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ABSTRACT

Optimization procedures currently in use in the solution of eclipsing binary light curves require calculation
of partial derivatives of received light with respect to the system parameters. Large amounts of computer time
may be required for these calculations. Complications often arise in achieving convergence with differential
correction techniques. These complications may result from an initial parameter set that is too remote from
the correct solution, inaccurate calculated derivatives, parameter correlations, or an ill-conditioned set of

normal equations.

We present an optimization procedure, the simplex algorithm, which cannot diverge, requires no calculated
partial derivatives, is capable of automatic iteration, is operationally stable, and is computationally efficient.
An application to MR Cygni data, using individual observations rather than normal points, illustrates the

operation of the method.

Subject headings: numerical methods — stars: eclipsing binaries — stars: individual

I. INTRODUCTION

The analysis of eclipsing binary light curves involves several
distinct subjects: (1) the physical model; (2) the mathematical
and numerical representation; (3) the parameter fit procedure
and a discussion of the errors of the estimated parameters. The
first subject requires choice of a physical model appropriate to
the investigation. The choice is guided by current knowledge of
binary star physical properties and is conditioned by due
regard for detectability of separate physical parameters, in the
environment of current observational technique. The model
should be general enough for wide applicability, with only the
model parameters varying from case to case. Thus, the Russell
model has been superseded by the Roche model, not because
the former was incapable of representing observational data
extant at the time, but rather because of recognized deficiencies
in the physical accuracy of the former as compared with the
latter. The Roche model itself is deficient in the sense that it
provides no basis for calculating physical properties that
depend explicitly on density in the photospheric region. Thus,
the Roche model cannot be used to calculate a model atmo-
sphere for a tidally and rotationally distorted star, in which the
atmosphere parameters vary with both polar angle and
azimuth. On the other hand, it is not clear that an improved
model is needed by current observations, generally speaking.

The second subject concerns the mathematical model, spe-
cifically an appropriate means of representing the geometry of
the system and its physical properties. Major problems in the
numerical representation are numerical accuracy and the
associated large amount of computer time involved in sophisti-
cated mathematical models.

The third subject concerns a parameter optimization pro-
cedure. The direct problem—given model parameters, to calcu-
late the resultant light curve—is analytically straightforward.
The inverse problem (IP)—given the light curve and perhaps
also the radial velocity curve, to calculate the model
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parameters—involves a number of hidden hazards. Parameters
may be correlated. A parameter which may be well determined
for complete eclipses is poorly determined for partial eclipses.
The IP is strongly nonlinear, and this feature deserves con-
sideration in any choice among options for parameter opti-
mization. Since an initial selection of parameters may be little
better than a guess, use of an optimization procedure is essen-
tial. In some cases, prior familiarity with the effect of a particu-
lar parameter on a light curve can support a “cut and try”
optimization. There is no guarantee that his procedure will
produce the best set of parameters. Also, the procedure is
unsystematic and can be wasteful of computer time. The error
in the complete problem solution involves contributions from
several sources. The mathematical procedure which translates
the physical model into calculable representation may have
inherent limitations. For example, the Roche model radius
must be calculated numerically; this feature draws attention to
the convergence properties of the algorithm which calculates
the radius. Implementation of the mathematical procedure
involves inevitable truncation errors in a finite word-length
computer. A compromise must be made in the choice of grid
density, on the stellar component photospheres, between desir-
able numerical accuracy and available CPU time. The pro-
cedure of fitting the mathematical model to the observed data
involves a separate error. When the fitting procedure is com-
plete, as determined by an appropriate criterion, the remaining
errors arise from the unavoidable observational noise and pos-
sible systematic effects, the latter indicating a defect in the basic
physical model. This assumes the observational data are free of
extinction reduction errors.

This paper focuses mainly on the third subject and presents
an application of the simplex procedure to the optimization of
eclipsing binary model parameters. The simplex procedure is a
direct search method and therefore does not require partial
derivatives of the calculated light with respect to the system
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parameters. It has achieved increasing popularity in other
fields, for instance in analytical chemistry (Long 1969; Yarbro
& Deming 1974).

