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Summary. The restricted elliptic three body problem is investi-
gated analytically with respect to the problem of finding limits of
space, in which the infinitesimal body, under given circular initial
condition, can move. In synodic, rotating and barycentric co-
ordinates we find approximate integrals which limit the region of
non-negative velocities. The analytic results are in good
agreement with numerical experiments up to eccentricities
about e &~ 0.25. We also discuss the dependence of these results
with respect to the mass ratio p of the primaries and the initial
angle ¢.
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1. Introduction

The restricted three body problem was a subject of many investi-
gations seeking for the boundaries of the region of space in which
the infinitesimal body, under given initial conditions, can move.
Particularly in the circular restricted three body problem [CP]
such works (Szebehely, 1980; Szebehely and McKenzie, 1981)
make use of the Jacobi integral. Extensions of this approach are
discussed in Ovenden and Roy (1961), Szebehely and Giacaglia
(1964) and Delva (1983). However, for positive eccentricities
e > 0, the boundaries of space of motion have only been found
numerically by Dvorak (1984, 1986) for Planet-type orbits sur-
rounding both primaries (P-type orbits). In this context the
limiting case e = 1 has been investigated separately by Kallrath
(1988) both numerically and on the base of the two-fixed centre
problem. For P-type orbits the lower and upper bounds for the
motion of the small body in the CP are derived very accurately
by Hagel (1988). This work is based on the Jacobi integral and an
approximation of a second integral. Even close to the primaries
the qualitative behaviour of the motion is described quite well.

In the present work we try to extend this method to the
elliptic restricted three body problem [EP]. Since there exists no
Jacobi integral in the EP we develop approximations of both the
energy constant and the angular momentum constant.

In Sect. 2, we present the equations of motion in synodic,
pulsating, barycentric coordinates. The concept of constants of
motion and their differences to the integrals of motion is des-
cribed in Sect. 3, where we derive two exact constants of motion
for the EP. A system of two first-order integro-differential equa-
tions is transformed into two first order partial differential equa-
tions for some unknown functions ¥ and W in Sect. 4. From that,
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in Sect. 5, we try to derive approximate integrals of motion for
P-type orbits, i.e. those solutions of the EP which have circular
initial conditions. In Sect. 6, these expressions are used to derive
the lower and upper bounds for the motion of the small body.
Our numerical integrator is checked against the numerical data
calculated by Dvorak (1984, 1986). We also discuss the depen-
dence of our bounds on the mass ratio and the initial angle ¢,.

2. Equations of motions

The equations of motion for the infinitesimal third body in the
EP are set up in a synodic, pulsating, barycentric coordinate
system (&, 77) (Szebehely and Giacaglia 1964; Delva, 1983):

611_2/_6_0) //+261_aw /._d 21
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QEn =3 [+ 0+ (L= p]+ —— + = (2.3)
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pr=[CE—w*+n*1'2%  pp=[(—p+1?+1*]" (24

Evaluating the derivatives the equations of motion may be
written as:
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e 1+ e-cosf [”( P P

(2.6)

3. Derivation of two exact constants of motion

First, we would like to point out that we distinguish between
integrals of motion [IOM] and constants of motion [COM]. We
use the term IOM in the sense of Landau and Lifschitz (1969). An
IOM I is a function of the coordinates, momenta and time whose
total derivative with respect to t vanishes for all times. The
common interpretation is that I does not contain quadratures
with respct to time.

In addition to the term IOM we use the expression COM. By
this we define a more general relation between the dynamical
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variables which may also contain quadrature expressions which
we excluded above. We still keep the requirement that its total
time derivative vanishes. While an IOM reduces the order of the
differential equation system a COM only transforms the differ-
ential equation to a lower order integro-differential equation.

