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2.1 Introduction

In this contribution we apply different approaches to solve four rather
different MINLP problems: special extensions to time-indexed for-
mulations of production planning problems, a production planning
problem in BASF’s petrochemical division, a site analysis of one of
BASF’s bigger sites, and a process design problem. The first prob-
lem is related to a useful nonlinear extension of production planning
problems based on time-indexed formulations. The second problem1

leads to a mixed-integer nonlinear model for describing a petrochemi-
cal network including several steam crackers and plants located at two
different sites. The third problem, a network design problem, leads to
mixed integer nonlinear programming problem dominated by pooling
problems (KW97, Section 11.1.2) as is true for the second problem.
The pooling problem refers to the intrinsic nonlinear problem of forc-

1Acknowledgments: Thanks is directed to Christian Timpe (Section 3) and
Norbert Vormbrock (Section 4 and 5) who provided material or joined the author
in the project work. Eventually, this article benefited greatly from suggestions
and comments provided by Anna Schreieck and Beate Brockmüller.
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ing the same (unknown) fractional composition of a multi-component
streams emerging from a pool, e.g., a tank or a splitter in a petro-
chemical network. The fourth problem is concerned with a process
design problem in which some process parameters and the topology
of a system of chemical reactors are the degrees of freedom to op-
timize total production, selectivity, energy, and costs. All numercial
experiments and production runs have been carried out on a 166 MHz
Pentium processor.

The covered models lead to mixed integer nonlinear programming
(MINLP), i.e., to optimization problems of the form

min
{

f(x,y)
∣

∣

∣

∣

g(x,y) = 0
h(x,y) ≥ 0 ,

x ∈ IRnc

y ∈ ZZnd

}

, (2.1.1)

with nc continuous and nd discrete variables, nonlinear objective func-
tion f(x,y) and constraints g(x,y) and h(x,y). Problems such as
(2.1.1) are very difficult to solve. They belong to the class of NP-
complete problems. An overview of algorithms capable of solving such
problems is given in Leyffer (1993), Floudas (1995) or Kallrath and
Wilson (1997; hereafter KW97, Section 11.4).

Many mixed integer linear programming (MILP) problems are
combinatorial optimization problems for which the Branch&Bound al-
gorithm (Nemhauser and Wolsey, 1988) based on linear programming
(LP) relaxation proves sufficiently efficient. The algorithm is deter-
ministic but in the worst case we see complexity growing exponentially
in the problem size. Nonlinear programming (NLP) problems force us
to distinguish between local and global optima. Algorithms to solve
NLP problems [see, for instance, Bazaraa et al. (1993)] have their
roots in calculus and depend on the concept of convergence. Except
in special cases it is not possible to prove that an NLP algorithm
converges to the global optimum. So we should keep in mind that
a) in non-convex NLP or MINLP problems we cannot strictly prove
optimality or provide safe bounds, and b) that if nonlinear equations
are present the NLP or MINLP is immediately non-convex.

Unfortunately, MINLP problems combine the difficulties of both
its subclasses: MILP and NLP. Even worse, in addition they have
properties absent in NLP or MILP. While for convex NLP problems
a local minimum is identical to the global minimum, we find that this
result does not hold for MINLP problems. The best we can do in
non-convex MINLP is to provide a safe bound or relative optimality
with respect to a certain local optimum of the continuous problem.
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2.2 Nonlinear Extensions to Production
Network Models

This section describes an extension which can be added to any plan-
ning model based on time-indexed formulations with at most one
setup-change per period. Here we apply this approach to a special
case and extend the production planning problem and its model (M1,
for brevity) described in KW97 (Section 10.4). As already discussed
in KW97 (Chapter 6) certain nonlinear terms [absolute value terms,
products of binary variables] can be expressed by linear relations in-
volving additional binary variables. The key idea used in the current
production planning problem is to replace products of continuous vari-
ables and binaries, theta-functions and absolute value terms by linear
relations involving additional binary variables.

2.2.1 Batch Constraints Across Periods

The motivation for the model approach developed in Section 2.2.2
has its root in batch or campaign production in the chemical process
industry. Batch production operates in integer multiples of batches
where a batch is the smallest unit to be produced, e.g., 200 tons.
Several batches following each other immediately establish a cam-
paign. Some typical batch restrictions group batches into campaigns,
or consider that only campaigns of a minimal size can be produced.
The batch reactors can be, for example, operated in different modes
producing several products in each mode with different free or fixed
recipes leading to a general mode-product relation (KW97, pp.153-
155, 320-324): in a certain mode several products are produced (with
different daily production capacity rates), and vice-versa, a product
can be produced in different modes. Daily production can be less
then the capacity rates. Within a fixed planning horizon, T , a cer-
tain product can be produced in several campaigns. In the context of
time-indexed formulation where variables ppt describe the production
[e.g., in tons] of a product p in period (time-interval) t it is not easy
to model such batch restrictions if the batch or minimal campaign
size is larger than the capacity per period. Assume that production
is performed in batches of 200 tons, and that our time intervals have
a length of ten days with a daily production rate of 10 tons/day. The
minimum time to produce the batch would cover 20 days, or exactly
two time intervals. A plan looking like pp4 = 45 tons, pp5 = 100
tons, and pp6 = 55 tons covers three periods (the first and third only
partial) to produce exactly 200 tons, and thus provides more degrees
of freedom. Brockmüller and Wolsey (1995) solved the problem for a
special case (production equals the capacity rates). Their approach
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uses explicitly the feature that production equals the capacity rates
in order to compute a priori the number of periods to produce a cam-
paign of specified minimal size. If daily production can take any value
between zero and the capacity rate, or if a product is produced, for
example, according to general mode-product relation, then this a pri-
ori information is not available. Our approach does not depend on
this a priori information and can be used for more general cases.

2.2.2 Formulation of Batch Constraints

Our goal is to compute the amount, pC
rpnt, of product p ∈ P produced

for a certain campaign n in period t ∈ T . The mathematical model is,
for a certain site, unit, or reactor r ∈ R, based on some binary state
variables δP

rpt indicating whether product p is produced on r in period
t, and binary start-up variables δS

rpt indicating whether the production
of p is started in period t on r. Let P−rpt and P+

rpt be bounds on prpt

if prpt > 0. We may choose the upper bound P+
rpt for prpt, e.g., as

the length of the period (in days) times the daily production capacity,
and the lower conditional bound P−rpt = 0.8P+

rpt.
Let us, at first, connect δP

rpt to the production variables prpt start-
ing with the inequalities

prpt ≤ P+
rptδ

P
rpt , ∀{rpt} . (2.2.1)

If ∆rp tells us whether product p is produced at the beginning of the
first period, and

∑

p ∆rp = 1, then for the first period we have

P−rp1δ
P
rp1−P+

rp1(1−∆rp)−P+
rp1

(

1− δP
rp2

)

≤ prp1, ∀{rp} , (2.2.2)

and for all other period (except the last one) T1 := {2, . . . , T − 1}

P−rptδ
P
rpt − P+

rptδ
S
rpt − P+

rpt

(

1− δP
rpt+1

)

≤ prpt, ∀{rpt ∈ T1} .
(2.2.3)

The inequalities (2.2.1) to (2.2.3) hold the positivity conditions (δP
rpt =

0 ⇔ prpt = 0) and (δP
rpt = 1 ⇔ P−rpt ≤ prpt ≤ P+

rpt) for all inner
periods of a campaign. The second and third term on the left-hand
side of (2.2.3) ensure that the positivity conditions is not applied to
the first and last period of campaigns.

