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SUMMARY

The dynamical and geometrical aspects of two quasi-radial supersonic counter-
streaming gas flows are investigated in the framework of pressure equilibrium models.
The numerical results, ie. the boundary layers derived from the Newtonian
approximation (orthogonal momentum conservation) and extended models based on
mass and momentum conservation using constant velocity fields and fields with
quadratically decreasing acceleration for a hot model (Wolf-Rayet/O-star) binary are
compared with analytical approximations of the interface defined as an envelope
derived from trajectorial models (two-fixed-centre problem, restricted three-body
problem). The numerical integration yields a boundary curve which might be approxi-
mated by a hyperboloid. The envelope and the interface corresponding to given fields
with quadratically decreasing acceleration fit nearly identically to each other. The
results can serve as input data for an analysis of the binary stellar wind problems

based on a shock-capturing method.

1 INTRODUCTION

The intention of this work and some related investigations
(Kallrath 1989, 1990) is to contribute to the understanding
of the complex physics in the boundary-layer region between
two colliding quasi-radially symmetric supersonic flow fields
occurring in hot binary star systems in the form of radiatively
driven stellar winds.

A special case of interest arises if there are two stellar
winds in hot (WR + O —star) binary systems as for example
V444 Cygni, y*Vel or HD 152270: one has to model collid-
ing supersonic flows with Mach numbers of about 100, lead-
ing to shock and contact surfaces. Such systems are of broad
interest since many Wolf-Rayet stars are members of binary
systems (30 per cent according to Moffat et al. 1986), and
some motivation for a detailed and systematic discussion of
the boundary layer between two colliding stellar wind flows
has already been given by Kallrath (1989, 1990): this is
referred to as the binary stellar wind problem (BSWP).

Usually, in the literature, one finds contributions on the
dynamics of colliding binary stellar winds, or interaction of
the solar wind and interstellar medium, which are related to
the Newtonian-approximation (NA) based on conservation
of orthogonal momentum (Fahr, Grezdzielski & Ratkiewicz-
Landowska 1986b) or an extended models (Giuliani 1982)
taking into account the conservation of mass and total
momentum. Most of the analyses in the past, e.g. Huang &
Weigert (1982) or Girard & Willson (1987), have been based
on constant velocity fields (CVF), and assume the boundary
layer to be of zero thickness, i.e. the shock fronts are

identical with the contact surface. Shore & Brown (1988)
have a model with constant velocity for the WR-star and a
distance-dependent velocity of the O-star, although this
velocity field does not imply a quadratically decreasing
acceleration (QDA ). Thus the goals of this paper and a sub-
sequent one are as follows.

First, we derive boundary layers in the NA, then, based on
the conservation of mass and momentum with external fields,
discuss flows with QDA. These interfaces, and the external
fields also, will be used in a forthcoming paper as input data
for a shock-capturing method yielding the location and
geometry of the boundary and the shock fronts.

Secondly, we compare the boundaries from these pres-
sure-equilibrium models with the results derived by Kallrath
(1989, 1990) where the boundary or separatrix between the
two wind flows has been defined as the envelope of all iso-
energetic trajectories originating on an equipotential surface
of the Wolf-Rayet component.

By investigating the BSWP in the framework of the
restricted three-body problem, the effect of non-inertial
forces has been estimated by Kallrath (1989, 1990). For a
model (WR/O) binary like HD 152270, this effect can be
neglected to first order and justifies further analyses based
on cylindrical symmetry.

Thirdly, we compare the results of the gas dynamical cal-
culation to obtain information about the goodness of such
pressure-equilibrium surfaces. In particular we test the
assumption that the interface is of zero thickness. It will turn
out in a forthcoming paper that this assumption is not
entirely valid.
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This paper is structured as follows. In Section 2.1, pres-
sure-equilibrium surfaces (Fahr, Ratkiewicz-Landowska &
Grezdzielski 1986a) are derived from the NA. The contact
surface is determined by the requirement that the projections
of the stress tensors on the surface normal or the orthogonal
momentum flux on both sides of the (unknown) surface
cancel each other. Furthermore, it is assumed that the inter-
face between both wind flows is of zero thickness. In the case
of axial symmetry, the surface can be calculated by an ordi-
nary first-order differential equation (ODE). This ODE
depends on given density and velocity fields. In Sections
2.1.1 and 2.1.2 we set up the nomenclature for CVFs and
fields with QDA. Such models are often used as a simple
model to describe the stellar wind of a single star, e.g. Castor,
Abbott & Klein (1975) or Neutsch (1979).

A more refined model (Section 2.2), accounting for mass
conservation and conservation of both orthogonal and
parallel momentum flux, leads to a system of three coupled
ODESs which we integrate by Bulirsch-Stoer extrapolation
(Bulirsch & Stoer 1965). The input data to this procedure
are given density- and velocity-fields in the region associated
with either the WR- or O-star. In particular, the integrations
are performed for CVFs and for models with isotropic QDA
for a hot model (WR/O) binary with a set of parameters used
by Neutsch (1979, 1986) to model HD 152270.

In Section 3 we summarize, compare and evaluate the
results of the trajectorial model and those derived in this
paper.

In a forthcoming paper the binary stellar wind problem is
discussed in terms of a numerical integration of the hyper-
bolic system of partial differential equations describing the
conservation of mass, momentum and energy, which govern
the stellar wind fluid dynamics.

