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Abstract

This paper presents an overview of the research progress in global optimization during the last 5 years (1998—-2003), and a brief account of
our recent research contributions. The review part covers the areas of (a) twice continuously differentiable nonlinear optimization, (b) mixed-
integer nonlinear optimization, (c) optimization with differential-algebraic models, (d) optimization with grey-box/black-box/nonfactorabl
models, and (e) bilevel nonlinear optimization. Our research contributions part focuses on (i) improved convex underestimation approaches
that include convex envelope results for multilinear functions, convex relaxation results for trigonometric functions, and a piecewise quadratic
convex underestimator for twice continuously differentiable functions, and (ii) the recently proposed novel geneBiizeamework.
Computational studies will illustrate the potential of these advances.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction lished addressing different facets of global optimization.
These include the textbooks Bard (1998)Floudas (2000a)

It is now established that global optimization has ubiqui- Horst, Pardalos, and Thoai (2008heraliand Adams (1999)
tous applications not only in chemical engineering but also Tawarmalani and Sahinidis (2002uy (1998)andZabinsky
across all branches of engineering, applied sciences, and sci2003) A handbook of test problems in local and global op-
ences (e.g., see the textbookfigudas (20003) As a result, timization (Floudas et al., 1999ps well as two edited vol-
we have experienced significant interest in new theoretical umes of the research contributions presented at the major
advances, algorithmic and implementation related investi- conferences on global optimization held in 1999 and 2003
gations, and their application to important scientific prob- (Floudas and Pardalos, 1999, 2008re published. A re-
lems. A review paper discussed the advances in determinis-cent survey paper bfeumaier (2004jliscusses constrained
tic global optimization and their applications in the design global optimization and continuous constraint satisfaction
and control of chemical process systdif®udas, 2000bA problems with a particular emphasis on the use of interval
second review paper presented at the FOCAPD-1999 meetarithmetic for addressing rounding off errors and reliability
ing outlined the chemical engineering research contributions issues.
in global optimization for the period 1994-1999, presented  Global optimization addresses the computation and char-
the advances, and identified research opportunities and chalacterization of global optima (i.e., minima and maxima)
lenges(Floudas & Pardalos, 1999puring the last 5 years,  of nonconvex functions constrained in a specified domain.
1998-2003, several outstanding textbooks have been pub-Given an objective functiofi that is to be minimized and

a set of equality and inequality constrair@sDeterminis-
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(a) determine a global minimum of the objective functfon
(i.e.,f has the lowest possible value 8 subject to the
set of constraints,

(b) determindower andupper bound®n the global mini-
mum of the objective functiofion Sthat are valid for the
whole feasible regiofs;

(c) determine an ensemble of good quality local solutions in
the vicinity of the global solution;

(d) enclose all solutions of the set of equality and inequality
constraintsS;
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relaxation ofx/y, and suggested convex envelopes for func-
tions of the formf (x) y2 andf(x)/y. Ryoo and Sahinidis (2001)
studied the bounds for multilinear functions via arithmetic
intervals, recursive arithmetic intervals, logarithmic transfor-
mation, and exponential transformation, and provided com-
parisons of the resulting convex relaxatioiawarmalani,
Ahmed, and Sahinidis (2002showed that tighter linear pro-
gramming relaxations are produced if the product of a con-
tinuous variable and the sum of several continuous variables
is disaggregated, and applied it to the instance of rational

(e) prove that a constrained nonlinear problem is feasible or programs that include a nuclear reactor reload pattern de-

infeasible.

In this review paper, we will discuss the deterministic
global optimization advances during the last 5 years for
the following classes of mathematical problems: (i) twice
continuously differentiable nonlinear optimization, NLPs,
(i) mixed-integer nonlinear optimization, MINLPs, (iii)
differential-algebraic systems, DAEs, (iv) grey-box and
nonfactorable problems, and (v) bilevel nonlinear and
mixed integer optimization. We will first present all the
contributions in the aforementioned classes, and we will sub-
sequently focus on a few advances from Princeton University
on (a) convex envelope results for trilinear monomials, (b)
convex relaxation results for trigonometric functions, (c)

sign, and a catalyst mixing in a packed bed reactor problem.
Tawarmalani and Sahinidis (2002}roduced the convex ex-
tensions for lower semi-continuous functions, studied condi-
tions under which they exist, proposed a technique for con-
structing convex envelopes for nonlinear functions, and stud-
ied the maximum separation distance for functions such as
xly. Tawarmalani, Ahmed, and Sahinidis (2002h)died 0-1
hyperbolic programs, developed eight mixed-integer convex
reformulations, proposed analytical results on the tightness
of these reformulations, developed a global optimization al-
gorithm and applied it to p-choice facility location problem.
Liberti and Pantelides (2003roposed a nonlinear con-
tinuous and differentiable convex envelope for monomials
of odd degree, derived its linear relaxation, and compared

new convex underestimators based on piecewise Convex giher relaxationBjork, Lindberg, and Westerlund (2003)

quadratic representations, and (d) the generalia&B
global optimization approach.
2. Twice continuously differentiable NLPs

In the first part of this section, we will review the advances
in convex envelopes and convexification techniques. We will

studied convexifications for signomial terms, introduced

properties of power convex functions, compared the effect
of the convexification schemes for heat exchanger network
problems, and studied quasi-convex convexifications.

Meyer and Floudas (2003tudied trilinear monomials
with positive or negative domains, derived explicit expres-
sions for the facets of the convex and concave envelopes
and showed that these outperform the previously proposed

subsequently focus on theoretical and algorithmic advancesyg|axations based on arithmetic intervals or recursive arith-

for (a) general? NLPs, (b) concave, bilinear, fractional, and
multiplicative problems, (c) phase equilibrium problems, and
(d) parameter estimation problems.

2.1. Convexification techniques and convex envelopes

Adjiman, Dallwig, Floudas, and Neumaier (199&agl
Hertz, Adjiman, and Floudas (1999)yoposed several new
rigorous methods for the calculation of theparameters
for (i) uniform diagonal shift of the Hessian matrix and (ii)
nonuniform diagonal shift of the Hessian matrix, and they
established their potential trade-offsdjiman, Androulakis,
and Floudas (1998bpresented the detailed implemen-
tation of the aBB approach and computational studies

metic intervalsMeyer and Floudas (200#yesented explicit
expressions for the facets of convex and concave envelopes
of trilinear monomials with mixed-sign domain$ardella
(2003)studied the class of functions whose convex envelope
on a polyhedron coincides with the convex envelope based
on the polyhedron vertices, and proved important conditions
for a vertex polyhedral convex envelope.

Caratzoulas and Floudas (200pjoposed novel con-
vex underestimators for trigonometric functions which
are trigonometric functions themselveskrotirianakis and
Floudas (2005)ntroduced a new class of convex underes-
timators for twice continuously differentiable NLPs, studied
their theoretical properties, and proved that the resulting con-
vex relaxation is improved compared to BB one.Meyer

in process design problems such as heat exchanger netand Floudas (2004)roposed two new classes of convex un-
works, reactor-separator networks, and batch design undederestimators for genera? NLPs which combine theaBB

uncertainty.

Tawarmalani and Sahinidis (200d¢veloped the convex
envelope and concave envelopetyrover a unit hypercube,
compared it to the convex relaxation proposedbynora and
Grossmann (1998a, 1998b, 199pjoposed a semidefinite

