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Abstract

Proper organization, planning and design of production, storage locations, transportation and scheduling
are vital to retain the competitive edge of companies in the global economy. Typical additional problems in
the chemical industry suitable to optimization are process design, process synthesis and multi-component
blended-flow problems leading to nonlinear or even mixed integer nonlinear models. Mixed integer optimiza-
tion (MIP) determines optimal solutions of such complex problems; the development of new algorithms,
software and hardware allow the solution of larger problems in acceptable times.

This tutorial paper addresses two groups. The focus towards the first group (managers & senior executives)
and readers who are not very familiar with mathematical programming is to create some awareness regarding
the potential benefits of MIP, to transmit a sense of what kind of problems can be tackled, and to increase
the acceptance of MIP. The second group (a more technical audience with some background in mathematical
optimization) might rather appreciate the state-of-the-art view on good-modeling practice, algorithms and
an outlook into global optimization.

Some real-world MIP problems solved by BASF’s mathematical consultants are briefly described among
them discrete blending and multi-stage production planning and distribution with several sites, products
and periods. Finally, we focus on future perspectives and indicate sources of MIP support from academia,
software providers and consulting firms.

Keywords: modeling, production planning, scheduling, pooling problem, mixed integer linear and nonlinear
programming, Branch&Bound, Branch&Cut, LP-relaxation, Outer-Approximation, global optimization

1 Introduction

What is optimization and what are optimization problems? In an optimization problem (OP), one tries to
minimize or maximize a global characteristic of a decision process such as elapsed time or cost, by exploiting
certain available degrees of freedom under a set of restrictions (constraints). OPs arise in almost all branches
of industry, e.g., in product and process design, production, logistics and even strategic planning. While
the word optimization, in nontechnical language, is often used in the sense of improving, the mathematical
optimization community sticks to the original meaning of the word related to finding the best either globally
or at least in a local neighborhood. Except for very simple cases, OPs cannot be solved by simulation
[also called parameter studies], i.e., by simulating the processes under investigation, evaluating the objective
function and comparing the results. Since experts of simulation techniques in charge of these OPs have
developed intuition and heuristics to select appropriate scenarios to be evaluated, and simulation software
exists to perform their evaluation, simulation may lead to reasonable results, but there is no guarantee that
the optimal solution or even a solution close to the optimum is found. This is especially troublesome for
complex problems, or those which require decisions with large financial impact.

What do we need when we want to solve a real world problem by mathematical optimization? The first
thing we need to do is to represent our problem by a mathematical model, that is, a set of mathematical
relationships (e.g., equalities, inequalities, logical conditions) which represent an abstraction of our real world
problem. Usually, a mathematical model in optimization theory consists of four key objects:

• data [also called the constants of a model],
• variables (continuous, semi-continuous, binary, integer) [also called decision variables or parameters],
• constraints (equalities, inequalities) [sometimes also called restrictions], and
• objective function.



2 Josef Kallrath

The data may represent cost or demands, fixed operation conditions of a reactor, capacities of plants and
so on. The variables represent the degrees of freedom, i.e., what we want to decide: How much of a certain
product is to be produced, whether a depot is closed or not, or how much material will we store in the
inventory for later use. The constraints can be a wide range of mathematical relationships: algebraic, analytic,
differential or integral. They may represent mass balances, quality relations, capacity limits, and so on. The
objective function, expresses our goal: minimize costs, maximize utilization rate, minimize waste and so on.
Mathematical models for optimization usually lead to structured problems such as:

• linear programming (LP) problems,
• mixed integer linear programming (MILP) problems,
• nonlinear programming (NLP) problems, and
• mixed integer nonlinear programming (MINLP) problems.

Besides building a model and classifying the problem we need a solver, i.e., a piece of software which has a
set of algorithms implemented capable of solving the problem listed above.

What is discrete1 optimization? Classical optimization theory (calculus, variational calculus, optimal con-
trol) treats those cases in which the variables represent continuous degrees of freedom, e.g., the temperature
in a chemical reactor or the amount of a product to be produced. On the other hand, mixed integer, combi-
natorial or discrete optimization involves variables restricted to integer values, for example counts (numbers
of containers, ships), decisions (yes-no), or logical relations (if product A is produced then product B also
needs to be produced).

What is the difference between simulation and mathematical optimization? In contrast to simulation
(parameter values are fixed by the user, feasibility has to be checked separately, no prove on optimality),
mathematical optimization methods search directly for an optimal solution and guarantee that the solution
satisfies all constraints. While in optimization feasible solutions are specified a priori and implicitly by the
constraints, in simulation somebody has to ensure that only those combinations of parameter values are
evaluated or considered which represent ‘appropriate scenarios’.

What commercial potential is in discrete optimization? To give some idea of the scope of mathematical
optimization in helping organizations we cite some recent examples where benefits have been reported.
First, at Delta Airlines it is reported [52] that the use of an optimization model is expected to save the
company $(US)300 million over a three year period. Secondly, a comprehensive mathematical programming
model [5] used by Digital Equipment Corporation (DEC) has helped DEC to save $(US)100 million. In a
simple blending problem BASF-AG saved several hundred thousands DM/year ([35], Section 5.2); in some
production and distribution problems (Section 4.2 of this paper) even several millions DM/year.

This paper is structured as follows: Section 2 provides an overview on areas in chemistry and related fields
in which MIP has been used successfully or which are at least very promising. Section 3 is intended for a
more technical interested audience and provides some background on the mathematical solution approaches
used in discrete optimization. Here we also discuss briefly the aspect of parallel discrete optimization and
stress the importance of good modeling practice being essential for solving discrete optimization problems.
In Section 4 several applications, in which the author had been involved, are reviewed. The examples dis-
cussed illustrate the broad spectrum of possible applications and touches some important points relevant to
successful modeling. Eventually, we focus on some future areas MIP might enter or new directions in which
MIP might move, discuss the implications which can be expected by using discrete optimization and focus
on the perspectives of that field.

2 A Survey of Real World Problems

In this section we list and briefly describe some areas in which applications of (linear and nonlinear) mixed
integer optimization are found. While this list is by far not complete, the real world problems mentioned are
typical for the process industries but many applications also occur in other businesses and industries:

• production planning (production, logistics, marketing) – MILP, MINLP;

1 The terms mixed integer optimization or mixed integer programming (MIP) and discrete optimization are used
synonymously in this article.
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• sequencing problems (putting production into order) – MILP;
• scheduling problems (production of goods requiring machines and/or other resources);
• allocation problems (e.g., allocating resources to orders, people to tasks);
• distribution and logistics problems (supply chain optimization) – MILP;
• blending problems (production and logistics) – LP, MILP, NLP, MINLP;
• refinery planning and scheduling; (refineries, chemical process industry) – NLP, MINLP;
• process design (chemical process industry, food industry, refineries) – MINLP;
• engineering design (all areas of engineering) – NLP, MINLP;
• selection and warehouse/depot location problems (strategic planning) – MILP;
• investment and de-investment design problem (strategic planning) – MILP;
• network design (planning, strategic planning) – MILP, MINLP;
• financial problems (strategic planning) – MILP, MINLP.