2.1 The Newtonian approximation

Let us consider two radial flow fields, i.e. velocity-, density-
and pressure-fields with origins at r,,=(—a,0,0) and
rv;=(+a, 0, 0)" Star ‘1’ is the Wolf-Rayet star and star ‘2"
the O-star. The form of the velocity field is taken as given.

The boundary surface or the thin-shell interface should be
determined as in Friend & Abbott (1986), i.e. by application
of the NA. Thus, external to the interface the flow fields are
the undisturbed fields of stellar winds emitted by single stars.
For hypersonic flows this approximation seems to be justi-
fied. Within the NA, the interface F itself is assumed to be of
zero thickness. This assumption, or even the weaker require-
ment that the interface will be thin, is only valid if the thermal
energy of the shocked gas can be radiated away fast enough.
This problem will be discussed in a later paper. The basic
equation of the NA (Fahr et al. 1986a) is

I, nn |, =Mynn,l, (2.1)

where II; is the pressure tensor and n,, n, are the com-
ponents of the normal vector n at a point of F. If no magnetic
fields are present, II ; is

I :=po,+pvy,. (2.2)

Equation (2.1) describes the equality of the normal com-
ponents of the hydrodynamic momentum flux, i.e. the sum of
the kinetic and thermal pressure, on both sides of the inter-
face [ defined by (2.1). From (2.1) and (2.2) it follows that

ovitpl,=pvitpl,, (2.3)

where v,:=v' n is the normal component of the velocity
projected on to .

Since below we will concentrate only on radially sym-
metric density and velocity fields, let us furthermore make
the assumptions curl (o;4)=0 and div(p;v;)= — C;6(ry;)
for the single fields, where C; is proportional to the mass-loss
rate A;. Under these assumptions, which are only valid for
single radially symmetric fields, and o=V, from the
Poisson equation Ap = — C,0(r ;) we derive the solution

v, =Clr—r.)ri3 Cao=Al4n, ri:=|r—rl, (2.4)

where r; denotes the distance to the stars. Eliminating v or v,
from (2.3) leads to an equation for F depending only on
density and pressure fields

Ci ‘(r—r“)m 2

3

c P CGlr=ro)n
g | r

‘ 3
03 ry

p,+ +p,. (2.5)

Actually, the interface [ is only a part of the set of all points r
solving (2.5), since only the absolute values of ¥ have been
considered when deriving this equation. Thus, in addition to
(2.5), we require

U]n'02n<0. (2.6)

While Fahr et al. (1986a) use spherical coordinates to model
the heliopause, and Huang & Weigert (1982) use Cartesian
coordinates to investigate the colliding flows in a binary star
system, we prefer cylindrical coordinates (from now on we
use o as the polar coordinate which should not be confused
with the mass densities 0,, 0, and p; which are always
referred to with a subscript)

(x€R, y=p cos ¢,z=p sin ¢), (2.7)

where p?=y?+2z2 and tan ¢ =z/y. These coordinates will
reduce the partial differential equation (2.5) to an ordinary
differential equation. For later use we note the following
formulae and abbreviations:

r—ry;=[x—(—-1)%a, p cos @, p sin ¢]; (2.8)
ri=|’—rxi|=‘/m]-2+—/02§ (2.9)
u:=u(x,a)=x+a, v:=x,a)=x—a; (2.10)
U:=Ulp, x)=(x+al+p*=u?+p% (2.11)
Vi=V(p, x)=(x —a)* +p%= ?+p2 (2.12)

Now the normal vector n is a function of p, ¢ and x. The
interface F may be parameterized by
rolos @) =[x(0, @), p cos @, p sin @]. (2.13)

Then, the normal vector ng(x, y, z) is given by the normalized
cross-product

nG(0, @) =716, X 16 o/ 176, X T 4. (2.14)
Utilizing the azimuthal symmetry along the x-axis, i.e.
rolp, ¢)=rg(p), x,=0, (2.15)
we finally achieve

n:=ng(p, 9)=[1, —x,cos @, —x,sin @]/[1+x2]'%, (2.16)
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leading to

(r=r)n=[x—(-1)'a—px,|/[1+x3]'7? (2.17)
and

sign(v,,, v,,]=sign[(x +a —px,):(x —a—px,)]. (2.18)

Now we require a specification of o; and p; in (2.5) leading to
a non-linear ordinary differential equation of first order in
which we replace x,:= dx/dp by x':= dx /do for easier read-
ing.

With given radial-symmetric density- and pressure-fields
0;:=p,(r;) and p;:= p,(r;) and some auxiliary functions
ai:=C12/pir16" (219)
(2.5) is transformed to
pita(u—px"P/(1+x?)=p, +av —px')?/(1+x"). (2.20)

If we further define

A:=Alp, x(p)]=(p, —p,) +p*a, —a,), (2.21)
B:=Blp, x(p)]=p(a,u —av), (2.22)
C:=Clp, x(0)]=(p, —p,) +a,u* —a,0?, (2.23)
and note that 1+x'2=1, our differential equation for x(p)

now reads
Ax?—-2Bx'+ C=0, (2.24)

which can be treated as an initial value problem where we
derive the initial value from the stagnation point
xy:=x(0=0) according to the symmetry condition

xy:=x'(p=0)=0. (2.25)

From (2.24 and 2.25) we calculate the stagnation point in the
field of stars with radii R, and R, according to

C(0,x,)=0, —a+R,<x,<a—R,. (2.26)

(2.26) is a sufficient condition which guarantees that not only
is C(0, x,) = 0 fulfilled, but also that x, is not in the interior of
one of the stars. In order to perform the integration let us
transform (2.24) to

B k
xi'z=Z+Z<Bz —CA)', (2.27)
where k= +1 or k= —1 has to be chosen such that (2.6) is
fulfilled also taking into account (2.18). For the numerical
integration we used the extrapolation method by Bulirsch &
Stoer (1965).