underestimators within a piecewise quadratic perturbation,
derived properties for the smoothness of the convex under-
estimators, and showed the improvements over the classical
aBB convex underestimators for box-constrained optimiza-
tion problems.
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2.2. Generalc? NLPs tion, and a CSTR equatioKlepeis, Schafroth, Westerberg,
and Floudas (200resented the advances in deterministic
Adjiman et al. (1998a, 1998lntroduced thexBB global global optimization based on theéBB approach and its ap-
optimization approach, which is applicable to general twice- plications for structure prediction of oligopeptides, dynamics
continuously differentiable NLPs, and presented extensive of helical formation, and protein—peptide interactions.
computational studies in process design problems such as Zilinskas and Bogle (2003ytudied the evaluation of
heat exchanger networks, reactor—separator networks, andganges of functions through balanced random interval arith-
batch design under uncertainfyamada and Hara (1998) metic, investigated the hypothesis on the normal distribution
proposed a global optimization approach based on the tri- of the centers and radii of the evaluated balanced random in-
angle covering for H-infinity control with constant diagonal tervals through several computational studies, and concluded
scaling.Androulakis et al. (19983tudied the parallel com-  that this hypothesis is incorre#tlepeis and Floudas (2003a)
putation issues that arise using BB global optimization introduced a deterministic global optimization approach,
approach. oBB, coupled with torsional angle dynamics for the pro-
Klepeis, Androulakis, lerapetritou, and Floudas tein structure prediction given restraints predicted from the
(1998pnd Klepeis and Floudas (1999g)roposed new identification ofu-helices ang-sheetsKlepeis and Floudas
global optimization approaches for the structure prediction (2003b)proposed the first principles framework, Astro-Fold,
of solvated peptides using area and volume accessible tofor the protein structure prediction, described the global opti-
the solvent models. A review of the global optimization mization and mixed-integer optimization advances, and pre-
activities in the areas of protein folding and peptide docking sented a variety of test systems including several blind protein
can be found inFloudas, Klepeis, and Pardalos (1999b) predictionsKlepeis, Pieja, and Floudas (2003ajroduced
Klepeis and Floudas (1999pjoposed a novel deterministic ~ a new class of hybrid global optimization methods denoted
global optimization approach for free energy calculations of as integrated hybrids for the oligopeptide structure predic-
peptidesWesterberg and Floudas (1999a, 1998@hpduced tion. Klepeis, Pieja, and Floudas (2003irpposed new al-
a global optimization framework for the enclosure of all ternating hybrid global optimization methods, studied and
transition states of potential energy hypersurfaces, and stud-developed their distributed computing algorithms, and ap-
ied the reaction pathways and dynamics of helical formation plied them to the structure prediction of met-enkaphalin and
with and without solvation.Klepeis, Floudas, Morikis, = mellitin. These two classes of hybrid global optimization ap-
and Lambris (1999)introduced a novel approach that proaches combine theBB for the generation of rigorous
combines deterministic global optimization and torsional lower bounds with the modified genetic algorithm, CSA, for
angle dynamics for the prediction of peptide structures using the upper bounding calculatiorsucia and Feng (2003)x-
a sparse set of NMR data. tended the terrain methodology to multivariable problems and
Byrne and Bogle (1999ntroduced a bound constrained integral curve bifurcations associated with valleys and ridges,
linear relaxation, developed two classes of linear underes-showed that the terrain methods are superior to arc homotopy
timators using the natural extension and mean value theo-continuation in the presence of parametric disconnectedness,
rems of interval analysis, and showed that the interval LP is and studied examples for the location of all azeotropes, ret-
more efficient than other interval analysis approaciGzal rograde flash calculations, and CSTR problems.
and Stadtherr (2002c3tudied the computational improve- Schafroth and Floudas (200gtudied the protein—peptide
ment of interval Newton/generalized bisection approaches, interactions via deterministic global optimization, atomistic-
introduced a hybrid preconditioning strategy where a piv- level modelling, and several solvation methods that include
oting preconditioner is combined with the standard inverse the area accessible to the solvent, the volume accessible to the
midpoint method, and showed that this approach results insolvent, and the Poisson-Boltzmann method, and reported
a large reduction of the needed subintervals and hence inexcellent agreement on the binding motifs.
significant computational improvemen€au and Stadtherr Akrotirianakis and Floudas (2004resented computa-
(2002b)studied synchronous work stealing, synchronous and tional results of the new class of convex underestimators
asynchronous diffusive load balancing on a two-dimensional embedded in a branch-and-bound framework for box-
torus virtual network, developed a distributed computing constrained NLPs. They also proposed a hybrid global
interval Newton framework, and showed that superlinear optimization method that includes the random-linkage
speedups can be obtained for vapor—liquid equilibrium and stochastic approach with the aim at improving the computa-
parameter estimation problenhsicia and Feng (200&¢tud- tional performance.
ied the least squares function landscape, introduced a dif-
ferential geometry based framework for the determination 2.3. Concave, bilinear, fractional and multiplicative
of all physically meaningful solutions, singular points, and models
their connectivity, developed a global terrain algorithm,and
illustrated the framework through one and two-dimensional ~ Zamora and Grossmann (1998bjtroduced a deter-
examples from glass temperature calculations, equilibrium ministic branch-and-bound approach for structured process
states in nanostructured materials, a simplified SAFT equa-systems that have univariate concave, bilinear and linear
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fractional terms. They proposed several properties of mization approach, and applied itto binary systerts and
the contraction operation, embedded them in the global Xu (1999a)used simulated annealing for the stability anal-
optimization algorithm and studied the contraction effects ysis of liquid—liquid equilibrium systems modelled via the
on several applicationsShectman and Sahinidis (1998) NRTL and UNIQUAC equations for the activity coefficients
proposed a finite global optimization method for sepa- and studied ternary systems with up to three liquid phases.
rable concave problem&Zamora et al. (1999proposed Harding and Floudas (2000ajtroduced a novel global
a branch-and-contract global optimization algorithm for optimization approach for the phase stability of several cubic
univariate concave, bilinear, and linear fractional models. equations of state based on analytical findings and the princi-
The emphasis was on reducing the number of nodes in theples of thexBB global optimization frameworkdarding and
branch-and-bound tree through proper use of the contractionFloudas (2000bjtudied the enclosure of all heterogeneous
operatorVan Antwerp, Braatz, and Sahinidis (19%2)died and reactive azeotropes, developed a rigorous framework
the bilinear matrix inequality problem as a formulation based onthaBB global optimization principles, and demon-
of the globally optimal controller problem and applied a strated its potential for a variety of case studiessier, Bren-
branch-and-bound global optimization approach to generatenecke, and Stadtherr (200troduced monotonicity based
lower and upper bounds and prove optimality for a mass and mole fraction weighted averages based enhancements
spring model and a reactive ion etching problem. for the application of interval Newton methods to the phase
Adhya, Tawarmalani, and Sahinidis (19%®)died bilin- stability problem using the NRTL and UNIQUAC models.
ear models of the pooling problem, proposed a LagrangianZhu, Wen, and Xu (2000proposed an enhanced simulated
relaxation approach for the generation of valid lower bounds, annealing algorithm for the tangent plane stability problem
and showed that these bounds are tighter when compared taising the PR and SRK cubic equations of state.
linear programming based relaxatiof®d/oo and Sahinidis Zhu and Inoue (200lintroduced a branch-and-bound ap-
(2003) studied linear and generalized linear multiplicative proach based on a quadratic underestimating function and
models, applied the recursive arithmetic interval approach for applied it to the tangent plane distance criterion using the
the derivation of lower bounds, introduced greedy heuristics NRTL equationXu, Brennecke, and Stadtherr (20G2ud-
for a branch-and-reduce approach, and applied it to bench-ied the phase stability criterion using the SAFT equation of
mark problems and randomly generated probldéauyal and state, introduced an interval Newton/generalized bisection
lerapetritou (2003aintroduced an approach for the system- approach, followed a volume-based formulation based on
atic evaluation of the infeasible domains using a simplicial the Helmholtz energy, and applied to nonassociating, self-
outer approximation framework that is applicable to concave associating, and cross-associating syste@ieung, Adji-

or quasiconvex constraints. man, Kolar, and Ishikawa (2002judied the global minimum
determination of clusters for the solvent-solute interactions in
2.4. Phase equilibrium phase equilibrium. They introduced the OPLS force field, de-
rived tight convex underestimators, derived bounds on the de-
Maier, Brennecke, and Stadtherr (1998)plied an in- pendent variables, developed a branch-and-bound approach,

terval analysis based approach for the enclosure of homo-and applied it to a butane molecule and a butane—ethylamine
geneous azeotropes. They employed the formulations pro-system.

posed byHarding, Maranas, McDonald, and Floudas (1997)

and studied systems with activity coefficient and equation of 2.5. Parameter estimation

state modelsMeyer and Swartz (1998)roposed a new ap-

proach for testing convexity for phase equilibrium problems. Esposito and Floudas (1998)died the error-in-variables
McKinnon and Mongeau (1998)roposed a generic global approach and proposed the first global optimization method
optimization approach for the phase and chemical reactionfor the parameter estimation and data reconcilliation of non-
equilibrium problem that is based on interval analysis and linear algebraic models using the principles of &&B ap-
combines the stability criterion with the minimization of the proachGau and Stadtherr (200troduced an interval anal-
Gibbs free energyHua, Brennecke, and Stadtherr (1998a) ysis based approach for the error-in-variables method and
applied an interval analysis method for the phase stability studied vapor—liquid equilibrium and reaction kinetics mod-
computations of binary and ternary mixtures using equation els. Gau, Brennecke, and Stadtherr (20@)died further

of state modelddua, Brennecke, and Stadtherr (199Bijo- the parameter estimation of vapor—liquid equilibrium mod-
duced two enhancements on their interval analysis approachels via interval analysis, applied it using the Wilson equation
based on monotonicity and mole fraction weighted averagesfor a variety of binary systems, and demonstrated that cor-
for improving the efficiency in the tangent plane stability rect predictions of azeotropes are attained only based on the
analysis for cubic equations of stat&hu and Xu (1999b)  global optimum parameter solutions in direct contrast to the
used simulated annealing for the tangent plane stability anal-Dechema data collectio@au and Stadtherr (2002applied