While most of the problems as indicated above can be solved with linear mixed-integer methods, problems
occurring in process industry very often lead to nonlinear mixed integer problems. Therefore, it is not
a surprise that we find strong efforts related to solving MINLP problems at research institutions in the
chemical engineering community, and the following list of references may at least cover some colleagues from
the major centers of activity: C. Floudas at Princeton University [19], I. Grossmann at Carnegie Mellon
University, ([16], [25]), N. Shah at Imperial College [51],

Among the problem we find a few classical ones: The fuel mixture problem in the refinery or petrochemical
industry include blending problems leading to the so-called pooling problem (see, for instance, [17], or Chapter
11 in [35]), an almost classical problem in nonlinear optimization. It refers to the intrinsic nonlinear problem
of forcing the same (unknown) fractional composition of multi-component streams emerging from a pool,
e.g., a tank or a splitter in a mass flow network. Structurally, this problem is dominated by indefinite bilinear
terms of the form

∑

i

∑

j Aijxiyj appearing in equality constraints. The pooling problem occurs in all multi-
component network flow problems in which the conservation of both mass flow and composition is required.
In the chemical process industry, reaction kinetics might lead to analytic nonlinearities, such as exponential
nonlinearities due to Arrhenius terms of the form e−∆E/kT describing the reaction kinetics. If, in addition,
we have to consider that plants operate in discrete modes, or that connections between tanks and cracker or
tanks and vacuum columns have to be chosen selectively, than mixed-integer nonlinear optimization problems
need to be solved. Process network flow or process synthesis problems [25] usually fall into this category,
too. Examples are heat exchanger networks, distillation sequencing or mass exchange networks.

3 Mathematical Background on Mixed-Integer Optimization

This section provides some of the mathematical and algorithmic background on mixed integer optimization.
It is addressed to a more technical audience, and might be skipped by some readers who, however, should
at least keep in mind that discrete optimization involves great knowledge on efficient modeling and that it
helps companies to keep such know-how inhouse. Those who are active in problem solving need to know a
lot about good modeling practice and how to connect models and algorithms. For that reason, we strongly
recommend that practitioners and consultants get a deep understanding of algorithms.

Besides the exact algorithms in Section 3.1, there also exist heuristic methods which can find feasible
points of optimization problems but can only prove optimality or evaluate the quality of these feasible points
when used in combination with exact approaches. Such methods include Simulated Annealing, Tabu Search,
Genetic Algorithms, Evolution Strategy, Ant Colony Optimization and Neural Networks. However, since these
methods are not optimization methods in the strict sense we will not further focus on them.

3.1 Definition of Mixed Integer Nonlinear Programming (MINLP) Problems

For vectors xT = (x1, ..., xnc) and yT = (y1, ..., ynd) of nc continuous and nd discrete variables, the augmented
vector xT

⊕ = xT ⊕ yT, an objective function f(x,y), ne equality constraints h(x,y) and ni inequalities
constraints g(x,y), an optimization problem

min
{

f(x,y)
∣

∣

∣

∣

h(x,y) = 0
g(x,y) ≥ 0 ,

h : X × U → IRne

g : X × U → ZZni ,
x ∈ X ⊆ IRnc

y ∈ U ⊆ ZZnd

}

(1)
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is called mixed integer nonlinear programming (MINLP) problem, if at least one of the functions f(x,y),
g(x,y) or h(x,y) is nonlinear. The vector inequality, g(x) ≥ 0, is to be read component-wise. Any vector xT

⊕
satisfying the constraints of (1) is called a feasible point of (1). Any feasible point, whose objective function
value is less or equal than that of all other feasible points is called optimal solution. From this definition
follows that the problem might not have a unique optimal solution.

The continuous variables in (1) could for instance describe the states (temperature, pressure, etc.), flow
rates or design parameters of plant or chemical reactors. The discrete variables, often binary variables, may
be used to describe the topology of a process network or to represent the existence or non-existence of plants.
Let us consider the following pure integer nonlinear problem with two integer variables y1 and y2

min
y1,y2

{

3y1 + 2y2
2

∣

∣

∣

∣

y4
1 − y2 − 15 = 0
y1 + y2 − 3 ≥ 0 , y1, y2 ∈ U = IN0 = {0, 1, 2, 3, ...}

}

A feasible point is y1 = 3 and y2 = 66. The optimal solution y∗ = (y1, y2)∗ = (2, 1) and f(y∗) = 8 is unique.
Depending on the functions f(x,y), g(x,y) and h(x,y) we get the following structured problems

acronym type of optimization f(x,y) h(x,y) g(x,y) nd subproblems
LP Linear Programming cTx Ax− b x 0 matrix inversion
MILP Mixed Integer Linear Programming cTx⊕ Ax⊕ − b x⊕ ≥ 1 LP
MINLP Mixed Integer Nonlinear Programming ≥ 1 MILP, NLP
NLP Nonlinear Programming 0 nonlinear equation solving
GLOBAL Global Optimization ≥ 0 NLP, Branch&Bound

with a matrix A of m rows and n columns, i.e., A ∈ M(m × n, IR), b ∈ IRm, c ∈ IRn and n = nc + nd.
Since some problems occur as subproblems of others it is very important that the algorithms to solve the
subproblems are well understood and exploited efficiently. While LP problems can be solved relatively easy
(the effort to solve an LP problem with m constraints requires approximately m iterations), the computational
complexity of MILP and MINLP grows exponentially with the nd. Numerical methods to solve NLP problems
work iteratively and the computational problems are related to questions of convergence, getting stuck in
‘bad’ local optima and availability of good initial solutions. Global optimization applies to both NLP and
MINLP problems and its complexity again increases exponentially in the number of variables.

3.2 Linear Programming

The feasible region of an LP problem is a polyhedron S. The optimal solution of an LP problem always lies
on a vertex, i.e., on an extreme point of S. This fact is exploited by one of the best known algorithms for
solving LPs, the simplex algorithm of G.B. Dantzig (see, for instance, [14] or [15]) which can be understood
as a vertex-following method, i.e., as an algorithm which moves from one corner (vertex) of S to a ‘new’
corner by advancing along one edge at a time. The algebraic platform is the concept of the basis B of A,
i.e., a collection B={Aj1 ,...,Ajm} of linearly independent columns of A; basic (or dependent) variables, xb,
are computed from the inverse basis, i.e., by xb = B−1b, while the nonbasic (or independent) variables are
fixed on their bounds. The main ideas of the simplex algorithm are:

• pricing-out (identifying a nonbasic variable as a candidate for a new basic variable)
• eliminating a basic variable by the minimum-ratio rule, and
• linear algebra aspects (pivoting).

The model building process can positively influence the numerical performance of this subtasks. Here we will
briefly mention a few key ideas one should have in mind:

• efficient pricing is supported by a strong driving force in the objective function
• equations with many zero right-hand side entries can create difficulties when applying the MRR
• sparse models are easier to solve then dense ones.

Most commercial solvers also provide pre-solvers (i.e., systems for analyzing the model before attempting
optimization). Such systems eliminate fixed variables, attempt to tighten bounds on variables, and try to
perform other operations which enable the solvers to operate more efficiently.
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Based on the results of Karmarkar, in the last few years a large variety of interior point methods (IPMs)
has been developed (see, for instance, [24], [41]). The idea of IPMs is to move through the interior of the
feasible region, i.e., to proceed from an initial interior point x ∈ S satisfying x > 0, towards an optimal
solution without touching the border of the feasible set S. Approaching the boundary of the feasible region
is penalized, i.e., the condition x > 0 is guaranteed by subtracting a penalty term µk

∑n
i=1 ln xi from the

original objective function cT x. Thus, the original LP problem is solved by solving a sequence of logarithmic
barrier problems

min
x

cT x− µk

∑n

i=1
lnxi subject to Ax = b and µk > 0 .