We will confine ourselves to the case that the thermal pres-
sures p; are negligible when compared with the kinetic pres-
sures pv?, i.e. we set p;= 0. This assumption, however, is not
allowed if it leads to a scenario in which no stagnation point
would formally exist between the stars. In that case, one
would also have to take into account the fact that, from the
stars’ photospheres up to some critical surfaces, the winds
move with subsonic speeds leading to a completely different
physics.

The functions A, B and Cin (2.21-2.23) take the form

A:=Alp, x(p)]=p*a,—a,), Ap=A(p=0)=0, (2.28)
B:=B[p, x(p)]=p(a;u—aw), By:=B(p=0)=0, (2.29)
C:=Clp, x(p)]=a,u®—a,?. (2.30)
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The differential equation (2.24) for x( o) now takes the sim-
plified form

_ + 1/2
x,12=_1_ a,u—a,v+2kala,a) R (2.31)
TP a,—a

The general formalism will be applied to two important type
of fields, namely those describing constant velocity fields
(CVF) and fields with quadratically decreasing acceleration
(QDA).

2.1.1 Stellar winds with constant velocity fields (CVF)

In this easy case, one assumes that the stellar winds reach the
asymptotic velocities v;_ very quickly, and that beyond this
point they expand with constant velocities. According to
Pauldrach, Puls & Kudritzki (1985) this assumption may be
used for the WR component of V444 Cygni, but does not
hold very well for the O-star. The fields

v;:=v,(r;) =v, =constant, (2.32)
pii=plr)=Bri, Bi:=A,[dnv, =Cv, , (2.33)

do not take into account the finite radii R; of the stars. For all
combinations of C; and v, there exists a stagnation point
XoE(— a, +a)between the stars. Using (2.33) and writing

ai=ar,)=T/r},T;:=Cp,_, (2.34)

we note that each star is completely described by one para-
meter, namely I';. The stagnation point follows from

Ty(xo—a)? —Ty(x, +a)=0. (2.35)

A very simple case arises for I'y=TI', leading to x,=0,
x(0)=0 and the normal vector (1,0,0)’, i.e. the interface is
the plane x =0 as expected. The second case may be I', > T',,
i.e. star ‘2’ has the strong radiation field. The treatment of the
case I', <T'; would be analogous. Defining

I,+T
r:=—2—I>1, y:=T/T,, g;:=T}", (2.36)
| Bl

the stagnation point takes the form
xy=a[l[ £(I'?-1)], (2.37)

i.e. for all T" there are two real solutions corresponding to one
parallel and one antiparallel velocity distribution. For the
boundary interface, the antiparallel distribution is the rele-
vant one and is related to a stagnation point x,E€(0, a),
which, or all T' > 1, is given by

=q—. (2.38)

If, vice versa, the stagnation point x, is known, the ratio
y2:=T, /T, can be calculated from

(2.39)

This relation will be used later in order to connect the trajec-
torial model (Kallrath 1989, 1990) and the hydrodynamical
models used in this paper by identifying the stagnation
points.
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In case 2 the boundary interface is completely determined
by the ratio of the two physical parameters I'; and I',. The
DE now reads

81 V_k82U=
& V+kgU

yV—-kU
a————-—.
Yy V+kU

oX\,=x—a - (2.40)

From (2.18) we further derive the relations determining the
sign of k,

v, = +2g,aV[(1+x"?)2k, (2.41)
v,,= —28,aU[(1+x"?)1/2, (2.42)

The condition (2.6), ie. v,,v,,<0, can only be fulfilled if
k=+1. Note that with k= +1 the differential equation
(2.40) is regular.

Differentiating (2.40) with respect to p we obtain the
curvature

ox"=8ag g,(3x*+a*+2px +pox"))(g,V+g U} (2.43)

which is always positive, i.e. x" = 0.

It is also interesting to discuss the asymptotic behaviour of
the solution. For all x€R; we note that U< V. According to
(2.20) in the limit (x— %, o— ), we have U~ ¥V and thus
approximately

X, =X +X, (2.44)

leading to the asymptotic solution of differential equation
(2.20)

x(0)=Cpo = x, (245)

where C is an integration constant. The geometrical inter-
pretation is that we get straight lines as the asymptotic
approximation to x(p), i.e. a cone in the three-dimensional
problem. The top of the cone is positioned at —x,. The
numerical integration for some parameters y?=T',/T’, shows
in Fig. 1 that the asymptotic behaviour starts very early, lead-
ing almost to a cone in the three-dimensional space. The dif-
ference between this family of curves and that plotted in fig.
4 in Girard & Willson (1987) is that ours are not
straightened up so fast, since the centrifugal pressure of mat-
ter of the O-star flowing along the interface has not yet been