Now we need to relate the start-up variables to the state variables.
This part depends on the problem considered. A formulation, valid
for any continuous variable (e.g., the production variable prpt or the
variable mD

rmt denoting the time spent in mode m both used in M1)
subject to constraints cross periods, and the conditions that we can
produce only one product per time and that at most two products
can be produced during one period (i.e., at most one setup-change
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per period), needs to represent the following set of implications for
δS
rpt:

δP
rpt−1

∖

δP
rpt 0 1

0 0 1
1 0 µrpt

, (2.2.4)

with

µrpt :=
{

1, if any other production p′ 6= p is started in period t− 1
0, if no other production started in period t− 1

(2.2.5)
These rules, for δP

rpk + δP
rpk−1 6= 2 are enforced by

δS
rpt = δP

rpt , ∀{rp} , t = 1 , (2.2.6)

for the first period, and for all other periods TT := {2, . . . , T} by

δS
rpt ≤ δP

rpt , δS
rpt ≥ δP

rpt − δP
rpt−1 , ∀{rpt ∈ TT } . (2.2.7)

The case δP
rpk−1 = δP

rpt = 1 is properly described by additional in-
equalities

δS
rpt ≥ −2 +

∑

p′ 6=p

δS
rp′t−1 + δP

rpt + δP
rpt−1 , ∀{rpt ∈ TT } , (2.2.8)

and

δS
rpt ≤ 2 +

∑

p′ 6=p

δS
rp′t−1 − δP

rpt − δP
rpt−1 , ∀{rpt ∈ TT } . (2.2.9)

If, in a general mode-product relation several products can be pro-
duced simultaneously, we may want that the case δP

rpt−1 = δP
rpt = 1

also leads to δS
rpt = 0; this can easily be realized by neglecting the sec-

ond term on the right-hand sides of (2.2.8) and (2.2.9). Alternatively,
we may require that µ = 1 if any other more complicated rule than
the above (2.2.6) is fulfilled.

Let us from now on assume that δP
rpt and δS

rpt are available. The
production of product p may start in several time periods, i.e., we have
several product-p-campaigns within the planning horizon T . There-
fore we introduce continuous variables, crpt ≥ 0, counting the number
of start-ups and related to the start-up variables δS

rpt by

crp1 = δS
rp1 , ∀{rp} ; crpt = crpt−1 + δS

rpt , ∀{rpt ∈ TT } .
(2.2.10)

Now we introduce continuous variables νrptn indicating whether a
certain campaign, n ∈ IN0, could be active (crpt = n) or not, i.e.,
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whether crpt is equal to a certain fixed integer n ∈ IN0, or not. νrptn

represents the nonlinear function

νrptn = 1− θ (|crpt − n|) , θ(x) :=
{

1, if x > 0
0, if x = 0 . (2.2.11)

Let us assume that at most N+
rp ∈ IN0 campaigns of product p can be

produced within the planning horizon; a typical value in the current
planning problem is N+

rp = 6. A special case is N+
rp = 1 enforcing that

a product can be produced in only one campaign.
The relation (2.2.11) is enforced by

1 =
N+

rp
∑

n=0

νrptn and
N+

rp
∑

n=0

nνrptn = crpt , ∀{rpt} , (2.2.12)

i.e., one campaign has to be chosen in any case (possibly, the “0”
campaign), and if campaign n is selected then crpt = n. The sets

Srpt :=
{

νrptn
∣

∣0 ≤ n ≤ N+
rp

}

, ∀{rpt} (2.2.13)

form a special ordered set of type 1. We use the second equation of
(2.2.12) as the reference row for efficient branching.

The total amount, pC
rpn, of product p produced within campaign

n is given by

pC
rpn =

NT
∑

t=1

pC
rptn , ∀{rp} , ∀n ∈ N1 := 1, . . . , N+

rp , (2.2.14)

where pC
rptn is the amount of product p produced for campaign n in

period t, i.e.,

pC
rptn = prptνrptn , ∀{rptn ∈ N1} . (2.2.15)

Applying the formalism described in Section 2.2.3 with K = 1 we
replace (2.2.15) by

pC
rptn ≤ P+

rptνrptn , pC
rptn ≤ prpt ,

pC
rptn ≥ prpt − P+

rpt + P+
rptνrptn , ∀{rptn} . (2.2.16)

With the formalism at hand described above we reached our goal: the
computation of the amount, pC

rpn, of product p produced for campaign
n. pC

rpn may be now subject to specific batch constraints, e.g., a
campaign may just consist of one single batch of fixed batch size Brp,

pC
rpn = Brp , ∀{rpn ∈ N1} . (2.2.17)
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Alternatively, campaigns may be built up by a discrete number of
batches following each other immediately, i.e.,

pC
rpn = Brpβrpn , ∀{rpn ∈ N1} , (2.2.18)

where the integer variable βrpn indicates the number of batches of
size Brp within campaign n. Finally, pC

rpn, may behave like a semi-
continuous variables, i.e.,

pC
rpn = 0 or C−rp ≤ pC

rpn ≤ C+
rp , ∀{rpn ∈ N1} , (2.2.19)

where C−rp and C+
rp are lower and upper bounds if production takes

place.

2.2.3 Modeling Product Terms Including One Con-
tinuous & Several Binary Variables

To model products like xΠK
k=1δk, where δk are binary variables and x

is any kind of non-negative variable, let us assume that X+ is a valid
upper bound on x. The product ΠK

k=1δk is exactly represented by the
variable y subject to the inequalities

∀k : y ≤ X+δk , y ≤ x , y ≥ x−X+

(

K −
K

∑

k=1

δk

)

.

(2.2.20)
The first inequality of (2.2.20) has the implications (δk = 0 ⇒ y = 0)
and (y > 0 ⇒

∑K
k=1 δk = K), while the second and third inequality

give us (
∑K

k=1 δk = K ⇒ y = x) and (y = 0 ⇒
∑K

k=1 δk < K). Note
that if we want to know the product y = xΠK

k=1δk explicitly we do
not need to introduce an extra variable.

2.2.4 Implementation and Results

If we want to add the batch constraints in Section 2.2.2 to the produc-
tion planning model M12, it is not strictly necessary to use (2.2.2)-
(2.2.9) to compute δP

rpt and δS
rpt. Alternatively, we can derive δP

rpt and
δS
rpt from the mode state variables αrmt and start-up variables βrmt

used in the model M1 by Kallrath et al. (1994) and KW97 (pp.320-
324). If P is the union of disjunctive sets Pm of products produced
in mode m and Irmp indicates whether product p can be produced in

2Although the problem instance specified by the data leads to a one-to-one
relation between modes and products, the coupling prpt ≤

∑

m RmpmD
rmt with

production rates Rmp holds for any mode-product relation. Note that in M1
r ↔ i, and t ↔ k.
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mode m on reactor r, (in the current case we have even
∑

p Irmp = 1,
i.e., exactly one product per mode) we just have

δP
rpt =

∑

m|Irmp=1

αrmt , δS
rpt =

∑

m|Irmp=1

βrmt , ∀{rpt} .

(2.2.21)
This special approach based on (2.2.21) is, however, only exactly iden-
tical with the more general approach based on (2.2.6)-(2.2.9) if P−rpt =
0.

For the model M1 and a typical reference scenario (S1) covering
12 to 36 production time periods we have used both approaches indi-
cated by indices s and g to derive production plans maximizing total
sales. The scenarios S2 use (2.2.19) to model campaigns whose min-
imum size is 300 tons. The scenarios S3 include 49 partial integer
variables and use (2.2.18) to enforce that campaigns are built up by
discrete batches of 100 tons each. Finally, in scenario Sm we require
that if a certain mode is chosen the plant has to stay in that mode
for at least 3 days. In this case, the variables mD

imk used in KW97
(pp.320-324), expressing how much time the plant at site i spends in
mode m in period k, play the role of prpt used above; the length of the
period (10 to 30 days) is a useful upper bound on mD

imk. Using Dash’s
MILP-solver XPRESS-MP 10.05 (Ashford and Daniel, 1987, 1991), we
got the following results (including the number of continuous, binary
and semi-continuous variables, constraints, integer solution, number
of nodes nn, running time τ , and gap ∆ in percent) when we ap-
plied the formalism to all possible reactor(site)-product(mode)-time
combinations:

P−rpt nc b s − c c IP nn τ ∆

S1 — 12397 2973 1608 8441 1 440 8m 1.9
S1 — 2 960 +6m 1.4
S1 — 3 1721 +8m 1.0
S2s — 14833 2973 1650 13997 1 786 52m 19.4
S2g 1 15217 2973 1650 14033 1 858 59m 28.8

S2g 0.8P+
rpt 15217 2973 1650 14033 2 3860 5h59m 31.9

S3s — 15687 2973 1608 13855 1 632 58m 3.9
S3g 1 16215 2973 1608 15681 1 907 1h09m 16.5

S3g 0.8P+
rpt 16215 2973 1608 15681 3 18272 39h02m 4.6

Sm — 15333 2973 1650 15681 1 511 28m 4.6
Sm — 3 1943 +40m 1.8
Sm — 4 3972 +2h44m 1.5

The use of special ordered sets of type 1 for the variables νrptn is
essential; the model contains 192 sets and 1080 set members. In
previous versions when these variables were declared as binary vari-
ables computing times were much larger. In the S3 runs (multiple
batches), the variables βrpn were declared as partial integers (integer
below 10, continuous above 10). Although the variables δS

prt become
binary automatically, it is advantageous to declare them as binary
variable explicitly because that enables us to prioritize them and to
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improve branching. The use of directives in the model was crucial. In
the general approach scenarios nn, τ , and the quality of the solution
indicated by ∆ depended critically on P−rpt. Note that the run for
P−rpt = 0.8P+

rpt, (i.e., high utilization rates of the plant system), shows
the third integer solution found and required much more computing
time.