ysis criterion and they applied it to ternary syste#isu and the interval-Newton approach for the parameter estimation of
Xu (1999c)studied the tangent plane stability analysis for the a catalytic reactor model, a heat exchanger network model,
SRK cubic equation of state through a Lipschitz global opti- and binary vapor-liquid equilibrium problems using the Wil-
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son equation, and pointed out that problems of about 200 SMIN-aBB is for separable continuous and integer domains
variables can be addressed. and itis based on the principles@BB type of convex under-
estimators and a branch-and-bound approach for the mixed
set of continuous and binary variables. The second approach,
3. Mixed-integer nonlinear optimization, MINLPs GMIN-aBB, is applicable to general mixed integer nonlin-
ear problems which are not separable in the continuous and
Zamora and Grossmann (1998&yived thermodynamic-  integer variables, and it is based on a branch-and-bound tree
based convex underestimators, quadratic/linear fractionalconstructed only in the integer domain while &BB prin-
convex underestimators, and proposed a hybrid branch-and<iples are used to solve the nonconvex NLPs at each node so
bound and outer approximation method for the global opti- as to generate valid lower bounds. The first approach was ap-
mization of heat exchanger networks with no stream splits. plied to heat exchanger network problems, while the second
Westerlund, Skrifvars, Harjunkoski, andf (1998)pro- one was applied to pump network configuration problems
posed an extended cutting plane approach for the global opti-and trim loss minimization problems in addition to a variety
mization of pseudoconvex MINLP problems, studied its con- of benchmark problem#&esavan and Barton (200@)tro-
vergence properties, and applied it to an example from the duced a generalized branch-and-cut algorithm for noncon-
paper-converting industrylecchietti and Grossmann (1999) vex MINLPs, showed that decomposition-based approaches
introduced a disjunctive programming approach for MINLPs, and branch-and-bound algorithms are special cases, and pro-
denoted as LOGMIP, discussed a hybrid modelling frame- posed a number of heuristics towards addressing the compu-
work for process systems engineering which allows both tational efficiency issue&ahinidis and Tawarmalani (2000)
binary variables and disjunctions as tools for discrete de- presented two MINLP applications of global optimization
cisions, implemented a modified logic-based outer approx- for the design of just-in-time flowshops, and the design of
imation approach, and presented computational studies oman alterative to freon. In the first study, the model determines
two process synthesis problems and an FT-IR spectroscopythe stagewise number of machines needed that minimizes
example Sinha, Achenie, and Ostrovsky (1999udied the the total equipment costs, and they showed improvements
class of solvent design problems, modelled it as a nonconvexcompared to the heuristic approaches. In the second study,
MINLP problem, identified the sources of nonconvexities in the model selects the constituent parts of a molecule so as
the properties and solubility parameter design constraints,to satisfy chemical and physical properties, economic, en-
proposed linear underestimators based on a multilevel rep-vironmental constraints through a group contribution based
resentation approach for the functions, developed a reducedapproach, and provides a ranked order list of alternative
space branch-and-bound global optimization algorithm, and compounds Parthasarathy and El-Halwagi (2008fudied
applied it to a single component blanket wash design prob- a systematic framework for the optimal design of conden-
lem. Noureldin and El-Halwagi (199%tudied mass inte-  sation which an important technology for volatile organic
gration problems for pollution prevention, proposed targets compounds, formulated it as a nonconvex MINLP model,
for the maximum achievable pollution, introduced an inter- proposed an iterative global optimization approach which
val analysis framework for the determination of these tar- is based on physical insights and active constraint princi-
gets, studied the pollution prevention via unit manipulation, ples that allow for decomposition and efficient solution, and
recycle and interception, and employed the interval-basedapplied it to a case study for the manufacture of adhesive
targets in a case study featuring the reduction of water us-tapesPorn and Westerlund (200@)troduced procedures for
age and discharge in a tire-to-fuel plaRtrn, Harjunkoski, the successive linear approximation of the objective function
and Westerlund (199®roposed convexification schemes for and line search techniques, proposed a cutting plane method
classes of discrete and integer nonconvex models. They studfor addressing global MINLP problems that feature pseudo-
ied the exponential transformation and potential-based trans-convex objective function and constraints, studied its conver-
formations and applied them to integer posynomial problems. gence properties and initialization schemes, and tested it on
Harjunkoski, Westerlund, andobn (1999)studied the trim several benchmark problems arising in process synthesis and
loss minimization problem for the paper converting industry, scheduling applications.
formulated it as a nonconvex MINLP, proposed transforma-  Lee and Grossmann (200%judied nonconvex general-
tions for the bilinear terms that are based on linear represen-ized disjunctive programming models, constructed the con-
tations and convex expressions, studied the reductions of thevex hull of each nonlinear disjunction, used convex under-
combinatorial space, investigated the role of different types of estimators for bilinear, linear fractional and concave separa-
objective functions, developed and assessed several algorithble functions, introduced a two level branch-and-bound algo-
mic alternatives, and showed that the global solution can berithm where the lower bound requires a discrete search in the
obtained with all strategies and certain convex formulations disjunctions space and the upper bound requires a spatial di-
performed similarly to the linear models. vide and conquer search in the nonconvex continuous space,
Adjiman, Androulakis, and Floudas (200@oposed two and applied itto benchmark problems, a multicomponent sep-
novel global optimization approaches for nonconvex mixed- aration problem, multistage design/synthesis of batch plants
integer nonlinear programming problems. The firstapproach, with parallel units, and heat exchanger network synthesis.
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Bjork and Westerlund (2003tudied the global optimiza- and presented comparative computational reSOks.0vsky,
tion of heat exchanger network synthesis through the sim- Achenie, and Sinha (2003gvisited their molecular design
plified superstructure representation that allows only seriesreduced dimension branch-and-bound algorithm by studying
and parallel schemes, applied convexification approaches forfurther the branching functions concept and the special tree
signomials via piecewise linear approximations, developed function representation, proposed the sweep method for the
convex MINLP lower bounding models using the Patterson construction of the linear underestimators, investigated the
formula for the log mean temperature difference considering problem size dependency on the algorithmic performance,
both isothermal and nonisothermal mixing, proposed a global and showed that the computational effort increases almost
optimization approach for alternative models, and presentedlinearly. Sinha, Achenie, and Gani (2008)udied the sys-
extensive computational studiégang and Achenie (2002b) tematic design of cleaning solvent blends for lithographic
studied solvent design problems which are formulated as non-printing, modelled it as a nonconvex MINLP problem, in-
convex MINLPs, introduced a hybrid global optimization ap- troduced an interval analysis based global optimization ap-
proach which combines outer approximation with simulated proach with modifications on the upper bounding calculation
annealing, applied it to several benchmark problems, caseand the local feasibility test which are solved via SQP, and
studies for the extraction of acetic acid from water, and sol- an interval-based domain reduction algorithm, and presented
vent design for reversible reactions, and showed that nearcomputational results for the design of aqueous blanket wash
optimal solutions can be locate@strovsky, Achenie, and  blends.Zhu and Kuno (2003proposed a hybrid global op-
Sinha (2002)studied nonconvex MINLP models in which timization method for nonconvex MINLPs which combines
most variables are in the conconvex terms and the numberconvex quadratic underestimation techniques with a revised
of linear constraints is much larger than the nonlinear con- form of the generalized Benders decomposition, suggested
straints, introduced the idea of branching on a set of linear its convergence properties, and illustrated it via a two vari-
branching variables which depend linearly on the search vari- able problemGoyal and lerapetritou (2003bjudied MINLP
ables, proposed a tailored branch and bound approach usingnodels where the objective function is convex, and the con-
linear underestimators for tree functions based on a multi- straints are convex, concave or quasi-concave, introduced the
level function representation, showed that there is a signifi- simplicial approximation of the convex hull of the feasible
cant reduction in the branching variable space, and applied itregion, proposed algorithmic procedures and illustrated them
to solvent design and recovery probleMéng and Achenie  via small benchmark problemKallrath (2003)studied and
(2002a)studied the molecular design of solvents for extrac- solved a nonconvex product portfolio problem via an approx-
tive fermentation including solvent attributes such as biocom- imate MILP formulation of the objective function and exact
patibility, inertness and phase splitting, introduced a group linear relations for the constraints, modelled it as a noncon-
contribution framework which results in a conconvex MINLP  vex MINLP problem for the optimization of the number and
model, studied a local MINLP algorithm, OA/ER/AP, and size of batch process units, analyzed the sources of noncon-
applied it to case studies on ethanol extractive fermentation.vexity consisting of concave functions and trilinear products,
Dua, Bozinis, and Pistikopoulos (200@2)oposed novel ap-  investigated the piecewise linear approximation of the objec-
proaches for multiparametric mixed-integer quadratic models tive function, the use of a local MINLP solver, SBB, and a
through the decomposition into a multiparametric quadratic global optimization solver, Baron, and reported that for the
MIQP model for the upper bound and a potentially noncon- large instances weak lower bounds are gener@tezksmann
vex MINLP model for the lower bound, suggested ways of and Lee (20033tudied generalized disjunctive programming,
addressing the nonconvexity in the MINLP, and generated GDP, problems which feature convex nonlinear inequalities
envelopes of parametric solutions and the enclosure of thein the disjunctions, proposed a convex nonlinear relaxation
multiparametric MIQP. of the nonlinear GDP problem based on the convex hull rep-
Sahinidis, Tawarmalani, and Yu (200R)visited the de-  resentation of each of the disjunctions which was derived
sign of alternative refrigerants problem, introduced an integer by variable disaggregation and reformulation, formulated the
formulation for previously described structural constraints, nonlinear GDP as a MINLP which was shown to produce
proposed new structural constraints between one-bonded andmproved bounds compared to big-M models, and presented
higher-bonded groups in the absence of rings and new cliquecomparative computational studies of the two formulations.
constraints for rings, applied a branch-and-reduce global op-Lee and Grossmann (2008)udied nonconvex GDP prob-
timization algorithm with a modification so as to generate all lems with bilinear equality constraints, derived convex un-
feasible integer solutions, and generated new compounds forderestimators and overestimators for the bilinear constraints
refrigerantsVaia and Sahinidis (2003}udied the simultane-  using the reformulation/linearization approach, expressed the
ous parameter estimation and model structure identificationdiscrete choices as disjunctions which were subsequently re-
in infrared spectroscopy, proposed two methods out of which laxed by their convex hull representations, used their earlier
the second corresponds to a single nonconvex MINLP model,two level global optimization approag¢hee & Grossmann,
presented a branch-and-bound approach which is based on 2001) and presented computational studies for pooling prob-
relaxation of terms that are logarithmic, bilinear, and multi- lems, water usage problems, and wastewater network prob-
linear depending on the determinant of the covariance matrix, lems.
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Lin, Floudas, and Kallrath (2004kvisited the noncon-  parameter estimation of nonlinear dynamic systems, formu-
vex product portfolio problem introduced Bgllrath (2003) lated it as an optimal control that optimizes the Fischer infor-
presented an improved formulation consisting of a concave mation matrix, introduced two stochastic global optimization
objective function with linear constraints in the continuous approaches to address the nonsmoothness and the multiplic-
and binary variables, proposed several techniques for tight-ity of solutions, and applied it to the parameter estimation
ening the model and accelerating its solution, developed aof a fed-batch bioreactoRapamichail and Adjiman (2002)
customized branch-and-bound approach which addresses theatroduced a deterministic spatial branch-and-bound global
problem to global optimality, applied it to small and large in- optimization approach for nonconvex models with ordinary
stances, and demonstrated that global solutions can be obdifferential equations, proposed a convex relaxation based on
tained very efficiently in contrast to commercial MINLP the theory of differential inequalities which allowed them to
solvers.Kesavan, Allgor, Gadzke, and Barton (20G4)d- generate rigorous bounds for the parametric ODEs and their
ied separable MINLP models with nonconvex functions, pro- sensitivities, and applied their framework to small optimal
posed two decomposition algorithms based on alternatingcontrol problems and reaction kinetics parameter estimation
sequences of relaxed master problems, two nonlinear pro-models.
gramming problems, and outer approximation, showed that  Adjiman and Papamichail (2008gveloped further their
the first algorithm yields the global solution while the sec- branch-and-bound approach, proposed three convex relax-
ond provides a rigorous bound on the global solution, and ations for the parameter estimation of the initial value prob-
presented computational results on several benchmark probiem, and presented computational results on several parame-
lems and heat exchanger network problems. ter estimation problems in kineticSinger and Barton (2003,

2004) studied the global optimization of integral objective

functions subject to ordinary differential equations, derived
4. Differential-algebraic models, DAEs convex relaxations for the integral based on a pointwise in-

tegrand scheme, developed a branch-and-bound global opti-

Esposito and Floudas (2000sjudied the global opti-  mization approach on a Euclidean space which combines the
mization in parameter estimation of systems described byintegrand convex relaxations with differential inequalities,
differential-algebraic models, proposed a rigorous global op- McCormick’s composition approach, and outer approxima-
timization approach based on a collocation framework and tion, and illustrated their approach with several small bench-
theaBB principles, proposed a global optimization approach mark problemsLee and Barton (20033tudied the global
based on an integration framework, and investigated a va-optimization of linear time varying hybrid systems which
riety of benchmark problems and complex kinetic mecha- exhibit both discrete state and continuous state behaviour,
nisms.Esposito and Floudas (2000&fudied the determin-  and extended their recently developed approach for the de-
istic global optimization of nonlinear optimal control prob- termination of the optimal mode sequence when the transition
lems, introduced the integration-based framework, investi- times are fixedBarton & Lee, 2003)proposed a reformu-
gated the properties of the input—output map of solutions, lation of the problem via binary variables while maintain-
suggested three alternative ways of calculatingghalues ing the linearity of the dynamical system, derived convex
for the lower bounding problems, and demonstrated through relaxations of Bolza-type functions using recent results for
several challenging case studies the algorithmic trade-offslinear time varying continuous systerfieee, Singer, & Bar-
of the different strategies, as well as the determination of ton, 2004) and applied it to benchmark problems and an
the global solutionBarton, Banga, and Galan (200€tud- isothermal plug flow reactor problenthachuat and Latifi
ied the optimization of hybrid discrete/continuous dynamic (2003)introduced a spatial branch-and-bound global opti-
systems, presented a framework based on hybrid optimal con-mization approach for problems with ordinary differential
trol, investigated existence and sensitivity results, introduced equations in the constraints, presented results on the first and
a modified stochastic search approach, and presented comsecond order derivatives for the initial value problem and the
putational results for a tank changeover problé&sposito two point boundary value problem, compared the sensitivity
and Floudas (2001jointed out the theoretical rigor and ad- and the adjoint approaches, developed convex underestima-
vantages of the proposed global optimization methods by tors using thexBB principles, and presented computational
Esposito and Floudas (2000and the differences between studies and comparisons of the sensitivity versus the adjoint
local search approaches and global optimization methods. approach for several problemBanga, Moles, and Alonso