3
=
I
-
(%))
I
o
(o))

4~ W—-R-star
[-1,0]

x(p)

Figure 1. Pressure equilibrium surfaces in constant velocity fields
derived from the Newtonian approximation. These curves are para-
metrized only by the ratio y>=T,/T,= A, /A, of the mass-loss rates
of both stars. In three-dimensions, they may be well approximated
by cones or hyperboloids.

taken into account in this simplified CVF approach. The
boundary interface could also be approximated by a hyper-
boloid,

)2 2
u) —(ﬁ) =1,020,x=x,, (2.46)
2x, Po

leading to an asymptotic straight line

xol0) =22 5 -y, (247)
Po

and

ox'=(x+x)[1+(p/pe)*]" L. (2.48)

This relation approximates, in the limit po— %, to the DE
(2.44), i.e. the curve x(p) and the hyperbola defined in (2.46)
have the same asymptotic straight line.

2.1.2  Stellar winds with quadratically decreasing
acceleration (QDA)

The general solution (2.4) also allows us to choose fields like
vi=vr)=v,_f(r, Ri)er—rxf, (2.49)
pii=p{r)=Bir [ f(r, R),f(r, R):=(1 = (R;/r;)"#, (2.50)

which are also used by Shore & Brown (1988). Note that for
R, =R, =0 this model reduces to that of the previous sec-
tion. Thus again we use the definition (2.34)T';= C;_. @ and
B are empirical constants which allow us to investigate a
whole class of models. The parameter 8 determines how fast
the wind reaches its terminal velocity. From (2.50) we derive
the accelerations

a,=a(r)=3v. Rr AR, [r) ' f(r, Ri)z_ﬂﬁe,_,xl. (2.51)

Castor et al. (1975) used a =1 and estimated 8= 1/2. A later
work by Friend & Abbott (1986) based on more detailed
calculations gave §~0.8, but we will use the original values
since a=1 and B=1/2 lead to quadratically decreasing
accelerations which will be discussed below. Such a behavi-
our is to be expected if there is a strong radiation pressure in
a field of constant opacity .

The model described by (2.49-2.50) considers that the
stars have non-vanishing radii R,. One disadvantage is the
singularity at the surface of the stars, i.e.
limR oir)=9,lim v/(r)=0, lim a,r,)=0. (2.52)
r—R; ri—R, r,—=R,

The stagnation point x, now follows from the transcendental
equation

L=T,T A, _|atx *)1-[Rof(a—xo)|
T A T e x| Rta )

]
] . (2.53)

In some numerical tests, we investigated for a=1, R, =R,,
a=1, =1/2 and I',=1 how x, varies with T';=1. x, is
plotted in Fig. 2 as a function of y2. Beginning at y*>=38,
(2.53) has no root between —a— R, and a —R,, i.e. within
the scope of this model there is no stagnation point on the x-
axis, although we note that the pressure terms have been neg-
lected.
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2.2 Extended boundary layers with mass and momentum
conservation (MM)

The NA is physically based only on the conservation of the
orthogonal momentum flux. This assumption is equivalent to
the assumption of vanishing mass flow within the interface. In
this section we use a set of ordinary differential equations
describing the conservation of mass and momentum based
on a general description of axisymmetric, hypersonic and
hydromagnetic flow developed by Giuliani (1982). In parti-
cular, this model includes consistently a centrifugal accelera-
tion term of matter drifting along the shell. We also refer to
the modelling of CVFs by Huang & Weigert (1982) and
Girard & Willson (1987).

The formalism of Giuliani is applied to the radial sym-
metric density and velocity fields already introduced in the
previous section. Again, according to Fig. 3, the Wolf-Rayet
star is star ‘1’ and the O-star is ‘2’, at positions (— a,0) and
(+a,0). Furthermore, spherical polar coordinates (R, 6,)
and (R,, 6,) are used. The steady-state fields now appear to
be

o, =A[AnR?, p¥:=(A,/AnR?)|v,, i=1,2. (2.54)

If R*¥ denote the stellar radii, and if we choose fields of the
form

oi=ptlfis vi=v, f, fii=[1-(R}/R;)°), (2.55)
according to (2.51), we can model fields with QDA if we use
(a=1, B=13). All fields used to describe the interface are
represented as functions of 6,. The relation between the
relevant geometrical coordinates R,, ¢, and 6, is given by
Giuliani (equation 5), i.e.

R A A
0.6 y -
./.
X0
04 ~
Ro/(d/2) = 0.333
Ry/(d/2) = 0.400
0.2 Em— -
00 L, | e
0 2.5 5 7.5 10
I'/Ty

Figure 2. Stagnation-point x, in the CVF and QDA model as a
function of y2=T',/T,=A,v,/Ayv,. Note that there exists a reflec-
tion point in the stagnation curve derived in the QDA. Furthermore,
in the QDA there is a stagnation point only in a limited range of y?
while the solid line representing the stagnation point in the CVF
model can be continued infinitely, approaching the constant line
Xy=a.
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1 dR 1
tan §(0,)= —— - —'=—-—-R/=—[InR,], 2.56
£(6,) R a6, r N (In R,] (2.56)
where we use ' to symbolize differentiation with respect to
0,. The equations describing the conservation of parallel and

orthogonal momentum, for u=0, B=0, and shell thickness
A =0, take the form

cos§
0=_szlzwnz*l’n)"'/olvl,(vn,_Un)ovn R vy, (2.57)
1

2 2 2 cos §
0=—pv1,—patpvi,+p+ovg R

[1+¢']. (2.58)