The benefit achieved by the extended model features is qualita-
tive because it leads to an improved representation of the real world
process. The production plans do not suffer any longer from the time-
indexed formulation and look more stable avoiding small campaigns
and many setup-changes. In practical planning runs it is sufficient to
use the formalism only for a few products or modes, and sometimes
only for one site or reactor. Thus, the Pentium 166 MHz computing
time reduces to less than 15 minutes and becomes similar to the one
of the reference scenario S1.

2.3 Production Planning in a Petrochem-
ical Production Network

This section describes the mathematical model of a petrochemical pro-
duction network. The network includes 5 plants [2 steamcrackers, 3
units to extract certain fractions] with about 30 products (or streams)
in Ludwigshafen, and 7 plants with about 30 products in Antwerp.
The crackers can be operated in continuously varying modes defined
by the cracking severity. The modes of operation are modeled through
interpolation between three predefined values (sharp, medium, mild).
For a fixed mode of operation incoming and outgoing flows are linearly
coupled by yield coefficients ([t/t]). Plants are subject to capacity re-
strictions (upper and lower bounds in [t/h]); for some plants there
also exist lower or upper bounds for the relative weight of products
in blends (cuts). In every time period only limited amounts of raw
materials are available. Streams from intern or extern sources are
treated similarly. Utilities are also treated as products.

Every raw material or finished product can be transferred between
sites; utilities, representing different types of energy (e.g., heating
gas, electricity), cannot. It is possible to define different modes of
transportation with different prices for every material. There exist
minimal transport limits, below which transport is unreasonable. The
solver can choose whether to transport nothing or an amount between
the minimal limit, MTU

p (t/h), and maximal transport capacity, MTL
p

(t/h).
The objective function is to maximize the net operating margin.

Model output is the full feed stock information for all plants, the net
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operating margin for both networks and shadow prices. The multi-
period model can be used for monthly and 6 months planning.

2.3.1 Foundations of the Mathematical Model

2.3.1.1 Indices, Index sets, Sets and Projectors

We use the following indices and set of indices:

c ∈ {1, 2, 3} = C ⊂ N crackers |C| = 3
d ∈ {d1, . . . , dND} = D markets |D| ∼ 5
m ∈ {m1, . . . , mNM } = M cracker modes |M| = 3
n ∈ {n1, . . . , nNN } = N nodes |N | ∼ 20
o ∈ {o1, . . . , oNo} = O processes |O| ∼ 80
p ∈ {p1, . . . , pNP } = P products |P| ∼ 40
r ∈ {r1, . . . , rNR} = R resources |R| ∼ 30
s ∈ {s1, . . . , sNS} = S sites |S| = 2
t ∈ {1, . . . , NT } = T time periods |T | = 6

Processes, e.g., cracking of LPG in a certain mode of operation or
production of Benzol through extraction from the blend BTX, are
represented by nodes (called submodels in the PIMS3 nomenclature).
Because additional equations are defined in the crackers, special in-
dices are defined for them. We use the term products for all streams
considered in the planning model.

Different modes of operation are possible only in the crackers.
Therefore the indices for the modes are not used and instead three
different processes are defined. They correspond to the three cracker
modes mentioned above. Resources stand for capacity restrictions. It
is possible to share resources among processes. Usually resources are
identical to certain minimal or maximal node flow constraints. We do
not introduce an additional index for transport because we use only
one.

For simplification of description we introduce the following sets:

B blends
L stored streams
Omc processes belonging to mode m in cracker c
PF finished products
PT products transported between sites
PR raw materials purchased
PP finished products purchased

.

Additionally we define the following projectors:
3The model is formulated and solved by PIMS (Module PPIMSXX and XPIMS) by

Bechtel Corp. (Houston, US); now ASPEN Tech.



Josef Kallrath 13

PP
pb

the blended products p ∈ P for every blend (cut) pb ∈ B.
PO

n the corresponding processes o ∈ O for every node n ∈ N .
PO

b the corresponding processes o ∈ O for b ∈ B ,
PN

b the corresponding nodes n ∈ N for b ∈ B,
PO

s the processes at site s ∈ S.
Finally, we define the length of periods. For every period its length
is given by Ft (h/month). This increases model flexibility, because
it provides an easy way to change from monthly to weekly planning.
Additionally different lengths of months can be incorporated.

2.3.1.2 Variables

We use the following set of variables:

bppbts Blending of product p [t/h] into product pb in period t
epts Amount purchased [t/h] of product p at site s in period t
fot Flow [t/h] of process o in period t; process flow variable
ipts Stock [t] of product p (p ∈ L) at the end of period t
qC
pts Collector for pool p in period t at site s

qD
pbnts Flow of pool pb into node n in period t

rppbts Recursion error for the amount of product p in product pb

sj
its Variable for interpolation of severity (i, j ∈ {1, 2, 3})

tpsisjt Transport of product p from site si to site sj in period t
vptsd Sold [t/h] product p at site s in period t on market d
λpsisjt Binary variable for transport of product p from si to sj

2.3.2 The Mathematical Model

The model consists of a network of nodes connected by appropriate
balance equations defining and representing the topology. The flow
balances

epts + tpsjsit − tpsisjt +
∑

o∈PO
si

Yopfot −
∑

d

vptsd
≤
= 0 , ∀{ptsi}

(2.3.1)
typically include the sum of purchases, transport, consumption and
production, and sells; inventories will be considered later ignoring
the inventories for the moment. Consumption and production are
represented by positive und negative values of yield coefficients Yop
coupled to the process flow variables fot. Yop with o identifying a
process defines how much of product p is consumed (Yop > 0) or
generated (Yop < 0). Necessarily

∑

p Yop = 0. For convenience, yield
coefficients are normalized to

∑

p |Yop| = 2, so that the sum of the
positive and negative entries is 1.
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A similar balance relation must hold for the utilities. Both crackers
use heating gas, in this case a mixture of CH4 and H2, and electricity
to heat up some feed stock products. Consumption of utility p in
process o is given by Hop which leads us to the relations

epts +
∑

o∈PO
s

Hopfot
≤
= 0 , ∀{pts} , (2.3.2)

between the purchase variables, epts, and the process flow variables,
fot. For numerical advantages the equalities (2.3.2) are relaxed and
equivalently replaced by inequalities [for further reasoning and vali-
dation see KW97 (p.281)].

