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Abstract

The goal of this project was to compute minimal cost solutions satisfying the demand
of pre-given product portfolios and to investigate the dependence of the fix costs and
investment costs on the product portfolio.

The most important parameters characterizing the production facilities are the number
and the size of the reactors. The production is subject to shelf-life constraints, i.e.,
products cannot be stored longer than one week.

Even if we analyze this problem under the simple assumption of constant batch sizes
and limit ourself to only one time period covering one week, the computation of mini-
mum cost scenarios requires that we determine global minima of a nonconvex MINLP
problem. An objective function built up by the sum of concave functions and trilinear
products terms involving the variables describing the number of batches, the utilization
rates and the volume of the reactor are the nonlinear features in the model.

We have successfully applied four different solution techniques to solve this problem.
(1) An exact transformation allows us to represent the nonlinear constraints by MILP
constraints. Using piecewise linear approximations for the objective function the prob-
lem is solved with XPress-MP, a commercial MILP solver. (2) The local MINLP
Branch-and-Bound solver SBB which is part of the modeling system GAMS. (3) The
Branch&Reduce Optimization Navigator (BARON) also called from GAMS. (4) A tay-
lorized Branch&Bound approach based on the construction of a lower bounding problem
by underestimating the concave objective function with piecewise linear approximations
described in a forecoming paper.

Our overall conclusion from a detailed analysis of specific portfolio cases is that the
problem, for some cases, can be solved with nowadays standard solvers’ capacities but
it requires a lot of CPU time. Therefore, in order not to cover only special cases and also
to cope with the scaling properties of this problem suffering from weak lower bounds,
we recommend to use taylorized approaches in addition.

Keywords: Global Optimization, mixed integer programming, portfolio optimization,
trilinear terms, concave objective functions, convex underestimators
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1 Introduction

A business unit operating a few batch reactors wants to analyze the dependence of invest-
ment and fixed costs on given demand spectra. In this paper we analyze two different
scenarios with fewer products than typically used in that business unit, i.e., only 20 and 40
products: one including a new product with a capacity of 80.000 tons per year, the other
one a ”lean assortment” with fewer products. The current analysis should determine cost
minimal solutions which also answer the following questions:

1. How many reactors are needed?

2. What capacity should those reactors have?

3. How many batches of each product are assigned to those reactors?

This analysis will help to define the optimal reactor configurations, and, in a second step,
also to do a product portfolio analysis.

Section 2 contains a verbal description of the problem and some requirements regarding
the optimization problem. Section 3 contains the mixed integer nonlinear formulation of
the problem. In Section 4 we develop an alternative and equivalent MILP formulation. In
Section 5 we discuss two portfolio scenarios in great detail.

2 Problem Description

This section contains a verbal description of the problem and some requirements regarding
the optimization problem.

2.1 Objectives and Expected Results

The objectives of this analysis is to support our client in proving that an extensive set of
products in a portfolio does not necessarily maximize the profit. It may be much more
efficient to design some lean product portfolios. To prove this conjecture we compute
the global minimum of the investment and fixed operating costs for two different product
scenarios. Besides the costs the following detailed results are expected:

• the number of reactors required and the number of batches per reactors

• the volumes of the reactors

• which batches are produced on a certain reactor

• the utilization rates of the reactors

• surplus production with respect to the demand

These questions can strictly only be answered using exact mathematical optimization tech-
niques.
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2.2 Constraints

The production network is subject to the following constraints:

1. The demand for 20 and 40 products, specified per week and per product needs to be
satisfied.

2. All products are subject to shelf-life limits. Actually, the products can be stored for
about one week; if they are appropriately cooled they can survive a few more days.

3. All products are produced in batches of 6 hours. The feasible volumes of the reactors
are in the range between 20 and 250 m3. The filling degree or utilization rate needs
to be at least 40%.

4. For each reactor fixed costs and a nonlinear investment costs functions are known.

2.3 Costs

We consider only the following costs depending on reactors:

• fixed costs; regarding the fixed operating costs we should note that one person can
control two reactors.

• investments costs; these are given for each reactor by a nonlinear concave function
which relates the costs to the volume of the reactor.

Additional costs which one might think of, such as the costs of the production process, or
costs related to the tanks have been neglected.

2.4 Some Remarks on the Accuracy of the Data

To prove our conjecture it is sufficient to consider investment costs which are qualitatively
correct. The most important structural feature is that the investment cost – versus – reactor
volume function is concave. Thus, the actual values of the cost data and also the demand
data are of secondary importance.