1

For A>0, o is the column density within the interface
measured along the normal on to the centre line of the shell.
However, for A=0, o degenerates to the surface density o
on the shell itself. While ¢ depends on 6, as well as on the
distance to the centre-line, op depends only on 6,. The com-
ponents of the velocity follow directly from Fig. 3,

Up,= T, 8in(®@—§), v, =v,cos(®— ), ¥=180—(6,+®)
(2.59)
v, ,=v,cos . (2.60)

The terms in (2.57) represent the parallel momentum flux
entering the interface and the resulting gradient of the
momentum flux within the shell. The four first terms in (2.58)
describe the kinetic pressure and thermal pressure of both
wind flows. These terms are equivalent to those in equation
(2.3) derived within the framework of the NA. The third
term describes a cenirifugal acceleration term of matter
drifting along the shell.

The equation for the conservation of mass follows
(Appendix A) by integration of all matter which enters the
shell up to an angle of 6,,

vp,= —v;sin g,

A[1-cos 0]+ A,[1+cos(®+ 6,)]=4xR, sin 6, ovy;.
(2.61)
In Cartesian coordinates [x, 7 =(y%+z2)!/?], as in Huang &

Weigert, this is equivalent to

R, —(x+a)
4.75R177

R,—(a—x)
4aR,m

ovp=A, (2.62)

For the numerical analysis it is worthwhile to introduce the
dimensionless variables suggested by Girard & Willson
(1987),

ri=R;[D,rf=R}/D,v=vy/v,_ , q=0v, (2.63)

D
w A2 >
and the ratios

m:=A,[A,, w=v,_[v,,, v =mw, f:=fi[f,. (2.64)

The product mw is equal to the quantity y2:=T /T, used in
the NA (2.36, 2.53). If the pressures p; are neglected, we
derive the following set of equations (Kallrath 1989, for
R*=0 these equations are those used by Girard & Willson):

ri=-—rtang, =ri=—rtan§ —r(l1+tan’g) ¢,  (2.65)
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A,V A,v,

\1¢ - v '_f;‘~“‘®2=180-w
YIN ° Tx AN

(-a, 0) (a, 0)
WR-Star O-Star

Figure 3. Schematic plot of the pressure-equilibrium surface in the binary stellar wind problem to illustrate the angles and other quantities

used in the model.

, r [—COS(CI’—C)[fzsin(‘P—C)—U]

v =4:rqv cos & r
. g(;f_ﬂEC_‘E)} , (266)
§,=4 n [fz cos (<I;— C)_m“fl cos C]_ 1, (2.67)
7qu° cos § r2 d

where g, 3 and @ are also functions depending on 6,,
q=[1+cos(®+ 6,)+ m(1—cos 6,)]/(4mrvsin 6,), (2.68)

ri=1+ri—2r cos 8, r(0)+r(0)=1, (2.69)
-1 r— in 6
cosp=T1Tr2T1_roeosb g g SN0 (2.70)
2nr, r, r,

following from (2.58) and from the geometry. The initial con-
ditions for , = 0 are derived from the stagnation point which
follows from

0101 =03 (2.71)
If R*=0 or f;=1 then the stagnation point can be calculated
analytically. In agreement with (2.38) we achieve

V4 y—1
rg=r(6,=0)=7"—, x,=a——. 2.72
r,(6,=0) Xs=a yt1 ( )
Because of the singular character of (2.66-2.68) at 6,=0,
besides

(ri,1,8)=(r,,0,0), ®,=180° (2.73)

we need the values of the derivatives at 6, =0 for using the
Taylor series representation of (r,,v, §)p. Using L’'Hospital’s
rule in Appendix B we derive

[(rla v, Ca )l9 q]O
2w 4+3y 3 [w+1)?
=l0,2——(1-y), - ,— yl—] |, (274
Fwrl YT 16::"( W )] (2.74)

or, when taking into account the factors f,(0) and f,(0) and
the abbreviations W:= wf(0) and I'2:=f(0) y2, the relations

[(rl’ v, Ca)ls q]()

2 W 4+3r 3 W+1)\?
=02 —/——@1+D)f, ——,—TI'|—— .

(2.75)

We have integrated the system (2.65-2.67) with (A,,
Ay)=(1.4,025)x10% g s, (v,, v,)=(1530,2460) kms~",
(R¥,R¥)=(12,10) Ry and (a, B)=(1,3) numerically. A, has
been determined by using the stagnation point x,=0.3 and
equation (2.39, 2.53). Thus, when identifying those curves
derived with CVFs and QDA fields, the O-star has a some-
what different mass-loss rate A,. However, A, is usually not
known very well. Fig. 4 shows the results of our integrations
indicated as the MM model, performed both for CVF
(y2=3.449, A;=0.252 x 10?! g s~ ') and QDA fields (y>=3,
A,=0290x10%" g s~1), with those curves derived in the
trajectorial model and from the NA. Since 6, has been
chosen as the independent variable for the integration of the
DES (2.65-2.67), the integration is limited to (0, 6,,), where
tan 6 is just the gradient of the asymptotic straight line of the
shell. For the set of parameters defined above we have a
numerical value of 6,~68°. What is remarkable is the
almost perfect agreement between the envelope derived by
the two-fixed-centre problem and the boundary derived in
this section with the QDA ansatz. This justifies our argument
to account for non-inertial effects in hydrodynamics frame-
works by applying corrections derived from trajectorial
models. The interface derived in this section, and the flow
fields external to it, will serve as initial data for numerical
simulations of the BSWP in the forthcoming paper.