For some products p, inventories with initial stock SA
ps have to be

considered, i.e., at the end of the first period the inventory is the sum
of the opening inventory and the incoming flow minus the outgoing
flow:

ipts = SA
ps + FtfN

pts , ∀p ∈ L , t = 1 , ∀si (2.3.3)

with the number, Ft, of hours in period t and

fN
pts := epts + tpsjsi − tpsisj +

∑

o∈PO
si

Yopfot −
∑

d

vptsd . (2.3.4)

In the inventory balance equations applied to the end of the periods
t ∈ T2 =

{

2, . . . , NT − 1
}

ipts = ipt−1m + FtfN
pts , ∀p ∈ L , t ∈ T2 , ∀si (2.3.5)

the initial inventory is replaced by the inventory of the previous pe-
riod. In the last period the target inventory SE

p (at present, the
implementation assumes SA

ps = SE
ps = 0) is used, so we get

ipts = ipt−1m +FtfN
pts = SE

ps , ∀p ∈ L, t = NT , ∀si . (2.3.6)

Modelling of Blends and Pooling: Blends (blended products), or cuts
are flows, which consist of several components, but behave as one
stream topologically. A cut is characterized by its components and its
composition which is variable to a certain amount. Cuts are treated
as products and their components as the cut’s properties. Cuts can
be components of other cuts. Two different types of cuts are used
described by their own set of variables, although mathematically they
are similar. The first type, products leaving the submodels, are in fact
blends and separated into their components later, the second type are
products pooled in blending nodes.
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Equations for submodel nodes need to connect at first the pool
collector variable qC

pbts (this is the total mass of the produced blend)
to the yield coefficients and flow variables

qC
pbts =

∑

p∈PP
pb

∑

o∈PO
s

Yopfot , ∀pb ∈ B , ∀{ts} . (2.3.7)

For every component the error vectors rppbts denotes the deviation of
the total amount,

∑

o∈PO
s

Yopfot, of the component p in the blend from
the value computed as the product of qC

pbts and the assumed value,
FC

ppbts, for its its relative fraction. Thus we get [compare (2.3.8) to eq.
(11.1.21) in KW97, p.371]

tCC
ppbts := FC

ppbtsq
C
pbts + rppbts =

∑

o∈PO
s

Yopfot,
∀pb ∈ B
∀p ∈ PP

pb

∀{ts}
. (2.3.8)

The quantity tCC
ppbts describes the linear approximation of the amount

of p in the blend pb. The error vector is used in subsequent processes
involving the blend. The guessed quantity FD

pbnt in (2.3.9) specifies
which fraction of the error vector flow is distributed to the node be-
longing to the processes:

FC
ppbtsq

D
pbnt + FD

pbntrppbts =
∑

o∈PO
n

Yopfot, ∀{st},
∀n ∈ PN

s
∀pb ∈ B
∀p ∈ PP

pb

.

(2.3.9)
Equations for the blending nodes again connect the pool collector vari-
able qC

pbts with the flow-in variables. For blends consisting only of base
products, and for blends containing other blends we have two different
formulae, namely

∑

p∈PP
pb

bppbts = qC
pbts &

∑

p∈PP
pb

FC
ppbtsbppbts + FD

pbntrppbts = qC
pbts

∀pb ∈ B , ∀{ts} . (2.3.10)

The equations for the error vectors rppbts are:

bppbts = tCC
ppbts & FC

ppbtsbppbts + FD
pbntrppbts = tCC

ppbts

∀pb ∈ B , ∀p ∈ PP
pb

, ∀{ts} (2.3.11)

In the case of a blend flowing into a submodel we again have again
(2.3.9).
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In distributive recursion, an equivalent technique to sequential
linear programming, after every solution of the linear problem the
guesses for concentrations and distributions are exchanged and a new
iteration (k + 1) is started, until convergence is achieved:

FC,(k+1)
ppbts = FC,(k)

ppbts + r(k)
ppbts

/

qC,(k)
pbts ,

∀pb ∈ B
∀p ∈ PS

pb

∀{ts}
, (2.3.12)

FD,(k+1)
pnt = qD,(k)

pbnt

/

qC,(k)
pbts ,

∀pb ∈ B
∀{ts}
∀n ∈ PN

s

. (2.3.13)

Initial guesses FC
ppbts for concentrations and FD

pbnt for distributions are
used to start the iteration.

Concerning blends (cuts) we need to restrict the composition of
some cuts. The numbers FEL

ppbt und FEU
ppbt represent lower and up-

per bounds on the relative fractions of components. The quantities
FC,(k+1)

ppbts and FD,(k+1)
pnt must observe these bounds.

Capacity restrictions apply to all processes consuming Ror (units/h)
of available capacity resources. Additionally lower and upper bounds
DLR

r and DUR
r on the total capacity consumption are needed. The

sum of all processes using the same resource is then limited by:

DLR
r ≤

∑

o

Rorfot ≤ DUR
r , ∀r . (2.3.14)

To model the interpolation of cracker modes, cracking severity vari-
ables scmt for every operating mode of the crackers are introduced
(0 ≤ scmt ≤ 1). They describe the percentage at which the cracker
works in the corresponding mode (sharp or medium or mild). The
process variables, fot, are coupled to the severity variables by

∑

o∈Omc

fot ≤ Rcscmt , ∀{cmt} ;
3

∑

m=1

scmt = 1 , ∀{ct} .

(2.3.15)
If the resource Rc is the total capacity of the cracker, and if the crack-
ers operate at full capacity the interpolation is exact if we proceed as
follows: in the case of only three modes the cracking severity variables
are connected to binary variables

µct :=







1, in period t cracker c operates
between mode 1 and 2

0, . . . between mode 2 and 3
, ∀c ∈ {1, 2} ,

(2.3.16)
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i.e., we interpolate only between two neighboring modes (sharp, medium
or medium, mild):

sc1t ≤ µct , sc3t ≤ 1− µct , ∀{ct} . (2.3.17)

This formulation enables us to compute the cracking severity εct by

εct = 0.5sc1t + 0.55sc2t + 0.6sc3t , ∀{ct} . (2.3.18)

where the reference values 0.5, 0.55 und 0.6 represent the three modes.

2.3.2.1 Bounds

The cracking severities εct are bounded by SLS
c and SUS

c . Initial in-
ventories, SA

ps, (t) for the first period in and target closing inventories,
SE

ps, (t) for the last period are assumed to be zero. Inventory capac-
ities (t) are defined by SC

ps and have to be observed by the inventory
variables ipts. Availability Restrictions and Purchase All materials
are bought on the same market, but at possibly different prices and
bounds for the sites. The purchased streams epts are subject to avail-
ability restrictions, i.e., to upper and lower bounds (t/h) EU

pts and
EL

pts. Sales restrictions put bounds (t/h) V U
ptsd and V L

ptsd on the sold
streams vptsd. Lower bounds represent given contracts with demand
to be satisfied. There is the possibility to fulfill these obligations by
buying products from extern sources instead of producing them. This
type of purchase is treated separately.

Transport restrictions consider that a certain minimal amount has
to be transported, if transport is to take place at all:

MTL
p λpsisjt ≤ tpsisjt ≤ MTU

p λpsisjt, ∀{ptsi}, ∀sj 6= si .
(2.3.19)

Unfortunately it is not possible to implement (2.3.19) into PIMS, be-
cause transport variables can (at present) not be connected to other
variables. Therefore we have to define the restrictions in the local
models, for example

MTL
p λpsisjt ≤ bppbtsj ≤ MTU

p λpsisjt, ∀{ptsi}, ∀sj 6= si (2.3.20)

for a product absorbed to 100% by a blend (otherwise the correspond-
ing sum has to be used in the left-hand side), or

MTL
p λpsisjt ≤ fot ≤ MTU

p λpsisjt, ∀{ptsi} , ∀sj 6= si (2.3.21)

for a product absorbed to 100% by a certain process.
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2.3.2.2 Objective Function

The objective function includes terms for revenue, product consump-
tion, external purchase, transport and inventory. Revenues and pur-
chases have to be multiplied with the factor, Ft, because the corre-
sponding data is defined on an hourly basis. The costs for holding
inventory is defined on a monthly basis. FPV

t describes the effects of
inflation and interest rates in the model. As a side-effect, some sym-
metries in the model are broken, which leads to better convergence.
This effect is added to by the usage of inventory holding costs. The
objective function is formulated as

z =
∑

t∈T

FPV
t

[

Ft
(

yE
t − yR

t − yP
t − yT

t

)

− yL
t

]

(2.3.22)

total revenue zE
t based on specific revenues EP

ptsd (DM/t),

zE
t :=

∑

p∈PF

∑

s∈S

∑

d∈D

EE
ptsdvptsd , (2.3.23)

total cost costs for raw materials, zR
t , and products purchased exter-

nally

zR
t :=

∑

p∈PR

∑

s∈S
CR

ptsepts , zP
t :=

∑

p∈PT

∑

s∈S

CP
ptsepts , (2.3.24)

based on specific costs ER
ptsd and CE

pts (DM/t) for materials consumed
and purchased externally, and transport and inventory costs

zT
t :=

∑

p∈PP

∑

si∈S

∑

sj∈S
sj>si

CT
pzsisj

tpzsisj , zL
t :=

∑

p∈L

∑

s∈S

CL
ptsipts .