2.5 Summary of the Relevant Input Data

The following input data determine the size of the problem:

• the potential number, NR, of the reactors r, 2 ≤ NR ≤ 4;

• the number, NP, (20-40) of products p, 20 ≤ NP ≤ 40;

• the maximal number, NBR = 28, of batches per reactor. This number results from the
number of hours available per week (168) and the duration of the batches (6 hours).

If one considers all index combinations of reactors and products, it turns out the number
of the nonlinear terms (products of three variables) are the critical quantity.
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3 The Mathematical Optimization Model

This section describes the mathematical model.

3.1 Preliminaries

At first we give a brief summary of the indices, sets and variables.

3.1.1 Indices and Sets

In the model we use the following indices and dimensions:

p ∈ P := {p1, . . . , pNP} for the products; NP = 40.
The products and their demand spectrum per week is pre-given.

r ∈ R := {r1, . . . , rNR} for the reactors; NR = 4.

In the model we use the following variables (the units are shown in brackets):

3.1.2 Variables

We use the following variables:

vr [m3] the volume of reactor r in m3.
Those variables can vary between 20 and 250.

frp [−] the filling degree or utilization rate of a reactor per batch.
Those variables can vary between 0.4 and 1.

pS
p [−] surplus production normalized to the demand.

Those variables can vary between 0 and 1.

tr [h] production time of reactors per week in hours.
It is useful to introduce this variable to implement the time-capacity constraint.

nB
rp [−] number of batches of reactor r and product p.

This is an integer variable taking values between 0 and 28 (in this specific case).

δr binary variable indicating that reactor r is active, i.e., selected for production, and
subject to investment cost.

cT the total costs, presently only fixed operating costs and investment costs

cF the fixed operating costs

cI the investment costs
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3.1.3 Input Data

The following input data need to be considered [units are shown in brackets]:

Costs:

CF
r [kEuro/week] for reactor r.

CI
r [(kEuro)2/m3] investment cost or depreciation cost, resp., per m3 for reactor r

in each week.

Capacities and other production data:

CT
r [hours] time capacity of reactor r; usually 168 hours, i.e., the full week.

TP
p [hours] time required to produce one batch of product p. This assumes that the

production rates are constant and the same for all products and all reactors; 6
hours in the current case.

Demand:

Demand Dp [m3] for product p per week considered. Values vary extremely between
2 and 15000.

Reactor data: The reactors are characterized by the minimal and maximal volumes and
the limits on the utilization rate.

V L
r [m3] a lower limit on the reactor volume in case reactor r is active. This makes

the volume variable, vr, a semi-continuous variable.

V U
r [m3] an upper limit on the reactor volume in case reactor r is active.

FL
r [-] the lower limit on the utilization or fill-up rates; this value, F = FL

r = 0.4,
is the same for all reactors.

Production time:

CT
r [hours] total time reactor r is available. Right now, we assume that all reactors

have the same time availability; 168 hours in the analysis.

3.2 Model Formulation

3.2.1 Objective Function

It is the goal to minimize the total costs, i.e., the sum, cT,

cT = cF + cI (1)

of the fixed operating costs, cF, given by the linear term

cF :=
∑
r∈R

CF
r δr (2)
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with CF
r = 2.45kEuro for all reactors, and the investment costs, cI, depending nonlinearly

on the volume of the reactors, i.e.,

cI :=
∑
r∈R

√
CI

rvrδr . (3)

The constant is given by CI
r = 0.97(kEuro)2/m3 and is the same for all reactors. Note that

the investment costs, cI, are built up by a sum of concave functions.

3.2.2 Constraints

The total time a reactor is used cannot exceed the available time of that reactor, i.e.,∑
p∈P

TP
p nrp ≤ CT

r δr , ∀{r} . (4)

Demand has to be satisfied∑
r∈R

prp =
∑
r∈R

nrpfrpvr ≥ Dp , ∀{p} . (5)

Note that only a fraction, frp, of the reactor volume, vr, can be used, provided that we
fulfill

FL
r ≤ frp ≤ 1 , ∀{rp} . (6)

For this analysis, F = FL
r = 0.4 is used. The difference, i.e., the relative surplus production

pS
p :=

(∑
r∈R

nrpfrpvr −Dp

)/
Dp , ∀{p} (7)

is bounded:
pS

p ≤ S , ∀{p} . (8)

The right-hand-side reflects the fact that the product can be stored at most for one week.
Therefore, 100% surplus production are allowed, i.e., S = 1. We assume that the tank
inventory has sufficient capacity.

