
1 Nonlinear Optimization and Tools

Nonlinear Optimization, also known as nonlinear programming, has proven it-
self as a useful technique to reduce costs and to support other objectives, espe-
cially in the refinery industry. Nonlinear programming knocks to the companies’
doors. Mixed integer nonlinear optimization, an area under continual develop-
ment, is now establishing itself in many branches, e.g., the process industry or
financial services, and it certainly has much to offer for the future.

For xT = (x1, ..., xnc) and yT = (y1, ..., ynd), objective function f(x,y) and
constraints g(x,y) and h(x,y) an optimization problem

min
{

f(x,y)
∣

∣

∣

∣

g(x,y) = 0
h(x,y) ≥ 0 ,

x ∈ X ⊆ IRnc

y ∈ U ⊆ ZZnd

}

(1.1)

is called a mixed integer nonlinear programming problem, if the domain U is
discrete, e.g., U = IN0 = {0, 1, 2, 3, ...} and the functions f(x,y), g(x,y) and
h(x,y) are nonlinear. The continuous variables in (1.1) could for instance de-
scribe the states (temperature, pressure, etc.), flow rates or design parameters
of plant or chemical reactors. The discrete variables, often binary variables,
may be used to describe the topology of a process network or to represent the
existence or non-existence of plants.

In this article we try to give a glance on models, algorithms and software in
the are of nonlinear optimization, and also indicate where to find support and
consulting firms.

2 Models and Problems

The simplest nonlinear models and problems are quadratic programming (QP)
problems. They contain a quadratic objective function xTQx + cTx and linear
constraints and are used, for instance, to describe location problems in the
sense of the quadratic assignment problem. In some cases, QP problems can
be solved as pure MILP problems (Kallrath and Wilson, 1997).If the matrix Q
is positive semi-definite, the problem can be solved in polynomial time, and,
because the problem is convex, the local optimum coincidences with the global
one. If Q is negative semi-definite it is possible to exploit methods used in
concave minimization. However, if Q indefinite the problem is NP hard and we
have to expect the worst. It can be solved by a Branch&Bound method, which,
as in Horst and Thoai (1996) uses, for instance, the radial simplex subdivision
as the branching rule, and the solution of certain linear programming problems
to derive lower bounds.

The next step is to allow not only for a quadratic objective function but
also for quadratic constraints, usually inequalities. These may occur, for in-
stance, if a binary variable δ ∈ {0, 1} is replaced by the inequality δ2 − δ ≥ 0,
to compute the maximum radius r of n non-overlapping circles contained in
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the unit square, in production planning and portfolio problems in which lin-
ear stochastic constraints are replaced by quadratic deterministic constraints,
or in layout problems in integrated circuit design. Finally, in these class of
problems we find an almost classical problem in nonlinear optimization, the
pooling problem which we encounter as the fuel mixture problem in in refineries
and in the petrochemical industry. The pooling problem refers to the intrinsic
nonlinear problem of forcing the same (unknown) fractional composition of a
multi-component streams emerging from a pool, e.g., a tank or a splitter in a
mass flow network. Structurally, this problem is dominated by indefinite bilin-
ear terms of the form

∑

i

∑

j Aijxiyj appearing in equality constraints. The
pooling problems occur in all multi-component network flow problems in which
the conservation of both mass flow and composition is required.

In the chemical process industry reaction kinetics might lead to more general
nonlinearities, such as exponential nonlinearities due to Arrhenius terms of the
form e−∆E/kT describing the reaction kinetics.

Discrete variables enter the models, for instance, to select discrete capacities
of pipelines and appropriate links in a network design problem, to interpolate
between discrete modes of a steam cracker, or to model semi-continuous flow
quantities. In most cases the discrete variables enter on linearly.

A variety of nonlinear mixed integer models in the chemical process industry
are provided and discussed by Kallrath (1999): a production planning problem
in BASF’s petrochemical division, a tanker refinery scheduling problem at a
refinery, a site analysis of one of BASF’s bigger sites, and a process design
problem.

The first problem leads to a MINLP model for describing a petrochemical
network including several steam crackers and plants located at two different
sites. The sites are interconnected by pipelines and ship transport. The sites
consist of 2(1) steamcrackers, 3(2) downstream processing plants, recycles and
17(10) storage tanks. The model considers costs for transport, external pur-
chases, raw material, utilities and inventory. Blending leads to nonlinear struc-
tures suitable for recursion. The model includes about 10 recursed streams,
which lead to about 65 recursed matrix coefficients for each period. Binary
variables are needed to select cracker operation modes, to interpolate between
them, or representing semi-continuous shipping amounts. The yield coefficients
in the steamcrackers, depending nonlinearly on temperature and pressure, are
determined through interpolation.