(2.3.25)
The specific transport costs are given for every material specifically
as CT

pzsisj
(DM/t). The specific costs for inventories CL

pts (DM/t)
are calculated from the cost of the working capital tied up in the
inventory. Prices for sold and purchased products are given on a
monthly base (DM/t). They can be either “official” market prices or
intern “computational” prices.

2.3.3 Solution Approach and Results

The model falls into the class of MINLP problems. The mathematical
algorithm implemented in PIMS is similar to a first step of outer ap-
proximation [see Section 2.4.2.1]. At first, the NLP relaxation is solved
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by distributive recursion which is equivalent to sequential linear pro-
gramming but has better scaling [see, for instance, KW97 (pp.368)].
The next step is to fix the recursed terms (concentrations) and to
solve the MILP problem. Finally, with the discrete variables fixed, an
NLP problem is solved updating the recursed terms.

The matrix of the resulting linear programs (only Ludwigshafen)
has about 1300 rows, 1600 columns and 15500 non-zeros. 30 of the
variables are binary, and we have 269 nonlinear constraints. Antwerp
adds another 800 rows and 1000 columns. Solution times are between
2 and 15 minutes. Once a solution has been found the recursed terms
are stored and used as initial values in subsequent runs.

Typical questions analyzed are for example, “which product should
be produced at which site?”, “which raw materials should be pur-
chased?”, “under which circumstances is it advantageous to transfer
products between the sites?”, or “which effects do certain changes have
on the global system?”. Several case studies have been performed for
the individual sites and for the 2-site-network. The savings are gen-
erally in the order of magnitude of 1%, which corresponds to several
millions DM per year.

2.4 An Integrated Site Analysis

The purpose of the model is to design an integrated production net-
work minimizing the costs for raw material (RM), investment and
variable costs for re-processing units, and a cost penalty term for re-
maining impurities.

Three types of production processes (units) are considered: source
processes producing RM not requesting it, sink processes only requir-
ing RM not producing it and stream processes requesting and produc-
ing the RM. The flow rate of a process and its effect on the quality of
RMs are known a priori.

Until now purchased RM of different qualities measured in terms of
certain impurities has been used for all production processes requiring
RM. It seems recommended to re-use impure RM for other processes
and so to reduce the costs for purchasing RM. This may require new
connections between units. Unfortunately, for most processes inlet
specifications for the RM restrict the direct re-use of impure RM of
other processes. In addition, some flow connections between processes
are not allowed or not possible (“forbidden matches”). However, the
inlet specifications may be satisfied by pooling RM streams of differ-
ent quality. This has the additional advantage that only one pipeline
is necessary instead of several so that investment costs for pipelines
(depending on required capacity and the distance between the pro-
duction processes to be connected) and costs for pumping RM into
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pipelines are reduced. For each single process we know the amount
and type of impurities it produces, i.e., has to be added to the impu-
rities already in the stream. To pool the RM streams no investment
or variable costs have to be taken into account, except for the case of
new pipelines to be built because pools are realized by joining different
RM streams without any technical or financial expense.

An alternative approach is to process the quality of the RM when
leaving a process. This requires local re-processing units (RPUs) for
a (partial) improving of the RM quality causing investment costs for
RPUs, as well as costs for operating the RPUs. The components
extracted by the RPUs might be re-used or sold. Since for certain im-
purities we consider penalty costs when they leave the system money
can be saved by reducing the amount of these impurities.

A central RPU already exists which improves the quality of RM
before leaving the site; the RM is used by other sites but the more
impurities remain leaving the site the lower the quality, and thus, the
less valuable it is. Since we cannot easily convert quality into money
we consider penalty costs for the impurities remaining in the RM.
Therefore, it might be more promising of building small local RPUs.

The investment costs for new local RPUs depend on the required
capacities (RM flow rates) but additionally on the type of impurity
and on its concentration. The variable costs for the RPUs depend on
the mass load (in kg/h) of the input impurities. For the use of the
central RPU only variable costs have to be payed depending on the
type and the total mass of the impurity.

The RPUs can be regarded as a certain type of stream process,
where the total input and output of RM and impurities are the same.
Unlike production stream processes RPUs split both RM stream and
mass load of impurities, i.e., two RM streams leave the RPU: a main
RM stream (relatively high quality) and a small stream (very low
quality). The ratio of the amount of RM of the main outlet stream
to that of the input stream is prescribed for each RPU. Analogously
the ratio (“extraction rate”) of the mass load of an impurity in the
low quality stream to those of the inlet mass load can be estimated
as a constant or prescribed as a function of the inlet concentration
for each RPU and each impurity. Similar to production processes, for
technical reasons, there might exist inlet specifications limiting the
concentration of a certain impurity. Since the raw material leaving
the production network might be used for other purposes we also
consider bounds for the concentration of impurities in the RM leaving
the system. They can be understood as “outlet specification” (i.e.,
maximum concentration of an impurity in the RM) of the central
RPU.
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2.4.1 The Mathematical Model

At first let us summarize the dimensions of the model and the indices:

# description
3 raw material qualities

N ∼ 60 source processes
M ∼ 7 impurities
L ≥ 1 RPUs
P ∼ 60 pools

i sources
s sinks
k impurities
m re-processing units
p pools
s connection capacity

(2.4.1)
We consider a total of 3 + N + L + P ∼ 125 processes, and introduce,
for convenience, the following sets of indices

KP set of all pairs (i, j) of possible matches
KN set of all pairs (i, j) of unexisting matches (KN ⊂ KP )
PSO i ∈ PSO ⇔ Pi is a source process
PSI j ∈ PSI ⇔ Pj is a sink process
PST i ∈ PST ⇔ Pi is a stream process
PT m ∈ PT ⇔ Pm is a re-processing unit
PP m ∈ PP ⇔ Pp is a pool
P1 P1 := PSO ∪ PST ∪ PP ∪ PT

P2 P1 := PSI ∪ PST ∪ PP ∪ PT

(2.4.2)

2.4.1.1 Variables

real variable dim. description
xA

ij ≡ xij t/h output from process Pi going to
process Pj (at waste RM RPUs:
output (A), high quality)

xB
m = xA

im (1−Gm) t/h low quality output (B) from pro-
cess Pi; for other processes than
local RPUs xB

i = 0
cin
ik (cout

ik ): ppm input (output) concentration of
impurity k in process Pi

zin
jk :=

∑

i
(i,j)∈KP

cout
ik xij t/h input mass load of impurity k in

process Pj summed over all pro-
cesses Pi which send RM to it

In addition we use the binary variables µij , εsij and νm indicating
whether a connection exists from Pi to Pj , whether a pipeline from
Pi to Pj is of capacity and whether process (RPU) Pm exists.
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data dim. description

Kout
ik [ppm] specific outlet concentration of impu-

rity k of process Pi

Kin
jk [ppm] inlet specification for impurity k of pro-

cess Pj

Xi [t/h] inlet flux of process Pi, Xi = 0 for
source processes Pi

Yi [t/h] outlet flux of process Pi, Yi = Xi for
all stream processes and Yi = 0 for sink
processes; for local RPUs it is Yi ≤ Xi

because the RM stream is splitted into
a main stream (A) and a smaller low
quality stream (B)

Fmk(cin
mk) [−] rate of extraction for a single impurity

k removed in RPU Pm. This rate is a
function of the input concentration cin

mk
and is of order 0.7....0.95.

Gm [−] splitting rate of the RM stream within
RPU m.

CPI
ij investment costs for building a pipeline

from Pi to Pj

CTI
m (xim, zin

mk) investment costs for a local RPU Pm .
These costs are a function of the RM
flow rate once it has been decided which
impurities have to be removed.