Section II of this paper discusses properties and advantages
of several optimization techniques. Section III considers the
implementation of the simplex algorithm for the present appli-
cation. Illustrative results for a test case, MR Cygni, are in
§ IV. Future prospects are in § V and conclusions are given in
§ VL

II. ECLIPSING BINARY OPTIMIZATION TECHNIQUES

a) Differential Corrections

This procedure linearizes the problem by expanding the
expression for the weighted sum of squares of system light
residuals (WSSR) about the currently-adopted parameters
X© To the best of our knowledge, no other optimization
technique is in current use in light synthesis programs. The
expansion adopts a calculation of partial derivatives 0I/0x; of
system light I with respect to individual parameters x; in
terms of finite symmetric or asymmetric differences [subscript
¢ indicates a calculated quantity, and superscript (i) labels the
successive phases of observation]. The Wilson-Devinney (1971,
hereafter WD) program and also the Wilson (1979) program,
which together are by far the most widely used current opti-
mization programs, use this procedure. A set of normal equa-
tions connects the unknown parameter increments with light
residuals. Thus, if x; represents the jth parameter to be adjust-
ed, the program calculates 01/0x;. The light residual at orbital
phase Y@ is 619 = I{ — 19, where I§ is the observed light and
19 = [ [y, X©], where X© designates the current set of
parameters. The light residuals permit calculation of WSSR.
The least-squares criterion and linearization lead to a linear set
of normal equations, of the form DC = G, where the matrix D
contains all partial derivatives and also all information needed
to calculate the covariance matrix for the parameters to be
estimated, C is a one-column matrix of the unknown param-
eter increments, and G is a one-column matrix containing
weighted residuals (Linnell and Proctor 1972). The matrix D
then is inverted by a standard algorithm to produce D%, and
the solution vector follows from C = D™ !G. It is the least-
squares criterion which makes calculation of 9I/0x; necessary.
Due to the linearization it is necessary to iterate the process. It
is an implicit expectation that the corrected parameter set
migrates to the true minimum of WSSR.

The following problems arise with this procedure.

1. The differentials correction (DC) procedure is a local pro-
cedure, ie., it requires that the initial parameter set X‘© be
“close enough” to the local minimum at X*. What “close
enough” means can be said more precisely, as in Osborn
(1972), in terms of the local curvature in the hypersurface pro-
duced by WSSR = W45R(l,, X). These criteria cannot be
checked easily. It may happen that the initial approximation
X s far from X*, and the iterative procedure diverges.

2. Convergence to an accurate solution requires accurate
values of the derivatives, particularly during the final iter-
ations. The common finite difference approximation is
0l9/ox; ~ Al/Ax;. Formally, an accurate approximation
requires a small Ax;. The smaller Ax; is made, the more strin-
gent is the requirement for numerical accuracy in calculating
Al?, since the latter quantity becomes a smaller and smaller
difference between nearly equal numbers. If one needs the
partial derivatives of m parameters using asymmetric differ-
ences, one has to calculate m + 1 light curves, and for sym-

metric differences, 2m + 1. Since the calculation of one light
curve can consume an appreciable amount of computer time,
all DC procedures are expensive in terms of computer time.

3. The DC procedure is sensitive to correlation between
parameters; this can lead to failure to achieve an iterative solu-
tion.

4. The matrix D is often nearly degenerate. The problem
becomes particularly ill conditioned when a large number of
parameters are included simultaneously. Wilson and Biermann
(1976) introduced the “method of multiple subsets.” This is
also used by Khaliullina and Khaliullin (1984). There do not
appear to be any quantitative mathematical theorems about
the requirements of this technique, and it difficult to give a
systematic algorithm to solve a problem by applying this
method.