Esposito and Floudas (2008)judied the isothermal re- (2003)studied integrated process design and operation, pa-
actor network synthesis problem, formulated it as noncon- rameter estimation in bioprocess models, and focused on
vex NLP with differential-algebraic constraints, introduced a stochastic global optimization methods for dynamic systems,
global optimization framework based on the integration ap- addressed handling of constraints in stochastic methods, pre-
proach and the:BB, investigated alternative types of refor- sented hybrid approaches for dynamic optimization, and pre-
mulations, and reported extensive computational studies forsented computational studies on the optimal control of biore-
complex reaction/reactor networl&anga, Versyck, and Van  actors, the integrated design of a waste treatment (et
Impe (2002)studied the optimal experimental design for the also Moles, Gutierrez, Alonso, & Banga, 2008here they
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provided comparisons for several algorithmic approaches, Pistikopoulos, Dua, and Ryu (2008judied bilevel opti-
and discussed advances in the parameter estimation of biomization models which are of linear—linear, linear—quadratic,
processesBanga, Balsa-Canto, Moles, and Alonso (2003) quadratic—linear, or quadratic—quadratic type, and introduced
reviewed and introduced optimization as a key technology approaches from parametric programming to transform the
for food processing and discussed stochastic global optimiza-bilevel problem into a family of single level optimization
tion methods and their potential applicability in food process problems which can be solved to global optimality, and pre-
engineering. sented computational results on several small benchmark
problems.Gumus and Floudas (in presstudied the global
optimization of bilevel mixed-integer optimization problems,
5. Grey-box and nonfactorable models proposed an approach thatis applicable to mixed-integer non-
linear outer problem and twice continuously differentiable
Byrne and Bogle (20008tudied the global optimization  nonlinear inner problem, introduced another approach based
of modular flowsheeting systems, introduced an approach toon the convex hull representation of the inner problem, which
modular based process simulation which is based on inter-is applicable when the inner level problem features functions
val analysis and which can generate interval bounds, deriva-which are mixed integer nonlinear in the outer variables and
tives and their bounds for generic input—output modules, pro- linear, polynomial, or multilinear in the inner integer vari-
posed a branch-and-bound global optimization algorithm, ables, and linear in inner continuous variables; and applied it
and applied it to an acyclic problem, and flowsheet with to several challenging benchmark problems.
recycle. In the remainder of this paper, we will present recent ad-
Meyer, Floudas, and Neumaier (20@2)died the global ~ vances from Princeton University on (i) explicit facets for
optimization of problems with nonfactorable constraints for convex and concave envelopes for trilinear functions, (ii)
which there does not exist an analytical form, proposed a convex underestimators for trigonometric functions, (i) new
sampling phase in which the nonfactorable functions and convex underestimators based on a piecewise quadratic per-
their gradients are sampled and a new blending function is turbation function, and (iv) the generalize&8B convex un-
constructed, presented a global optimization phase in whichderestimators.
linear underestimators and overestimators are derived via in-
terval analysis and the interpolants are used as surrogates in
a branch-and-cut global optimization algorithm, discussed a 7. Explicit facets of convex and concave envelopes for
local optimization stage where the global optimum solution trilinear monomials
of the interpolation problem becomes the starting point for
optimizing locally the original problem, and illustrated their Approximations of the convex envelope of nonconvex
approach through a small benchmark problem, an oilshalefunctions play a central role in deterministic global opti-
pyrolysis problem, and a nonlinear continuous stirred tank mization algorithms and the efficiency of these algorithms is
reactor model. Theoretical and algorithmic advances outsidehighly influenced by the tightness of these approximations.
of Chemical Engineering in this area include the work by Meyer and Floudas (2003, 200g)oposed explicit expres-
Gutmann (2001)Jones (2001)Jones, Schonlau, and Welch  sjons defining the facets of the convex and concave envelopes
(19981nd the recent book &abinsky (2003) for trilinear monomials, with mixed sign domains, as well as
with positive or negative bounded domains for each variable.
These advances are discussed in the sequel.
6. Bilevel nonlinear optimization

. o 7.1. F f th I
Gumus and Floudas (200%judied the global optimiza- acets of the convex envelope

t|o|n 0]; b_|level nt(_)nllnealr pdr_(;fgramtmlglg ]|c3rob':_ems which m-d The description of the nonvertical facets depends on the
volve twice ?On |?uousf)/th lerentia ebluncflol?s, p;ogos.iz signs of the bounds an In this section, we present the set of
a convex refaxation ot the inner probiem Tollowed DY 11S 5 sets for Case 1 (the complete set of cases can be found in

equivalent representation via necessary and sufficient opti-yp o

. g . R papers b\eyer & Floudas, 2003, 2003arhe symbols
mality conditions, introduced theBB global optimization :
principles, presented a branch-and-bound framework, and ap-X’ y, andzare used to denote a permutationef.v andxs.

lied it t | benchmark probl d A ¥ In addition to the signs of the bounds, in some cases there are
piied 1Lto several benchmark problems and parameter es I'auxiliary inequalities that must be satisfied for the facets to
mation problemsFloudas, Gumus, and lerapetritou (2001) apply
introduced the first rigorous global optimization approach for '
the calculation of the flexibility index and the feasibility test ~ —ooc 1% =072 0.2=20.

€ cajculation ot the Tie y Index a € reasibility tes Mapping{x1, x2, x3} onto{x, y, z} in such a way that the
which are bilevel nonlinear optimization models, and demon- ; -

. - following relations apply,

strated its applicability to a heat exchanger network problem,
a pump and pipe run problem, a reactor—cooler system, and_ . _ . _
a prototype process flowsheet model. Xyz + Xyz < Xyz + xyz, XYz +Xyz = Xyz + Xyz,
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the linear equalities defining the facetsafx) are: 7.3. Comparison with other bounding schemes

W = yzx + xzy + xyz — 2xyz, The recursive arithmetic interval (rAl) scheme for gen-
erating convex lower bounds for the multilinear monomial

w = yzx + X7y + Xyz — 2xyz, : : L
Y yray Y was compared with the arithmetic interval (Al) scheme and

W = YZX + X7y + XyZ — XyZ — XYz, other bounding schemes studied Byoo and Sahinidis
= = = = = 2001)
w = yzx + Xzy + Xyz — Xyz — Xyz, ( . . .
e Ay e AR The separation distances between the functigz
0 — — 0 - i i
W= x4 oy +iyz+ (__ X —xyz—xyz+xyz> ’ and the lower .boundlng functionsfa (x, y,z) and
X—x = X—x = fiai(x, y, z) are defined adp, (x, y, z) := xyz — fai(x, y, 2),

andda (x, v, z) := xyz — fiai(x, y, 2). These separation dis-
tances are compared witl(x, y, z), the separation distance
betweenxyzand the convex envelope. Two graphs are pre-
sented for each sign combination. In each grapindz are
constant, while the separation distances are plotted as a func-
tion of x.

In Fig. 1, the Al and rAl systems are shown to generate
poor bounds relative to the convex envelope.

whereo = xyz — xyz — xyz + xyz,

0 _ _ Ox _ _ _
x_;x+§zy+1yz+ ———=—Xxyz—xyz+xyz|,

w =

wheref = xyz — Xyz — xyz + xyz.

7.2. lllustration

To construct the lower bounding facets ©f(x) where . ) )
x = [1, 2] x [1, 2] x [1, 2] we first observe that all bounds 8- Convex underestimators for trigonometric
are positive (i.e., Case 1). As the bounds on all the vari- functions

ables are the same it makes no difference how we map
{x1, x2, X3} Onto {x,y,z}. After substitution, the facets Caratzoulas and Floudas (200&ve recently proposed a
become: C*° convex underestimator for the function

w=1x1 + Ixp + 1x3 — 2, w = 4x1 + 4xo + 4x3—16, fx)=asin(x+s), xelxg,xy], «>0.

w = 2x1 + 22+ 2x3 = 6, w=2x1+2x+2x3 -6, The underestimation method can be applied to one-
w = 2x1 + 2x2 + 2x3 — 6, w = 2x1 + 2x3 + 2x3 — 6. dimensional as well as multi-dimensional problems involv-
ing trigonometric polynomials, since the product of trigono-
Note that the last four facets are identical and hence we metric functions can always be decomposed into the sum of
only need three facets to define the convex envelope. Com-sin and cos functions with arguments that are linear combi-
parisons between the convex envelope and other approXi-nations of the problem variables. The general case si(
mation schemes are provided fig. 1L Explicit facets for x € [xz, xy], reduces to the above equation form by appro-
the concave envelope and for the complete set of casespriate scaling of the independent variable. A summary of the
are presented in the papers Meyer and Floudas (2003, method is presented in the following for the translated func-

2004) tion g(x) = f(x + x1), x € [0, D], whereD = xy — x;..
y=125z2=15
0.6
e _
/ TV R
g 05 / \ 3
& / \ 5
@ / \ @
0O 04 / \ =}
& ! \ 5
T — \ T
g 03 T \ @
Q e SR o
[0 3 [
w dm w
02 il drA!
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0.1
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Fig. 1. Comparison of lower bounding separation distances[1, 2], y € [1, 2], z € [1, 2].
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Caratzoulas and Floudas (200f9)nsidered as underes-
timating function the following three-parameter, b, x;)
trigonometric function
¢(x) = —a sinfk(x — x;)] +b, x€]0, D], a=>0,
wherek = 2/L, andL is the period ofp(x). For ¢(x) to

be convex, the conditions, < 0 andL > 2(D — x;) must
be satisfied. They considerdd= 2(D — x,) + M, where
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D, one obtains the tangent limg(x). Thus, they obtain two
sets of parametersq( by, x5) for g = q;, and @y, by, x5,)

for ¢ = ¢,, and the respective functios(x) andg¢, (x). If

both ¢;(x) and¢, (x) are underestimators, the tighter one is
chosen—that is the one with the smaller amplitude parameter,
a. Caratzoulas and Floudas (20@#pved that:

Property 1: For M > 2D, the function F(x) = ¢;(x) —
¢, (x) cannot have a single root in the interval;, ¢.].

M e R™T, an arbitrary positive, real number, that makes the Property 2: If 1;(¢;) > t.(q;) andt;(q,) < t.(qu), asufficient

period of¢(x) dependent on the phase shift They proved

that anyM > 2D is sufficient, and by means of asymptotic
analysis of the solution have further shown, rigorously, that
the value ofM does not affect how tight the underestimator

will be.

condition for ¢;(x) (¢,(x)) to be an underestimator is
that the functior(¢; — t,)(x) (¢, — #)(x)) has a root in

(a1 qul-

Theorem 1. At least one of the functiong(x) and ¢, (x)

Of the three equations necessary to uniquely determineconstructed above is an underestimator

the parameters, b and x;, two are obtained from the re-
quirement that at the bounds of the domdifx) match
g(x), that is, g(x0) = ¢(x0), xo € {0, D}. If g(X) is noncon-

If g(x) is nonconvex and the domain doest include a
minimum, in the rather trivial case whep¢0) > ¢(D) and

vex and the domain includes at least one minimum, the au-the tangent tag(x) passing throughx = 0 does not exist,

thors obtain a third equation by settig@y) = ¢(¢), where
1(x) = g(xo0) + &'(x:)(x — x0), x0 € {0, D}, is tangent t@(x)
at the pointx; and passes through the poi; ¢ € (0, D)
denotes the minimum @f(x) nearest tag. From these equa-
tions, Caratzoulas and Floudas (20@#jtained

Y A+8a0(fL —T)
 sinfkxy) + Sin{k[D — (D — q) 8a.0 — xs]}

and

~ [A +8a 0(fL — T)] sin(kx;)
sinkx,) -+ SiNK[D — (D — q) 8a.0 — x5}

= /L

where f = f(xL), fu = f(xv), A= fL— fu=¢g(0)—
g(D); T =1t(q); andda o = 1, if A = 0, and zero otherwise.
For the phase shift, they obtained

A sintq) + (T — f1) sin(kD)

) = =7 1 — costg) Ao
(T~ f1)(1 - coskD)
xs=-M/2>0, A=0.