In the following we derive such a system of integro-differ-
ential equations for the EP. By multiplying (2.1a) with ¢’ and
(2.2b) with #', adding, and then integrating [df in the limits
[ fo.f], we obtain a first constant:

4 Oow 0w
Eramt—2| | & |-df=Cy. (3.1)
So aé 37]
Since
Jflié/ 8a)+ ) (7(0] of Jflidw ﬁw] of (32)
— g — |-df = et aedl B )
fo aé 61’] fo df af
the result is that derived by Jacobi (Delva, 1983)
S ow
&4t =20 +2| —-df=C,. (33)
fo af

Similarly, we multiply (2.1a) with n and (2.2b) with ¢, and subtract
and integrate again |df in the limits [ f;,f]

En—né—n? =& —p(l—p

nlpr®—py31df=C,. (34)

4 1
X e
J o1 +ecosf
The system (3.3, 3.4) of first order integro-differential equations is

our base for further analysis. First, let us transform (&, n) to
pulsating, polar coordinates (r, ¢):
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where « and f are derived from the initial conditions
[roa Po> r,oa fﬂ6]1

wi=rd 1807 — 2 0(ro, 90 o) Bi=13 90 +rh  (310)
For further investigations it is necessary to know [&, 1, &', 1]

(f = /o) In inertial coordinates, and in the case of P-type orbits,
the initial conditions at time ¢ = 0 are:

o1 +e-cosf

[XO’ y09x0’ yO] = a'[cos¢095in(p0’ — n-sin ¥o,nCOS (Po:]»
nt=a"3 (3.11)

The transformation to rotating and pulsating coordinates (&, )

345
is described in the appendix and leads to
[éo.m0] = 1 “xar o], 612
[&o.m0] =a*(n —8)-[—singg, cos o],
- (1+e-cosfy)? (3.13)

(1 _ e2)1.5

4. Relations between COM and IOM

If we succeeded to transform the quadrature expressions in the
two COM’s (3.8), (3.9), to functions of the same variables but not
containing quadratures any more we had found two integrals of
motion. Hence we require

L
J\ ﬁdf; V(r’(p’f)_ V(ro,(Po,fb): V- Vs

4.1
Jo af ( )

S resing . 4 !
l—[pl — P2 ]df= W(r,(P,f)—W(ro,(oo,ﬁ))
r 1+e-cosf

=W—W, (4.2)

We are quite aware of the fact that the existence of the functions
V and W is not guarantied for any set of the initial conditions
represented by « and f (3.10). After deriving equations for ¥ and
W we will discuss the existence problem in more details.

The total derivatives d/df on both sides of the above
equations are lead to

Jw oV oV VvV  ow . Q(r,(p)
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r
where
A=pulr, vi=(1—p)/r 4.7)
Thus
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e .
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r
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aw in

o T (1= 2h-cosg + 22) 32
df 1 + e cosf

— (1 +2v-cose + v2)~32]. 4.9)

Requiring that V" and W are both functions of the variables r, ¢
and f we get two first order partial differential equations for V
and W

, oV 4 ov N ov sinf . 0) (4.10)
ALV . A Qo) .
o o0 L Ty T T qecossy 07
L oW oW ow sin ¢

Y fp3_ -3
+ i e e cosf Loy —p2°1 (411)
If for a given set of initial conditions [r,, ¢¢, 7y, ¢ o ] there exist
solutions for V and W we succeeded in generating IOM’s of
COMs. If there exists a solution then the uniqueness follows
from the ansatz (4.1, 4.2) since after (4.1, 4.2) there occur only
equivalent transformations. We are not able to make any global
statements about the existence of ¥ and W. However, in the next
chapter we try to discuss this problem locally and for a specific
type of solutions for the EP.

.___+—
' or o ¢

5. Derivation of approximate integrals for P-type orbits

We now consider the special case of direct circular solutions
known as P-type orbits. Therefore the initial conditions (3.11)
would lead to exact circular solutions in inertial coordinates if
the two primaries were both located in the barycentre of the
system or if the initial distance a tends towards infinity. We now
try to solve [(4.10),(4.11)] approximately for this type of
solutions.

The basic idea is to find asymptotic expressions for " and ¢’
as functions of the argument r, ¢, f in the case of a — oco. This
would transform [(4.10), (4.11)] into a decoupled linear system of
two first-order partial differential equations. From the relations
between inertial coordinates (x, y) and pulsating coordinates (see
appendix):

1+ e-cosf

(Em=— (5.)