Lower and upper bounds on reactor volume, if a reactor is chosen

V L
r δr ≤ vr ≤ V U

r δr , ∀{r} . (9)

This can also be formulated using semi-continuous variables.

3.3 Improving the Model Formulation

The problem is, due to its symmetry, degenerated with respect to the reactor volume.
This has a negative effect on the size of the B&B tree and the number of active nodes
to be investigated. Therefore, we break the symmetry by requiring that the reactors are
numbered and counted with increasing volume, i.e., we require

v1 ≤ v2 ≤ . . . ≤ vNR . (10)
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Another degeneracy is due to the fact that there are products with the same demand. This
symmetry can be broken by establishing some order in sets, PD, of products with the same
demand D. We have applied this only to the case in which three reactors were required. If
product p proceeds p′ in such a set PD, i.e., Dp = Dp′ , we apply the inequality(

NBR
)2

n1p + NBRn2p + n3p ≤
(
NBR

)2
n1p′ + NBRn2p′ + n3p′ , (11)

which establishes a tendency to assign the preceeding product to the larger reactors first.
The model can be formulated somewhat tighter by observing that the total reactor

volume required needs to match the demand. Therefore, we apply the constraint

NBR
∑
r∈R

vr ≥
∑
p∈P

Dp , (12)

where the factor NBR = 28 reflects that each reactor cannot have more than 28 batches per
week. Further bounds on the volumes can be derived from the following considerations. Let
Dmin be the minimal demand for a product scenario. The volume of the smallest reactor is
bounded by

v1 ≤
1 + S

F
Dmin . (13)

Similarly, we can exclude the assignment of certain products to certain reactors by setting

nrp = 0 , ∀
{

rp

∣∣∣∣V min
r >

1 + S

F
Dp

}
. (14)

These bounds are special cases of general upper bounds, N+
rp, we can apply to nrp. If V min

r

denotes the lower bound of the volume, v1, reactor r can take, then N+
rp is given by

N+
rp =

⌈
Dp

V min
r

⌉
,

where the operator d◦e indicates the ceiling function, i.e., the rounding-up to the next
integer. For the large demand products these bounds are very weak when computed for
the small volume reactor. Therefore, we used another approach to compute N+

rp. We have
solved a sequence of subproblems with the objective function max nrp subject to all others
constraints of the problem and bounds found previously. For many cases we have solved
these problems to optimality within a few minutes. Then we defined

N+
rp = min

{
NBR,

⌈
Dp

V min
r

⌉
,max nrp

}
. (15)

The computation of lower bounds, N−
rp, is more complicated because it is difficult to assign

products to reactors in advance. Therefore, similarly to the computation of N+
rp we have

computed N−
rp by solving a sequence of subproblems with the objective function minnrp.

These problems have been solved to optimality with a few minutes. Furthermore, we derived
lower bounds for the sum

∑
r∈R nrp by solving a sequence of subproblems

N−
p := min

∑
r∈R

nrp . (16)
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3.4 The Structure of the Optimization Problem

The problem described in Section 3.2 is a mixed integer nonlinear programming (MINLP)
problem which simultaneously contains a design problem (determining the number and size
of reactors) and an assignment problem (assigning products to reactors and production
amounts). Due to the objective function and the trilinear terms it is nonconvex. Therefore,
we need global optimization techniques to compute the optimum. Structurally, many com-
binations of the number of batches and the volumes might lead to similar or even the same
objective function values. Thus, we may expect that in terms of the assignment of products
to reactors and production amounts, the solution derived may not be unique and can be
one of the multiple solutions that exist. Of course, due to the monotonously increasing
investment costs there is a tendency to have the reactor values as small as possible.

Due to the concave investment costs one would expect a cost minimal solution with
one small reactor (covering the small demands), a small-to-midsize reactor and a large
reactor with a volume equal to 250 m3. However, the surplus production restriction and
the utilization or minimum filling rate might exclude this solution.

4 An Approximately Equivalent MILP Formulation

The nonlinear products nrpfrpvr are difficult terms in our optimization problem. However,
they can be replaced by the auxiliary variables prp. In order to do so we introduce the
binary representation of the integer number nrp

Irp∑
i=1

2i−1αrpi = nrp , ∀{rp} , (17)

where the variables αrpi ∈ {0, 1} are binary variables (binary representation) and Irp is, as
NBR = 28, less than 5. If reactor r is not active at all, then those variables αrpi take the
value 0. Therefore, we have

αrpi ≤ δr , ∀{rpi} . (18)

Instead of (5) we therefore can write

prp =
Irp∑
i=1

2i−1pT2
rpi =

Irp∑
i=1

2i−1αrpifrpvr = nrpfrpvr , ∀{rp} (19)

and formally, but never explicitly in the model

pT2
rpi := αrpifrpvr , ∀{rpi} .