5. Criteria to decide when to terminate DC iterations can be
arbitrary. Choosing to stop when the correction to any param-
eter is ~ 1/10 its calculated probable error does not guarantee
that an asymptotic convergence is complete. Since the prob-
able errors depend on WSSR, a situation could arise in which a
calculated correction to a parameter is small, at a particular
iteration, but in fact the solution is not close to the true WSSR
minimum. Even worse, it may happen that the WSSR increases
after a correction. As one notices in Wolfschmidt (1980), for
some stars the successive iterations may be erratic and may
require up to 250 steps of iteration for convergence.

b) Alternatives to the Differentials Correction Method

The problems just discussed can be reduced to problems in
terms of accuracy and amount of CPU time required to
compute the partial derivatives. Two improvements are pos-
sible. First, one could seek to calculate partial derivatives ana-
lytically. This approach, introduced by Linnell and Proctor
(1972) in Russell Model solutions, achieves high accuracy and
avoids the large number of calculated light curves otherwise
required. This method is not possible for all parameters; a
separate discussion will appear in a following paper by one of
us (J. K.). Second, one could try to avoid the use of partial
derivatives at all. That would require a different optimization
procedure. There are other functions than WSSR that may be
chosen for optimization, and there are other optimization pro-
cedures than the DC in use by astronomers. Examples are the
procedures described in “maximum entropy methods”
(Skilling and Bryan 1984). Horne (1985) applied these methods
to map accretion disks in binary star systems. Unfortunately
these methods require calculation of derivatives. Overviews of
“direct search methods ”—which by definition do not require
derivatives at all—are given in Murray (1972). Compared with
other gradient-free methods, for instance the Fibonacci line
search, the simplex algorithm as given by Nelder and Mead
(1965, hereafter NM) becomes more efficient when there are
more than two or three parameters to be adjusted. We stress
that the efficiency of a procedure is a matter of the efficiency of
the convergence effectiveness and the efficiency of calculation
of all quantities needed in the algorithm. DC and all derivative
dependent procedures are most efficient with respect to con-
vergence effectiveness but are very inefficient when one con-
siders the need to calculate m + 1 or 2m + 1 light curves at
each iteration.

¢) The Simplex Algorithm

As a direct-search method, the simplex algorithm (SA) does
not depend on gradients (first-order derivatives) or quadratic
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forms (second-order derivatives). Instead, it compares function
values at the m + 1 vertices of a geometrical figure called a
simplex. In a first realization by Spendley, Hext, and Hims-
worth (1962), this figure moved through parameter space by
means of an operation which later was called “reflection.” In
this form it is similar to a “steepest descent” procedure.
However, the maximum gradient direction of WSSR was not
calculated explicitly. In the much more efficient form by NM,
four operations on the simplex (see Appendix) are allowed. By
means of “reflection,” “expansion,” “contraction,” and
“shrinkage” the simplex moves through parameter space,
adapts itself to the local topology, and contracts to the final
minimum. These operations can be controlled by three or four
parameters. The simplex algorithm can easily be understood in
geometrical terms. There are m + 1 different parameter sets X
with m parameters each, and WSSR(X) is defined to be the
(m + 1)th entity for an m + 1 dimensional simplex. To find the
local minimum on the WSSR(X) hypersurface, the simplex
determines, at each step, the vertex with highest and lowest
WSSR value and eliminates the one of highest WSSR value by
the scheme given in the Appendix. The simplex can never lose
the best value (the WSSR of smallest value). The speed of
convergence usually is reduced when there are parameter cor-
relations (valleys in the WSSR landscape). In our experience
the simplex does not fail even in these cases. The speed of
convergence is only slightly dependent on the initial simplex,
calculated according to Yarbro and Deming (1974, hereafter
YD). If necessary, the simplex can have an arbitrarily large
volume in parameter space. Therefore it is a global procedure
for “searching” through parameter space. The calculation of
the initial simplex requires the calculation of m + 1 light curves
for adjusting m parameters. Later the algorithm does not
depend on m directly. By contrast, as mentioned earlier, the
DC and similar procedures have the disadvantage that they
can only improve an estimated or current iterative parameter
solution, but may diverge if the current parameter set is far
from the correct set. Using the final simplex, it is possible to
calculate the covariance matrix of all estimated parameters
and use this to estimate their errors.