(x, )

we find the relation between r; = (x? + y*)!/? and r = (&2
+ %)% as

1 +e-cosf
P=——

st n(f=0)=(10-e)r(f=0). (5.2)
1—e
Differentiating (5.2) with respect to f we obtain
dr ) e-sinf 1 +e-cosf |
d—f=r=—1_ez~r,+ s ry (5.3)

Since r; becomes the circular solution in the asymptotic case,
r7 vanishes and together with (5.2) the asymptotic expression
for r' is

. , e-r-sinf
limr = —

1 —e-cosf’ (54)

Inspecting the integral Eq. (3.9) together with the identities (2.4)
we realize that the integrand occurring in (3.9) is of the order r ~ 2,

ie. it vanishes asymptotically as r —» co. Thus, for large r, ¢’

becomes:

lim ¢’ =(B—r?)r % (5.5)
Finally, we have to clarify if a > oo induces r — c0. In other
words, we must ensure that in pulsating coordinates r remains
large if a is large. This can be done easily by solving the asymp-
totic equation (5.4) for r(f):

r J e-sinf
In— = _

1+ e-cosf
C 1+ e-cosf

1—e

df=r(f)=a (5.6)

We see that r is enclosed between the limiting values r; = a and
r,=a-(1 + e/l — e)so that indeed a — oo induces r — co. Thus
the asymptotic equations for V(r, ¢, f) and W(r, ¢, f) are

e-r-sinf oV B—r2 oV oV

Tlvecsf o 7 G of
= e'i “Q(r, ¢) (5.7
(1-e+cosf)?
e-r-sinf AW B—r2 OW oW
Tltecosf ar 7 o
= e R (59)

Solving these equations and inserting V(r, ¢,f) and W (r, ¢,f)
into (3.8) and (3.9) leads to two asymptotic integrals.

5.1. Perturbative solution of the partial differential equations

In principle it is possible to solve the homogeneous parts of
(5.7, 5.8) exactly using the characteristics-method. The inhomo-
geneous equation then may be solved by applying a method of
variation of constants. But unfortunately the system of first order
differential equation for the characteristics

e r-sinf

drido:df = — ——:
ride:df 1 +e-cosf

(B—r?)r2:1, (5.9)
although it can be reduced to quadratures, leads to very complex
expression and permits no closed-form solution for the inhomo-
geneous equations. So we decided to use a perturbative approach
by expanding V (r, ¢, f) and W (r, @, f) in power series w.r.t. the
eccentricity e:

W=3 W, e"

n=0
Inserting (5.10) into (5.7, 5.8), expanding the coefficient of dV'/or
as well as the forcing-terms with respect to e and comparing like
powers in e results in a recursive system of equations for the
contributions V,(r, ¢, f) and W,(r, ¢,f)

(5.10)

Vy=0 (5.11)

B—r2 oV, oV, .

e + i sinf - Q(r, @) (5.12)

B—r? oV, 0V, . .o

vrz—'%+a—f=—2-smf-cosf-Q(r,<p)+r~smf-$
(5.13)
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or or
—r% oVy oV,
ﬁrzr ~a—q:'+a—fN=(—1)”-N~sinf~cos"‘1f'Q(r,<P)
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+rosinfox ¥ (=D TE Leos¥ TR L NS0
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(5.15)
B—r? oW, oW, . - -
2 'a<p0+6_fo=r's’“‘l”[p13—pz3] (5.16)
B—r? oW, oW, . Sy
W o . . 3_ -3
o p r-sing-cosf-[p; P21
. OW,
+ r-sinf- (5.17)
or
— 2 0W, oW
ﬁrz -a—q)z+a—fz=2-r'sin(p’COSZf'{P1_3—Pz_3]
ow, W
+r.sinf-—1—r~sinf~cosf~—o (5.18)
or or
ﬂ—rZ.aWN +6WN
1) of
=(=1)%N-rsing-cos" "' f-[p; > —p; ]
+r'sin-fz (_1)N—k—1
k=0
oW,
XCOSN_k_lf'_a—k’ N> 0. (5.19)
r

5.1.1. Perturbative evaluation of W(r, ¢, f)

Since the forcing-term of Eq. (5.16) for W, does not contain f
explicitly, (5.16) reduces to an ordinary differential equation:

B—r2 dw, . ~ B
2 .d(pozr'smfp‘[pls—ﬂz ]

(5.20)

To bring the solution in a simple form we make use of the fact
that the right hand side of (5.20) is periodic in ¢ with period 27
and thus can be expressed by a Fourier-series:

p—r® dW, &

> io = mz=:1 b,,-sinmep,
r 2n
bng-J sinme-sing-[p; 3 —p;3]de (5.21)
0
Then W, is
r? ©
Wo(r, @) = — : — b, cos mo. (5.22)
ﬁ - 7'2 m=1

Alternatively, we may give a closed-form expression for
W, containing no more infinite sum. Thus we rewrite the term
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[p73— p5 3] using (4.7, 4.9):
[pr®—p231=r"3[(1—2icosp+A2)"312
+ (14 2v-cosg + v2)~3/2], (5.23)

Then we integrate (5.20) once with respect to ¢ to be lead to:

Wo("» Q) =—

1 1
5 '[;-(1 —21-cosgp + A2)" 12

1
+Z'(1+2v~cos<p+v2)‘”2]. (5.24)
Since in later application only W (r, ¢, ) — W (ro, 0o, fy ) is used
we need not care about the additive integration constant gener-
ated by integrating (5.20). Anyway, for evaluating higher order
contributions in W, the Fourier-representation of W, (5.22) is
much better adapted to our problem.

Now (5.22) is inserted into the forcing-term of (5.17). After

evaluation of 0W,,/dr, making use of some trigonometric ident-
ities and finally rearranging all terms (5.17) becomes

B—rr aw, oW, . ;
7 op T g~ Ansin(me +1) + Bysin(me —f)
(5.25)
with
. L r2.[2~(ﬂ——r2)+2r2.b LT ‘dbmjl
L S (B —r?)? " B—r? dr
(5.26)
1 r2 [2:(p—r?)+2r r dbm]
Bmz—‘.bmq’-*—. 'bm i
2 2m [ (B—r?)? +B—r2 dr
(5.27)

Since the coefficients of W, /d¢ and 0W, /df do not contain ¢
and f explicitly we may use a direct Fourier-ansatz for W, :

(5.28)

Inserting (5.28) into (5.25), evaluating the derivatives and com-
paring for sin(me + f) and sin(me — f) finally results in the
Fourier-representation of W, :

W, = a,-cos(me + f) + B, -cos(mp — f)

, & Ay-cos(mo +f)
Wi(r,o.f) = —r* glrz_'_(ﬁ_rZ).m -

B,,-cos(mo — f)
r2—(B—r¥)-m
(5.29)

It turned out to be sufficient for the accuracy of the approximate
integrals of motion to terminate the evaluation of W with W, . To
be complete we add an approximate analytic evaluation of the
Fourier-components b,,. The method is to expand (5.23) into a
Taylor-series with respect to A and v to a given order. This
automatically leads to a trigonometric series in sinm¢ from
which the coefficients b,, to the specified order in A and v can be
directly extracted (see Hagel, 1988). To the 4-th order in 1 and v
the coefficients are:

by =r"2:[3(A2 —v}) + H-(4* —v*)] (5.30)
by=r"2[3- (A2 —v2) + (43 —v?3)] (5.31)
by =72 [%-(A2 —v2) +13§-(A* +v¥)] (532)
by=r 23523 +v¥)] (5.33)
bs=r 2 [35-(1* —v4)] (5.34)
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The factors db,/dr can be obtained by differentiating
(5.30)—(5.34) with respect to r keeping in mind that 4 = p/r and
v=(1—p)/r

5.1.2. Perturbative evaluation of V(r, ¢, f)

We consider first the Eq. (5.12) for ¥, (r, @, f). As above using the
periodicity of Q(r, ¢) in ¢ we may rewrite (5.12) in terms of a
Fourier-series

Q(r, )= Y. d, cosmg. (5.35)
Then with
sinf-cosmp = %-[sin(me + f) — sin(me — f)] (5.36)
we obtain
—r? 0V, OV, 1 =
B rzr — 6f1 =5 mgodm[sin(mqo +f) + sin(mo — f)].
(5.37)
With the ansatz
V) =g, cos(mo + f) + h,-cos(mp —f) (5.38)
we are lead to
V= f i [ cos(mg +f)  cos(mp —f) :|‘dm-
2 SZolrr+B=rYym r2—(B-rH)m
(5.39)