The basic multi-period model for the larger site has six periods, includes
distributive recursion with about 400 recursed coefficients and about 3500 vari-
ables; 30 of them are binary variables. The basic model is part of the multi-
site-model. The problem is solved using PIMS (Module PPIMSXX and XPIMS)
by AspenTech Corp. (Houston, US). Great effort had to be made in connection
with convergence of the distributive recursion. The algorithm tends to cycle in
multi-period-computations, shifting around the property errors between the pe-
riods instead of eliminating them, especially when using more than six (shorter)
periods. Finally, we succeeded in improving the performance, especially regard-
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ing the multi-sites model, speedup convergence of distributive recursion and in
modelling the interpolation of more than three cracker modes.

In a second project, a Tanker and Refinery Scheduling Problem was to
model and schedule the production and the storage of oil products of the medium
size refinery for a period of two to four weeks. The data for supply of crude oil
and for the delivery of the products were provided by a preceding production
planning optimization. Since not just a single crude oil type is stored in the
tanks but different types of different properties are mixed, the mathematical
problem becomes nonlinear. The necessity of deciding the day of production,
and of which crude oil tank oil is charged to which production unit in order to
get a particular product requires the application of binary variables. To solve
this MINLP problem two methods had been used:

the software package GAMS with the DICOPT-algorithm using a nonlinear solver
CONOPT by ARKI in combination with a MILP-solver.

the software package XPRESS-MP by Dash Associates using its new B&B algo-
rithm supporting recursion at each node. The size of the total problem
was as following:

technically: 16 crude oils, 4 blending components, 17 crude oil and 8 interme-
diate tanks, 5 production units and 8 final products,

mathematically: 80000 constraints, 70000 variables,

2000 binary variables, 1300000 nonzeros

The third problem, a network design problem with about 6000 variables, leads
to a MINLP problem dominated by pooling problems and about 900 binary
variables.

The model describes a network of process units within one or more produc-
tion units connected by a system of pipes. Some of the process units manufac-
ture substances, others produce substances which can be used in other units,
others do both. For all units the demand or the amount of products required is
fixed. For some of those substances which are already used within the system
an expensive re-processing is neccessary in order to get an optimal mixture and
quality.

The actual situation is that nearly all raw material comes from external
delivery points at high expenses. The idea is to make use of the products
manufactured within the model system and to reduce the costs for raw material
and for re-processing.

New plumbings may be constructed if the actual pipe system is not sufficient.
In addition it might be possible that re-processing of substances or a mixture
of substances in a small local re-processing unit is cheaper than getting them
from outside. Therefore the construction of new re-processing units has to be
decided.
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One important aspect concerns the nonlinearities of the model. It becomes
nonlinear because of mixing or blending substances where amount of solvent and
concentrations are not known in advance pooling problem and only the resulting
mixture has to fulfil some quality constraints. The decision on the construc-
tion of plumbings and re-processing units is modelled by binary variables. The
constraints (about 6000) in the model describe the following features:

mass balance equations for substances and solvents

inequalities to fulfil quality constraints

inequalities which can force the construction of plumbings or re-processing
units

objective function including all costs (raw material, re-processing, construc-
tion)

Solution Approach: The model is structured in several sub-models formulated
in GAMS of which each is based upon the former, in order to support a homo-
topy method. Therefore there are purely nonlinear submodels including a very
rough linear approximation which only provides initial values. Both are solved
by the NLP-solver CONOPT. The MINLP problem is presolved by relaxing the
binary variables which allows them to have any real value between 0 and 1. The
main solution procedure afterwards is based upon the “Outer Approximation”
(Viswanathan & Grossman, 1990) which is included in the solver program pack-
age DICOPT (Viswanathan & Grossman, Carnegie Mellon University). Solution
times are of the order of one hour on a PC.

The fourth problem is concerned with a process design problem in which
some process parameters and the optimal topology of a cascade of chemical
reactors are computed w.r.t. optimizing total production, selectivity, energy,
and costs.