By suitable reduction of µk, the weight of the penalty term µk
∑n

i=1 ln xi is successively reduced and the
sequence of points, x(k)

∗ , obtained by solving the perturbed problems, converges, for k →∞, to the optimal
solution, x∗, of the original problem. However, IPMs will in general return an approximately optimal solution
which is strictly in the interior of the feasible region. Unlike the simplex algorithm, IPMs do not provide an
optimal basic solution. Thus, ‘purification’ pivoting procedures from an interior point to a vertex having an
objective value no worse have been proposed and cross-over schemes to switch from interior-point algorithm
to the simplex method have been developed [3].

3.3 Mixed Integer Linear Optimization

Building mixed-integer models requires great caution. Often there exist different possibilities to formulate an
optimization problem ([8]), sometimes adding redundant constraints makes an algorithm work faster. Even
some nonlinear optimization problems can be transformed to MILP’s using special types of discrete variables
(see, for instance, [55], [20], [35]).

– Logical conditions, such as ‘and’, ‘or’, ‘not’, ‘implies’, and also disjunctive constraints are formulated
with binary variables δ ∈ {0, 1}.

– Binary variables can indicate the state of a continuous variable and at the same time impose upper and
lower bounds (L and U) on this variable. The constraints x = 0∨L ≤ x ≤ U defining a semi-continuous
variable x are equivalent to Lδ ≤ x ≤ Uδ, where δ is a binary variable.

– Special Ordered Sets (SOS) have been developed to formulate common types of restrictions in mathemati-
cal programming. In SOS of type 1 variables at most one variable (continuous or integer) can be non-zero.
In an SOS of type 2 set at most two variables which are adjacent in the ordering of the set can have
non-zero values. Such sets often are used to model piecewise linear functions, e.g., linear approximations
of nonlinear functions.

– Expressions containing products of k binary variables can be transformed MILP models according to
{

δp =
∏k

i=1
δi

}

⇐⇒
{

δp ≤ δi, i = 1, ..., k ;
∑k

i=1
δi − δp ≤ k − 1 ; δi ∈ {0, 1}

}

. (2)

– Problems with linear constraints and objective functions of the form
∑k

j=1 f(xj), in which the variables
xj can only assume values of a discrete set X = {X1, . . . , XN}, can be replaced by MILP problems, if
the nonlinear function f fulfills certain generalized ‘convexity’ conditions.

A great variety of algorithms to solve mixed integer optimization problems has arisen during the last decades.
Among the best known exact algorithms for solving MILP’s are efficient implicit enumerative algorithms that
include pruning criteria so that not all feasible solutions have to be tested for finding the optimal solution and
for proving optimality. The widely used Branch&Bound (B&B) algorithm with LP-relaxation, first developed
in 1960 by Land and Doig [38], is the most important representative of enumerative algorithms. The branch
in B&B hints at the partitioning process -a ‘divide-and-conquer’ like approach- used to prove optimality of a
solution. Lower2 bounds are used during this process to avoid an exhaustive search in the solution space. The
B&B idea or implicit enumeration characterizes a wide class of algorithms which can be applied to discrete
optimization problems in general.

2 In a maximization problem, otherwise upper bounds.
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The computational steps of the B&B algorithm are as follows: After some initialization the LP relaxation
-that is that LP problem which results if we relax all integer variables to continuous ones- establishes the
first node. The node selection is obvious in the first step (just take the LP relaxation), later on it is based
on some heuristics. A B&B algorithm of Dakin (1965)[13] with LP relaxations uses three pruning criteria:
infeasibility, optimality and value dominance relation. In a maximization problem the integer solution found
lead to an increasing sequence of lower bounds while the LP problems in the tree decrease the upper bound.
A pre-set addcut α ≥ 0 causes the algorithm to accept a new integer solution only if it is better by at
least the value of α. If the pruning criteria fail branching starts: The branching in this algorithm is done by
variable dichotomy: for a fractional y∗j two son nodes are created with the additional constraint yj ≤ [y∗j ]
resp. yj ≥ [y∗j ] + 1. Other possibilities for dividing the search space are for instance generalized upper bound
dichotomy or enumeration of all possible values, if the domain of a variable is finite ([11], [44]). The advantage
of variable dichotomy is that only simple constraints on lower and upper bounds are added to the problem.

The search strategy plays an important role in B&B schems, widely used is the depth-first plus back-
tracking rule [44]. Another important point is the selection of the branching variable. A common way of
choosing a branching variable is by user-specified priorities, because no robust general strategy is known.
The B&B algorithm terminates after a finite number of steps, if the solution space of the MILP problem’s
LP-relaxation is bounded.

Alternatively, or in addition, cutting plane algorithms and Branch&Cut (B&C) ([23], [12], [54], [45], [7],
[10]) might be used to solve MILP problems. After computing the continuous optimum by LP-relaxation
of the integrality constraints step by step new linear valid inequalities (cuts) are added to the MILP. With
the help of these cuts noninteger variables of the relaxed solutions are forced to take integer values (see,
e.g., [11], [44]). Cutting plane methods are not restricted to MILP’s, they are used, e.g., in nonlinear and
nondifferentiable optimization as well (Lemaréchal in [43]).

3.4 Nonlinear Optimization

For historical reasons, constrained nonlinear optimization problems are also referred to as nonlinear program-
ming problems (NLP). It is assumed that the functions f(x),g(x) and h(x) are continuously differentiable
on the whole vector space IRn. In nonlinear problems we have to distinguish between local optima and the
global optimum. Loosely speaking, the global optimum is the best of all possible values while a local op-
timum is the best in a nearby neighborhood only. In practice it is observed that, for instance, the pooling
problem has usually several local optima. Depending on the initial guesses the solver finds different local
optima. Thus, solving models involving pooling problems requires great care and deep understanding of the
underlying real world problems.

In the early 1950’s Kuhn and Tucker (1951)[37] extended the theory of Lagrangian multipliers, used for
solving equality constrained optimization problems, to include the NLP problem (formulated as a maximum
problem in the original work) with both equality and inequality constraints. The key idea is to transform
them into an unconstrained problem and to use the optimality condition defined above. Thus the theory is
based on the definition of a Lagrangian function

L(x, λ, µ) := f(x) + λT h(x)− µT g(x) ,

that links the objective function f(x) to the constraints g(x) and h(x). The vectors variables λ ∈IRm and
µ ∈IRl are called Lagrange multipliers. They are additional unknowns of the problem. Necessary conditions
for an local optimal solution to NLP problems are the (Karush-)Kuhn-Tucker-conditions:

If x∗ is a local solution to an NLP problem, and the functions f(x), g(x), and h(x) are differentiable,
then there exists a set of vectors µ∗ and λ∗ such that x∗, µ∗ and λ∗ satisfy the relations:

h(x) = 0 , g(x) ≥ 0 , µT g(x) = 0 , µ ≥ 0 , 5L(x, λ, µ) = 0

It should be noted that these conditions rely on a constraint qualification, i.e., a regularity assumption
applied to the constraints, to hold true. While convex problem will satisfy the constraint qualification, for
nonconvex problem this is not necessarily so.
Numerical algorithms to compute local optima of NLP problems basically reduce to the solution of sets
of nonlinear equations. Therefore, they require initial guesses. These guesses should be provided with care



Mixed Integer Optimization in the Chemial Process Industry 7

to enable the algorithm to converge, and strongly depend on the problem. However, let us give at least
one general advise: One should certainly try to avoid to set initial guess variables to zero. Once a good
solution is found one should keep the values of the variables and should use them as initial values in further
computations.