The variables pT2
rpi can be calculated by the following system of linear inequalities:

pT2
rpi ≤ V U

r αrpi , ∀{rpi} , (20)

pT2
rpi ≤ vr , ∀{rpi} , (21)

pT2
rpi ≥ FL

r vr − FL
r V U

r (1− αrpi) , ∀{rpi} . (22)
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This formulation requires some comments. For frp = FL
r = 1 the approach is obvious.

The case αrpi = 0 leads to pT2
rpi = 0, while αrpi = 1 generates the inequalities pT2

rpi ≤ vr

and pT2
rpi ≥ vr, i.e., pT2

rpi = vr. Let us now focus on the variable frp describing the reactor
utilization rate. In our model we just require that this utilization rate, frp, varies between
FL

r and 1. Note that this value is not explicitly required in the model. The inequalities (21)
and (22) generate, for αrpi = 1, the chain of inequalities

FL
r ≤

pT2
rpi

vr
≤ 1 ,

i.e., they are sufficient to ensure that the utilization and fill-up rates are within the required
bounds.

To tighten the model, we apply additional upper bounds onto the contributing binary
components

αrpi = 0 , ∀
{
nri

∣∣∣N+
rp < 2i−1

}
(23)

αrp1 = 1 , ∀
{
nr
∣∣∣N−

rp = 1 ∧N+
rp = 1

}
(24)

and
pT2

rpi ≤ (1 + S)Dp . (25)

To stay within a MILP framework we use an SOS-2 type formulation [cf. Kallrath & Wilson
(1997,[9])] of the objective function and replace (3) using NB = 7 breakpoints Vrb = {0, 20,
30, 100, 110, 240, and 250} by:

cI =
∑
r∈R

cA
r (26)

cA
r =

NB∑
b=1

√
CI

rVrbλrb ; CI
r = 0.97 , ∀{r} (27)

vr =
NB∑
b=1

Vrbλrb , ∀{r} , (28)

and the convexity constraint

NB∑
b=1

λrb = 1 , ∀{r} , (29)

where at most two variables of a set {λr1, λr2, . . . , λrb, . . . , λrNB
r
} are allowed to be different

from zero; these two variables need to be adjacent with respect to their indices, e.g., λrb

and λrb+1. This SOS-2 set representation approximates the square root objective function
by piecewise linear functions and allows us to compute the global optimum approximately.

Note that all relations required are in a model implementation are given with reference
numbers while others, contained for mathematical reasoning only, are not numbered.
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5 Discussing Specific Cases

We analyzed two different data sets which approximately lead to the same amount of total
weekly demand of 9.870 and 9.860 m3.

Prd Scen1 Scen2 Prd Scen1 Scen 2 Prd Scen1 Scen2
================ ================== =================
L1 2.600 2.600 L14 90 160 L27 40
L2 2.300 2.300 L15 90 100 L28 40
L3 450 1.700 L16 70 70 L29 30
L4 1.200 530 L17 50 50 L30 20
L5 560 530 L18 30 50 L31 20
L6 530 280 L19 10 50 L32 20
L7 530 250 L20 10 L33 10
L8 140 230 L21 10 L34 10
L9 110 160 L22 190 L35 10
L10 110 90 L23 180 L36 10
L11 10 70 L24 70 L37 4
L12 110 390 L25 70 L38 2
L13 90 250 L26 40 L39 2

L40 2
=============================================================

The names L1 to L40 refer to the products. The demand of all products corresponds to
an annual capacity of 670.000 m3, which, as the density is 1,3t/m3, corresponds to 871.000
tons. Each batch takes 6 hours. The week has 168 hours, so the maximal number of batches
on each reactor is NBR = 28. Products can be stored at most for one week. Assuming that
we have sufficient storage capacity to store one week’s production, we can produce twice the
amount specified by the demand, i.e., 100% surplus production. The volume of the reactors
can vary between 20 and 250m3. The required minimum volume filling rate is F = 0.4, i.e.,
40%.