In the limiting case of a binary system with an infinite
semi-major axis (Kallrath 1989) and one star blowing with
infinite strength, one arrives back at the model of Baranov,
Krasnobaev & Kulikovski (1971) describing the interaction
of the solar wind and the local interstellar medium.
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Figure 4. Pressure-equilibrium surfaces and the envelope in the two-fixed-centre-problem. Note that the pressure-equilibrium surfaces
derived from the MM model supplied by QDA fields and the envelope derived from the trajectorial model (Kallrath 1989, 1990) fit best to
each other. Their curvature is smaller than those of all other curves. The different values of 2 when using CVF and QDA fields represent
somewhat different mass-loss rates of the O-star but lead to the same stagnation point x, which makes a comparison of both models possible.

3 COMPARISON OF THE RESULTS
DERIVED FROM DIFFERENT MODELS

3.1 The envelope in the (repulsive) two-fixed-centre
problem

This model can be derived from the Navier-Stokes equ-
ations by neglecting (a) all friction effects, and (b) the gra-
dient of the thermal pressure p. Furthermore, (c) the effect of
the radiation pressure is simplified to a repulsive 1/r-
potential, and finally (d) it is limited to the case of vanishing
orbital velocity, i.e. to the limit w —0. The advantage is that
this ansatz allows an analytic treatment of the problems
expressing the trajectories in terms of elliptic functions, and
also leading to a transcendental equation for the envelope.
The gravitation itself is modelled correctly. The effect of the
radiation pressure should certainly be the subject of a more
rigorous theory of radiation transport, but the 1/r may be a
first step in the right direction. Since only low-angle trajec-
tories cross other trajectories, the assumption of vanishing
thermal pressures turns out to be possible in the first step.
The negligible differences between the envelope and the
boundary interface derived as a pressure equilibrium surface
justify the use of a trajectorial model. The trajectorial models
also have the advantage that they are more flexible towards
implementing more physics, e.g. the effect of resonance lines.
Furthermore, they are useful in the description of dust-
driven winds, or the dust expansion of inviscid dust shells.

3.2 Trajectories in the synodic system: w > 0

This model is identical to the two-fixed-centre problem with
one exception: it accounts for non-vanishing orbital velocity,
and thus leads to the (repulsive) restricted three-body
problem. Its advantage is that it will support an estimation of
the effect of non-inertial forces, which lead to a small turn of
the boundary surface by an angle about 10°. Thus, it justifies
the use of axisymmetric models in later analyses.

3.3 Newtonian approximation (NA)

This pressure-equilibrium ansatz is essentially based on the
requirement of conservation of orthogonal momentum flow
on both sides of the unknown boundary interface which is
assumed to be of zero thickness. The zero thickness assump-
tion is, as will be shown in a forthcoming paper, over-simpli-
fied. It would only be valid if there are processes available
which efficiently consume the thermal energy of the shocked
gas. The interface is solved by (numerical) integration of dif-
ferential equations which requires furthermore the predeter-
mination of the external flow fields, i.e. p;, v; and p,. This
method is better for external flows with high Mach number.
The effect of gravitation and radiation pressure is only
implicitly contained in the density and velocity fields, e.g. by
using fields which lead to a quadratically decreasing acceler-
ation.
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The geometry of the integrated boundaries does not differ
much from the envelope derived in a trajectorial model.
Since the thermal pressure has been neglected, the curvature
of the boundary curve does not change its sign. The NA
describes a physical situation in which matter hits the zero
thickness interface, and is instantaneously changed com-
pletely into radiation, which is radiated isotropically.

3.4 Extended boundary layers with mass and momentum
conservation (MM)

The basic assumption again is the thin-shell approach. The
conservation of mass and momentum is fully taken into
account. The obvious difference, when compared with the
results derived from the NA, is that the curvature of the
boundary curve decreases much faster. This can be easily
understood in terms of the centrifugal pressure of the O-star
material flowing along the shell. The fact that the integration
of the boundary interface based on given QDA fields agrees
well with the envelope derived from the two-fixed-centre
potential shows that the thermal pressure is indeed neglig-
ible. However, this picture will change drastically when
shocks and a non-vanishing thickness of the interface are
taken into account.

4 CONCLUSIONS

The binary stellar wind problem (BSWP) is investigated
within the framework of the NA for a typical set of para-
meters describing a hot (WR/O) binary like HD 152270 (the
stars are 60 R, separated from each other). The interface
between both stellar wind flows is determined from the con-
servation of orthogonal momentum flux on both sides of the
interface. Under the assumption of negligible thermal pres-
sure, for given constant velocity fields and associated
quadratically decreasing density fields, and fields with qua-
dratically decreasing acceleration, the boundary surface, fur-
ther assumed to be of zero thickness (see forthcoming paper
for validity), is numerically computed by integration of an
ordinary non-linear first-order differential equation.