III. PROGRAM TO IMPLEMENT SIMPLEX METHOD

A global control program called LCCTRL—written in VAX
750 FORTRAN—provides the user with all I/O routines which
are needed, prepares input and output data for graphical repre-
sentation, allows separate calls for generation of light curves,
and creates connections between the simplex algorithm and
the WD program. We initially implemented the simplex
method with the WD program because it is simpler than the
Linnell (1984) program. (We have now implemented the
simplex method with the Linnell program.) A subsequent
paper will compare the WD and Linnell program results for
MR Cygni. LCCTRL allows automatic iteration with both the
DC and the SA. Automatic iteration is regarded as dangerous
with the DC, but LCCTRL has a set of constraints and other
checks to avoid unphysical parameters as arguments for WD.
Furthermore, LCCTRL can be used to apply a sensitivity
analysis to evaluate the errors of the parameters, as suggested
by Caceci and Cacheris (1984), different from the covariance
matrix method. The physical model used to generate light
curves is that of WD with modifications up to 1978. Some
subroutines have been changed, and different structures have
been substituted in parts of the original program. The program
uses only integer, double precision, and character variables

and uses the new structural features of FORTRAN 77 wherever
possible. The algorithm given by YD to produce the initial
simplex has been changed. The user can now chose to have the
initial parameter set X in the sense of YD, or to define an
initial simplex with a center near the X', or to give a hyper-
cube on whose edges lie the vertices of the initial simplex.
LCCTRL provides the user with some “restart ” features. This
allows one to check the current iteration while the program is
running, to control it interactively, and to restart the program
if it has been stopped. Subroutine SIMPLEX occupies 350
program statement lines, including comment lines. We use a
criterion suggested by NM to stop iterations. The criterion
compares the standard deviation of residuals with a previous
value derived from the observed light curve. After 20 or 30
iterative steps (with 320 grid points on each star, 168 data
points, and nine free parameters and requiring roughly 120 or
150 minutes VAX CPU time) we achieved an accuracy of 0.02
for the standard deviation of the MR Cygni residuals. We
terminated iterations after 60 steps and achieved a standard
deviation of 0.007. By comparison, one step applying sub-
routine DC (differential correction) to 336 data points and nine
adjustable parameters and 2000 grid points on each star
required ~ 75 minutes CPU time on the same machine.

IV. RESULTS FOR MR CYGNI

We chose to study MR Cygni for a variety of reasons. The
mass ratio is still uncertain. WD used the photometric data of
Hall and Hardie (1969) and assumed a mass ratio of 0.83. They
(WD) did not adjust this quantity. Hill and Hutchings (1972)
prefer a value of 0.55 derived from their spectroscopy. WD
fixed the polar temperature of the second star to a fixed value
of 13,500 K. This polar temperature is not appropriate for a B8
secondary, the spectral type derived by Hall and Hardie (1969)
from color data. We used the Hall and Hardie (1969) UBV
data. The efficiency of SA allowed us to use all 336 data points.
In practice, DC typically has used about 50-70 normal points.
We stress that the great efficiency in SA computer time arises
mainly from the fact that we do not depend on a very high
precision grid. The only requirement was that the error pro-
duced by the grid was smaller than the residuals I — I, In the
final stage of the fit, residual errors were of order 10~ 3. Increas-
ing the number of grid points from ~ 300 to ~ 2000 produced
changes in computed light values I on the order of 10™4. It
proved useful to select a subset of the individual observations
during initial steps of the simplex. The complete set of individ-
ual observations was used in the final adjustment.

Figures 1 and 2 illustrate the simplex operation with the MR
Cyg V data. For this demonstration purpose we adjusted only
the mass ratio and orbital inclination; we fixed all other
parameters at their final values achieved in the separate com-
plete iteration procedure. A limit of two parameters enables a
presentation of simplex operations on a plane. The initial
range of parameters leads to a triangular simplex with one
vertex, marked 0, at ¢ = 0.3, i = 75° in Figure 1. WSSR is
highest for vertex 0. The next simplex is produced by reflection
with respect to the center of all other vertices. It was accepted,
since the new vertex had a lower WSSR. At this stage—not
displayed in this diagram—the SA made an unsuccessful trial
to extend the reflection. “ Reflection ” is designated by an oper-
ator & on the diagram. Simplex 2 is produced by “ contraction,”
controlled by an operator f. Figure 2 corresponds to the
dashed box in Figure 1. The final simplex in Figure 1 has
heavy lines and vertices 4, 6, and 7. The same simplex vertex 7
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FiGc. 1.—Change of simplex shape while moving through i-q parameter plane
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MASS RATIO q = m,/m,