If we inspect Scenario 1 with 40 products it becomes obvious that the small demands
for the products L37 to L40 cannot be fulfilled on reactors with minimal volumes of 20m3.
The small demands can, in agreement with (13), only be satisfied on reactors which have a
volume less than 10 m3, i.e., less than the minimum reactor volume possible. This accounts
for 100% surplus production, and a 40% filling degree. But if the first reactor has a volume
of only 10 m3, then with the second one in addition there is only a total reactor volume
available of 260 m3. However, we need to satisfy 9870 m3, i.e., a total volume of at least
Vmin = 9870m3/28 = 352.5 m3 is required. Thus, we need at least a third reactor.

In order to keep Scenario 1 and 2 consistent with respect to the total demand, we replace
the demands L37 to L40 given above, by setting the demand for L37 equal to 10 m3 and
the demands for L38 to L40 to zero. Now, the largest reactor feasible for this demand with
F = 0.4 and S = 1, is according to (13), 50 m3. Thus, we add the bounds

20 ≤ v1 ≤ 50 . (30)
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As we need at least a total volume of Vmin we can derive a lower bound on v2 by inspecting

v1 + v2 + v3 ≥ Vmin

and
v2 ≥ Vmin − v1 − v3 ≥ Vmin −max(v1)−max(v3) = 52.5 . (31)

If we combine v2+v3 ≥ Vmin−max(v1) = V23 = 302.5 with the symmetry-breaking condition
(10) we are able to derive a lower bound for v3 by solving the following minimization problem

min v3

s.t. v2 + v3 ≥ V23

v2 ≥ v3 .

Using the substitution v2 = v3 − 2∆, ∆ ≥ 0, this problem is equivalent to

min v3 s.t. 2v3 ≥ V23 + 2∆ ,

which obviously has the optimal solution ∆ = 0 and v3 ≥ V23/2. Thus we get the additional
bound

151.25 ≤ v3 ≤ 250 . (32)

Based on (14), for Scenario 1 we have worked out additional bounds for the number of
batches:

nrp = 1 ; r ∈ {1} , p ∈ {L11,L19− L21,L33− L36} , (33)

nrp = 0 ; r ∈ {2} , p ∈ {L11,L19− L21,L33− L36} . (34)

nrp = 0 ; r ∈ {3} , p ∈ {L11,L17− L21,L26− L36} . (35)

As Scenario 1 turns out to be numerically much more complicated we derive further bounds
as described in Section 3.3 [if no bounds are specified for a product, no bounds have been
derived or are not necessary due to (33) to (35)]:

p L1 L2 L3 L4 L5− L7 L8− L37
N−

3p 6 5 1 1 1 0
N−

p 11 10 2 5 3 1
,

and
p L17 L13− L16,L24,L25 L22,L23
N+

1p 3 2 4 ,

p L8− L10,L12 L13− L16 L17,L18,L26− L32
N+

2p 3 2 1 ,

p L1 L2 L3 L4 L5− L7 L22,L23 L8-L10,L12-L16,L24,L25
N+

3p 12 12 3 8 4 2 1 .

The computation were further supported by the upper bound, N+
p , on the sum of batches

for product p over all reactors. These data followed from inspecting the demand and known
N+

rp values:

p L1 L2 L4 L5 L3,L17 L16,L24− L29 L11,L19− L21,L30− L36
N+

p 15 14 9 4 3 2 1
.

In the next three subsections we describe the results obtained using different approaches.
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5.1 Solving an Approximately Equivalent MILP Problem

Numerically, Scenario 2 is easy [230 binary, 38 integer, in total 557 variables, 1162 con-
straints], and is solved in less than a minute of CPU time on a Pentium III processor
running at 750 MHz. It turns out that in Scenario 2 two reactors are sufficient to satisfy
the demand. The concave investment cost function let us expect that we have one reactor
at maximum capacity, i.e., 250 m3, and the other one at some value just large enough to
satisfy all demands. But this is only possible when both the surplus production, S, of 100%
and the utilization rate, F , are within certain bounds.

It is interesting to see for which combinations of the values S and F we still get the
optimal solution characterized by

cT = 31.66 , cF = 4.90 , cI
1 = 11.21 , cI

2 = 15.55 . (36)

The following table shows the input parameters, S and F , and the optimal reactor volumes,
v1 and v2

scenario F [%] S [%] v1 v2 ∆ δ
S2-37000 37 0 132.49 250 0.10 0.32%
S2-40100 40 100 132.49 250 0.10 0.32%
S2-60060 60 60 132.49 250 0.10 0.32%
S2-75100 75 100 132.49 250 0.10 0.32%

∆ is the integrality gap, and δ is the gap in percent, i.e.,

δ := 100
∆

cT −∆
. (37)

Due to the piecewise linear approximation of the objective function the value cT = 31.66 is
somewhat inaccurate; the exact value should be cT = 31.809 but this is not really relevant
here. The solution have been obtained within minutes. Note that optimal solutions without
any surplus production exist. But, as is expected, in this case, the reactor utilization rate
is small.