The same pre-defined fields are used in an extended
model based on a general formalism by Giuliani (1982)
describing hypersonic axisymmetric flows and accounting for
the conservation of mass, and parallel and orthogonal
momentum, leading to a system of three ordinary, non-linear
coupled differential equations. The numerical integration
yields a boundary curve which might be approximated by a
hyperboloid.

The results from these integrations are compared with the
envelope derived within the framework of the two-fixed-
centre problem by Kallrath (1989, 1990). It turns out that
the envelope and the interface corresponding to given fields
with quadratically decreasing acceleration fit nearly identic-
ally to each other. The results from this analysis and the flow
field around the stars are used as initial data for the
numerical simulations in a subsequent paper. There, the axi-
symmetric binary stellar wind problem is investigated in
terms of the numerical integration of the hyperbolic system
of equations describing the conservation of mass, momentum
and energy, which govern the stellar wind fluid dynamics.
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APPENDIX A: DERIVATION OF THE MASS
CONSERVATION EQUATION

Let us consider the mass flow on the boundary surface or
boundary curve at a point corresponding to 6,. In this
appendix we refer to the nomenclature set up by Giuliani
(1982). The mass flow ovy(6,) in such a point follows from
the integration

o
J [mass flow(8), + mass flow(8),] d0 do, (A1)

0

i.e. only the orthogonal components of the flow fields hitting

the interface are considered. ) )
Since only time-dependent fields are considered,

Giuliani’s equation (32), for u= 0, simplifies to

0= -0, 0,238 49 4g|R
Vi,02 cos ¢ R4V

Rsin 6
+v,,0 Tcs)lgng_ d6 dg|R,— dy(vgoRsin 0) d6 de.
(A2)
Due to the axial symmetry, integration over dg yields a
factor 22t on both sides of the equation. For an infinitely thin
shell, we have

Rir, =Rz, Rir,=Ri, Rir=R.. (A3)
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Furthermore, we note the relations
c0s §jg,=cos(§ + @), cos § g, =cos &, 6, =180—(6+ D),
(A4)

which transforms (A2) into the simplified expression
0= —v,0,R3sin[180—(9+® )| d6

+v,0,R? sin 8 d0— 9y(v;0R, sin 0) d6. (AS)
Using the relation (2.7) for A; and A, and the definition
¥:=180—(0+ @ )we obtain

0= —iAz sin ¥( — d¥)
4n

1
+EAISiﬂ6d0-ag(Un0Rl sin 0)d0. (A6)
Integration yields

v, 6
0=J A, sinW dW+J A, sin 6 d6

180 0

6
—4nj d¢(voR, sin 6) d6. (A7)
0

Furthermore, we derive

47vnoR, sin 0]5'= — A, cos W 1 — A, cos 6|2, (A8)
4nvnoR, sin 6, =A,(1—cos ¥,)+ A,(1—cos 8,). (A9)
Since

cos(7w —x)= —cos{ — x)= —cos x, we get
4mvgoR, sin 6, =A,)[1+cos(6; +® )]+ A,(1—cos 8,),

(A10)

which can also be expressed in Cartesian coordinates using
the relations

+ R, —(x+
c0501=x—a, 1—c0501=M, sin01=l
Rl 1 1
(A11)
and
R_ i
1—cos‘l1=w, (A12)
R,

finally leading to the expression (6) used by Huang &
Weigert (1982)

R,—(x+a)
4Ry

R,—(a—x)
47R,n

ovg=A, (A13)

APPENDIX B: INITIAL VALUES FOR THE
INTEGRATION

The stagnation point 7, = r,(6, = 0) follows as in the NA from
P1V} = p,03. (B1)

Dynamics of colliding binary stellar winds 661
Using the density and velocity fields defined by (2.54-2.55),

p;=A,[AnR}, pF:=puilv._, p,=p¥fov;=0._f, (B2)

fi=[1=(R¥/R), (B3)

we obtain

nf(1=r)=(mwf)'?, m:= A, |A;, w:=v,_[v,_, f:=f[f,.
(B4)

Only for f; =f,=1 can (B4) be solved analytically. Otherwise
the root has to be determined numerically. Once r, is found,
from 6, =0 and

(rlyv’ §)0=(rs’090)1 (BS)

we can derive the derivatives by applying U'Hospital’s rule.
To begin with, let us discuss this problem only for f; =f,=1
and repeat (2.66-2.68):

, r {—cos(tD—C)[sin(tb—C)—v]

v =
47qu cos s
—w-sin { —v
+mcos { ——————1, (B6)
ry
i r cos’(®— &) _mWCOSZC _1 (B7)
4rqu* cos & r r ’

g=[1+cos(®+ 91.)+ m(1—cos 6,)]/(4zrv sin 6,). (B8)

We will derive relations for (¢/, ¢),. Then (&), can be found
immediately using (v, ¢),. If QZ and QN denote the numer-
ator and denominator of g, we note that from

r,sin @ =sin 6, = r} sin ® +r, cos(® ) ®'=cos 6, (B9)
2

5 ®/(6,-0)= =L = —(y+1), 15(0)=0,

r;
(B10)
QZ'= —sin(®+6,)(1+®')+ msin 6,, ®(0)=0, (B11)
QN'=4x[rivsin 0, + r v sin 0, + r,v cos 6,], (B12)
and finally the formal result
0=a(6,=01=4(6,~0)= 05 001 =0 (B13)

will follow. Therefore, we have to inspect the second deriva-
tives

QZ"= —cos(®+6,)(1+P')2—sin(®+ 6,) D"+ mcos 6,,
(B14)

QN"= riusin ,+rv'sin 6, + rjv' sin 6,, (B15)

+riv'sin 6, + rv" sin 6, + ;v cos 6,

+rivcos 0, +rv' cos 8, + r,vsin 6,.