The contribution ¥V, (Eq. (5.12)) is split into two parts
V, = V,, + V with

—r? V. ov.
b LT T Gnof Q) (5.40)
r o of
ﬂ—rz ov v _ v,
3 6f smf— (5.41)
,
Comparmg (5.40) and (5.12) we find
r? oz cos(me + 2f)
Vyr = —— P P S
2 ol 2rf+(B—r*)m
-2
_ _cos(me — %) ] ) (5.42)
2r2 —(B—r*)'m
For ¥ we derive:
P Ao — By 2. i |:Am~cos(mqo+2f)
2 22+ (f—r¥)m
_ B, cos(mp —2f) C,cosme ] (5.43)
22— (B—=r)m  (B—r*)m
where
y r? d, r3 d.,
"TT 2 P2k (B=r)m 4 PP+ (1) m
4 -—
LA\ ) (5.44)
2 [P =(B-r})m]?
B r? d, N r? d,,
m_+3_ P+B-r)ym 4 r2+(f—r?)m
4 (1 —
! A1 = m) (5.45)

S 2 P (B-rymP

I: 1—m . 1+m ] (5.46)
X .
[r*=(B—=r)ym)*  [r*—(B—r?)m]?

The Fourier-coefficients d,, are found as before by expanding

Q(r, ¢) into a Taylor-series with respect to A= u/r and
v=(1— p)/r. To 4-th order in A and v we get:

do=%[r+p (1=l +v[1+4 4%+ 2%]

+ A1+ 522+ & 2% (5.47)
dy=32v(A—v) (5.48)
dy=v- 22 [3+55 A1+ v [3+ 7% 47] (5:49)

=3 [v-A3 =213 (5.50)
dy=3[v- A% — 2v4] (5.51)

The d,, are again found by differentiating the d,, with respct to r.

5.1.2.1. Simplification of ¥ and perturbation results up to
4-th order in e

A considerable simplification in the perturbation expansion of
V(r, @,f) is possible if we inspect the Fourier-coefficients d,, of
Q(r, @) [Eqgs. (5.47)—(5.51)]. While the leading power of r in d,, is

2itis only r 2 in d,, r~3 in d, as.0. So there is at least a
difference of 4 in the order of r between d,, and d,, > , which means
that in the asymptotic case r — co which we deal with d, clearly
dominates all d,,,,. As a consequence of this fact we may
drastically simplify the cumbersome expressions for V; and V,
obtained in the previous section by neglecting all d,, - . It even
turns out that the accuracy of our results is not affected if we take
only into account terms down to order r~ ! in d,. With all these
simplifications we finally arrive at:

=3[P +p(d-—p]+r 1 +0(r?,
do=r+0(r?) (5.52)

By making d,, > o = 01in Egs. (5.39), (5.42) and (5.43) ¥, and V, are
reduced to

Vi= —dy-cosf
1 r?
V2=—’ d0+5 'cos2f.

(5.53)

5 (5.54)

By inspecting Egs. (5.14, 5.15) for N = 4 we realize that with the
described simplifications even V; and ¥, can be written in a
compact form:

Vo= —4[3do—r]-cosf—4[do+r?]cosy  (559)
=4-dy-cos2f + [§-dy + 512 cosdf. (5.56)

For W(r, ¢,f) these simplifications are not possible since the
difference in orders of r between b, and b, is only 1 instead of 4 in
case of the d,,.

