profile 7(r=0, z),
and on bottom the total pressure profile
[pv?+pl(r=0,z) as derived from S2.
From the Mach number function, the
smallest extension of the interface de-
fined as the subsonic region is derived
(A,=60Ry), and the foot points
rew=230 Ry and ry=24 R, are also ex-
tracted. Between the contact surface and
the O-side shock front the temperature
profile is almost isothermal. In this pic-
ture the total pressure is not equal at
both shocks as is expected for a steady
state solution. However, the sum of the
total pressure and the external forces act-
ing on the interface is equal on both sides
of the interface
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structure of the interface visualized by the profiles near the z-axis
shows some small variations in the density and velocity distribu-
tion. In particular, the contact surface varies its position. At this
stage of the numeric we refrain from discussion turbulence effects
and instabilities within the interface and the question whether a
steady contact discontinuity can exist.

Before achieving the solution S2 we also calculated the “free
flow” solution S1. If the physical source term is not taken into
account, the stellar wind material flows with supersonic velocities
at the left boundary of the domain D and from the approximated
O-star’s surface into the grid. From then on the fluid moves
force-free. We now briefly discuss the differences between the
solutions S2 (source flow) and S1 (free flow): '

Position of the interface: In S2 the interface is somewhat moved
away from the O-star. This is also true for the stagnation point.
Both effects are caused by the acceleration field.

Extension of the interface: The intersection points rgy, and rgg of z-
axis move closer to each other, i.e. in S2 the width of the interface
is smaller than in S1. This statement holds even more in greater
distance from the z-axis, i.e. the external force compresses the
interface.

Strcuture of the interface: While in S1 the interface develops
almost constant profiles in density, pressure and temperature
near the z-axis, i.e. shows isothermal features, in S2 the contact
discontinuity becomes very obvious as shown in Figs. 3—4.

Flow profile: In S1 both shock fronts may be approximated by
hyperbolas. The shock front next to the WR-star, is in S2
however nearly a straight line normal to the z-axis, and slightly
benched to the left in the upper part. External to the interface, in
S1, there are constant velocity fields and quadratically decreasing
density fields while in S2 those fields are better approximated by
(3.18-19) modified somewhat, however, by the two-fixed-centre
potential.

Convergence properties: Due to the decreased Courant time
caused by the physical source term, the solution S2 required
more total time steps to be evaluated. However, it converged
already after 70000 s, while in S1 with averaged time steps of
about 60 s the steady state has been achieved after 160000 s. The
steady state refers to the whole interface. It might be the case that
a steady contact discontinuity does not exist.

All relevant results of the numerical integration are summarized
in Table 2.

3.4. Discussion of the physical properties of the interface

The high temperatures of the shocked and heated gas in the
interface lead to the question if there is X-ray radiation to be
expected from this region. Prilutzki & Usov (1976, PU) and later
Bayramov et al. (1988) assume rgy, +rsoxd, and give a rough
estimation of the total X-ray power L., which we review here in
somewhat changed appearance:

L <1.01038[L:|2[r5—°]3[r5—w]_4
= 107°M_ | L Ro | LRe

v -1
x| —= | ergs!
|:100kms‘1] g

This formula contains explicitly the mass loss rate 4, of the WR-
star and its wind velocity v, at the WR-side shock front. Since
the distances rgw and rgo depend on the wind strengths of both
stars, all important data of the O-star are implicitly contained in
the formula given above. In particular, we learn from Eq. (3.33)
that, assuming equal widths of the interface, the X-ray power
decreases if the distance of the interface to the O-star decreases.
Equation (3.31) holds exactly, if all the energy of the heated gas is
converted into X-ray radiation, i.e. if the energy loss caused by
matter moving and carrying energy away and other cooling
mechanisms may be neglected. In their framework of anaysis,
after the shock transition the gas is nearly isotherm and emits
free-free X-ray bremsstrahlung of some keV.