This equation must be solved numerically (a few Newton
iterations have proven sufficient) and it was shown that it

always has a solution, that is, for givgandL (i.e.,M) there
always exists a unique; < 0 satisfying it.

max { min 500l - ¢<x)} - {

For xo = 0, andg = ¢; the minimum ofg(x) nearest to
x = 0, one obtains the tangent lingx). For xg = D, and
g = g, the minimum ofg(x) nearest to the end point=

Minyeqo, pjlg(x)] — f + A/[4rD(1 - rD)],
Minyeo, pilg(¥)] — f1 + (fo — T)D?/[4q(D — g)], A =0,

namelyx; ¢ [0, D], the underestimator is a line through the
end points; similarly ifg(0) < g(D) and the tangent tg(x)
passing throughr = D does not exist. That would also be
the case ifg(0) = g(D). If, however, either one of the two
tangents exists, an underestimator of the same form as be-
fore is sought. By enforcing the same end-points matching
conditions as before, one obtains the equations for the param-
etersa andb. However, in the absence of a minimum point,
the conditionp(q) = #(g) cannot be employed. Instead, they
set (db/dx)x—0 = 0 if g(0) < g(D), or (dp/dx)—p =0 if

£(0) > g(D), to obtain:

—-D—M/2, A <0
“TYbp-Mmp2 Aso

Caratzoulas and Floudas (20@Bpved that the functios(x)
obtained in this manner is also an underestimator.

8.1. Maximum separation distance

Caratzoulas and Floudas (200Bjvestigated the be-
haviour of the solutions with respect to the paramater
2D as that becomes very large. In all cases, they showed that
the curvaturegk?, of ¢(x) approaches a finite value. Based
on their asymptotic analysis, they also have investigated the
maX.e[o, pj{Minyepo, p[g(x)] — ¢(x)} and its dependence on
the domain sizeD, as a measure of high tight an underesti-
matorg(x) is. Specifically, they showed that & — oo

A#0

where r = [Aq + (T — f1)D]/[Ag? + (T — f1)D?], with
r~1/D and 1-rD ~ Aq/[D(fr — T)]. As D increases,
the quantity on the left-hand side grows linearly.
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o T L ] The aBB convexification approach can be viewed as an
N \ \ approximate solution to a more general convexification prob-

: v lem, that of finding a convexifying perturbation functiofx)

e i which minimizes a measurg, of the separation between a

nonconvexC? continuous functiorf(x) and the convex un-

N 1 derestimatorf(x) — g(x). The size of the domair affects

. the result of every step in the calculation and strongly in-

fluences the tightness of the resulting convex underestimator.

s H ) - In particular, reducing reduces the mismatch between the
L g:gg; under assumed quadratic functional form and the ideal form; it re-
8| == sin(10x/3) | duces the overestimation in the interval extension of the Hes-
- . L - A sian matrix; and the maximum separation distance has been
N e i shown to be a quadratic function of interval len@f#oudas,
10, s e s s 10w 2000a) Constructing a convex underestimator using a num-

ber of differentx vectors, each applying tosabregiorof the
Fig. 2. The functiorf(x) in illustrative example and its underestimator. We  full domainx can lead to improved convex underestimators
also plot the trigonometric terms, sinand sin(1@/3), of f(x) and their and it is discussed in the sequel.
individual underestimators, as computed by the method of Caratzoulas and 2 . . .
Floudas (2005), Letf(x) be aC Eontlnuoqg funct!on. For egch variablg
letthe intervalk;, x;] be partitioned intaV; subintervals. The

endpoints of these subintervals are denot®d?, o

1
Whel‘egi:x?<xil<-~-<x{»‘<-~-<xlN"=fi. In this

As an example, let us consider the following function: notathn thexth interval 'S H’c lfxi'{]' A smooth convex un-

f(x) = sinx + sin 1(3)x +Inx—084r, 15<x<12484. derestimator of(x) overx is defined by

This function has a unique minimum with an objective func-

tion value of—8.7429 located at = 10.914. Applying the o(x) = f(x) — g(x),

proposed convex underestimation approach on this example

to underestimate, individually, each of the first two terms in

f(x), the term Inx, being concave, has been underestimated Where

by a straight line connecting the end points of the domain. "

Thg first mmql lower bound_ is—9.7818 atx = 9.656. g(x) == qu‘(x,') for x; € [xk=2, 241,

Using «BB with the theoretical valuex = 6.0007, one

obtains an initial lower bound 0f185.2376 located at

x = 6.992. Fig. 2 presents graphs d{x), of its trigono- g () = af (i — xfHF — xi) + Blxi + of.

metric terms and their underestimators, and of the overall

underestimator. Ineachintervalf* 1, x¥], &* > Ois chosen such th&?¢(x),
the Hessian matrix op(x), is positive semi-definite for all
members of the sefx € x : x; € [x* 1, x]}. ¢¥(x;) is the

8.2. lllustration

i=1

9. Convex underestimators by piecewise quadratic guadratic function associated with variabieintervalk. The
perturbation function q(x) is a piecewise quadratic function constructed
from the functions;* (x;).
Meyer and Floudas (in presdntroduced a refine- The continuity and smoothness propertieg@j are pro-
ment of the classicakBB convex underestimator, via a duced in a spline-like manner. Fgfx) to be smooth thg*
smooth, piecewise quadratic, perturbation functignIn functions and their gradients must match at the endpefnts

this section, we will briefly introduce the concepts be- In addition, we require that(x) = 0 at the vertices of the hy-
hind the BB type of underestimators, and we will sub- perrectanglex. To satisfy these requirements, the following

sequently focus on the new class of convex underestima-conditions are imposed for all= 1, ..., n:
tors that are based upon a piecewise quadratic perturbation
function. (%) =0,

TheaBB algorithm is based on the idea of constructing a o e i
smooth convex underestimator of a nonconvex twice contin- ¢; (x;) = ¢; ~(x;) forallk=1,...,N; -1,
uously differentiable functiof(x) using a convex quadratic Ni/_Ni

. . . qi (xi ): 0’
perturbation functiong(x) The convex underestimate(x)
is defined as follows: dg* dgf*t
L = = forallk=1,...,N;, — 1.
dxi P dxi X

P(x) == f(x) — q(x). % %
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Expanding and solving these equations, we obtain:

N;i—1
N; N;
= (3t - s o
k=1
k=1
Br=pt+> s/ forallk=2 ..., N,
j=1

k—1
yik = —ﬂilx? — Zs{x{ foralk=1,..., N;,
Jj=1

with 5% = —af(xF — xF71) — oL (AF - 4y,
This class of convex underestimators satisfies the follow-
ing smoothness, underestimation, and convexity properties.

Property 1: ¢(x) : X 2 x — R is a continuously differen-
tiable function

Property 2: If «f > Oforall k=1,...,N; — 1, andi
1,...,n,then dx) is concave ovex.

Property 3: ¢(x) is an underestimator ofX), that is¢(x)
f(x) forall x € x.

Property 4: Let f be a function differentiable on an open
setf2 ¢ R”, and let C be a convex subset@f Then f
is convex on C if and only if its gradieRtf is monotone
onC

Property 5: Let f:R>x— R be a twice contin-
uously differentiable function ovek. Let ¢(x) :=
() —qx). If V3(f(x) - Y145 (x)) =0 for all
xel:= [xlil_l,xlf] x - x [xk=1 ¥k where xf»(i €
e, xMTh i =1, e, theng(x) is a convex func-
tion onx.

IA

9.1. lllustrative example
Consider the Lennard—Jones potential energy function,

1 2
flx) = 127 3E
in the interval k, x] = [0.85,2.00]. The first term of this
function is a convex function and dominates wixéssmall,
while the second term is a concave function which dominates
whenx s large. The minimum eigenvalue of this function in
an interval k, x] can be calculated explicitly as follows:

156 84 ., _
min f” = { —7.47810 if [x,X] > 1.21707
156 84 .

The classicakkBB underestimator for this function and in-
terval is f(x) — 242819%(x — x)(x — x). The potential energy
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-1.5
standard «BB underestimator
1 1.2 1.4 1.6 1.8 2
0.85<x<2.00

Fig. 3. Lennard-Jones potential function and underestimators.

function, the classicatBB underestimator, and thygx) un-
derestimators are shown kfig. 3. In this figure thex spline
underestimator based on two subregions is denat&d,
while that based on 16 subregions is denogétf).

10. The generalizedxBB global optimization
approach

In this section, the convex underestimators of the classical
oBB global optimization approach are outlined first, the
new class of convex underestimators is presented next along
with their key theoretical properties and an illustrative
example which compares the quality of the new convex
underestimators.

10.1. Convex underestimators of thBB method

In BB, a convex underestimator of a nonconvex function
is constructed by decomposing it into a sum of nonconvex
terms of special type (e.g., linear, bilinear, trilinear, frac-
tional, fractional trilinear, convex, univariate concave) and
nonconvex terms of arbitrary type. The first type is then
replaced by very tight convex underestimators which are
already known(Floudas, 2000a)For the nonconvex terms
of arbitrary type, whose convex envelopes are not known,
a convex underestimator is generated by adding to them the
relaxation functiong(x; «):

P(x; ) = — Zai(x,- — xiL)(xlU — Xi),
=1

wherex; > 0,i =1, 2,...,n. Thatis, if we assume th§x)
is an arbitrarily nonconvex function, then

LOLBB(‘X; 05) = f(x) + ¢(x! Ol),

is an underestimator of f(x). Note that since
o(x;a) = ¢p(xY; ) =0 the underestimatorLpp(x; o)
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coincides with(x) at the end-points of. Also by noting that andy = (y1, y2, - - -, v»)" is avector of non-negative param-

the relaxation functionp(x; ) is separable we can derive eters Akrotirianakis and Floudas (200Byoved the follow-
the following relationship that exists among the Hessian ing properties of the functioh1(x; y):

matrices ofLpp(x; ¢), f(x) andeo(x; «):

Property 1: Li(x;y) < f(x), forall x € [xL, xY], because
&(x;y) < Oforall x € [xL, xY] andy > 0.

_ Property 2: L1(x%; y) = f(x©), for every corner poink®

where A = qus(x;a) = diaglos, a2, ... o). From the of X, becausab(xC; ) = 0for all € € X.

above equgtlog\ it can be derived thatpp(x; @) is convex Property 3: There exist certain values of the parameters

if z_:md only |f_V lj_agg(x;oz) is positive seml-deflmte matrix. vi S0 thatLi(x; y) is a convex functiariThis is due to

It is shown inAdjiman et al. (1998ajhat if the parameters the fact that the relaxation functio®(x; ) is convex

a;, i =12,...,n, have values greater than or equal to foreveryx € X andy; > 0,i = 1, 2..., n. Hence if the

the negative one half of the minimum eigenvalue of the parameters; have large enough values then all the non-

H A7 2 H H _ L U ... . . . .
Hessian matrixv* f(x) in the whole domaink = [x", x"], convexities in the original functicifx) can be eliminated,
then the underestimatdr, gp(x; «) is convex function. The thereby producing a convex functian (x; ).

calculation of the smallest eigenvalue of the Hessian matrix Property 4: The maximum separation distance between

of an arbitrarily nonconvex function is done by generating the nonconvex function(® and its underestimator
the interval Hessian matrix and requiring that the interval Léans(x;y)is

Hessian matrix is positive semi-definite.
Adjiman et al. (1998apnd Floudas (2000ayleveloped

V2Lopa(x;a) = V2 f(x) + 24,

n
several methods that calculate appropriate values far; all max {f(x) — Li(x;y)} = Z(l — /il =32,
i=12,...,nthat ensure the positive semi-definiteness of xb<x<xV )
the interval matrix V2L zz(x; «)] and consequently the con-
vexity of the underestimating functiohaps(x; «). These Property 5: The underestimators constructed over super-

methods can be classified into two categories. The first cate-  sets of the current set are always less tight than the
gory consists of methods that find a common value for every  ynderestimator constructed over the current box cons-
parametery;, whereas methods of the second category cal- traints.
culate different values for each.