CTV
mk (zin

mk) variable costs for RPU Pm. They are
a function of the product of extraction
rate and mass load of impurity k, i.e.,
fmk(cin

mk)zmk

CRM
i costs for purchased RM of quality i

CPEN
k penalty costs for impurities leaving the

system
V PI

s [t/h] capacity of pipeline is of type (size) s

2.4.1.2 Constraints

The production processes (sink and stream processes) require a con-
stant amount of RM, and the production (source or stream) processes
have a constant emission of waste RM. Therefore the sum of all inlet
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and outlet fluxes is constant, and we have the mass balances
∑

i|(i,j)∈KP

xij = Xj , ∀j ∈
{

PSI ∪ PST }

, (2.4.3)

and
∑

j|(i,j)∈KP

xij = Yi , ∀i ∈
{

PSO ∪ PST }

. (2.4.4)

Additionally, for stream and pool processes it is assumed that there
is no loss of RM, i.e.,

Xi = Yi , ∀i ∈
{

PP ∪ PST }

. (2.4.5)

In RPUs the RM stream is separated into a main stream (A) of rela-
tively high quality and a stream (B) of low quality. Since no RM loss
is assumed the RM flow of the RPU Pm can be modeled similar to
those of stream processes:

∑

i|(i,m)∈KP

xim =
∑

j′|(m,j′ )∈KP

xm,j′+xB
m,

∀i ∈
{

PSO ∪ PST ∪ PP
}

∀j ∈
{

PSI ∪ PST ∪ PP
}

∀m ∈ PT

(2.4.6)
The splitting of the main RM stream into two streams within a RPU
plant is prescribed by the factor Gm, the ratio of RM flow rate in
stream (B) to the total input flow rate (Gm = 1 implies that all RM
is kept in the main stream):

Gm =
xB

m
∑

i|(i,m)∈KP xim
⇔ xB

m =
∑

i|(i,m)∈KP

Gmxim , ∀m ∈ PT

(2.4.7)
The pool Pj collecting different RM streams originating from processes
Pi is described by

cin
jkXj =

∑

i|(i,j)∈KP

cout
ik xij ,

∀i ∈ P1

∀k, ∀j ∈ PP . (2.4.8)

The concentration limits for certain impurities originating from the
processes Pi and entering Pj yield the material balance with respect
to the content of impurities:

∑

i|(i,j)∈KP

cout
ik xij =: zin

jk ≤ Kin
jkXj , ∀j ∈ P2 , ∀k . (2.4.9)

Knowing the concentration of impurity k and the RM fluxes originat-
ing from process Pi and entering process Pj the pooled concentration
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cin
jk , i.e., the inlet concentration of Pj , can be calculated by

cin
jk

∑

i|(i,j)∈KP

xij =
∑

i|(i,j)∈KP

cout
ik xij (2.4.10)

⇔ cin
jkXj = zin

jk , ∀j ∈ P2, ∀k .(2.4.11)

The outlet mass load of impurities of a process consists of the impu-
rities which already have been in the inlet RM stream and the impu-
rities added by the production process. Their total concentration in
the outlet stream can be calculated by

cout
jk = cin

jk + Kout
ik , ∀j ∈

{

PSO ∪ PST }

, ∀k (2.4.12)

and the output mass load of stream processes (not valid for RPUs!) is

zout
ik Xi = zin

ik + Kout
ik Xi . (2.4.13)

The outlet concentration of a impurity k of a RPU Pj depends on
the inlet concentration and the extraction rate for removing the sub-
stance. As already mentioned above the impurities can be divided
in two groups with additional subgroups for which the removal in
RPUs is very different. In general it can be described by the function
zout
jk = H(zin

jk): The left and right formulae show typical relations
representing the operation of the RPUs:

zout
jk = zin

jk

(

1− Fjk

(

zin
jk

))

or
zout
j1 = zin

j1 −
∑6

k=2 zin
jkFjk(zin

jk)

zout
jk1

= zin
jk∗ − zin

j,k2

zout
j,k2

= 0
zout
j,k2

= zin
j,k3

.

(2.4.14)
The construction of pipelines from i to j can be required by the in-
equalities

xij ≤ min
ij

{Yi, Xj}µij , xij ≤
∑

s

V PI
sij εsij , ∀(i, j) ∈ KN ,

(2.4.15)
where the second inequality describes the required type (capacity) of
pipeline.

To be sure that only one pipeline is built between process Pi and
Pj the sum over s over the binary variable εsij which describes the
type (capacity) of pipeline is forced to be µij which is 1 if the connec-
tion exists and which is 0 else:

µij =
S

∑

s=1

εsij , ∀i ∈ P1 , ∀j ∈ P2 . (2.4.16)
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In order to force the construction of a RPU Pm the inequalities

∑

i|(i,m)∈KP

xim ≤





∑

j′|(m,j′ )∈KP

xm,j′ + xB
m



 νm,
∀i ∈ PSO \ PT

∀m ∈ PT

∀t
(2.4.17)

have to be fulfilled.

2.4.1.3 Objective Function

The objective function sums over all investment and variable costs,
over penalty costs to be payed and over the income which can be
achieved by re-using impurities and it considers all possible matches
between the processes. This sum is to be minimized:

Z : = min
∑

j

∑

i
(i,j)∈KP

CPI
ij µij

+
∑

j

∑

i
(i,j)∈KP

{

CTI
j (xij , zin

jk)νj +
∑

k

CTV
j zin

jk

}

+CRM
ij xij−

∑

j
(i,j)∈KP

∑

k

Sk
(

zin
jk − zout

jk

)

+ +
∑

k

CPEN
k zout

ctr,k . (2.4.18)

The first term represents the investment costs for pipelines from pro-
cess i to j, the third the variable costs and investment costs for RPU
j collecting streams from process i, and the fourth term the costs for
RM streaming from process i to j, i ∈ {1, 2, 3}. The second-last term
is the revenue from sold impurity k in streams originating from pro-
cesses i and extracted in process j, the last term in (2.4.18) represents
the costs for impurity k leaving the system after having passed the
central RPU Pctr .

2.4.2 Solution Approach and Results

2.4.2.1 Mathematical Solution - Outer Approximation

To solve this MINLP problem we use the outer approximation (OA)
algorithm by Duran and Grossmann (1986). This algorithm gener-
ates a sequence of NLP sub-problems (produced by fixing the bi-
nary variables yk) and MILP Master problems. Algorithms based
on OA describe the feasible region as the intersection of an infinite
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collection of sets with a simpler structure, e.g., polyhedra. In OA
the Master problems are generated by “outer approximations” (lin-
earizations, or Taylor series expansions) of the nonlinear constraints
at those points which are the optimal solutions of the NLP subprob-
lems. The key idea of the algorithm by Duran and Grossmann (1986)
is to solve the MINLP with a much smaller set of points, i.e., tan-
gential planes. In convex MINLP problems, a superset of the feasible
region is established. Thus, the OA Master problems (MILP problem
in both discrete and continuous variables) produce a sequence of lower
bounds monotonically increasing. The NLP sub-problems yield up-
per bounds for the original problem while the MILP Master problems
yield additional combination of binary variables yk for subsequent
NLP sub-problems. Under convexity assumptions the Master prob-
lems generate a sequence of lower bounds increasing monotonically.
The algorithm terminatestermination criteriontermination criterion if
lower and upper bounds equal or cross each other. The OA algorithm
has heuristic extensions for non-convex MINLP.

2.4.2.2 Software

To model and solve the MINLP the software package GAMS by GAMS
Inc. (Washington) [see, e.g., Broocke et al., 1992)] with the DICOPT-
algorithm (Viswanathan & Grossman, Carnegie Mellon University)
using a nonlinear solver (CONOPT by ARKI Consulting & Develop-
ment A/S, Denmark) in combination with a MILP-solver are used.
DICOPTDICOPTDICOPT (Viswanathan and Grossmann, 1990) seems
to be the only commercial software available for solving the MINLP
problem (2.1.1) of realistic size. It uses OA with some extensions for
non-convex problems. To initialize the algorithm the first lineariza-
tion is derived from the solution of the continuous relaxation of the
MINLP, i.e., it is not required that the user provides any discrete ini-
tial point. The termination criterion is different from a pure “crossing
bounds” method. In a non-convex model the algorithm terminates
when the solutions of the NLP problems do not provide improved
upper bounds.