Due to increased number of products, Scenario 1 has 447 binary, 111 integer, in total
1214 variables and 2155 constraints and turns out to be very diffucult to solve. However,
using the tightening bounds described in Section 3.3 and the commercial MILP solver
XPress-MP1 [see, for instance, Ashford & Daniel (1987,[4])] Release 13.26, we have found
the optimal solution with three reactors

cT := 37.1758 ; v1 = 20 , v2 = 100 , v3 = 250

after 2,352,017 nodes and have proven its optimality after 5h45m CPU time and evaluating
2,908,750 nodes. Note that the reactor volumes derived lead to the minimal total costs,
however, in terms of the assignment of products to reactors and production amounts, the
solution obtained here may not be unique and can be one of the multiple solutions that
exist. It is interesting, but not quite unexpected that there is no surplus production; it
keeps the total volume as small as possible and thus minimizes costs. The table gives the
number of batches on each reactor and the associated utilization rate in percent. Example:

1Xpress-MP is a registrated trademark of Dash Optimization (http:/www.dashoptimization.com).
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1) Product L17 is produced in 3 batches on reactor R1 (20 m3); 1 at 100% and 2 at 75%. 2)
Product L2 is produced in three batches on reactor R2 (100 m3) and 8 batches on reactor
R3 (250 m3); all batches run at 100% leading to a total production of 2300 m3.

Prd Scen1 R1 R2 R3 Prd Scen1 R1 R2 Prd Scen1 R1
======================================================================
L1 2.600 1 10 L14 90 1/90 L27 40 2
L2 2.300 3 8 L15 90 1/90 L28 40 2
L3 450 2/90 L16 70 1/70 L29 30 2/75
L4 1.200 2 4 L17 50 1+2/75 L30 20 1
L5 560 1 2/92 L18 30 2/75 L31 20 1
L6 530 3 1/92 L19 10 1/50 L32 20 1
L7 530 3 1/92 L20 10 1/50 L33 10 1/50
L8 140 2/70 L21 10 1/50 L34 10 1/50
L9 110 1/50 1 L22 190 2/95 L35 10 1/50
L10 110 1/50 1 L23 180 2/90 L36 10 1/50
L11 10 1/50 L24 70 1/70 L37 10 1/50
L12 110 1/50 1 L25 70 1/70
L13 90 1/90 L26 40 2
======================================================================

Another optimal solution differs from this solution, for example, only by satisfying the
demand for products L3 by R2(2)+R3(1), L9 by R1(1)+R2(1/90) and for L23 by R3(1/72).
Note that in both solutions exactly 28 batches are assigned to each reactor.

Let us now compare these solutions with the results we obtain from genuine nonlinear
solution techniques.

5.2 Computing Local and Global Solutions with SBB and BARON

The Branch&Bound algorithm SBB embedded in GAMS2 [see, for instance, Broocke et al.,
(1992, [5])] produces good solutions for the 20-product scenario [3 binary, 38 integer, in total
140 variables, 66 constraints, 116 nonlinear nonzeros], within minutes; an 8% gap is reached
within 28 seconds. However, even when we fix v2 = 250 and thus have only v1 as a free
design variable, after 5 hours CPU time we get an objective function value cT := 32.1257
corresponding to v1 = 140 while the global optimum is cT := 31.809 and v2 = 132.5 as has
been shown in Section 5.1 and has also been proven in Lin et al. (2003, [10]).

The Branch&Reduce Optimization Navigator (BARON) exploiting global optimization
techniques [see, for instance, Ghildyal and Sahinidis (2001,[8]) or Tawarmalani & Sahinidis
(2002,[11])] shows better properties. Again, it is obvious for the scenarios tested that the
solution process suffers from weak lower bounds which improve only very slowly. BARON
produces the optimal solution cT := 31.809 of the 20-product scenario after 6 hours CPU
time or 937,576 nodes, but needs about 12 CPU hours (1,799,845 nodes) on a Pentium III
processor running at 750 MHz to prove global optimality as shown below:

2GAMS is a registrated trademark of GAMS Development Inc., Washington D.C.
(http://www.gams.com).