Nonlinearities are related to the exponential terms for the reaction kinetics
and mass fractions used to interpolate density and viscosity. Discrete features
are required to model minimum flow rates between reactors, the number of re-
actors and their connections. The variables are the flow rates, and the number
and size of reactors. The optimization model has been embedded into an attrac-
tive and easy to use user-interfaces. It helps the client in his daily production
planning duties to adjust his plant immediately to current needs, i.e., changes
in costs, capacity fluctuations or to attributes of orders. The tool supports the
process design phase and helps to lay out cascades and connections of a system
of reactors. The new designs safe raw material, minimize waste material and
increase the capacity of the reactor system. In the layout phase the tool support
design and other changed constraints.
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3 Algorithms

3.1 ... for NLP Problems

In nonlinear problems we have to distinguish between local optima and the
global optimum (see our concluding comments on gloabl optimization). In prac-
tice it is observed that, for instance, the pooling problem usually has several
local optima. Depending on the initial guesses the solver finds different local
optima. Thus, solving models involving pooling problems requires great care
and deep understanding of the underlying real-world problems. Let us give at
least one bit of general advice: one should certainly try to avoid setting initial
guess variables to zero. Once a good solution is found one should keep the values
of the recursed variables and use them as initial values in further computations.

Algorithms to solve (1.1) are found, for instance, in Gill et al. (1981) or
Fletcher (1987). Most are based on linearization techniques. Inequalities are
included, for instance, by applying active set methods. The most powerful non-
linear optimization algorithms are the Generalized Reduced Gradient algorithm
(GRG) and Sequential Quadratic Programming (SQP) methods and Interior
Point Methods (IPM) [see, for instance, Bazaraa et al. (1993) or Wright (1996)]
for problems involving many inequalities. The GRG algorithm was first devel-
oped by Abadie and Carpenter (1969) [more recent information is contained in
Abadie (1978), Lasdon et al. (1978), and Lasdon and Waren (1978) , but see
also Gill et al. (1981, Section 6.3)]. While it is frequently used to solve nonlinear
constrained optimization problems, it is rarely used to solve least-squares prob-
lems. A similar remark holds for IPM. A special class of this method includes
inequalities by adding logarithmic penalties terms to the objective function.
Then the problem can solved as a nonlinear optimization problem with possible
equations but no inequalities.

3.1.1 Sequential Quadratic Algorithms

SQP methods belong to the most powerful and frequently used nonlinear op-
timization algorithms [23] to solve problem (1.1). The basic idea is to solve
(1.1) by a sequence of quadratic programming subproblems. The subproblem
in iteration k appears as

min
∆x

{ 1
2∆xTHk∆x +∇f(xk)T∆x

}

, ∆x ∈ IRn (3.2)

J2(xk)T∆x + F2(xk) = 0,

J3(xk)T∆x + F3(xk) ≥ 0,

where the subscript k refers to quantities known prior to iteration k, and ∆x is
the correction vector to be determined. This subproblem [cf. Gill et al. (1981,
Section 6.5.3)] is obtained by linearizing the constraints and terminating the
Taylor serious expansion of the objective function of (3.2) after the quadratic
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term; the constant term f(xk) has been dropped. The necessary condition
derived from the Lagrangian function associated with (3.2) is

Hk∆x +∇f(xk)− J2(xk)λ̃k+1 − J3(xk)µ̃k+1 = 0. (3.3)

If, furthermore, λk denotes the vector of Lagrange multipliers (for convenience
we do not distinguish between λ and µ for equations and inequalities) known
prior to iteration k, and ∆xk, λ̃k, and µ̃k represent the solution of (3.2), then
the next iteration follows as





xk+1

λk+1

µk+1



 =





xk

λk

µk



 + αk





∆xk
∆λk

∆µk



 ,
(

∆λk = λ̃k − λk

∆µk = µ̃k − µk

)

, (3.4)

where αk is a damping factor.
For the solution of the quadratic subproblems the reader is referred to Gill

et al. (1981, Section 5.3.2) or Fletcher (1987, Chapter 10).

3.2 Interior Point Methods

Interior point methods, sometimes, as for example in Gill et al. (1981, Section
6.2), also known as barrier methods, have the origins in nonlinear programming.
They are special homotopy algorithms for the solution of general nonlinear con-
strained optimisation problems. But initiated by the work of Karmarkar (1984),
a large variety of interior-point methods (IPMs) has been developed [see for in-
stance Gonzaga (1992), Lustig et al. (1992)], and Mehrotra’s so called primal-
dual second-order predictor-corrector methods [21] for solving linear program-
ming problems as well. In linear programming, IPMs are well suited especially
for large, sparse problems or those, which are highly degenerate. Here con-
siderable computing-time gains can be achieved. With respect to the solution
strategy most of these algorithms can be classified [see for instance Freund and
Mizuno (1996)] as affine scaling methods, potential reduction methods, central
trajectory methods

The idea of IPMs is to proceed from an initial interior point x ∈ S satisfying
h(x) > 0, towards an optimal solution without touching the boundary of the
feasible set S. The condition h(x) > 0 is (in the second and third method)
guaranteed by adding a penalty term to the objective function.