FiG. 2—Change of simplex shape while moving toward local minimum at i = 82243, 4 = 0.770
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appears in Figure 2. Not all sides of the simplex triangles have
been displayed in Figure 2, for clarity of presentation. Figure 2
illustrates the simplex migration concluding with step 15. The
small double circle shows the vertex location on step (or iter-
ation number) 25. Figure 3 shows the decreasing ranges of the
two parameters. Each vertical bar, for a given step or iteration
number, shows the range of that parameter for the current
simplex. Figure 4 shows the largest and smallest standard devi-
ation for the current simplex, as a function of step number.
Note that although the vertical bar length may increase in
some instances with a successive step, the top of the bar, rep-
resenting the maximum standard deviation for the simplex,
never moves higher. Neither does the smallest standard devi-
ation, the bottom of each bar.

It may be appropriate to start with analysis of individual
wavelength light curves. The final geometric quantities should
have values independent of wavelength. A large disagreement
among different wavelength solutions is indicative of a failure
of the underlying physical model, assuming correct mathemati-
cal and numerical models. If the solutions fit together well, one
can attempt a simultaneous fit, as suggested by Wilson and
Devinney (1972). The newer version of WD allows the user to
choose a mode between —1 and 6. The 1971 version of WD
ran only in mode 0. We used the same mode to provide a valid
comparison, even though that mode is not the most sensible
one. L,, L,, T;, and T, are not coupled in this mode as they
should be, physically. An exact direct comparison was difficult,
since the program version we were using had undergone some
changes from the 1971 version. Our version includes an

KALLRATH AND LINNELL

improved treatment of the reflection effect, as given by Wilson
et al. (1972). For simplicity in this initial test, we have set all
weights to unity. The separate fits to the V, B, and U data are
in Figures 5, 6, and 7 respectively. The parameters subject to
adjustment in these fits were: i, T, Q,,Q,, g, L, L,, x,, and x,.
WD, as controlled by LCCTRL, provides a routine to calcu-
late the parameter errors. However, as suggested by NM, the
errors could have been calculated from the final simplex.

A plot of residuals appears beneath each separate wave-
length light curve fit. The V residuals show no systematic trend
with phase, and no seriously discrepant observations are
apparent. There are one seriously discrepant B observation
and two fairly discrepant U observations. A 3 ¢ test would
eliminate these points and produce improved standard devi-
ations. It is our contention that light curve solutions should
generally show a plot of residuals of all data points, particu-
larly when the plotted light curve appears to fit the observa-
tions accurately. This was not possible in the WD solution,
since normal points were used. Note that the B and U residuals
generally show no systematic trends except within secondary
minimum. The opposite sense of residuals tilts suggests a pos-
sible problem with extinction correction.

To effect a comparison with the WD solution we have calcu-
lated residuals, using the WD program and the parameters
listed for their V' curve solution. Unfortunately, WD do not
give the unnormalized luminosities L, and L, for the B curve.
The V residuals for the original WD solution are in Figure 8. A
slight systematic trend is evident in the V residuals, with the
residuals near phase 0.50 slightly above the residuals near
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F1G. 3.—Maximum and minimum values of i and g, within simplex, as function of step or iteration number
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FiG. 5—Fit to V data, WD program. Bottom, Light residuals times 10°.
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Vol. 313

LT. RATIO*10~!

phase 0.0. The residuals are mainly negative, indicating that
either the model was incapable of representing the observa-
tional data or that the optimization process—particularly for
the inclination—had not gone to completion.

Parameters of the system, separately in U, B, and V, are in
Table 1. For convenience we list the same parameters from the
separate WD B and V solutions. Here, L, and L, are the
component luminosities in the units defined in the WD
program; I, and I, are the corresponding fractional system
luminosities. Other parameters have their usual meanings
(Wilson and Devinney 1971). Note that 7; must be adopted
from considerations external to the light synthesis programs.
Values from theory have been adopted for g,, g,, 4;, and 4,.
We list formal probable errors only for quantities subject to
direct adjustment. Note their substantial reduction from the
original WD solution.