The most efficient of those methods is the scaled Gher-
schgorin. The value for each parametgiis determined by
the equation:

The values of the parameteys i =1, 2,...,n are de-
termined by an iterative procedure that not only guaran-
tees the convexity of the underestimaios(x; ) but also
ensures thatli(x;y) is tighter than theaBB underes-
timator

1 — d;
o; =maxq 0, =5 LI.—Zmaquij,-ud—i :

JFl n
_ Lap(r;a) = f(x) = Y eilxi — x[)(xf = xi).
whereL.j andf;; are the lower and upper bound@éﬁf/axixj i=1
as calculated by interval analysis, afidi = 1,2, ..., n are

positive parameters. A common choice for those parametersThe initial values of the; parameters are selected by solving
isd; = x” — xt, which reflects the fact that variables with a  the system of nonlinear equations
wider range have a larger effect on the quality of the under-

estimator than variables with a smaller range. G+ 22t =0, i=12,.

... n,
10.2. The new class of convex underestimators wheret; < 0,i = 1,2, ..., n. The parameterg convey sec-
ond order characteristics of the original nonconvex function
into the construction process of the underestimator. Candi-
date values for these parameters can be provided by the scaled
Gerschgorin metho@djiman et al., 1998a)

) ) Akrotirianakis and Floudas (200%yoved the following
Li(xy) = f(x) + (xiy), two important results regarding the relationship between the
maximum separation distances betwéeahand the two un-
derestimatord.1(x; y) and Ly pp(x; «).

Akrotirianakis and Floudas (200pyoposed the follow-
ing new class of underestimating functiors,(x; y), of an
arbitrary nonconvex functiori(x):

where

n
Pxiy)=-Y (1- i) (1 — @il —)), Theorem 2. Lety = (y,.¥,.-...y,)" bethe solution of the
i=1 above system. Thethe two underestimatorg(x; y) and
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Ly pa(x; ), where x[1]
1 2 8 4 5 6

(«f =22 T = x))?

T
a = )
100 A

have the same maximum separation distance ffgn f
+200

Theorem 3. Leta = (a1, a2, . .., a,)' be the values of the
« parameters as computed (30). Then the two underesti- £300 -
matorsL1(x; ) and Ly gp(x; @), where

_ (Zlog(1+ Vai(x¥ —x£)/2) . 400 -

7/: . ey
¥ =

2log(L+ van(xU — x!;)/z)>T

+500

U _ L
Xn Xn

600 -
have the same maximum separation distance f(@mn f

The above two theorems reveal that for ang [y, ] £700 ]
there exists anx € [a, a], such that the underestimators
L1(x; y) andLypp(x; @) have the same maximum separation
distance from the nonconvex functid¢x). From all these Fig. 4. Comparison of the underestimatdrszs(x; @) and Lqpp(x; «) of
pairs of underestimators, the only one that is known to be the nonconvex functiofy (x).
convex a priori isLq gp(x; @), since this is the one resulting
from the classicakBB method. However, for most arbitrar- The value of thex parameter computed by the classical
ily nonconvex functions the underestimatdrgg(x; «) and oaBB method using the scales Gerschgorin approach=s
L1(x; y) are convex within a large portion of the intervals 77.124, and the corresponding value for th@arameter, is
[«, o] and [y, y], respectively. Based on the above observa- y = 1.0673. Solving fory we obtainy = 0.8521 and the cor-

tions, itis natural to search for a vectein the interval f, ] responding value for theparameter, ig = 18.579. The con-
or for a vector in the interval , «], so that at least one of  vexity verification algorithm ofAkrotirianakis and Floudas
the underestimators: (x; y), Lypp(x; @) is convex. (2005) checks whether there exist values)ok [y, y] and

Akrotirianakis and Floudas (200pyoposed an approach « € [«, o] such that the underestimatby,gg(x; ) is convex.
that iteratively determines, using interval analysis, the mini- After 16 iterations it concludes thatdf= «, thenL.gp(x; o)
mum values of the or « parameters that result in an under- is a convex underestimator gf(x). The minima of the two
estimator that is convex and tighter than the classi&B underestimators., pg(x; ) and Ly gp(x; o) are —762.2377
method. They also developed the generalxB8 global op- and —184.4244, respectivelig. 4 compares the two un-
timization approach, denoted asxBB, and performed ex-  derestimatord.gp(x; @) andLypp(x; ) and shows the im-
tensive computational studies for box constrained global op- provement.
timization problemgsee Akrotirianakis and Floudas, 2004)

10.3. lllustrative example 11. Summary
This example consists of the global minimization of a po-

tential function describing the pseudoethane mole(ste This paper reviewed the advances in global optimization

Floudas, 2000ayhich takes the form: during the period 1998-2003. The focal point was novel
588600 10791
A = (3r2 — 4 cos)ra — 2(sirf(6) cos(x — Z) — co(0))r2)® (32— 4 cosQ)rZ — 2(sir(6) cos(x — Z) — co(9))rd)’?
n 600800 B 10715
(3r2 — 4 cosP)rg — 2(sirf(0) cosf) — coF(O))r3)e  (3rd — 4 cosf)rs — 2(sirf(0) cos) — co$(0))rd)3
481300 10646

* (3% — 4 cosf)rg — 2 (sin’ (6 + %) cos) — co(9)) r3)° (32— 4 cos@)r? — 2 (sir® (0 + &) cost) — co(6)) r3)*’

whererg is the covalent bond lengtho(= 1.54 A), 6 the theoretical, algorithmic, and applications oriented advances
covalent bond angled(= 1095°) andx the dihedral angle  on deterministic global optimization methods for (i) general
(x € X =0, 2n]). twice differentiable NLPs, (ii) mixed integer nonlinear op-
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timization problems MINLPs, (iii) models with differential-

algebraic constraints, (iv) grey-box and nonfactorable mod-

els, and (iv) bilevel nonlinear and mixed-integer optimization.

Recent advances from Princeton University were also pre-

1199

Bard, J. F. (1998)Practical bilevel optimization. Nonconvex optimization
and its applicationsKluwer Academic Publishers.

Barton, P. I., Banga, J. R., & Galan, S. (2000). Optimization of hybrid dis-
crete/continuous dynamic syster@mputers and Chemical Engineer-
ing, 24, 2171-2182.

sented on convex and concave envelopes for trilinear mono-garton, L., & Lee, C. K. (2003). Global dynamic optimization of linear time

mials, convex underestimators for trigonometric functions, a
new class of convex smooth piecewise underestimators with

a quadratic perturbation that use as a basis the clasdgal

type of underestimators, and a new class of generalized and

improved convex underestimators for twice continuously dif-

ferentiable functions. lllustrative examples were presented to

highlight the potential benefits of these recent advances.

Acknowledgements

Christodoulos A. Floudas gratefully acknowledges sup-
port from the National Science Foundation, the National
Institutes of Health, AspenTech Corporation and Atofina
Chemicals.

References

Adhya, N., Tawarmalani, M., & Sahinidis, N. V. (1999). A Lagrangian ap-
proach to the pooling problemidustrial and Engineering Chemistry
Research38, 1956-1972.

Adjiman, C. S., Androulakis, I. P., & Floudas, C. A. (1998b). A global
optimization methodxBB, for general twice-differentiable NLPs—II.
Implementation and computational resul@mputers and Chemical
Engineering22(9), 1159-1179.

Adjiman, C. S., Androulakis, I. P., & Floudas, C. A. (2000). Global optimiza-
tion of mixed-integer nonlinear problem&lChE Journa) 46, 1769.

Adjiman, C. S., Dallwig, S., Floudas, C. A., & Neumaier, A. (1998a).
A global optimization methodaBB, for general twice-differentiable
NLPs—I. Theoretical advanceSomputers and Chemical Engineerjng
22(9), 1137-1158.

Adjiman, C. S., & Papamichalil, I. (2003). A deterministic global optimiza-
tion algorithm for problems with nonlinear dynamics. In C. A. Floudas,
& P. M. Pardalos (Eds.)rrontiers in global optimizatior(pp. 1-24).
Santorini, Greece: Kluwer Academic Publishers.

Akrotirianakis, I. G., & Floudas, C. A. (2004). A new class of improved con-
vex underestimators for twice continuously differentiable constrained
NLPs.Journal of Global Optimizatioy30 (4), 367—-390.

Akrotirianakis, I. G., & Floudas, C. A. (2004). Computational experience

with a new class of convex underestimators: Box-constrained NLP prob-

lems.Journal of Global Optimizatioy29 (3), 249-264.
Androulakis, I. P., & Floudas, C. A. (1998). Distributed branch and bound
algorithms in global optimization. In P. M. Pardalos (E&ayallel pro-

cessing of discrete problems, volume 106 of IMA volumes in mathematics

and its applicationsSpringer-Verlag. pp. 1-36.

Banga, J. R., Balsa-Canto, E., Moles, C. G., & Alonso, A. A. (2003). Im-
proving food processing using modern optimization meth@dmds in
Food Science and Technolqdy, 131-144.

Banga, J. R., Moles, C. G., & Alonso, A. A. (2003). Global optimization

of bioprocesses using stochastic and hybrid methods. In C. A. Floudas,

& P. M. Pardalos (Eds.)rontiers in global optimizatior{pp. 45—70).
Santorini, Greece: Kluwer Academic Publishers.

Banga, J. R., Versyck, K. J., & Van Impe, J. F. (2002). Computation of
optimal identification experiments for nonlinear dynamic process mod-
els: A stochastic global optimization approabidustrial and Chemical
Engineering Researcd1, 2425-2430.

varying hybrid system®ynamics of Continuous Discrete and Impulsive
Systems-Series B, 153.

Bjork, K. J., Lindberg, P. O., & Westerlund, T. (2003). Some convexifica-

tions in global optimization of problems containing signomial terms.

Computers and Chemical Engineerjray, 669-679.

Bjork, K. J., & Westerlund, T. (2002). Global optimization of heat exchanger
network synthesis problems with and without the isothermal mixing as-
sumption.Computers and Chemical Engineerjr$, 1581-1593.

Byrne, R. P., & Bogle, I. D. L. (1999). Global optimization of constrained
non-convex programs using reformulation and interval analyisn-
puters and Chemical Engineeringg3, 1341.

Byrne, R. P., & Bogle, I. D. L. (2000). Global optimization of molecular
process flowsheetmhdustrial and Engineering Chemistry Researg$,
4296-4301.

Caratzoulas, S., & Floudas, C. A. (2005). A trigonometric convex underes-
timator for the base functions in Fourier spadeurnal of Optimization
Theory and Its Applicationd.24(2), 339-362.

Chachuat, B., & Latifi, M. A. (2003). A new approach in deterministic global
optimization of problems with ordinary differential equations. In C. A.
Floudas, & P. M. Pardalos (EdsHrontiers in global optimizatiorfpp.
83-108). Santorini, Greece: Kluwer Academic Publishers.

Cheung, A., Adjiman, C. S., Kolar, P., & Ishikawa, T. (2002). Global
optimization for clusters of flexible molecules-solvent-solute interac-
tion energy calculationsFluid Phase Equilibrium 194-197 169-
183.