5.2. The two integrals of motion

Together with the expressions up to first order in e for W(r, ¢, f)
[Egs. (5.22), (5.29)] and the simplified expressions up to 4-th
order in e for V [Egs. (5.53)-(5.56)] and by using (5.10) to the
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Integral 11(f) corr. ON
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}- «
]
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Figs. 1-8. The figures show the function I 1/x and I2/f as functions of time. The integration was performed using the parameter set [e, u, a, ¢o]
=[0.05, 0.5, 4, 0] (upper four pictures) and [e, u,a, ¢o] = [0.2,0.5, 4, 0] (lower pictures). The left columns, i.e. Figs. 1, 3, 5, and 7, show the results when
the correction V' —V, resp. W— W, was not taken into account. The amplitude of the variation of I 1/« is reduced drastically due to the correction V
— V, which was taken into account this time. The effect of the correction W— W, is less remarkable

given orders we finally arrive at the two approximate integrals for
P-type orbits in the EP:

Q(r, @)
) 2,12 .~ *2T7 . — =
I1:r'* +r ® 1+e'cosf+2 [V(I‘,q),f) Vs] o
(5.57)
12:r2 +r2 @ + (1 —p) [Wrof)—W,1=8 (5.58)

where

W= W(ro, ®9:Jo); Vii=V(ro, 9o, /o) {we choose f = 0}.

(5.59)

Of course, for e = 0, V vanishes ( ¥, = 0) and we are left with the
exact Jacobian integral valid in the circular restricted problem.
The second integral 12 still is approximate for e = 0. It then

represents exactly the generalisation of the angular momentum
integral for the circular problem which in this form has been
derived by Hagel (1988).

In order to check the integral properties of I1 and 12 we wrote
a FORTRAN program which for a given set of the values
(e, 1, a, @,) integrates the exact differential equations of motion
(2.5, 2.6), transforms to polar coordinates (r, ¢, ', ') and plugs
these coordinates into (5.57, 5.58) after each integration step. The
integration method used was Runge-Kutta-4 with a discretiz-
ation df = 0.05 (i.e. more than 120 steps per revolution of the
primaries). Figures 1-8 shows the results of this test for the
following set of parameters:

(1) (ea i, A’ ‘100) = (0053 05, 4a 0)
(i) (e, 4, A, @o) = (0.20,0.5, 4, 0)
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Figs. 5-8

While Figs. 1-4 relate to (i) Figs. 5—8 show the results for (ii). The
left figure in all cases plots the variation of I1 and 12 as a function
of the number of periods of the primaries when the corrections
V — V,and W — W, are not taken into account (I1 and I2 then
are the pure Jacobian “Integrals” and the angular momentum
resp.). The right figure shows I1 and I2 with V' — V,and W — W,
taken into account. In all cases we observe a clear improvement
of the corrected I1 and 12 with respect to the uncorrected ones.
While in the scale of (0 < I1/a, I2/8 < 2) for e = 0.05 no varia-
tion of 11 and I2 is visible at all, for (0 < f < 20007) we observe a
tiny residual variation of I1/a for the parameter set (ii). So in fact
we succeeded to derive two near-integrals for P-type orbits in the
EP if the initial distance a is sufficiently large (a > 3). Due to the
perturbative approach with respect to e the valid interval of e up
to now seems to be limited to (0 < e < 0.2). By further expansion

Integral 11(f) corr. ON
2vo T T T

rrllvﬁl|lT|]|vr7

1.6

P

[Ty

IS AT

o5 -€ = 0.20
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o . 100 150 200
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] ]
>\ 4
2 %0 IRV WAMMAMAVASA
098 —e 0.20 ]
ru = 0.50
too L2 = 4.00 R
ST I
: 50 100 150 200
Fig. 8 f [211’]

of Vand W to higher orders in e this interval is believed to be still
enlarged.
6. Region of motion

The region accessible for the third body is limited by the require-
ment that 7 is positive. From Egs. (5.57, 5.58) we derive

r2-#2 = h(r, @,f) 6.1)

where

h(r, @,f) =r*-[a+2-a(r, ¢,f) = 2:(V = V)]
=[B=pw(t=p)y(W—=W,)—r*] (62)

For an analysis of the accessible region we seek the roots r _ and
r, of h(r, @, f) with respect to r for given values of ¢ and f and
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the set of initial parameters [e, u, a, ¢, ]. Let us now discuss the
choice of ¢ and f. Although the two integrals of motion

nee.f)=o0  I2(ref)=§ (6.3)

represent two functional relations between the coordinates r and
¢ and the independent variable f being constant, in general not
all possible triplets (r, ¢, f) fulfilling (6.3) really will occur after a
sufficiently long time. This is due to the fact that there exist
additional relations between r and f and between r and ¢ which
are of course given by the exact (unknown) solution r = r(f) and
@ = @(f) being subject to the equations of motion. So for
computing the regions of motion which can be covered by the
solution we only use values of ¢ and f for which we know that
they occur at the same time. In practice only one such doublet is