Our results concerning HD 152270 and summarized in
Table 2 would lead to L,<7.410% ergs™!. Similar comput-
ations related to y?Vel and V444 Cygni would result into
L,<1210%2ergs™! and L,<2.410%* ergs~!. All those values
should be better interpreted as upper limits since the above
formula does not account very appropriately for thermal conduc-
tion, i.e. some decrease in (1 <y <3), free-free-radiation in the keV
range, expansion or Compton interaction with the radiation field
of both stars. More detailed investigations by Cherepashchuk
(1976, CH) led to the result, that for binaries with orbital periods
between 3 and 100 d and arbitrary mass loss rates there is at most
a fraction of 0.3L, emitted in the hard X-ray range, i. only a
third of the value computed by (3.34).

But we tend to interpret even this value as being to high since
the analysis of PU would be more appropriate to the situation of
a fluid approaching a solid body. Close to the stagnation point
the results derived by PU seem to be best. However, Pollock
(1987, PO) points out, that the terrestrial observer has only
limited access to this region. Due to photoelectric absorption he
usually only receives radiation from regions more distant from

(3.31)

Table 2. The quantities r give the distances of the intersection points of the shock fronts with the z-axis from the Wolf-Rayet star and
the O-star, while A measures the width or the extension of the interface in z- and r-direction. All these quantities are given in solar
radii. The next values refer to the temperatures, densities, pressures and particle densities at the boundaries of the interface and are
given ir. units of 106K, 1073 gcm ™3, dyncm ™2 and 10*1% cm ™3, Alternatively, those quantities may also be interpreted as the
averaged values of the left and right parts of the interface. Finally, the table also contains the velocity of the WR-wind at the shock

front given in kms ™! and the X-ray power calculated according to (3.33) in units of 1035 ergs~

1

Tsw ro Tso Az Ar Twr T;, Pwr Po Dwr Do Ayr n, 2 Lx
S1: 345 352 165 90 20 50 50 6.4 6.2 1700 1240 214 190 1075 14.5
S2: 303 332 237 60 25 47 140 8.6 1.9 1770 1170 29.0 59 1048 74.3
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that part of the interface. Here, photoelectric absorption refers to
the effect of carbon or nitrogen atoms in the envelope of the
Wolf-Rayet star, the effect of the interstellar medium not taken
into account.

Furthermore, a future analysis of this problem should take
into account the following physical processes: The conversion of
energy into magnetic field energy, emission of synchrotron radi-
ation, and also the energy contained in oscillation of the interface
resulting in a continuous compression and expansion of the gas.
If magnetic fields are present, then such periodic density- and
pressure-oscillations may cause Alfvén-waves leading to a further
source of energy loss.

Besides this theoretical considerations we now briefly com-
pare the X-ray powers L, with those X-ray data observed by the
Einstein-Observatory and discussed by PO. Those data were
derived from observations of 48 WR-stars in the hard X-ray band
between 0.8—4 keV and scattered between 1032 and 103* ergs™*.
One important result was that the X-ray power of (WR + O)-
binaries was systematically higher than those values typical for
single WR- or O-stars. We believe that the contribution of the
interface accounts for this. The measured values for y* Vel
and V444 Cygni were (1.14+0.1)10%2ergs™! and (7.7+1.3)
1032 ergs~!. The observed value for HD 152270 in the
0.2-4 keV band was (4.4+4.4)1032 ergs™!. This value is cer-
tainly lower than the theoretical upper limit discussed above. A
similar value was measured for CV Ser. But both measurements
have in common that they were achieved at phase ¢ =0, i.e. the
WR-star was in front of the O-star. Thus, it is very likely, that the
extended envelope of the WR-star hid most of the subsonic part
of the interface which leads to an absorption of the X-ray
photons by nitrogen or carbon atoms of the envelope. Other
observed values of X-ray powers, such as HDE 311884 or
HD 92470, are related to phase ¢=0.5, i.e. the O-star was in
front. Thus we recommend further observations in the hard X-
ray region between 1 and 10 keV and stress, in agreement with
CH, the following facts:

(a) If one detects a WR-star with variable radiation in the
hard X-ray region of some keV, it is very likely, that this WR-star
is a (WR + O)-binary. Apart from Wolf-Rayet-stars, only O- and
B-stars are appropriate candidates to fit the required mass loss
rates. Theoretical calculations by De Greve et al. (1988) have
shown, that (WR + O)-binaries may originate quite easily from
mass exchange. The production of (WR + B)-pairs, however, is
highly unlikely according to this model.

(b) If a (WR + O)-binary is found, it seems to be worthwhile,
to observe such a system in the keV band and cover a complete
orbital period.

(c) Simultaneously with the emission of thermal or non-
thermal X-rays, according to PO, one should also take into
account the emission of non-thermal radio-emission. Similar to
the analysis of optical spectra in Neutsch et al. (1979, 1981) or
Neutsch (1986), one has to analyze a complex system of dyna-
mical and geometrical effects. In order to analyze the simultan-
eous variability of photometric, spectroscopic and radio or X-ray
data, in an extended model the effects of magnetic fields should
be included.

4. Conclusions

Adopting the typical parameters describing the WR- and O-star
stellar wind in (WR/O)-binary like HD 152270 (the stars are
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60 R separated from each other), the numerical integration
procedure for the system of equations describing the conserva-
tion of mass, momentum and energy uses a zero-order boundary
and flow field derived from pressure equilibrium models as initial
data and has been applied to constant velocity fields (S1) and
fields with quadratically decreasing acceleration (S2) and has
yield the following results.

In S2, when compared with S1, the boundary is moved
towards the WR-star due to the repulsive force of the O-star. The
extension of the subsonic region near the SA is 6 Ry in S1, and
somewhat smaller, i.e. compressed in S2. The subsonic region
extends about 25 R, away from the SA. While in S1 the density,
pressure and temperature show almost constant profiles near the
SA, in S2 the contact discontinuity is well developed. There are
indications that a steady contact discontinuity does not exist; yet
at the present state we refrain from discussing that point in more
detail. In S1, the shock surfaces are almost hyperboloids with
curvature in the same direction, while in S2 the WR-side shock,
or its projection on the r-z-plane, is nearly a straight line (see
Fig. 1) situated 30 R, away from the WR-star (Kallrath 1989).
The physical properties of the interface are characterized by
densities of about 10~ '3 gcm ™2 pressures of 1500 dyncm ™2 and
temperatures in the region of 107-10® K. An upper limit for the
Bremsstrahlung X-ray power in the hard keV band between 1
and 10 keV is expected to be around 1036 ergs ™. This is only in
rough agreement with the Einstein observatory data reported by
White & Long (1986) of about 1032-103* ergs ! for V444 Cygni,
y2 Vel and HD 152270 measured between 0.8 and 4 keV.

The comparison of the geometrical results of our numerical
simulation of the boundary-layer does not support the assump-
tion of a zero-thickness interface used in the framework of the
NA or similar approaches. Even the smallest width of the inter-
face, realized at the head-on collision point, has a value of about
A,=6 Ry which is about 10% of the distance of both stars.
However, if there are some cooling mechanisms effective in the
interface, A, might be reduced simultaneously with an increase of
the compression ratio at the contact discontinuity. Finally we
note that the foot point of the O-side shock fronts coincidences
roughly with the stagnation point derived in the NA.

The Godunov method and the analysis performed in this
paper, here applied to an astropause problem of a hot model
binary star system, should be applied to some (WR/O) binaries
with well known stellar parameters, and may also be used for a
study of the heliopause configuration. It looks worthwhile to
compare such results with those derived by Baranov et al. (1979)
and Matsuda et al. (1989).
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