If f is convex, and if the feasible region S is a convex set, e.g., if h is linear and g is concave, we have a
convex optimization problem. For this class of problems, local optimality implies global optimality [47], i.e.,
every local minimum of a convex NLP problem is a global one. Unfortunately, due the presence of nonlinear
equalities, most practical problem are not convex.

Most algorithms ([22], [18]) to compute local optima of NLP problems are based on Taylor series ex-
pansions terminated after the linear or quadratic term. Inequality conditions are included for instance by
applying active sets methods. The most powerful nonlinear optimization algorithms are the Generalized
Reduced Gradient algorithm (GRG), Sequential Quadratic Programming (SQP) methods and Interior Point
Methods (IPM) (see, for instance, [9] or [56]) for problems involving many inequalities. The GRG algorithm
was first developed by Abadie and Carpenter (1969,[2]) [more recent information is contained in [1], [40],
and [39], but see also Gill et al. (1981, Section 6.3, [22])]. A special class of IPM includes inequalities by
adding logarithmic penalties terms to the objective function. Then the problem can be solved as a nonlin-
ear optimization problem with equality but no inequality constraints. For NLP problems with only a few
nonlinear terms and in particular NLP problems containing pooling problems, recursion or, more efficiently
sequential linear programming (SLP), are frequently used. A typical case, in which recursion or SLP is ap-
plied are models involving product terms cx with flow rate x and concentration c. If c is known the problem
is linear, otherwise it is nonlinear. The key idea behind recursion is the following. Some coefficients, usually
the concentrations c, in an LP problem are defined to be functions of the optimal values of LP variables.
When an LP problem has been solved, the coefficients are re-evaluated and the LP re-solved. Under some
assumptions this process may converge to a local optimum. In SLP, the nonlinear product terms cx are
replaced by their Taylor series approximations. Letting c0 and x0 be the current values of c and x, the first
order approximation for cx is

c · x ∼= c0 · x0 + x0 · (c− c0) + c0 · (x− x0) = c0 · x + x0 ·∆c , ∆c := c− c0 . (3)

The right-hand-side of (3) is linear and has the unknowns x and ∆c. The pool concentration, c, acts as
a nonlinear variable, whose change, ∆c, is determined by solving the LP. This leads to a new value of c,
determined by c = c0+∆c used to initialize the next iteration, replacing c0. Note that x acts as a special linear
variable with nonconstant coefficient c0. Most SLP implementations include bounds on all ‘∆c’ variables, of
the form −S ≤ ∆c ≤ S, where S is an appropriate step bound [57], imposed to ensure that the Taylor series
approximations are sufficiently accurate and that the algorithm converges.

3.5 Parallel Mixed Integer Linear Optimization?

In order to solve complex MIP problems with not only a few hundred, but rather a few thousand, or even
ten thousands of discrete variables, BASF initiated the project PAMIPS (Parallel Algorithm and software
for Mixed Integer Programming in Industrial Scheduling) supported under the ESPRIT initiative of the
European Community connecting four industrial partners and three universities [49].

The exact methods briefly described in Sections 3.2 and 3.3 for solving MILP problems provide two
different ways for the parallelization: the combinatorial part of the algorithm and the LP algorithm. The tree
structure in mixed integer optimization indicates that more benefits are to be expected from parallelizing
the combinatorial part. The combinatorial part is either a B&B or a B&C algorithm. In both cases it is
necessary to solve many LPs. Obviously, the evaluation of the subproblems may be performed by a network
of parallel processors or workstations.

3.6 Mixed Integer Nonlinear Programming

MINLP problems such as (1) are the most difficult optimization problems of all. They belong to the class
NP-complete problems3. MINLP problems combine all difficulties of both its subclasses: MILP and NLP.
3 That means that at present no algorithm is known which could solve (1) in polynomial time (polynomial in the

problem size). If somebody would construct one, then this algorithm would also solve other problems in class NP
in polynomial time [44]. Note that most MILP problems belong to the class of NP-complete problems as well.
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Even worse, in addition they have properties absent in NLP or MILP. While for convex NLP problems a local
minimum is identical to the global minimum, we find that this result does not hold for MINLP problems.

A simple deterministic method would be to list all combinations U of discrete variables yi. Fix them,
and solve the NLP generated by fixed yi yielding a pair (xi, zi = f(xi,yi)). Then choose the pair with
smallest zi (let us refer to it using the index i∗). Thus, the solution is given by the triple (x∗ = xi∗ ,y =
yi∗ , z∗i = f(xi∗ ,yi∗)). This method, of course, works only efficiently if U has not too many elements and
if the NLP subproblems allow us to determine their global minima. Efficient deterministic methods [19] for
solving MINLP problems fall into three classes:

• Branch & Bound (B&B) by Gupta and Ravindran (1985, [26]),
• Generalized Benders Decomposition (GBD) by Geoffrion (1972, [21]) and
• Outer-Approximation (OA) by Duran and Grossmann (1986, [16]).

The B&B algorithm for MINLP problems is based on similar ideas as the B&B algorithm for solving MILP
problems. The first step is to solve the problem generated by relaxing the integrality condition on the
variables. If the solution of that problem fulfills all integrality conditions the whole problem is solved.
Otherwise, in a minimization problem the relaxed problem provides a lower bound (of course only, if the
global minimum can be determined) and a search tree is built up. A feasible integer solution provides an
upper bound. A major draw back of the B&B algorithm applied to MINLP problems is that nodes deeper in
the tree cannot benefit so greatly from information available at previous nodes as is the case in MILP B&B
algorithms using the dual Simplex algorithm.

GBD divides the variables into two sets: complicating and non-complicating variables. In MINLP models
the class of complicating variables is made up by the discrete (usually binary) variables. Then the algorithm
generates a sequence of NLP subproblems (produced by fixing the binary variables yk) and solves the so-called
MILP Master problems in the space of the complicating variables. The NLP subproblems yield upper bounds
for the original problem while the MILP Master problems yield additional combination of binary variables
yk for subsequent NLP subproblems. Under convexity assumptions the Master problems generate a sequence
of lower bounds increasing monotonically. The algorithm terminates when lower and upper coincident.

OA also consists of a sequence of NLP subproblems (produced by fixing the binary variables yk) generated
by MILP Master problems. The significant difference is how the Master problems are defined. Algorithms
based on OA describe the feasible region as the intersection of an infinite collection of sets with a simpler
structure, e.g., polyhedra. In OA the Master problems are generated by ’outer approximations’ (lineariza-
tions, or Taylor series expansions) of the non-linear constraints in those points which are the optimal
solutions of the NLP subproblems; that is a finite collection of sets. The key-idea of the algorithm is to
solve the MINLP with a much smaller set of points, i.e., tangential planes. In convex MINLP problems, a
superset of the feasible region is established. Thus, the OA Master problems (MILP problem in both discrete
and continuous variables) produce a sequence of monotonically increasing lower bounds. The termination
criterion is the same as above.

While the GBD Master problems have fewer variables and constraints, the OA algorithm provides tighter
bounds and needs fewer iterations for convergence. Both GBD and OA are in many instances even capable
of proving optimality and both have heuristic extensions for solving non-convex MINLP problems.