2.4.2.3 Homotopy Method

The problem is solved in sequence of sub-models formulated in GAMS,
exploiting the results of the previous one, i.e., we use a homotopy
method. A simple linear model provides initial values for two simple
nonlinear submodels. Solution times are of the order of one or two
hours.
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2.4.2.4 Results

The model was well appreciated by the client for its high degree of
reality, exact mass balances of raw material impurities, and the free
pools. The model reproduced and confirmed earlier suggestions by
engineer establishing a certain amount of trust, and finally, suggested
further non-intuitive improvements with remarkable financial savings.

2.5 A Production Planning and Process
Design Problem

This optimization problem is concerned with a production process of
a certain product P involving a system of connected reactors. The
problem is a typical process design problem leading to a mixed integer
nonlinear model. Nonlinear terms are related to the exponential terms
for the reaction kinetics and rational terms to describes the mass flow.
The description of reaction kinetics is in parts based on nonlinear ex-
pression (interpolated and approximated functions describing density
and viscosity). Discrete features are needed to count the number of
reactors, the existence of connections, the length of reactor chains,
and to select the size of reactors. The variables are the flow rates,
fractions, and the number and size of reactors.

2.5.1 Mathematical Formulation of the Model

Throughout this model description the following set r ∈ R ∪ T :=
{1, . . . , NR} ∪ {p-tank} of indices is used. Most of the variables are
non-negative (continuous) flow variables

mpr = Mpnpr , p ∈ P := L ∪ G := {A,B,C, P} ∪ {G1, G2, G3}
(2.5.1)

describing the total mass flow of product p or gas g into or out from
node r, a reactor or the product tank. We distinguish between the liq-
uids L and the gases G because they are subject to different topologies.
While the variables m have the dimension tons/hour the variables
n are in kmol/hour; they are coupled by the molecular masses Mp.
Other variables are the temperature Tr and pressure pP

r in reactor r,
the stirring energy er used in reactor r, and as auxiliary variables, the
weight fractions wp

r .
The valuable product, P , is produced by a system of reactors r.

The reactors are connected according to free or fixed pattern (single
chain, parallel chains of different lengths, parallel chains with connec-
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tions) as shown below

→ → → → → → ,
→ → → → →
→ → → → → →
→ → → →

,

or parallel chains with connections

→ → → → → →
↘ ↘

→ → → → →
→ → ↘
→ → → → → →

.

During the synthesis within a reactor r side-products are produced
like A, B or G1, and raw material remains. Liquid components are
fed to one or several subsequent reactors or via filter to the product
tank. For the gaseous components incidence tables control the flow
between reactors. The gaseous outlet of some reactors can leaves to
the incinerator or can be fed back to a reactor.

2.5.1.1 Mass Balances for the Reactors

The input side of reactors is described by

ni
pr = IS

prn
S
pr +

∑

s∈R|II
psr=1

xpsrno
ps , ∀r ∈ R ∪ T , ∀p ∈ P .(2.5.2)

For a fixed topology of reactors the (binary) incidence table IS
pr de-

scribes whether reactor r is connected to a supply tank of product
p; the variable nS

pr describes the flow of product p from the supply
tank to reactor r. If the topology is free we just set IS

pr = 1 for all
combinations. The second term describes the flow of product p from
all possible reactors rs ∈ R to reactor r. The fractions, 0 ≤ xpsr ≤ 1,
distribute the output flow from a certain reactor to other subsequent
reactor. Conservation of total flow is enforced by

∑

d∈R|II
prd=1

xprd = 1 , ∀r ∈ R ∪ T , ∀p ∈ P . (2.5.3)

For a fixed topology with either single or several unconnected parallel
chains we have xprr+1 = 1, and xprd = 0 for all other combinations.
For all products p within a stream from s to r we enforce the pooling
condition

xpsr = xp′sr , (2.5.4)
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which expresses the conservation of composition. The synthesis of P
needs a catalyst to be fed to the reactors. Since none of the catalyst
flowing through the reactors is consumed we can approximately de-
scribe the flow of the catalyst by only one continuous variable, mCAT .
The mass of the catalyst is separated from the product outflow and
re-used again in the reactors.

How many kmol/h of substance p will leave the reactor r is de-
scribed by

no
pr = ni

pr +
∑

p′∈P|p′ 6=p∧Spp′ 6=0

Spp′∆np′r , ∀p ∈ P , ∀r .

(2.5.5)
with

∆np′r := no
p′r − ni

p′r , ∀p ∈ P , ∀r . (2.5.6)

From the throughputs, ∆np′r of products p′ in reactor r, with known
reaction scheme represented by the stoichiometric coefficients Spp′ , we
can derive the production and loss terms of product p. The amount
of product p′ leaving reactor r is the amount which has gone into the
reactor and the amount which is produced in the reactor. The amount
∆np′r produced depends on the reaction rates rp′r and the volume of
the reactor Vr:

∆np′r = no
p′r − ni

p′r = rp′rVr , ∀p′ ∈ P , ∀r . (2.5.7)

In the current case, C is consumed by the production of P and its
by-product B, i.e., SCP and SCB are non-zero. Product A flows from
a certain reactor to all possible subsequent reactors, but it is also
produced as a by-product of the P -synthesis, namely during producing
B and G1, i.e., SAG1 and SAB are different from zero.

G1 is produced in a undesired reaction of G2 and G3. So the
amount leaving the reactor consists of the amount flowing in and
the amount produced depending on reaction rates rG1r and reactor
volume V . The gaseous basic chemicals G2 and G3 are consumed
within the reaction. The consumption depends on the amount of P ,
B and G1 produced, i.e., we need to consider SG3P , SG3B and SG3G1 .

2.5.1.2 Reaction Rates and Weight Fractions

The amount of P , B and G1 produced in reactor r depends on the
reaction rates. These, in turn, are functions of temperature, density,
concentration of catalyst and other parameters describing the chemi-
cal synthesis.

In the following the reaction rates are formulated for the sub-
stances which are synthesized or which decay. While for elementary
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reactions the rates are of the form

rAB = k0 [A] [B] e
−

E
kt , (2.5.8)

where [A] and [B] denote the concentrations of compounds A and
B, the reaction rates in the current scheme are more complicated
and depend especially on interpolated functions for density, viscosity
etc. The reaction rates rPr and rBr for the P and B synthesis are
computed by

rPr = r(1)
Pr − r(2)

G1r , rB
r = C1mCAT f5(cl

r) , (2.5.9)

where cl
r is an auxiliary variable involved in the interpolation of the

reaction kinetics, r(1)
Pr is computed in formula (2.5.14), and C1 is a

constant. The rate r(2)
G2r describing the consumption of G2 can be

calculated as the sum of the rates

rG2r = rPr + rBr + rG1r , (2.5.10)

and fn(x) using the catalyst data P1 = 25700 and P2 = 400 is defined
as

fn(x) := hn(x)e−P1h1(x) , hn(x) :=
x

(1 + P2x)n . (2.5.11)

Since cl
r is of the order of 5 · 10−5, by substituting x = s(y) and

exploiting the partial fraction relation

x = 5 · 10−5(1 + y) ,
1 + y

α + βy
=

1
α

+
α− β

α
y

α + βy
, (2.5.12)

(2.5.11) can be replaced by the numerical more stable expression

fn(x) = gn(y) :=
5 · 10−5 (1 + y)
(1.02 + 0.02y)n e−

1.825
1.02 e−

1.825
1.02

y
1.02+0.02y . (2.5.13)

Finally we calculate the rate, rG1r = r(1)
G1r + r(2)

G1r, of the synthesis of
G1







r(1)
G1r

r(2)
G1r

r(1)
Pr





 = mCAT





C2cl
rf2(cl

r)
C3cl

r cP
r e−ni

Cr

C4f3(cl
r)



 , cPr =
no

Pr

Vr
.