To explain the essential characteristics of central trajectory interior-point
methods, let us consider the logarithmic barrier method in detail. The primal
problem is mapped to a sequence of nonlinear programming problems

P (k) : min







f(x)− µ ·
n

∑

j=1

ln hj(x)
∣

∣

∣

∣

g(x) = 0
h(x) > 0 , µ = µ(k)







(3.5)

with homotopy parameter µ where we replaced the non-negativity constraint on
the variables with the logarithmic penalty term.
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At every iteration step k, µ is newly chosen. The penalty term, and therefore
the objective function, increases to infinity if the inequalities becomes active. By
suitable reduction of the parameter µ > 0, the weight of the penalty term, which
gives the name logarithmic barrier problem to this methods, is successively
reduced and the sequence of points obtained by solving the perturbed problems,
converges to the optimal solution of the original problem. So, through the
choice of µ(k) a sequence P (k) of minimisation problems is constructed, where
the relation

lim
k→∞

µ(k) ·
n

∑

j=1

ln hj(x) = 0 (3.6)

has to be valid, viz.

lim
k→∞

argmin(P (k)) = argmin(NLP ) = x∗ (3.7)

where the function argmin returns an optimal solution vector of the problem.
Applying the Karush-Kuhn-Tucker (KKT) conditions [Karush (1939) and

Kuhn and Tucker (1951)], these are the necessary or the sufficient conditions
for the existence of local optima in NLP problems, we get a system of nonlinear
equations which can be solved with the Newton-Raphson algorithm as shown
below. The good news is that the problems P (k) or systems of nonlinear equa-
tions they produce need not to be solved exactly in practice, but one is satisfied
with the solution achieved after one iteration.

3.3 ... for MINLP Problems

MINLP problems such as are the most difficult optimisation problems of all.
They belong to the class NP-complete problems.

MILP problems are combinatorial optimisation problems for which, often,
the B&B algorithm based on LP relaxation proves to be sufficiently efficient.
A similar statement holds for QP problems. LP and QP problems are special
cases of nonlinear programming (NLP) problems. Usually, NLP problems can-
not be solved in a finite number of steps but only by iterations. Nevertheless,
solving NLP problems is usually easier than solving MILP problems. The rea-
son for that, well-known to numerical analysts, is that many NLP problems can
be solved using sequential quadratic programming (a similar technique to se-
quential linear programming) and have convergence rates of second order. This
property may allow us to determine the solution quickly.

Unfortunately, MINLP problems combine all the difficulties of both its sub-
classes: MILP and NLP. Even worse, in addition they have properties absent in
NLP or MILP. While for convex NLP problems a local minimum is identical to
the global minimum, we find that this result does not hold for MINLP problems.

At present there exists no algorithm which could solve (1.1) in its general
form exactly. Therefore, only special instances of (1.1) are investigated. A
significant assumption is convexity. Solution algorithms in discrete optimisation
belong to two classes: deterministic and heuristic methods. All deterministic
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methods use implicit enumeration and tree search rules. They try to avoid
analyzing sub-trees. Deterministic methods can decide whether a given solution
is optimal or not. Heuristic methods lack this feature. Unfortunately, for non-
convex problems no exact methods are known.

A simple deterministic method is to list all combinations U of discrete vari-
ables yi. Each binary vector yi generates an NLP in the continuous variable
vector x. If we solve this NLP problem, it is either infeasible or yields a solu-
tion, i.e., a pair (xi, zi = f(xi,yi)). After having solved all NLP problems, we
choose the pair with smallest zi (let us refer to it using the index i∗). Thus,
the solution is given by the triple (x∗ = xi∗ ,y = yi∗ , z∗i = f(xi∗ ,yi∗)). This
method, of course, works only if U has a limited number of elements and if
the NLP subproblems allow us to determine their global minima. Although the
convexity assumption is fulfilled for convex (continuous) problems the method
is of no practical use because of the prohibitively high numerical effort.