3.7 Global Optimization

The problem of the existence of multiple local optima in nonlinear optimization is treated in a mathematical
discipline of its own: global optimization, a field including theory, methods and applications of optimization
techniques aimed at detecting a global optimum of nonlinear problems. Global optimization applies to
both, NLP and MINLP. Problems analyzed in the context of global optimization are seen to be attacked
by stochastic and deterministic solution approaches. In the group of stochastic methods we find genetic
algorithms, evolution strategies, tabu search and simulated annealing. In the strict sense these methods
are not optimization methods at all because they do guarantee neither optimality nor a certain quality
of feasible points they may find. In contrast, deterministic methods are based on progressive and rigorous
reduction of the solution space until the global solution has been determined with a pre-given accuracy.
Deterministic methods may be classified as primal-dual methods, interval methods, and B&B methods; they
have in common that they derive upper and lower bounds including the objective function value of the
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global optimum. These methods are quite different from the classical concepts of gradients and Hessians.
Typical B&B methods, for instance, exploit convex underestimators of the objective function and convexify
the feasible region; they divide the feasible region in subregions, solve the NLP problem on that reduced set,
derive bounds and branch if necessary. While the B&B method in MILP problem is known to terminate after
a finite number of steps, B&B methods in global optimization are subject to convergence proofs. However, if
we want to find the global optimimum only up to a small number ε > 0 between the upper and lower bound,
then the B&B will also terminate after a finite number of steps. Not only B&B methods, but all deterministic
algorithms in global optimization have more in common with what is used in discrete optimization rather
than in nonlinear continuous optimization. So far, the problems which can be solved at present are specially
structured and are usually small involving only up to, say a hundred or a thousand of variables or constraints
but the field is growing and it is worthwile to get into contact with; it may knock at your door tomorrow
anyway. The Journal of Global Optimization or the books ([30], [29], or [28]) are good and recommended
starting points.

3.8 Efficient Problem Solving and Good Modeling Practice

The solution time of MIP or nonlinear problem often can be reduced significantly by appropriate modeling.
This is important since in contrast to ordinary LPs, effective solution of MIP or nonlinear problem depends
critically upon good model formulation, the use of high level branching constructs, control of the B&B
strategy, scaling and the availability of good initial values. The solution times can greatly be influenced by
observing a few rules which distinguish ‘bad’ from ‘good’ modeling. Good formulations in MIP models are
those whose LP relaxation is as close as possible to the MILP relaxation, or, to be precise, those whose LP
relaxation has a feasible region which is close to the convex hull, that is the smallest polyhedron including all
feasible MILP points. In practice, this means, for example, that upper bounds should be as small as possible.
If α1 and α2 denote integer variables, the inequality α1 + α2 ≤ 3.7 can be bound-tightened to α1 + α2 ≤ 3.
Another example: the formulation (2) is superior to the alternative set of only two inequalities

{

δp =
∏k

i=1
δi

}

⇐⇒
{

δp ≤
1
k

∑k

i=1
δi ;

1
k

∑k

i=1
δi −

(

k −
∑k

i=1
δi

)

≤ δp

}

. (4)

because the k + 2 inequalities in (2) couple δp and the individual variables δi directly.
In many models, in addition, it might be possible, to derive special cuts, i.e., valid inequalities cutting

off parts of the LP relaxation’s feasible set but leaving the convex hull unchanged. If we detect inequalities
of the form x + Aα ≥ B with constants A and B, and variables x ∈ IR and α ∈ IN in our model, we can
enhance and tighten our model by the cuts

x ≥ [B − (C − 1)A] (C − α) , C :=
⌈

B
A

⌉

= ceil
(

B
A

)

, (5)

where C denotes the rounded-up value of the ratio B/A. If a semi-continuous variable σ, e.g., σ = 0 or
σ ≥ 1, occurs in the inequality x + Aσ ≥ B it can be shown that x

B + σ ≥ 1 is a valid inequality tightening
the formulation.

Preprocessing can also improve the model formulation. Preprocessing methods introduce model changes
to speed up the algorithms. They apply to both pure LP problems and MILP problems but they are much
more important for MILP problems. Some common preprocessing methods are: presolve (logical tests on
constraints and variables, bound tightening), disaggregation of constraints, coefficient reduction, and clique
and cover detection (see [35] and references therein).

Good modeling practice ([55], [35]) takes advantages from good use of Presolve, Scaling and Branching
Choice. Modeling appears more as an art rather than science. Experience clearly dominates. Remodelling
and reformulations of problems (see, for instance, Section 10.4 in [35]) can significantly reduce the running
time and the integrality gap (6), i.e., in a maximization problem the difference between the LP-relaxation
and the best integer feasible point found. This task is still largely the responsibility of the modeler, although
work has been done on automatically reformulating mixed zero-one problems [54]. Especially, in nonlinear
problems it is essential that the mathematical structure of the problem can be exploited fully. It is important
that good initial values are made available by, for instance, exploiting homotopy techniques.
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4 Brief Discussion of Solved Real World Problems

This section briefly presents three solved real world problems in which the author had been involved; many
more are found in [35] and [53] but even this small collection might give a little taste of what problems
can be tackled successfully by mixed integer optimization. The first problem is only of small size but it has
a complicated structure which requires the use of special cuts to obtain good solutions. The second one,
similar to the one described in [53], is a very large problem but can be solved within minutes if we exploit its
structure and develop some cuts. The third one is a process engineering problem which is partly a production
planning problem being used operatively but to some extent it is also a process design problem. A fourth
problem, a site analysis, is briefly mentioned in Section 6.4.

It has to be said that in many practical cases optimality is not proven. Instead, the objective function
value z∗ of the optimal solution is bounded by zLB ≤ z∗ ≤ zUB , where in a maximization problem zUB

follows from the LP relaxation, and zLB is given by the objective function value zIP of the best integer
feasible point found. In the worst case, i.e., if z∗ = zUB , the relative error of zIP with respect to z∗ is given
by the integrality gap ∆. In an maximization problem ∆ is defined as

∆ := 100
zUB − zLB

zIP , zLB = zIP . (6)

In most practical cases and if a good model formulation or special cuts are added to the model, ∆ is less
than a percent.

4.1 A Blending Problem Including Discrete Features - A Small-Size MILP Problem

In chemical industries raw materials with random ingredient concentrations have to be blended to get homo-
geneous (intermediate) products. The characteristics and properties of blended products depend on portions
of raw materials and their concentrations of ingredients. Often linear blending behavior can be assumed.

This blending model contains special features of process scheduling; for the full mathematical model
see [48] and [31]. The blended products are not bulk products but individual, ordered blends satisfying
customer specified upper and lower concentrations of ingredients. The charges of raw material and the
blends are handled in containers of equal size. The blending process occurs in a filling plant that allows
drawing material from one container into another. To produce one or more containers of a blend, first the
appropriate raw material containers have to be selected and the masses to take from have to be determined.
Filling strategies and drawing losses are also considered in the model.