A comparison of the geometric parameters in the separate
light curve solutions led us to attempt a simultaneous fit to the
B and V curves. The presence of the Balmer discontinuity in
the U band commended exclusion of the U curve at this stage.
We included the U curve in a subsequent simultaneous solu-
tion, for test purposes. We chose mode 2 as more appropriate,
physically, than mode 0. In this case the unnormalized lumin-
osities L, , and the polar temperatures T, , are coupled by the
Planck function. This optimization employed light-level-
dependent weights, with a light-level exponent of 1 (b =1 in
the nomenclature of Linnell and Proctor 1970). An important

PHASE*10™!
FiG. 6—Fit to B data, WD program. Bottom, Light residuals times 102.

point for this paper is that the simplex procedure produced an
excellent simultaneous solution also. The limb-darkening coef-
ficients were allowed to vary over a quite large range [0.1, 0.6].
The final values were in better agreement with Kurucz atmo-
sphere values than was true in the original WD solution. We
used linear limb-darkening tabulations by Wade and Rucinski
(1985) for this comparison. Our trials covered a large g range
[0.3, 1.0]. Our solutions never converged to a mass ratio less
than 0.70. Table 2 provides a summary of system parameters
from our simultaneous V, B solution. The first solution
(col. [2]) provides final results in mode 2 using the parameters
listed by Wilson and Devinney (1972). Theirs was a simulta-
neous B, V solution, indicated by BV in the column heading.
The wavelength-dependent parameters are in the sequence B,
followed by V' in parentheses. The second solution (col. [3]), in
mode 2, used the simplex algorithm for optimization. The third
solution (col. [4]) with light synthesis by SYNPGM, lists L,
and L, bolometric luminosity in solar luminosity units. The
values of I, and [, are the corresponding bolometric fractional
luminosities. SYNPGM refers to the Linnell program. We do
not list probable errors for the SYNPGM solution, since we
have not yet implemented means to calculate them with the
simplex procedure. The simultaneous U, B, V solution was less
satisfactory in the sense that a larger WSSR remained after
many iterations. We attribute this behavior to a model failure
arising from the presence of the Balmer discontinuity, together
with the attempt by the model to represent the continuous
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Fi6. 7—Fit to U data, WD program. Bottom, Light residuals times 102.

radiation curve by a blackbody. We defer further discussion of
a physical model of MR Cygni to a subsequent paper.

V. FUTURE PROSPECTS

The SA version we are now using could be improved in
several ways. First, some sophisticated enhancements of the SA
itself, discussed by Parkinson and Hutchinson (1972), are pos-
sible. Second, a more efficient formulation of SA is possible
specifically for eclipsing binary light curve applications. Next, a
combination of the SA as the initial search procedure and a
following procedure, which makes use of the information that
one is close to the local minimum, may be possible. In the

current version LCCTRL already provides an option to switch
from SA to DC. This feature was not used, since we wished to
avoid the calculation of derivatives.

VI. CONCLUSIONS

1. We have demonstrated the utility of a new parameter
optimization technique for binary star light curve solutions.
This technique, the simplex algorithm, cannot diverge, does
not require partial derivatives of calculated light with respect
to system parameters, is capable of automatic iteration, is
operationally stable, and is computationally efficient.
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FiG. 8—YV residuals from original WD solution
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TABLE 1