Dua, V., Bozinis, N. A., & Pistikopoulos, E. N. (2002). A multiparametric
programming approach for mixed-integer quadratic engineering prob-
lems.Computers and Chemical Engineerjra§, 715-733.

Esposito, W. R., & Floudas, C. A. (1998). Global optimization in param-
eter estimation of nonlinear algebraic models via the error-in-variables
approachlndustrial and Engineering Chemistry Resea®b(5), 1841
1858.

Esposito, W. R., & Floudas, C. A. (2000a). Global optimization for the
parameter estimation of differential-algebraic systemdustrial and
Engineering Chemistry Resear@9 (5), 1291-1310.

Esposito, W. R., & Floudas, C. A. (2000b). Deterministic global optimization
in nonlinear optimal control problem3ournal of Global Optimization
17,97-126.

Esposito, W. R., & Floudas, C. A. (2001). Comments on global optimization
for the parameter estimation of differential algebraic systénasistrial
and Engineering Chemistry Researdb, 490.

Esposito, W. R., & Floudas, C. A. (2002). Deterministic global optimization
inisothermal reactor network syntheslsurnal of Global Optimization
22,59-95.

Floudas, C. A. (2000apeterministic global optimization: Theory, methods
and applications. Nonconvex optimization and its applicatiétiswer
Academic Publishers.

Floudas, C. A. (2000b). Global optimization in design and control of chem-
ical process systemdournal of Process Contrpl0, 125.

Floudas, C. A., Gumus, Z. H., & lerapetritou, M. G. (2001). Global opti-
mization in design under uncertainty: Feasibility test and flexibility index
problems.Industrial and Chemical Engineering Researd®, 4267—
4282.

Floudas, C. A.,Klepeis, J. L., & Pardalos, P. M. (1999b). Global optimization
approaches in protein folding and peptide docking. In M. Farach-Colton,
F. S. Roberts, M. Vingron, & M. Waterman (EdsDIMACS series in
discrete mathematics and theoretical computer science, v{ppt 41—
171).

Floudas, C. A., & Pardalos, P. M. (200@ptimization in computational
chemistry and molecular biology. Nonconvex optimization and its appli-
cations Kluwer Academic Publishers.



1200

Floudas, C. A., & Pardalos, P. M. (2008yontiers in global optimization.
Nonconvex optimization and its applicationduwer Academic Pub-
lishers.

Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. BRmi@& Z.

H., Harding, S. T., Klepeis, J. L., Meyer, C., & Schweiger, C. A. (1999).
Handbook of test problems in local and global optimizatistiuwer
Academic Publishers.

Gau, C. Y., Brennecke, J. F., & Stadtherr, M. A. (2000). Reliable nonlinear
parameter estimation in VLE modelingluid Phase Equilibria 168,
1-18.

Gau, C. V., & Stadtherr, M. A. (2000). Reliable nonlinear parameter estima-
tion using interval analysis: Error-in-variable approa€bmputers and
Chemical Engineering?4, 631-637.

Gau, C. Y., & Stadtherr, M. A. (2002a). Deterministic global optimiza-
tion for error-in-variables parameter estimatigxiChE Journaj 48,

1192.

Gau, C. Y., & Stadtherr, M. A. (2002b). Dynamic load balancing for par-
allel interval-Newton using message passi@igmputers and Chemical
Engineering 26, 811-825.

Gau, C. V., & Stadtherr, M. A. (2002c). New interval methodologies for
reliable chemical modelingcomputers and Chemical Engineerjias,
827-840.

Goyal, V., & lerapetritou, M. G. (2003a). Framework for evaluating the
feasibility/operability of nonconvex processédChE Journa) 49 (5),
1233-1240.

Goyal, V., & lerapetritou, M. G. (2003b). MINLP optimization using sim-
plicial approximation method for classes of non-convex problems. In C.
AFloudas, & P. M. Pardalos (EdsHrontiers in global optimizatioipp.
165-196). Santorini, Greece: Kluwer Academic Publishers.

Grossmann, I. E., & Lee, S. (2003). Generalized convex disjunctive pro-
gramming: Nonlinear convex hull relaxaticdBomputational Optimiza-
tion and Applications26, 83-100.

Gumus, Z. H., & Floudas, C. A. (2001). Global optimization of nonlinear
bilevel programming problemsournal of Global Optimizatior20, 1—

31.

Gumus, Z. H., & Floudas, C. A. (in press). Global optimization of mixed-
integer bilevel programming problen@omputational Management Sci-
ence

Gutmann, H. M. (2001). A radial basis function method for global optimiza-
tion. Journal of Global Optimizationl9, 201.

Harding, S.T., & Floudas, C. A. (2000a). Phase stability with cubic equations
of state: A global optimization approachlChE Journa) 46, 1422.

Harding, S. T., & Floudas, C. A. (2000b). Locating heterogeneous and re-
active azeotropesndustrial and Engineering Chemistry Researsh,
1576.

Harding, S. T., Maranas, C. D., McDonald, C. M., & Floudas, C. A. (1997).
Locating all homogeneous azeotropes in multicomponent mixtles.
dustrial and Engineering Chemistry Resear8h (1), 160-178.

Harjunkoski, ., Westerlund, T., &&mn, R. (1999). Numerical and environ-
mental considerations on a complex industrial mixed integer nonlinear
programming (MINLP) problemComputers and Chemical Engineer-
ing, 23, 1545-1561.

Hertz, D., Adjiman, C. S., & Floudas, C. A. (1999). Two results on bounding
the roots of interval polynomial€omputers and Chemical Engineerjng
23,1333.

Horst, R., Pardalos, P. M., & Thoai, N. V. (2000htroduction to global
optimization. Nonconvex optimization and its applicatidtiswer Aca-
demic Publishers.

Hua, J. Z., Brennecke, J. F., & Stadtherr, M. A. (1998a). Reliable computation
for phase stability using interval analysis: Cubic equation of state models.
Computers and Chemical Engineerji? (9), 1207.

Hua, J. Z., Brennecke, J. F., & Stadtherr, M. A. (1998b). Enhanced interval
analysis for phase stability: Cubic equation of state modetiustrial
and Engineering Chemistry Resear8f, 1519.

Jones, D. R. (2001). A taxonomy of global optimization methods based on
response surfacedournal of Global Optimization21, 345.

C.A. Floudas et al. / Computers and Chemical Engineering 29 (2005) 11851202

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimiza-
tion of expensive black-box functiondournal of Global Optimization
13, 455.

Kallrath, J. (2003). Exact computation of global minima of a nonconvex port-
folio optimization problem. In C. A. Floudas, & P. Pardalos (Ed=n-
tiers in global optimization(pp. 237-254). Santorini, Greece: Kluwer
Academic Publishers.

Kesavan, P., Allgor, R. L., Gadzke, E. P., & Barton, P. (2004). Outer ap-
proximation algorithms for separable nonconvex mixed-integer nonlin-
ear problemsMathematical ProgrammingdlL00(3), 517-535.

Kesavan, P., & Barton, P. (2000). Generalized branch-and-cut framework for
mixed-integer nonlinear optimization problen@mputers and Chem-
ical Engineering 24, 1361-1366.

Klepeis, J. L., Androulakis, I. P., lerapetritou, M. G., & Floudas, C. A.
(1998). Predicting solvated peptide conformations via global minimiza-
tion of energetic atom-to-atom interactiot@omputers and Chemical
Engineering 22 (6), 765-788.

Klepeis, J. L., & Floudas, C. A. (1999a). A comparative study of global
minimum energy conformations of hydrated peptidisirnal of Com-
putational Chemistry20 (6), 636.

Klepeis, J.L., & Floudas, C. A. (1999b). Free energy calculations for peptides
via deterministic global optimizatiodournal of Chemical Physic§10
(15), 7491.

Klepeis, J. L., &Floudas, C. A. (2003a). Abinitio tertiary structure prediction
of proteins.Journal of Global Optimizatior25, 113.

Klepeis, J. L., & Floudas, C. A. (2003b). ASTRO-FOLD: A combinato-
rial and global optimization framework for ab initio prediction of three-
dimensional structures of proteins from the amino-acid sequéice.
physical Journal85, 2119.

Klepeis, J. L., Floudas, C. A., Morikis, D., & Lambris, J. D. (1999). Pre-
dicting peptide structures using NMR data and deterministic global op-
timization.Journal of Computational Chemistrg0, 1354.

Klepeis, J. L., Pieja, M., & Floudas, C. A. (2003a). A new class of hybrid
global optimization algorithms for peptide structure prediction: Inte-
grated hybridsComputer and Physics CommunicatiphS1, 121.

Klepeis, J. L., Pieja, M., & Floudas, C. A. (2003b). A new class of hybrid
global optimization algorithms for peptide structure prediction: Alternat-
ing hybrids and application to met-enkephalin and meliBiophysical
Journal 84, 869.

Klepeis, J. L., Schafroth, H. D., Westerberg, K. M., & Floudas, C. A. (2002).
Deterministic global optimization and ab initio approaches for the struc-
ture prediction of polypeptides, dynamics of protein folding and protein—
protein interactionsAdvances in Chemical Physjd0, 266—-457.

Lee, C. K., & Barton, P. I. (2003). Global dynamic optimization of linear
hybrid systems. In C. A. Floudas, & P. M. Pardalos (Eds9ntiers in
global optimizatior(pp. 289-312). Santorini, Greece: Kluwer Academic
Publishers.

Lee, A., &Grossmann, |. E. (2001). A global optimization algorithm for non-
convex generalized disjunctive programming and applications to process
systemsComputers and Chemical Engineerji2p, 1675-1697.

Lee, S., & Grossmann, |. E. (2003). Global optimization of nonlinear gener-
alized disjunctive programming with bilinear equality constraints: Ap-
plications to process network§omputers and Chemical Engineerjng
27,1557-1575.

Lee, C. K., Singer, A. B., & Barton, P. (2004). Global optimization of linear
hybrid systems with explicit transitionSystems and Control Lettefsl
(5), 363-375.

Liberti, L., & Pantelides, C. C. (2003). Convex envelops of monomials of
odd degreeJournal of Global Optimization25, 157-168.

Lin, X., Floudas, C. A., & Kallrath, J. (2004). Global solution approach for
anonconvex MINLP problem in product portfolio optimizatidournal
of Global Optimization

Lucia, A., & Feng, Y. (2002). Global terrain metho@mputers and Chem-
ical Engineering 26, 529-546.

Lucia, A., & Feng, Y. (2003). Multivariable terrain metho@dChE Journa)

49, 2553.



C.A. Floudas et al. / Computers and Chemical Engineering 29 (2005) 11851202

Maier, R. W., Brennecke, J. F., & Stadtherr, M. A. (1998). Reliable compu-
tation of homogeneous azeotropASChE Journa) 44, 1745-1755.

McKinnon, K., & Mongeau, M. (1998). A generic global optimization algo-
rithm for the chemical and phase equilibrium probldournal of Global
Optimization 12, 325-351.

Meyer, C. A., & Floudas, C. A. (2003). Trilinear monomials with positive

1201

Sherali, H. D., & Adams, W. P. (1999 reformulation—linearization tech-
nique for solving discrete and continuous nonconvex problems. Noncon-
vex optimization and its applicationkluwer Academic Publishers.