The problem is formulated as a MILP model. The objective is to minimize the costs of raw material,
labor of the process and drawing losses. The constraints are divided into the following blocks:

• Blending constraints: lower and upper bounds on concentrations, balance equations for materials.
• Scheduling constraints: assignment of the raw material containers to blending orders and transportation
• Logical cuts (special valid inequalities derived from the rules of container handling)

Using a straightforward model formulation, the problem could not be solved within an hour on a 486/33 IBM
PC. Even for small problem instances optimality could not be proven because of the combinatorial structure
of container choice, filling out mass determination and container scheduling. However, adding logical cuts to
the model, even for larger problem instances, e.g., the production of 10 different blends of customer orders
from an inventory of 60 raw material charges, the integrality gap was reduced to less than 2.5%. The model
consists of 170 continuous, 660 semi-continuous and 1300 binary variables, 10 special ordered sets of type
1 and 2300 constraints. The first feasible integer solution is usually found after 10 minutes. The problem
is solved with XPRESS-MP [6], data input and output, solution presentation and scheduling of the solver is
managed by MS-EXCEL. This planning tool has been extensively used over the last four years.

4.2 Supply Chain Management - A Large MILP Problem

At BASF a MILP model has been developed which lead to a multi-site, multi-product, multi-period Produc-
tion/Distribution Network Planning System aiming to determine a production schedule for three months on a
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monthly basis in order to meet the given demand. The system is characterized by 7 production sites embrac-
ing 27 production units operating in fixed-batch-size mode and subject to minimal production requirements
[33], 450 products categorized as purchasable (225), producable (270), saleable (230), and consumable (60)
and three time periods (usually, 3 months. Saleable products are sold to customers through 37 sales areas.
These areas represent geographical locations of customer groups. Some customers attach the attribute to
their demands that their product has to be produced at a specific production site. Therefore, to satisfy such
demands, the origin of products must be known. Products produced on individual units remain ‘unwrapped’
(or bulk), others may be wrapped in two different ways. Purchased products may be available in any wrap-
ping type. It is possible to rewrap at production sites products from any type of wrapping to any other type.
Rewrapping is limited only by a rewrapping capacity of the site and available wrapping resources.

Products can be stored at inventories located at the production sites. At present there is no inventory
available at the sales areas but it is planned for the future. In order to guarantee its availability and being
able to sell a product in a given period, a prespecified percentage of the product demand must be stored in
inventory by the end of the previous time period. This is modeled by considering a lower bound on inventory
for each product specified by the demand of the product in the following time period. Transport is possible
between some of the production sites for some intermediate products, and from production sites to the sales
areas for the finished products. There is no transport between sales areas.

Production occurs according to given recipes for each product. Typically, there are one or two recipes for
each product-unit combination. The production is subject to resource and raw material availability. There
is also a second quality product that can be sold. Finally, there are preferred production units for products.
Products are manufactured in fixed product and unit dependent batch sizes. To produce a batch takes 0.25-1
day. It is not necessary to keep the batch requirement for the second and third period since the model is rerun
every month. In addition, each production run must produce at least a minimum quantity of the product.
Such minimal production runs take 0.5-10 days.

The model contains blocks of constraints representing inventory balances, sales, purchases, production
and wrapping, inventory, transport, and the objective function.

The problem has 100000 constraints, 150000 variables and 2500 integers. The first integer feasible solution,
using again XPRESS-MP, is usually found [6] within a few minutes on a Pentium II. Applying some special
preprocessing techniques operating directly on the input data stored in the database4 reduces the problem
size to 70000 constraints, 80000 variables, 112 integers, 652 semi-continuous variables and a total of 230000
matrix elements. The first integer feasible solution is now usually found within a minute. Using the special
cuts (5) derived for this model the integrality gap ∆ falls below 1%, and in some cases it is even possible to
prove optimality in less than 15 minutes.

The advantage the client sees in this production planning system is, besides financial savings, to be able
to handle the complexity of the problem and to do sensible planning at all. There is one feature very unique
about the use of the production planning system. This feature is strongly recommended for other projects
since it increases the acceptance of the approach significantly: production planning is done on-line with
having a responsible representative of each production site and one team member of BASF’s mathematical
consulting group joining the monthly meeting. The production plan is accepted after discussions which may
add further constraints to the model. The place of the meeting changes so that each place and production
site is treated equally. Thus, there is no central force dominating the production planning process.

4.3 Nonlinear Mixed Integer Problems

A variety of MINLP models in the chemical process industry have been discussed by Kallrath (1999, [32]): a
production planning problem in BASF’s petrochemical division, a tanker refinery scheduling problem, a site
analysis of one of BASF’s bigger sites, and a process design problem in which some process parameters and
the optimal connections between up to 30 reactors are computed with respect to optimal total production,
selectivity, energy, and costs. Nonlinearities are related to the exponential terms for the reaction kinetics and
4 This involves tracking and resolving the supply chain within in the database, and eliminating certain superfluous

or inconsistent data and remove them from the data stream to the matrix generator. For example, data for a forced
production of products for which no demand exist, are not passed. The advantage is that the time required to
transfer the data to the matrix generator, the time to generate the matrix, and the time the solver spents with
pre-solving is reduced.
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mass fractions used to interpolate density and viscosity of the fluid inside the reactors. Discrete variables
are required to model minimum flow rates between reactors, the number of reactors and their connections;
continuous variables represent flow rates. The optimization model has been embedded into an attractive
and easy to use user-interface. It helps the client in his daily production planning duties to adjust his plant
immediately to current needs, i.e., changes in costs, capacity fluctuations or to attributes of orders. The tool
supports the process design phase and helps to design cascades and connections of a system of reactors. The
new designs save raw material, minimize waste material and increase the capacity of the reactor system.

5 Mathematical Optimization in Practice

This section summarizes some of the experiences the author obtained over the last 10 years. Readers more
interested in the Section ‘Good Modeling Practice’ are further referred to [55] and [35].

5.1 Benefits to Users of Mathematical Optimization

Users of mathematical optimization benefit in three major ways when models are developed and problems
are solved. Firstly, there is the gain through the greater understanding of the problem. The very act of
working through a model formulation with its builder can be of considerable benefit to a client. Secondly,
there is the decision support system to be developed using the model and its solution capability. Using such
a system can lead to substantial savings. Thirdly, there is the availability of a model for future experimental
purposes. It is possible to test ideas for future planning on the model that could not be conducted on the
actual processes themselves. Thus, the gains to clients are considerable. The prospect of saving even a few
percent of a very large cost is exciting for a client. Similarly, the prospect of devising a new business process
which will make an organization more competitive can be very encouraging and justifies the mathematical
optimization approach and related project costs.

5.2 Consistent and Obtainable Data

Mathematical programming models rely on data of consistent quality being readily available. This will not
always be so. It may be glib to assume that we can obtain information on the cost of each of 20 stages of
a production process. People we ask for information may not even be able to agree on a definition of cost.
Thus, the data are subject to uncertainties. This may lead to a lack of user confidence in the model.

What we must do is to devise the best procedures we can for data collection and see that procedures are
adhered to if the model is going to be used repeatedly on data which may change over time. New data must
be collected under the same terms as the old, until a major overhaul of the model is undertaken. We must
then make it clear to users of the model that results were obtained under certain assumptions and stress
that results should still be helpful in providing decision support provided appropriate caution is maintained.

5.3 User Interface

Users of a model want to see the results expressed in the context of their world, with its associated jargon,
styles and symbols. For them it will be far preferable to see ‘increase cracker temperature to 800◦C’ as a
solution value, rather than the bare T17,21 = 800. Thus, it will be incumbent on modelers to make good
user interfaces with a high degree of acceptance. Of course the modeler might be supported by a computer
scientist who is an expert in programming user interfaces. However, in some cases it might be important to
develop an individual user interface requested by the end-user; in other examples one might be prepared to
hear that end-users want an interface link to systems such as SAP.