SEPARATE UBV LIGHT CURVE ANALYSES

WILSON AND DEVINNEY 1971

WD (mode 0) + SIMPLEX

rTI87A

B 14 U B vV
82229 + 0230 83928 + 0°61 82252 + 0°03 81279 + 0°12 82°81 + 0°04
435 550 365 435 550
9.8416 + 0.1016 9.8078 + 0.0574 9.2258 + 0.0595 9.6337 + 0.0461
2.6984 + 0.0953 2.2831 £+ 0.0431 29311 + 0.0487 2.8514 + 0.0400
0.7698 + 0.0087 0.7848 + 0.0081 0.8110 + 0.0047 0.7589 + 0.0049 0.7716 + 0.0037
0.2302 + 0.0080  0.2152 4+ 0.0076 0.1890 + 0.0036 0.2411 £ 0.0040  0.2284 + 0.0032
0.75 £+ 0.06 0.62 + 0.08 0.54 + 0.04 0.59 + 0.05 0414 + 0.038
—0.36 + 0.21 —-0.11 £ 0.12 0.59 + 0.22 0.49 +0.21 0.637 + 0.160
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18,000 18,000 18,000 18,000 18,000
13,500* 13,500* 13,039 + 595 15,745 + 688 15,811 + 528
0.83* 0.83® 0.740 + 0.004 0.824 + 0.005 0.767 + 0.004
3.828 + 0.017 3.749 + 0.017 3.796 + 0.002 3.884 + 0.005 3.671 + 0.005
3.906 + 0.030 4.009 + 0.035 3.551 + 0.002 3.762 + 0.001 3.674 + 0.002
0.329 0.337 0.323 0.327 0.340
0.371 0.388 0.356 0.366 0.385
0.340 0.350 0.342 0.348 0.363
0.356 0.369 0.346 0.353 0.369
0.290 0.280 0.300 0.303 0.295
0.322 0.307 0.344 0.343 0.333
ryside ... 0.298 0.287 0.308 0.311 0.303
ryback ...l 0.312 0.299 0.329 0.330 0.321
Normal points ........ ~50 ~50 ... ... .
Data points ........... . 336 336 336
6(0—C) ccvvnnennann. 0.012 0.008 0.007 0.008
2 Fixed quantities.
TABLE 2

SIMULTANEOUS B, V SoLuTION WITH WD and LINNELL PROGRAMS

Wilson and Devinney 1972

Wilson + Simplex

SYNPGM + Simplex

Parameter BV, B(V) BV[mode 2], B(V) B and V curve
(1) (4] 3) @
| PO 82°89 + 0223 83°03 + 0°03 82250
Lo, .. 9.3610(9.2988) + 0.0236(0.0327) 1830 L,
) - 2.8215(3.2352) + 0.0071(0.0114) 340 L,
| PR 0.7950(0.7785) + 0.0059(0.0059) 0.7684(0.7419) + 0.0019(0.0026) 0.8431
Ly el 0.2050(0.2215) + 0.0054(0.0055) 0.2316(0.2581) + 0.0006(0.0009) 0.1569
X g et 0.70 (0.65 )+0.03 (0.04 ) 052 (059 )+0.15 (0.02 ) Grid values
X eenteenninieaaanens 0.00 (0.00 )+0.00 (0.00 ) 0.14 (027 )+0.18 (002 ) Adopted from

1.00
1.00
1.00
1.00
435 (550)
18,000
13,500°
0.83*
3.776
3.990
0.335
0.382
0.347
0.364
0.282
0.310
0.289
0.302

+ 0.013
+ 0.022

1.00
1.00

1.00

0.53

435 (550)
18,700
12,934
0.702
3.611
3.482
0340
0381
0.361
0367
0.296
0339
0318
0324
0.0067(0.0088)°
2 x 335

+ 0.04

+ 0.002
+ 0.004
+ 0.003

Kurucz atmospheres
1.00
1.00
1.00
0.53
435 and 550
18,700
12,808
0.788
3.841
3.701
0.324
0.360
0.337
0.348
0.299
0.341
0.313
0.326
0.013(0.015)°
22 335

® Fixed quantity.
® Weighted (b = 1).
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2. Separate V, B, and U solutions of MR Cygni data
achieved reasonably accordant geometric parameters. The sol-
ution used individual observations rather than normal points.

3. We find limb-darkening coefficients that agree better with
values from Kurucz atmospheres than was true for the WD
solution. The original WD solution, using the initial version of
the WD program, was troubled by negative limb-darkening
coefficients for the secondary component.

4. We provide separate residuals plots in V, B, and U as a
standard feature of light curve solutions. The plots generally
show no systematic trends and have individual means of zero.
As a separate test we calculated residuals, in mode 0, using the
WD solution parameters and the V light curve. A slight sys-
tematic trend was evident, and the mean was not zero, indicat-

ing the possibility that the solution had not gone to
completion.