3.4 Deterministic Methods for Solving MINLP Problems

Deterministic methods for solving (convex) MINLP problems fall into three
classes:

1. Branch & Bound (Gupta and Ravindran, 1985),
2. Generalised Benders Decomposition (Geoffrion, 1972) and
3. Outer Approximation (Duran and Grossmann, 1986).

The B&B algorithm for MINLP problems by Gupta and Ravindran (1985) is
based on the same ideas as the B&B algorithm for solving MILP problems. The
first step is to solve the problem generated by relaxing the integrality condition
on the variables. If the solution of that problem fulfils all integrality conditions
the whole problems is solved. Otherwise, in a minimisation problem the relaxed
problem provides a lower bound (of course only if the global minimum can
be determined) and the search tree is built up. A feasible integer solution
provides an upper bound. A major drawback of the B&B algorithm applied to
MINLP problems is that nodes deeper in the tree cannot benefit so greatly from
information available at previous nodes as is the case in MILP B&B algorithms
using the dual simplex algorithm.

The Generalized Benders Decomposition (GBD) method divides the vari-
ables into two sets: complicating and non-complicating variables. In MINLP
models the class of complicating variables is made up by the discrete (usually bi-
nary) variables. Then the algorithm generates a sequence of NLP sub-problems
(produced by fixing the binary variables yk) and solves the so-called MILP Mas-
ter problems in the space of the complicating variables. The NLP sub-problems
yield upper bounds for the original problem while the MILP Master problems
yield additional combination of binary variables yk for subsequent NLP sub-
problems. Under convexity assumptions the Master problems generate a se-
quence of lower bounds increasing monotonically. The algorithm terminates if
lower and upper bounds equal or cross each other.

Outer Approximation (Duran and Grossmann, 1986) also consists of a se-
quence of NLP sub-problems (produced by fixing the binary variables yk) gen-
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erated by MILP Master problems. The significant difference is how the Master
problems are defined. Algorithms based on Outer Approximation (OA) de-
scribe the feasible region as the intersection of an infinite collection of sets with
a simpler structure, e.g., polyhedra. In Outer Approximation the Master prob-
lems are generated by “outer approximations” (linearisations, or Taylor series
expansions) of the nonlinear constraints in those points which are the optimal
solutions of the NLP subproblems; that is, a finite collection of sets. The key
idea of the algorithm by Duran and Grossmann (1986) is to solve the MINLP
with a much smaller set of points, i.e. tangential planes. In convex MINLP
problems, a superset of the feasible region is established. Thus, the OA Master
problems (MILP problem in both discrete and continuous variables) produce a
sequence of lower bounds monotonically increasing. The termination criterion
is the same as above.

While the GBD Master problems have fewer variables and constraints, the
OA algorithm provides tighter bounds and needs less iterations for convergence.

Both GBD and OA algorithms have heuristic extensions for non-convex
MINLP. In many instances they are even capable of proving optimality.

4 Software

4.1 Software Packages for Refineries

There are many packages available for production planning problems in refiner-
ies: Gamma2000 (Bonner & Moore), Haverly Systems (Haverly Systems), PIMS
(AspenTech). These packages are based on models including the pooling prob-
lem. In terms of the solution algorithms they use sequential linear programming,
or certain variants of it (recursion, distributive recursion, etc.). Successive Lin-
ear Programming may be thought of as a technique for dealing with problems
where some of the coefficients (so called recursed coefficients) in an otherwise
linear program are functions of the LP variables. The basic idea is to guess the
values of the LP variables, calculate the recursed coefficients, and solve the LP
again. Repeat this process until the solution converges. In some circumstances
convergence to a solution cannot be guaranteed, but where the original guesses
are quite good - which is often the case in reality - then the technique can be
very fast and reliable. If refinery models include discrete variable, the pack-
ages mentioned above usually solve one NLP, fix the fractions, solve one MILP,
fix the discrete variables, and solve another NLP, and terminate. The LP and
MILP subproblems are most frequently solved by the state-of-the-art LP and
MILP solvers OSL (IBM Corporation), CPLEX (ILOG, F’rance) and XPRESS-MP
(Dash Associates, England). Beyond it LP and MILP features XPRESS-MP has
a built in ’recursion’ (Successive Linear Programming) feature.

4.2 Languages for NLP Models Formulation

Several languages support the NLP model formulation.
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The most popular are AMPL Plus, GAMS and LINGO.
They convert nonlinear expressions and data into an input stream for non-

linear optimizers.