5.4 Communication

Even with a seemingly precise process such as mathematical optimization there is a stage once modeling has
been undertaken when the modeler has to ‘sell the approach’ to the client. This will be well before implemen-
tation takes place. The results of a modeling exercise may produce solutions which are perhaps unexpected,
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e.g., indicative of inefficient current practices and such results may prove unpopular with some individuals
(but highly popular with others). May be the modeler did not understand the business issues correctly. Thus,
the modeler has to convince the client that the model is performing according to the conditions laid down
by the client and to establish that no stage has been omitted or information misinterpreted. Of course, the
process of building a model is interactive requiring lots of communication. Therefore, it is important that
a comfortable relationship of ‘mutual trust’ exists throughout the lifetime of a mathematical optimization
project between modeler and client for whom the model is being built. The project described in Section 4.2
is a good example for a very constructive communication between client and modeler.

5.5 Communication and Validating Solutions

The process of building a model is interactive requiring lots of communication. The same is true for the
modeler’s task to convince the client that the model is performing according to the conditions laid down by
the client and to establish that no stage has been omitted or information misinterpreted. Emphasis switches
from validation by the modeler to validation by the end-user. Once solutions are proposed the validation
process continues and the modeler must continue to work with the client. The model would normally be tried
out on a test data pack to ensure that the model is robust, is predictively valid (produces predictions that are
in line with existing possibilities) and is replicatively valid (produces working solutions). Thus communication
and feedback between client and modeler continues. When, finally, a proposed solution is considered for
implementation, checking will continue as the process of implementation may not be straightforward. It will
also be important for the modeler to stress what assumptions have been made in the modeling and the
potential shelf-life of the model. The implementers and users will need to monitor the model in the future
to see if any breaches of the assumptions are made or any aspects of the decision support system pass their
expiration date.

5.6 Keeping a Model Alive

A number of difficulties exist to keep a model alive. Firstly there are the typical difficulties with the use
of any sophisticated software system. The user of the model may not follow the ‘rules’ envisioned by its
developer and may try to use data that are not appropriate or to use the model for purposes for which it was
not designed. Secondly, one has to retain the understanding of the model, its underlying assumptions and
limitations at any time. Otherwise, the probability to get wrong results arises. This also tells us that using
modeling and optimization requires substantial know-how on both the modeler’s and user’s side. Thirdly,
there will be a danger that as time moves on new users will emerge who will feel that as they were not involved
in the original development of the model, they can have no faith in it. This may have to be remedied by the
involvement of the developers of the model from time to time.

The above three points suggest that even if a company decides to have model being developed from
external consultants, it must plan to acquire or buy in the expertise for later validation of the model, even
if it is continuing to produce apparently sensible results year after year. Communication with and feedback
from the client is one of the most important necessary conditions for successful modeling and this leads to
a valid model being built and used over years.

6 Future Paths of Mixed Integer Optimization

This section focuses on some likely paths and directions in which mixed integer optimization might move.

6.1 Solving Scheduling Problems Effectively

There is one class of optimization problems, namely scheduling problems, whose complexity can easily exceed
today’s hardware and algorithmic capabilities. Nevertheless, the are numerous promising contributions (see,
for instance, [51], [50], [36], [50], [46], [4]) especially from researchers in the chemical engineering community.
What makes scheduling problems so difficult? Using exact methods such as MIP, in some cases it is not even
possible to find feasible integer solutions because feasible integer solutions exist often only very deep in the
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tree. In many cases it is very difficult to derive useful upper and/or lower bounds despite the fact that the
best formulations had been used. The problem with scheduling problems is that they usually lead to poor
LP relaxations. Resource constraints can easily be fulfilled with fractional value of the binary variable used
in time-indexed formulations and thus lower bounds are very weak. Even using the parallel algorithms and
powerful hardware, scheduling problems might be too complex, and can not be solved with exact methods,
at least not yet. If we meet such cases, the last resort might be to use heuristic approaches, e.g., simulated
annealing, tabu search, or as in the case discussed below, constraint programming (CP). Heipcke (1995, [27])
investigated successfully a very difficult scheduling problem (Section 10.5 in [35]), which became a benchmark
problem in both the MIP and CP community and described in Section and applied both methods, CP versus
MILP. CP [42] has been developed in the 1980s out of Logic Programming and Constraint Solving and been
applied successfully to a large range of industrial applications, especially to discrete (optimization) problems
such as planning and scheduling. CP is a technique for discrete optimization that uses a tree search and
performs domain reduction at each node. CP models typically consist of a wide range of constraint types,
e.g., special global constraint operators such as all different or cumulative allow a CP model being expressed
in a more compact form than MIP problems.

Could MIP models be helpful in scheduling refineries? Refinery scheduling leads to MINLP problems
due to the presence of the pooling problem. The scheduling problem usually comes up after a production
planning problem has been solved. The data generated by the production planning problem are input data
to the scheduling problem. The purpose of the scheduling problem is to transform the production plan in a
schedule useful for all operations within a time horizon of a few days. In that sense the scheduling problem is
rather a feasibility problem than an optimization problem. While in typical production scheduling problems
degeneracy and symmetry cause great problems, the nonlinear features in the refinery scheduling problems
could destroy some symmetry and may lead to useful relaxations.

6.2 Hybrid Approaches: The Happy Marriage of MIP and CP

A trend over the last few years indicates that the mathematical and the constraint programming community
approach each other. This may result in a hybrid approach, i.e., in a language and algorithms combining
elements from both communities. This may have a great impact on supply chain problems and scheduling.
Just recently, the European Commission awarded the project LISCOS (Large Integrated Supply Chain
Optimization Software) with several million Euros. The technical core of this project initiated by BASF’s
mathematical consultant group and 10 other partners is the development of MIP-CP hybrid techniques.

6.3 Solving Design and Operative Planning Problems Simultaneously

It is a frequent experience that clients ask for support on a production planning or scheduling problem for
a plant or reactor which just went on-line in production. Often, especially in scheduling problems, it turns
out that there exist certain bottlenecks. It would greatly improve the situation if the design of a plant or
reactor would be analyzed simultaneously with the planning or scheduling problem. Certainly, this problem
is mathematically demanding because scheduling problems alone are already very difficult to solve, e.g.,
one reason why scheduling problems are often difficult to solve lies in the fact of limited resources (raw
material, machine availability, or personnel). However, if the design and planning/scheduling problem are
part of one embracing model the bottleneck situation might be avoided. This simultaneous approach requires
the availability of realistic and detailed forecast of demand data and that the departments being responsible
for the design and the planning/scheduling cooperate, the latter problem is by far the more difficult one,
especially in large companies.

6.4 Solving Strategic and Operative Problems Simultaneously

Imagine a company running a production network like the one described in Section 4.2. The company wishes
to buy additional plants, wants to open some new reactors based on improved technology, or to shut down
some older reactors. In chemical multi-stage production there might exist logical connections between the
status of certain reactors. The data governing such decisions are the cost to buy a plant, or to open or
shut down a reactor. The investments or deinvestments should be sound over a time horizon of, say, up
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to 15 years. The best approach to analyze such situations is to develop a model like the one sketched in
Section 4.2 and to enhance it by additional design plant or design reactors (leading to design variables and
constraints) and let the model provide suggestions on optimal design decisions. Regarding the database, it
is necessary to provide the full data set (recipes, production rates and capacity, etc.) for all design plants
or design reactors. All financial data should be discounted over the time horizon in order to support a net
present value analysis. Some chemical companies actually take this combined strategic/design & operative
planning approach [34]: provided, that optimality is proven, it is an elegant approach, it saves huge amounts
of money and also supports an analysis related to the stability of the solution or new design.