Table 1. Dependence of the region of motion on the eccentricity
e for mass ratio u = 0.5, a, = 4, ¢, = 0 and an integration time
of 200 revolutions of the primaries. The table gives the smallest
and largest radius vector r_ and r, occurring during the integr-
ation in pulsating and inertial coordinates and the values derived
from our semi-analytical approach. Both approaches lead to
upper limits R, = a,. For e > 0.25 the differences between the
analytical and numerical results become very obvious

Numerical integration Semi-analytical approach

e - . R_ r_ Fu R_
0.000 3.932 4000 3.932

0.025 3.831 4.103 3.927 3.818  4.103 3914
0.050 3.734 4211 3920 3716 4.211 3.901
0.075 3.640 4324 3913 3.621 4324  3.893
0.100 3.550  4.445 3.905 3.533 4444  3.886
0.125 3464 4572 3.897 3448  4.571 3.879
0.150 3.380  4.707 3.887 3362 4706 3.866
0.175 3.299 4850  3.877 3270  4.848 3.843
0200 3.222 5.001 3.866 3.165 5.000  3.798
0225 3.147 5.162 3.854 3.043 5.161 3.727
0250 3.074 5334 3.842 2.895 5.333 3.618
0.275 3.003 5.518 3.829 2.257 5.517 2878
0.300 2.935 5714 3815  0.469 5.714  0.610
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known, namely ¢ (f = 0) = ¢,. Since P-type orbits intersect the
line ¢ = ¢, for an infinite number of times and the solution is
aperiodic in general we may expect all possible r-values to occur
after an infinite time so that we need not make any additional
constraint for the radius r at ¢ = ¢,. So we are only able to give
a statement about regions of motion for ¢ = ¢,. Inserting this
into our general condition we have to investigate the distance of
the zeros r_ and r, of h(r, ¢,f). This limits r_ and r, of the
accessible region are investigated both numerically and analyti-
cally for a variety of parameters [e, i, a, ¢, ]. The comparison of
the bounds for different sets [e, 4, a, ¢, ] has to be performed in
the inertial frame since the values of r_ and r, for different
parameters may correspond to different anomalies f and there-
fore may give a completely wrong impression. However, the
derivation of analytical bounds is only possible in the pulsating
coordinates. Although our analysis to find the zeros r_ and r is
based on ¢ (f = 0) = ¢, we do not know the proper value of f to
transform r_ and r, back to the inertial frame. Nevertheless we
are able to give the theoretical bounds in the inertial frame by the
assymption that the anomaly f is needed in the theoretical
analysis is the same as that we find in the numerical integration. If
this is true we transform both lower and upper bounds by

inertial __ _,inertial , p pulsating /..pulsating
R =r R /r

(65)

where R refers to the theoretical solution and r to the numerical
one.

7. Conclusions

Our numerical integrator was tested by checking the constancy
of the Jacobian integral in the case of vanishing eccentricity e and
by checking our numerical bounds against that of Dvorak (1984,
p. 371). From our numerical experiments and our semi-analytical
investigation which is partly documented in Table 1-3 we list the
following results:

1. The analytic results are in good agreement with numerical
experiments up to eccentricities about e = 0.25. The analytic
upper bound also fits for even higher eccentricities up to 0.5.

2. For u = 0.5 and small eccentricities, and therefore orbits
which are only slightly disturbed, the upper bound in inertial
coordinates coincides with the initial distance a both numerically
and analytically. This situation is similar to that in the limiting
case e = 1 investigated by Kallrath (1988).