Data Interface AMPL Plus interfaces with Microsoft Excel worksheets. It
also interfaces with the following databases: Btrieve, dBASE IV, Microsoft
Access/FoxPro, Paradox, and Oracle.

LINGO interfaces with some spreadsheets: Lotus 1-2-3, Microsofts Excel,
QuattroPro and Simphony. It also interfaces with the following databases:
DB/2, Microsoft Access, Oracle, and Paradox

GAMS interfaces with Lotus 123, Microsoft Excel, and Quattro Pro spread-
sheets.

NLP Solvers By applying a specific driver, AMPL interfaces with CONOPT,
DONLP2, FSQP, GRG, LSGRG, LANCELOT,

LOQO, MINOS, NPSOL, SNOPT.
LINGO uses inhouse implemented nonlinear programming Generalized Re-

duced Gradient (GRG) algorithm.
It also incorporates Successive Linear Programming (SLP).
Some NLP solvers have been hooked up to GAMS: CONOPT, DICOPT,

and MINOS

4.3 DICOPT & MINOPT

DICOPT (Viswanathan and Grossmann, 1990) is the only commercial software
available for solving the MINLP problem (1.1) of realistic size. It uses Outer
Approximation with some extensions for non-convex problems. This program
is most conveniently used in GAMS.

Another software package, for mixed integer nonlinear optimisation is MINOPT
by Schweiger et al. (1996), developed at the Department of Chemical Engineer-
ing of Princeton University. This package can even handle MINLP problems
with differential constraints or mixed integer optimal control problems.

5 Support and Consulting Firms

Since nonlinear, and especially mixed integer nonlinear optimisation problems
are difficult to solve, one might expect that universities are an appropriate
address to contact. In some cases that might be worthwhile to try.

Another, natural idea is to contact the software and tool developers such as
AMPL, Bell Labs (http://www.bell-labs.com/)
CPLEX, ILOG Consulting Group (http://www.ilog.fr/corporate/support/)
GAMS Inc., Washington D.C., US (http://www.gams.com),
LINDO Systems Inc. (http://www.lindo.com)
MathPro 2000 (http://sundown-vmp.com/mathpro)
OSL, IBM Business Consulting (http://www.ibm.com/services/buscon/)
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XPRESS-MP, Dash Associates, Ltd., England, (http://www.dash.co.uk),
In addition, and alternatively, there exists consulting firms who specialize

on projects related to optimization, e.g.,
ARKI Consulting & Development A/S, Denmark (http://www.arki.com)
MαBOS Mathematical Business Optimization Services GmbH, Germany

(http://www.mabos.com)
Mathesis GmbH, Germany (http://www.mathesis.de)
TechnoLogix Decision Sciences Inc. (http://www.technologix.ca)

These firms have clearly the advantage that they are not biased in terms of tools
and software packages.

6 Conclusions

Mixed integer nonlinear optimization has been considered as an approach to
solve complex production planning and design problems. The problems dis-
cussed are very demanding in terms of the mathematical modeling, and ap-
propriate tuning of the algorithms. In all cases special heuristics had been
constructed to provide reasonable initial values to the solver. So, the lesson to
be learned is that each MINLP problem is different from others and requires
special treatment and techniques. One common features seems to be the prob-
lem of getting good initial values to start the solver, which, can be overcome by
homotopy techniques.

The problem of the existence of multiple local optima in nonlinear optimiza-
tion is treated in an mathematical discipline of its own: global optimization,
a field including theory, methods and applications of optimization techniques
aimed at detecting a global optimum of nonlinear problem. The methods are
quite different from the classical concepts of gradients and Hessian, and have
more in common what is used in discrete optimization. So far, the problems
which can be solved at present are specially structured and are usually small
involving only up to, say a hundred of variables or constraints but the field is
growing and is worthwile to get into contact with it; it may knock at your door
tomorrow anyway. The Journal of Global Optimization or the books [Horst and
Tuy (1996), Horst et al. (1996), or Horst and Pardalos (1995) are good and
recommended starting points.

Let us conclude with the observation that nonlinear optimization is a good
example that mathematical methods and techniques can support human inven-
tiveness and decisions. Especially, they can ensure that less intuitive solutions
are not lost, and can provide a quantitative basis for decisions and allow coping
most successfully with complex problems.

Josef Kallrath, Ludwigshafen (Germany) & Gainesville (FL, US)
kallrath@astro.ufl.edu
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