S. The simplex procedure worked well in achieving a simul-
taneous solution with the combined V and B data, and again
with the combined U, B, and V data. The latter solution was
less satisfactory than the former. We attribute this feature to
failure of the blackbody approximation together with presence
of the Balmer discontinuity in the U band. We defer detailed
physical discussion of the system to a subsequent paper.

J. K. wants to thank R. E. Wilson for his helpful discussions
of the WD program during a Florida visit and gratefully
acknowledges financial support from a stipendium of the
Cusanuswerk (Federal Republic of Germany).

APPENDIX

To adjust m parameters (x;, ...

, X,,) = x, such that a real function f(x) is minimized, define a “simplex” in an m-dimensional

space as a set of m + 1 points which span a subspace. Let V®, i = 1,..., m + 1 be the vertices of the simplex S® in the kth step of
iteration with coordinates x{*. For practical purposes choose S® asan (m + 1) - (m + 1) dimensional matrix S defined by

x® 1<j<m,
5= {ff=f(x.~) L jemtl. @y
Further definitions hold for each step separately

fr=max[f,1<i<m+1], (A2)
fi=max [f,1<i<m+1,i#h], (A3)
fi=min[f,1<i<m+1], (A4)

1 m+1
X = i; x; ; center of simplex . (AS)

i#h

The initial simplex S'© depends on m, an initial vector x{ and a vector AS = (S, ...

, S,,) which contains a step size for each

parameter. An algorithm by Spendley, Hext, and Himsworth (1962) and YD constructs S = $°(m, x{, As) using

p=[m+ 1) +m—11/(/2m), (A6)
q=[m+ ) - 11/(/2m), (A7)
1
xﬁ}”:x‘l‘}’+sj-{ ;=i—1, (A8)
otherwise .

We also use S = SO[m, x{? — gAS, AS] and §© = SO[m, x{¥, AS/p] as alternative procedures for the initial simplex S©.
In agreement with the nomenclature used in Figure 9, define the vector functions

X, =X, (x)=(1+ a)x, —ax;
x5 = x5x):=(1— B)x. + Bx;
X, = xy(x) = (1 - y)xc +yx;

X5 =Xx5x):=x,4+ 0(x — x)) ;

There are four possible operations &, 7, f and & to map S® on §*1:

1. Reflection

2. Expansion  S**1 = §s®

SETD — 580 e, x, - x,(x) ,

ie, X, x,(x),

0 < o = reflection coefficient, (A9)
0 < B = contraction coefficient < 1 , (A10)
0 < y = expansion coefficient , (A11)
0 < 6 = shrinkage coefficient . (A12)

if f(>f>h;
if f,<fu<fi;

. . x4(x;) , if f,<f,

3. Contraction S**V =gs®  je, x _,{ B ) :
A P lxlxx)], i £ <

4. Shrinkage ~ S**V =08S®, ie, x;—x,x), if fe=fi.

These operations are combined as illustrated in Figure 9. In conformity with the results in Parkinson and Hutchinson (1972), we
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START

s0) = (;i(o), )1

I

[ X h, Xy (X,

‘—no—@ YES fo>f,
vis

rYES NO-——*
XXty Xp(Xp).fg Xp(Xg).tp
[ ]
NO——— YES—D—‘
YES NO Yi:is(z), ki
glk+1) =-;\/ (s(k)) glk+1) = & (s(k)) glk+1) =é (s(k)) glk+1) =3‘ (s(k))

l | . f !

NO.
NO

YES

STOP

FiG. 9—Flow chart for simplex algorithm

have chosen « = 1.0, § = 0.35, y = 2.0, and § = 0.5. The iteration was stopped either when k > k.., where k. is a previously given
maximum number of iterations, or when ¢, < o.,,. Here o, is a preset value and usually is related to the standard deviation of the
observational residuals and o is the standard deviation of the f’s in the current simplex:

1 m+1 m+1
2 _ *)2. *
o2 = - - - (A13)

b= LU = T

A separate criterion would be to stop when f* < a.,,.
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