Table 2. Dependence of the region of motion on the initial position angle ¢, for
eccentricities e = 0.1 and 0.2, mass ratio u = 0.5, a, = 4, and an integration time of
200 revolutions of the primaries. See Table 1 for more information. Due to
symmetry, the angles ¢, + 180° lead to the same results as ¢,. The upper limit in
pulsating coordinates r, is equal to a,/(1 — e?). In the inertial frame this gives
R, = a,. The columns give our resuls for e = 0.1 and e = 0.2, respectively

Numerical integration

Semi-analytical approach

0o r_(0.1) r_(02) R_(0.1) R_(0.2) r_(0.1) r_(02) R_(0.1) R_(0.2)
0 3550 3222 3905 3866 3533 3.165 3886  3.798
45 3548 3250 3901 3895 3594 3297 3952  3.951
90 3.543 3269 3897 3923 3652 3407 4017  4.089
135 3548 3248 3901 3897 3594 3297 3951 3956
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Table 3. Dependence of the region of motion on the mass ratio u for eccentricities e = 0.1 and
0.2, oo =0, ap, = 4, and an integration time of 200 revolutions of the primaries. See Table 1 for
more information. The upper limit in pulsating coordinates r, is equal to ao/(1 — e?). In the

inertial frame this gives R, =a,. The columns give our results for
e = 0.1 and e = 0.2, respectively
Numerical integration Semi-analytical approach

u r_(01) r_(02 R_(01) R_(02) r_(01) r_(02 R_(01) R_(02
0.1  3.564 3916 3.601 3.977
02 3.544 3.181 3.892 3.810 3.559 3.203 3.908 3.836
03 3554 3.199 3.907 3.837 3536 3.169 3.887 3.801
04 3.556 3.232 3.908 3.878 3.528 3.158 3.877 3.789
0.5 3.550 3222 3.905 3.866 3.533 3.165 3.886 3.798

3. The lower bound decreases when the initial position angle ¢’ ' = — x-0 — X sinf+ y-cosf

@, increases from O to 90 degrees (Table 2), i.e. the region of
motion becomes broader. However, the analytical approach
breaks down for ¢, = 90 or ¢, = 270.

4. The results do not show a strong dependence on the mass
ratio pu (Table 3).

The dependence of the bounds on ¢, and x may become more
critical for orbits with higher perturbation. The disturbance may
be increased by decreasing the size of the initial distance a.
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Appendix: Transformation of coordinates and velocities

In this section let r denote the distance between the primaries.
Here r is a function of the true anomaly f*:

p

P=—, =a-(1—e?
1+ e-cosf P ( )

where A is the semi major-axis of the primaries’ motion. Usually
the dimensions are chosen so that A is unity.

According to Broucke (1969) the transformation of the
velocities of the planet from inertial (or rotating) to pulsating
coordinates is given by:

&' =y-6+ X cosf+ y-sinf, 6:=5(ﬂe)=\/1;[~r"2

For f=f, and the initial coordinates [x, y]=a-[cos ¢, sin ¢, ]
we achieve

(14+e-cosfy)?

f'=y'(5+)'c=a'sin(p05—a-n'sin(p'0, 5=W
&'=—x04+y=—acos@y 6+ an-cosg,
and thus

[¢o.m0]1=a(n—6) [—singg, cos @, ]
We note that in the circular problem 6 = (e =0) = 1.

References

Broucke, R.A.: 1969, Periodic Orbits in the Elliptic Restricted
Three Body Problem, NASA Technical Report 31-1360, p. 10

Delva, M.: 1983, in Dynamical Trapping and Evolution in the
Solar System, eds. V.V. Markellos, Y. Kozai, Reidel,
Dordrecht, p. 317

Dvorak, R.: 1984, Cel. Mech. 34, 369

Dvorak, R.: 1988, Astron. Astrophys. 167, 379

Hagel, J.: 1988, Cell. Mech. (in press)

Kallrath, J.: 1988, Cell. Mech. (in press)

Landau, L.D,, Lifschitz, E.M.: 1973, Lehrbuch der theoretischen
Physik, Bd. 1, Akademie—Verlag, Berlin

Szebehely, V., Giacaglia, G.E.O.: 1964, Astron. J. 69, 230

Szebehely, V.: 1980, Cel. Mech. 22,7

Szebehely, V., McKenzie, R.: 1981, Cel. Mech. 23, 3

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989A%26A...222..344H&amp;db_key=AST