Singer, A. B., & Barton, P. (2004). Global solution of linear dynamic em-
bedded optimization problem3ournal of Optimization, Theory and Its
Applications 121(3), 613-646.

or negative domains: Facets of convex and concave envelopes. In C. A.Singer, A. B., & Barton, P. |. (2003). Global solution of optimization prob-

Floudas, & P. M. Pardalos (EdsHrontiers in global optimizatiorfpp.
327-352). Santorini, Greece: Kluwer Academic Publishers.

Meyer, C. A., & Floudas, C. A. (2004). Convex hull of trilinear monomials
with mixed-sign domainslournal of Global Optimizatioy29, 125-155.
Meyer, C. A., & Floudas, C. A. (in press). Convex underestimation of twice
continuously differentiable functions by piecewise quadratic perturba-

tion: SplineaBB underestimatorslournal of Global Optimization

Meyer, C. A,, Floudas, C. A., & Neumaier, A. (2002). Global optimization
with nonfactorable constrainténdustrial and Chemical Engineering
Research4l, 6413-6424.

Meyer, C. A., & Swartz, C. L. E. (1998). A regional convexity test for global
optimization: Application to the phase equilibrium probleédeamputers
and Chemical Engineerin@2, 1407-1418.

Moles, C. G., Gutierrez, G., Alonso, A. A, & Banga, J. R. (2003). Inte-
grated process design and control via global optimizatindustrial
and Chemical Engineerin@®1, 507-517.

Neumaier, A. (2004). Complete search in continuous global optimization
and constraint satisfaction. In A. Iserles (Edta NumericgVol. 13,
pp. 271-369). Cambridge University Press.

Noureldin, M. B., & El-Halwagi, M. (1999). Interval-based targeting for
pollution prevention via mass integratid@omputers and Chemical En-
gineering 23, 1527-1543.

Ostrovsky, G. M., Achenie, L. E. K., & Sinha, M. (2002). On the solution
of mixed-integer nonlinear programming models for computer aided
molecular designComputers and Chemical Engineerji&, 645—660.

Ostrovsky, G. M., Achenie, L. E. K., & Sinha, M. (2003). A reduced dimen-
sion branch-and-bound algorithm for molecular des@omputers and
Chemical Engineerind?7, 551-567.

Papamichail, I., & Adjiman, C. S. (2002). A rigorous global optimization
algorithm for problems with ordinary differential equatiodeurnal of
Global Optimization24, 1-33.

Parthasarathy, G., & El-Halwagi, M. (2000). Optimum mass integration
strategies for condensation and allocation of multicomponent VOCs.
Computers and Chemical Engineerjri, 881-895.

Pistikopoulos, E. N., Dua, V., & Ryu, J. (2003). Global optimization of
bilevel programming problems via parametric programming. In C. A.
Floudas, & P. M. Pardalos (EdsHrontiers in global optimizatiorfpp.
457-476). Santorini, Greece: Kluwer Academic Publishers.

Porn, R., Harjunkoski, I., & Westerlund, T. (1999). Convexification of differ-
ent classes of non-convex MINLP problen@mputers and Chemical
Engineering 23, 439-448.

Porn, R., & Westerlund, T. (2000). A cutting plane method for minimizing
pseudo-convex functions in mixed integer ca&@emputers and Chemi-
cal Engineering24, 2655-2665.

Ryoo0, H. S., & Sahinidis, N. V. (2001). Analysis of bounds for multilinear
functions.Journal of Global Optimizationl9, 403—424.

Ryo0, H. S., & Sahinidis, N. V. (2003). Global optimization of multiplicative
programsJournal of Global Optimization26, 387—418.

Sahinidis, N. V., & Tawarmalani, M. (2000). Applications of global op-
timization to process and molecular desigieamputers and Chemical
Engineering 24, 2157-2169.

Sahinidis, N. V., Tawarmalani, M., & Yu, M. (2003). Design of alternative
refrigerants via global optimizatiodIChE Journa) 49 (7), 1761.

Schafroth, H. D., & Floudas, C. A. (2004). Predicting peptide binding to
MHC pockets via molecular modelling, implicit solvation, and global
optimization Proteins: Structure, Function and Bioinformatjésl, 534.

Shectman, J. P., & Sahinidis, N. V. (1998). A finite algorithm for global
optimization of separable concave functiodsurnal of Global Opti-
mization 12, 1-36.

lems with dynamic systems embedded. In C. A. Floudas, & P. M. Parda-
los (Eds.),Frontiers in global optimizatior(pp. 477—-498). Santorini,
Greece: Kluwer Academic Publishers.

Sinha, M., Achenie, L. E. K., & Gani, R. (2003). Blanket wash solvent blent
design using interval analysitndustrial and Engineering Chemistry
Research42, 516-527.

Sinha, M., Achenie, L., & Ostrovsky, G. V. (1999). Environmentally be-
nign solvent design by global optimizatioGomputers and Chemical
Engineering23, 1381-1394.

Tardella, F. (2003). On the existence of polyhedral convex envelopes. In C.
A. Floudas, & P. M. Pardalos (EdsHrontiers in global optimization
(pp. 563-573). Santorini, Greece: Kluwer Academic Publishers.

Tawarmalani, M., Ahmed, S., & Sahinidis, N. V. (2002a). Product disag-
gregation in global optimization and relaxations of rational programs.
Journal of Global Optimizatioy3, 281-303.

Tawarmalani, M., Ahmed, S., & Sahinidis, N. V. (2002b). Global optimiza-
tion of 0—1 hyperbolic programsgournal of Global Optimization24,
385-416.

Tawarmalani, M., & Sahinidis, N. V. (2001). Semidefinite relaxations of frac-
tional programs via novel convexification techniquisirnal of Global
Optimization 20, 137-158.

Tawarmalani, M., & Sahinidis, N. V. (2002). Convex extensions and envelops
of lower semi-continuous functiondlathematical Programmingd3,
247-263.

Tessier, S. R., Brennecke, J. F., & Stadtherr, M. A. (2000). Reliable phase
stability analysis for excess Gibbs energy modelsemical Engineering
Scienceb5, 1785.

Tuy, H. (1998).Convex analysis and global optimization. Nonconvex opti-
mization and its applicationKluwer Academic Publishers.

Vaia, A., & Sahinidis, N. V. (2003). Simultaneous parameter estimation
and model structure determination in FTIR spectroscopy by global
MINLP optimization.Computers and Chemical Engineerjigy, 763—
779.

Van Antwerp, J. G., Braatz, R. A., & Sahinidis, N. V. (1999). Globally
optimal robust process contralournal of Process Contrpl9, 375—
383.

Vecchietti, A., & Grossmann, |. E. (1999). LOGMIP: A disjunctive 0-1 non-
linear optimizer for process systems mod€&smputers and Chemical
Engineering 23, 555-565.

Wang, Y., & Achenie, L. E. K. (2002a). Computer aided solvent design for
extractive fermentatiorluid Phase Equilibria201, 1-18.

Wang, Y., & Achenie, L. E. K. (2002b). A hybrid global optimization ap-
proach for solvent desigiComputers and Chemical EngineerjriZg,
1415-1425.

Westerberg, K. M., & Floudas, C. A. (1999a). Locating all transition states
and studying the reaction pathways of potential energy surfacemal
of Chemical Physics10(18), 9259.

Westerberg, K. M., & Floudas, C. A. (1999b). Dynamics of peptide folding:
Transition states and reaction pathways of solvated and unsolvated tetra-
alanine Journal of Global Optimizationl5, 261.

Westerlund, T., Skrifvars, H., Harjunkoski, I., &P, R. (1998). An ex-
tended cutting plane method for a class of non-convex MINLP problems.
Computers and Chemical Engineerjra® (3), 357-365.

Xu, G., Brennecke, J. F., & Stadtherr, M. A. (2002). Reliable computation
of phase stability and equilibrium from the SAFT equation of state.
Industrial and Engineering Chemistry Researéh, 938.

Yamada, Y., & Hara, S. (1998). Global optimization for H-infinity control
with constant diagonal scalingeEE Transactions on Automatic Contyol
43,191-203.



1202 C.A. Floudas et al. / Computers and Chemical Engineering 29 (2005) 11851202

Zabinsky, Z. B. (2003)Stochastic adaptive search for global optimization. sition approachlndustrial and Engineering Chemistry Researdi2,
Nonconvex optimization and its applicationduwer Academic Pub- 528-539.
lishers. Zhu, Y., Wen, H., & Xu, Z. (2000). Global stability analysis and phase
Zamora, J. M., & Grossmann, |. E. (1998a). A global MINLP optimiza- equilibrium calculations at high pressures using the enhanced simulated
tion algorithm for the synthesis of heat exchanger networks with no anneling algorithmChemical Engineering Sciencgs, 3451.
stream splits.Computers and Chemical Engineerjng2 (3), 367— Zhu, Y., & Xu, Z. (1999a). A reliable method for liquid—liquid phase equilib-
384. rium calculation and global stability analys@Somputers and Chemical

Zamora, J. M., & Grossmann, |. E. (1998b). Continuous global optimization Engineering 176, 133-160.
of structured process systems mod€&emputers and Chemical Engi- Zhu, Y., & Xu, Z. (1999b). A reliable prediction of the global phase stability

neering 22 (12), 1749-1770. for liquid—liquid equilibrium through the simulated anneling algorithm:
Zamora, J. M., & Grossmann, I. E. (1999). A branch and contract algorithm Application to NRTL and UNIQUAC equationEluid Phase Equilibria

for problems with concave univariate, bilinear and linear fractional terms. 154, 55-69.

Journal of Global Optimizationl4, 217-219. Zhu, Y., & Xu, Z. (1999c). Lipschitz optimization for phase stability analysis:
Zhu, Y., & Inoue, K. (2001). Calculation of chemical and phase equilibrium Application to Soave—Redlich—-Kwong equation of stdkiid Phase

based on stability analysis by QBB algorithm: Application to NRTL Equilibria, 162 19-29.

equationChemical Engineering Sciencss, 6915. Zilinskas, J., & Bogle, I. D. L. (2003). Evaluation ranges of functions using
Zhu, Y., & Kuno, T. (2003). Global optimization of nonconvex MINLP by balanced random interval arithmetioformatica Lithuan 14 (3), 403—

a hybrid branch-and-bound and revised generalized benders decompo-  416.



	Global optimization in the 21st century: Advances and challenges
	Introduction
	2Twice continuously differentiable NLPs
	Convexification techniques and convex envelopes
	General 
elax setbox z@ color@begingroup C2color@endgroup ht z@ z@ dp z@ z@ �ox z@ NLPs
	Concave, bilinear, fractional and multiplicative models
	Phase equilibrium
	Parameter estimation

	Mixed-integer nonlinear optimization, MINLPs
	Differential-algebraic models, DAEs
	Grey-box and nonfactorable models
	Bilevel nonlinear optimization
	7Explicit facets of convex and concave envelopes for trilinear monomials
	Facets of the convex envelope
	Illustration
	Comparison with other bounding schemes

	8Convex underestimators for trigonometric functions
	Maximum separation distance
	Illustration

	9Convex underestimators by piecewise quadratic perturbation
	Illustrative example

	10The generalized 
malpha BB global optimization approach
	Convex underestimators of the 
malpha BB method
	The new class of convex underestimators
	Illustrative example

	Summary
	Acknowledgements
	References