(2.5.14)
The concentration, cPr, of P in reactor r is directly available, cl

r can
only be calculated implicitly using the nonlinear Arrhenius equation

g(cl
r) := ca

rh−2(cl
r) + 2000mCAT f0(cl

r)− cG2rca
r

(

1 + P2cl
r

)2
= 0 ,
(2.5.15)
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where ca
r is the gas-fluid exchange coefficient in reactor r depending

on the energy er,

ca
r = C5e0.7

r (1000ρr)0.27(0.001ηr)−
5
6 . (2.5.16)

The concentration, cG2r, of G2 at the phase boundary

cG2r =
αr

22.4
pG2r , (2.5.17)

depends on the gas solubility, αr. Both αr and the viscosity ηr in
reactor r are polynomials of third order in two variables

αr = C6 +
(

vTH1v
)

ηr = C7 +
(

vTH2v
) , vT=(wPr, wCr) , (2.5.18)

where H1 and H2, as well as H3 and H4 used below, are constant
matrices of appropriate dimensions. The mean density ρr in reactor
r is a polynomial of fourth order, i.e.,

ρr = C8 +
(

uTH3u
) (

uTH4u
)

, uT=(wPr, wBr, wCr, Tr) .
(2.5.19)

Finally, the weight fractions depend nonlinearly on the molecular
masses according to

wpr = mo
pr

/

∑

p′∈Pp

mo
p′r ,

∀r ∈ R
∀p ∈ P

Pp := {p′ ∈ P | p′ 6= p}
. (2.5.20)

2.5.1.3 Discrete Features of the Model

The dominant discrete feature is the requirement that the flow rates
between reactors do not become arbitrarily small. This is guaranteed
by binary variables δsr indicating that reactor s has a connection to
reactor r and the constraints

Cmin
sr δsr ≤ xpsr ≤ Cmax

sr δsr , ∀p ∈ Psr . (2.5.21)

Three additional inequalities ensure that each reactor has at least
one in-flowing and one out-flowing stream, and that the number of
subsequent reactors fed by reactor r does not exceed a maximum
number NSR, i.e.,

∑

r′∈R

δr′r ≥ 1 , 1 ≤
∑

r′∈R
δrr′ ≤ NSR , ∀r ∈ R . (2.5.22)

A similar constraint is used to enforce that at least one reactor is
connected to the filter. The logical constraint

δArr′ = δCrr′ (2.5.23)
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is used to guarantee that the liquids A and C are not used solely.
Finally, we need to select the size of the reactors. The mathematics

is almost identical to the selection of the size of pipelines in Section
2.4.1.2, and is not repeated here.

2.5.1.4 The Objective Function

We consider four alternative objective functions: The first one is to
maximize the selectivity of P defined as reaction rate rP of P over re-
action rate, rG2 , of G2, the most expensive raw material. First experi-
ments with this objective function showed that solutions are produced
with high selectivity but only for low amount of P produced. Thus in
this objective function scenario we require that a certain amount of
P has to be produced. The second objective function maximizes the
total mass of P . The third objective function minimizes the variable
cost to produce P while guaranteeing that a certain minimal amount
of P is produced. A fourth objective function minimizes the total
consumption of stirring energy.

2.5.2 Solution Approach

The convergence of the problem depends critically on appropriate ini-
tial values required to solve the NLP problems. So, in the beginning
we often experienced divergence. The numerics improved when vari-
ables and constraints were re-scaled. It became also necessary to apply
bounds on some of the process variables (e.g., temperature, pressure,
etc.) to keep the values in physical realistic ranges. A special ex-
ample of scaling is related to the quantity cl

r used as an argument of
(2.5.11) in many places. Finally, GAMS supported the computation of
useful initial values by minimizing the violation of certain equations.
Among the most difficult one is (2.5.15). In this case the minimization
of violation variables v+ and v− in the relaxation g(c) = v+ − v− of
g(c) = 0 provides good initial value in short time. For fixed topol-
ogy, with appropriate initial values the NLP problems is solved in a
few minutes. This approach is more typically for a production plan-
ning system. Current initial values are stored and re-used in next
production planning runs in daily life. The real design problem and
the full MINLP approach is only used by experts to investigate new
situations.

2.5.3 Case Study Results

The following description of optimization results are based on the
analyses of a typical reference scenario provided by the client. If not
mentioned otherwise the feed back of products from the sixth reactor
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to the first is set to zero. For fixed topology (a chain of six reactors)
we get within less than one minute of CPU time:

• The total amount of stirring energy has been kept constant but
the optimiser was free in distributing it to the six reactors.
The input mass flow of the chemicals were not kept constant
compared to the reference solution. The optimisation yielded a
slightly larger consumption of G3, G2 and C and an increasing
(from the very first reactor) need of stirring energy. The mass
fraction of P and the produced mass of P were increased by
about 1%.

• Here we wanted to minimize the total stirring energy while a
minimum production of P was required in order to compare the
results with the reference solution. The results show a slightly
higher consumption of G2, for G3 vice versa, while the total
energy need was about 8% lower than for the standard scenario.

• Distribution of the stirring energy with a constant amount of
total energy but in contradiction to scenario E1 the input of
chemicals was set to be the same as in the reference scenario.
The results show a distribution of the stirring energy increasing
from the first reactor whereas all other output values did not
improve.

• Here we wanted to investigate the influence of the feedback of
the products from the last to the first reactor. The results show
that the amount of produced P increases if one requires a cer-
tain feedback (e.g., 10% or 20%). Unfortunately, this gain gets
lost because of the feedback so that the effective amount of P
is reduced compared with the reference solution. The optimal
solution is found for the case of no feedback.

The optimization model has been embedded into an attractive and
easy to use user-interfaces. It helps the client in his daily production
planning duties to adjust his plant immediately to current needs, i.e.,
changes in costs, capacities fluctuations or to attributes of orders.
The tool supports the design phase and helps to lay out cascades and
connections of a system of reactors. Here, the client sees the benefit
being able to compare variants proven optimal or of at least known
quality. The new designs safe raw material, minimize waste material
and increase the capacity of the reactor system. In the lay-out phase
the tool support design and other changed constraints.
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2.6 Conclusions

In this article mixed integer nonlinear optimization has been consid-
ered as an approach to solve complex production planning and design
problems. The problems discussed are very demanding in terms of the
mathematical modeling, and appropriate tuning of the algorithms. In
all cases special heuristics had been constructed to provide reasonable
initial values to the solver.

In the first case it was possible to substitute the nonlinear terms
by equivalent linear terms involving binary variables. In the second
and third problem dominated by pooling problems initial guesses for
the fractional composition of the multi-component streams could be
derived from a simplified linear model. A homotopy method is used
in the third problem by solving a sequence of sub-models of increasing
complexity (LP, NLP-1, NLP-2, MINLP) exploiting the results of the
previous ones. The third problem is solved in sequence of sub-models
formulated in GAMS, exploiting the results of the previous one, i.e., we
use a homotopy method. A simple linear model provides initial val-
ues for two simple nonlinear submodels. In the fourth model scaling
was very important. Solving an auxiliary problem in which an arti-
ficial objective function measuring the violation of certain nonlinear
constraints was minimized provided excellent initial guesses.

Future direction regarding the first problem will focus on special
branching rules and cuts to improve the gap. For the current ap-
plication this is not a problem because only a few products required
constraints across period. The third and fourth problem helped to
accumulate experience in solving MINLP problems. However, the
lesson to be learned is that each MINLP problem is different from
others and requires special treatment and techniques. One common
features seems to be the problem of getting good initial values to start
the solver, which, according to our experience, can be overcome by
homotopy techniques.

The heterogenous approaches to solve the problems indicate that
mixed integer nonlinear optimization is an area under continual de-
velopment. It has proven itself as a useful technique to reduce costs
and to support other objectives, and it certainly has much to offer for
the future. MINLP is another example that mathematical methods
and techniques can support human inventiveness and decisions. Es-
pecially, they can ensure that less intuitive solutions are not lost, and
can provide a quantitative basis for decisions and allow to cope most
successfully with complex problems.
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