13



==============================================================
Itn. no. Open Nodes Total Time Lower Bound Upper Bound

1 1 000:00:02 0.304261D+02 0.360448D+02
1 1 000:00:02 0.304261D+02 0.360448D+02

50000 839 000:18:52 0.312646D+02 0.360448D+02
100000 982 000:36:39 0.313380D+02 0.360448D+02
150000 109 000:55:10 0.314518D+02 0.360448D+02
200000 465 001:14:35 0.314725D+02 0.360448D+02
250000 1454 001:34:14 0.314725D+02 0.360448D+02

* 279244 628 001:45:17 0.314884D+02 0.329303D+02
300000 924 001:53:51 0.314884D+02 0.329303D+02

* 334972 1379 002:08:38 0.314884D+02 0.329303D+02
350000 573 002:14:27 0.315018D+02 0.329303D+02

* 361747 1197 002:19:16 0.315018D+02 0.321257D+02
400000 2036 002:34:46 0.315018D+02 0.321257D+02
450000 1962 002:54:41 0.315133D+02 0.321257D+02
500000 2039 003:14:39 0.315133D+02 0.321257D+02
550000 1714 003:34:16 0.315230D+02 0.321257D+02
600000 2035 003:54:38 0.315230D+02 0.321257D+02

* 636994 1347 004:09:27 0.315313D+02 0.321257D+02
650000 2036 004:14:48 0.315313D+02 0.321257D+02
900000 1238 005:55:09 0.315630D+02 0.321257D+02

* 937576 939 006:10:36 0.315652D+02 0.318093D+02
950000 565 006:15:22 0.315671D+02 0.318093D+02
1000000 976 006:36:07 0.315779D+02 0.318093D+02
1500000 2040 010:04:02 0.317089D+02 0.318093D+02
1750000 1428 011:53:08 0.317354D+02 0.318093D+02
1799845 0 012:14:10 0.318093D+02 0.318093D+02

We have skipped those parts of the log-output which did not appear useful. Note how slowly
the lower bounds increases.

However, we experienced even great difficulties when using SBB to solve Scenario 1 [3
binary, 129 integer, in total 416 variables, 197 constraints, 336 nonlinear nonzeros]. If we
use the bounds

100 ≤ v2 ≤ 250 , 234 ≤ v3 ≤ 250 (38)

and the initial value v2 = v3 = 100 we get the following solution v1 = 20, v2 = 140, v3 = 235
and cT := 38.506. The gap is only 2.5%; the best lower bound is 37.11. If we used more
generous bounds, we could not find a solution at all. We got the solution within a few
minutes using a depth first strategy (nodesel=1,varsel=1).

MODEL STATISTICS
BLOCKS OF EQUATIONS 9 SINGLE EQUATIONS 197
BLOCKS OF VARIABLES 10 SINGLE VARIABLES 416
NON ZERO ELEMENTS 877 NON LINEAR N-Z 336
DERIVATIVE POOL 6 CONSTANT POOL 9
CODE LENGTH 3147 DISCRETE VARIABLES 132
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However, it is remarkable that no integer feasible solution was obtained even when we fixed
the reactor volumes to the optimal values 20, 100 and 250.

The global optimization solver BARON, connected to GAMS, produces within 8 minutes
a solution with cT := 38.550 and v1 = 20, v2 = 140, v3 = 236.3636 and cT := 38.550 which
is in close agreement with the local solution obtained by SBB. When we fixed v3 = 250 and
used V min

2 = 52.5 as the lower bound for v2 following from the demand values, we got the
following results with BARON:

==============================================================
Itn. no. Open Nodes Total Time Lower Bound Upper Bound

1 1 000:00:07 0.344631D+02 0.454590D+02
1 1 000:00:08 0.346403D+02 0.454590D+02

* 158 52 000:00:36 0.347117D+02 0.453131D+02
* 158 35 000:00:36 0.347117D+02 0.444092D+02
* 208 34 000:00:47 0.347117D+02 0.442201D+02
* 208 27 000:00:47 0.347117D+02 0.433827D+02
* 2629 52 000:05:50 0.347117D+02 0.433612D+02
* 5527 25 000:11:29 0.347117D+02 0.430249D+02
* 5536 18 000:11:30 0.347117D+02 0.425847D+02