Differentiating (B9) once more

r’z’sin<D+r’2cos¢+()2cos<D)<1)”+(rzcos<1>)<1>’= —sin 6,
(B16)

and using the implication (2.69) r{ bounded =7,
bounded], we conclude that ®" is also bounded. Since
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sin(® + 6,)=0, those terms containing higher derivatives
drop out and we eventually get

1 +1
QZ"(OI—'O)=(1+d>’)2+m=y2+m=y2(1 +—)=y2L,
w w
(B17)
QN"(6,~0)=87[r,(0) v =87 —— 0}, (B18)
y+1
and finally with
Qz'(6,~0)
=q(6,=0)=q(6,~0) 7 , (B19)
90 =49\Y, 1 QN"(6,~0)
the result
1 w+l
4mqyvh=47(6,0) (6, ~0)=> yw—w—. (B20)

In order to derive another independent relation we note that
cos £(0)= —cos(®—¢)=1 (B21)

and use the Taylor series expansion at 6, =0 for small angles
0,,

v=v)sin 0, =v,6,, 5= {,sin 0, =50,. (B22)
We substitute (B21) and later
rt=(y+ 17 2 =(y+10/y? (B23)

into (B6) leading to the right-hand side of (B6)

sin(@—@)—v+m —(wsing)—v =sin(<I>-—Z;)
r ri I
i 1
_yzﬂ%_(2+%) V. (B24)

Using (B9) and
sin(® — ) —sin { =sin ® cos { —sin § cos ® —sin §
=(y+1)sin 0, cos { —sin (1 +cos @)
(B25)
and

l+cos®=1—-4 —sin"®=1-

—1sin2®@]= +isin’®

= +3(y+1)sin?6,, (B26)
we obtain
sin(® — &) —sin L =(y+1)sin 6, —O(63)=(y+1) 6, —-0(63)
(B27)
and substituting (B27) in (B24) we get eventually
v'z—r—[(y+1)(y+1)— lv'] (B28)
4nq
or
4nqov’2=y(y+1)[(y+ 1)—W—:)1}. (B29)

Thus, substitution of (B20) into (B29) gives a linear equation
in v/, from which we easily derive

(v, q)y= 2 1+ 7h

3 [w+1)?
3w+l 4

167

]. (B30)

w
gy is derived similarly, but in the denominator of (B7) we

make explicit use of (B22). The right-hand side of (B7) leads
to

L lcos(@— ) r; 2= mwcosk(E) r 7] (B31)
0s §

=(y_+l_) [(COSCD cos ¢ +sin @ sin C)Z_COSZC]
cos &

(y+1)
COS

[cos2® cos? +sin?® sin?§

+2 cos ® cos £ sin ® sin § —cos?E]

sin’® sin’¢

=(y+ 1)2[(cosz<b— 1)cos &+ cos

+2 cos @ sin @ sin?;}.

(B6) and (B21-B23) are inserted into (B31) resulting in

(y+1)? (—smzcb cos C+w+2005¢ sin 6,
rycos & ¥,

sin £
=(y+ 1)2[—(y+ 1)?sin20, + r; *(sin?0,) £'? 62

sin 6
o

=(y+1P[—(y+1)sin*6, +O(61 %)
=2(y+1)(sin 6,) £46,]. (B32)

3
n(y+1pfanquf=—"1

Using 4mqug=3y(y+1) and 1
Y

from (B7) we derive

4+ 3y
g

o= —3ly+1)+28]—1,50 o=~ (B33)

Thus, if we summarize,

(s 8, q]0=[o 24 f

_4+3y 3 w+1l
7 16::[ ”le (B34)

Now, we could include the factors f; and f, and procede
as above but it seems to be worth having a closer look at the
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[t}

(o]

differential equation system (2.65-2.68)

oD [—cos(d)—C)[ﬁsin(d)—{:)—v]

4mqu cos s

+mcosc(-ﬁw—si2n€—_v)],

ry

I cos’(®—¢) cosC

¢ 4:1tqv cosZ;[f2 2 mwfy rl ] L
(B35,B36)

g=[1+cos(®+ 6,)+m(1—cos 0,)]/(4nr,wsin 0,). (B37)

If one divides by f,, one notices that in the stagnation point,
since the velocity » =0 vanishes, then with v-v/f,, ¢~ qf;

Dynamics of colliding binary stellar winds 663

the relations

volw, fi, KIh=vowfs fi=1, o= 1) (B38)
C'(Wyfl’f2)=‘§6(“f’ fi=1£=1) (B39)
QW fi, o) o= Wi fi=1,£,=1) (B40)

are valid. With W:=wf and I':=yf'/2, we derive the initial
conditions

(2 &)y o= 0,2 ——(1+T) £,

e

4+3r 3 _(W+1)?
- 7 ,EF(T) /f2] (B41)
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