Another typical case of large site design problem involving operative aspects (forecasted demands to be
satisfied), fully described in [32], is the optimization of a network of process units at a large production site
connected by a system of pipes subject to design decisions and the option to invest into new re-processing
units. Especially, if new sites are established in otherwise nonindustrial areas, e.g., some plants in South East
Asia, appropriate models embracing strategic and operational designs almost certainly lead to great benefits.
As described in the section above, the reason why this approach is taken only rarely, is not a mathematical or
technical one but rather: has its reasoning in cultural and inter-departmental structures of large companies.

7 Social Impact, Limits and Future Perspectives of Mixed Integer Optimization

The real world problems successfully solved at large companies in the chemical, airline, refining and other
industries demonstrate the huge potential for reducing costs, increasing efficiency and flexibility and generally
contributing to the effective management of the enterprise.

However, despite improved algorithms, hardware and software technology, the professional optimization
specialist always faces the reality that once he has solved a client’s problem the client will inevitably come
back with a tougher problem. For instance, the client will increase the number of time periods in a multi-time
period model or perhaps disaggregate some process that has been modeled fairly crudely into its separate
components, thus rendering the problem bigger and generally harder to solve.

In practice users seem to think about solution times in several possible bands. The first acceptable band
is where the solution time for the problem is of the order of 12 hours, so one overnight run can be done per
work day. There is, in practice, little benefit to be gained from reducing this to 8 hours since probably there
will still only be one run possible per day. The next band of solution times is of the order of one hour where,
if we allow some time for the user to inspect his results and decide upon another scenario to analyze, it is
probably possible do two or three runs per day. The next band is where the solution times are of the order
of a minute or so, at which point several benefits start to accrue. The first is that now the user can start
to contemplate optimization almost ‘on-line’, i.e., to use it to adapt to the situation as data changes. The
second benefit is that the user can rapidly analyze many scenarios and start to get a good understanding of
how the solution changes as parameters change. The final band of solution times is where the optimization
takes the order of a second. We really have on-line optimization.

How can we cope with the expectations of users, who have the need to solve ever larger problems in less
time? We have already stressed that modeling is vital to practical optimization. It is just about possible
to get away with poor modeling if the problem is a pure LP problem. As long as the model is correct the
implications of a poor (larger, redundant) model are likely just to be longer running times by a factor of
perhaps 2 or 3. Not desirable, but not disastrous. But when we move to MILP or even MINLP problems we
cannot afford such laxity. Here the difference between a good and a poor formulation may not be 2 or 3, but
perhaps 5 or 6 orders of magnitude increase in solution times. The problem becomes effectively insoluble.

It is our experience that analysis and hard work by experienced and expert modelers very often yields
several orders of magnitude improvements in solution times for MILPs. Even when the problem is just too dif-
ficult to solve, the insights obtained by this analysis and hard work often give very good heuristics. One might
anticipate that with growing hardware and software capabilities the importance of the experienced modeler
decreases. The opposite is true. Experienced modelers will become more important, because, when hardware
and software capabilities grow there is demand for more complex and realistic models because clients will
ask for more details in the model. It is the modeler’s task and responsibility to bring clients demands and
mathematical programming reality to a fruitful liaison. In addition to better hardware the modeler will be
facing more intelligent algorithms implemented in commercial software, e.g., providing efficient Branch&Cut
routines which requires that modelers really keep themselves up-to-date. Not only MILP but also MINLP in
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general will become tractable. Last, but not least, modelers will have more flexible modeling tools at their
finger tips: Model generators supporting cutting plane algorithms, formulating optimization problems from
graphically designed network flow problems, providing links to complete different solution algorithms, and
allowing to switch between different solvers.

Despite the success observed when applying MIP, the support given to expert decision making by this
technology is still far from being widely accepted. Very often, analysts experience great reservations when
talking to people working in production, logistics or marketing. There is a psychological and/or cultural
barrier. Experts are used to decision taking based on experience and heuristic rules which are difficult to
express explicitly. The approach to achieve objective solutions which can be controlled on a quantitative basis
is new. It may create unconscious fears, and may in addition require a huge effort to explain the problem
of interest to a non-specialist with the appropriate degree of completeness and accuracy. Indeed, on the
one hand the mathematical kernel of the application operates as a black box usually difficult to understand
for non-mathematicians. On the other hand, experts are afraid to lose influence and acknowledgment when
outsiders, in this case mathematicians, can produce solutions which prove to be better in terms of costs,
contribution margin, utilization rate or some other valuable quantity, when compared to their solutions.
Usually at least 50% of all efforts and time spent during project work trying to solve a real-world problem
using mathematical optimization methods is related to psychology, i.e., talking to clients in order to increase
the acceptance of the solution techniques or removing reservations and fears against mathematics.

8 Support and Consulting Firms

Since mixed integer, and especially mixed integer nonlinear optimization problems are difficult to solve, one
might expect that universities and research institutions engaged in optimization research and its applications,
e.g., Abo Akademi, Carnegie Mellon, Imperial College, Princeton and Purdue are appropriate addresses to
be contacted. Another, natural idea is to contact the software and tool developers such as

AMPL, Bell Labs (http://www.bell-labs.com/),
CPLEX, ILOG Consulting Group (http://www.ilog.fr/corporate/support/),
GAMS Inc., Washington D.C., US (http://www.gams.com),
LINDO Systems Inc. (http://www.lindo.com),
NovaeTechnology Inc., US (http://www.novaetechnology.com),
MathPro 2000 (http://sundown-vmp.com/mathpro),
OSL, IBM Business Consulting (http://www.ibm.com/services/buscon/),
XPRESS-MP, Dash Associates, Ltd., England, (http://www.dash.co.uk).

In addition, or alternatively, one might consult firms specializing on projects related to optimization, e.g.,
ARKI Consulting & Development A/S, Denmark (e-mail to info@arki.dk),
MαBOS Mathematical Business Optimization Services GmbH, Germany (http://www.mabos.com),
Mathesis GmbH, Germany (http://www.mathesis.de),
TechnoLogix Decision Sciences Inc., Canada (http://www.technologix.ca).

These firms have clearly the advantage that they are not biased in terms of tools and software packages.

9 Summary

We have provided an overview on real-world problems which can be successfully tackled by mixed integer
optimization (MIP). Some of them have been discussed in detail and the importance of good modeling
practice (e.g., ensuring that the linear programming relaxation is close to the convex hull, or that the initial
values used in nonlinear problems lead to fast convergence) has been stressed. Especially, nonlinear problems
are very demanding in terms of mathematical modeling, appropriate tuning of the algorithms (e.g., scaling),
and the quality of initial values computed, for instance, by special homotopy techniques.

We have seen that MIP can provide a quantitative basis for decisions and allow to cope most successfully
with complex problems. MIP has proven itself as a useful technique to reduce costs and to support other
objectives. It is a technique under continuous development and has much to offer for the future. Some
further areas MIP might enter or new directions in which MIP might move have been indicated: combined
strategic&operative as well as combined design&operative modeling.
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While MIP has already well established itself, further quantum leaps in practical optimization are to be
expected. Global optimization of nonlinear problems knocks at our doors and might, say, within 5 to 10
years, play a similar role as does MIP nowadays.
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