50000 36 001:16:38 0.347117D+02 0.425847D+02
* 81649 14 002:04:00 0.347117D+02 0.422452D+02
* 82584 13 002:05:42 0.347117D+02 0.421711D+02
* 82584 11 002:05:42 0.347117D+02 0.418241D+02
* 82695 11 002:05:53 0.347117D+02 0.417155D+02
* 82695 5 002:05:53 0.347117D+02 0.398818D+02

100000 43 002:30:36 0.347117D+02 0.398818D+02
* 114625 10 002:54:48 0.347117D+02 0.396732D+02
* 126509 8 003:09:51 0.347117D+02 0.396288D+02
* 126509 8 003:09:52 0.347117D+02 0.395887D+02

150000 34 003:38:45 0.347117D+02 0.395887D+02
* 150085 7 003:38:51 0.347117D+02 0.395460D+02
* 150085 5 003:38:51 0.347117D+02 0.393893D+02

200000 23 004:44:40 0.347117D+02 0.393893D+02
250000 20 005:49:17 0.347117D+02 0.393893D+02
300000 21 006:53:06 0.347117D+02 0.393893D+02
350000 20 007:56:29 0.347117D+02 0.393893D+02

* 386305 4 008:40:43 0.347117D+02 0.393387D+02
* 386305 4 008:40:43 0.347117D+02 0.391638D+02
* 386305 4 008:40:43 0.347117D+02 0.391638D+02

400000 37 009:00:53 0.347117D+02 0.391638D+02
3600000 28 077:31:20 0.347117D+02 0.391638D+02

==============================================================

The objective function value, cT := 39.1638, corresponds to a solution with v2 = 144.444
which is still far away from the optimal solution v2 = 100. Note that the lower and upper
bound did not change between the nodes 400,000 and 3,600,000 at all. After 77 hours of
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CPU time we stopped this numerical experiment.
With both, SBB and BARON, it is problematic that the initial lower bound is significantly

smaller than the optimal solution and that the lower bounds does, if at all, increase only
very slowly. At this level those solvers try to find integer feasible solution which do not
exist. Therefore, it seems that those solvers follow too much a depth-first strategy.

5.3 Computing Global Solutions with Convex Underestimators

A taylorized Branch&Bound approach has been developed and applied by Lin et al. (2003,
[10]) to solve the model to global optimality. The kernel of this approach is to construct a
lower bounding problem by underestimating the concave objective function with piecewise
linear approximations [Floudas (1995, [6])]. These ideas and techniques are similar to
those in the algorithm and software package αBB and SMIN-αBB developed by Floudas and
Adjiman [see, for instance, Adjiman et al. (1998a, [2]; 1998b, [3]; Floudas (2000, [7]); 2003,
[1])]. For further details we refer the reader to the Lin et al. (2003, [10]) paper. Here we
just summarize that the globally cost minimal solution v1 = 20, v2 = 100, v3 = 250, and
cT = 37.1758 has been obtained and proven to be optimal within 741 CPU seconds on an
HP J-2240 workstation.

6 Conclusion

It was the goal to prove that complex portfolios lead to more costly scenarios caused by
more reactors required. In order to do so we have computed the global minimum of the
sum of investment and fixed costs with respect to the number and volume of the reactors.
We used three modeling approaches to do so: solving the nonlinear nonconvex problem
using GAMS with a variety of solvers (among them SBB and BARON), solving an equivalent
linear representation of that model exploiting the special structure of the problem and using
XPress-MP, and using a taylorized Branch&Bound approach based on the construction of a
lower bounding problem by underestimating the concave objective function with piecewise
linear approximations.

For the scenarios tested the solution process suffers from weak lower bounds which
improve only very slowly. The equivalent linear representation approach provides the global
solution for Scenario 2 within a few minutes while Scenario 2 requires almost 6 hours to
prove optimality. The commercial solvers, SBB and BARON, produce solutions for the small,
20-product scenario; BARON needs about 12 CPU hours on a Pentium III processor running
at 750 MHz to prove global optimality. For the 40-product scenario no solutions have been
produced with either SBB and BARON, in 40 hours. Only the taylorized Branch&Bound
coupled with convex underestimators shows reasonable scaling properties and generates the
globally optimal solution of the 40-product scenario with reactors of size 20, 100 and 250
m3 and the objective function value cT = 37.1758 in about 13 minutes.

Thus, our overall conclusion is that the problem, for some cases, can be solved with
nowadays standard solvers’ capacities but it requires a lot of CPU time. Therefore, in order
not to cover only special cases and also to cope with the scaling properties, we recommend
to use taylorized approaches in addition.
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