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Abstract

This paper presents an overview of the research progress in global optimization during the last 5 years (1998–2003), and a brief account of
our recent research contributions. The review part covers the areas of (a) twice continuously differentiable nonlinear optimization, (b) mixed-
integer nonlinear optimization, (c) optimization with differential-algebraic models, (d) optimization with grey-box/black-box/nonfactorable
models, and (e) bilevel nonlinear optimization. Our research contributions part focuses on (i) improved convex underestimation approaches
that include convex envelope results for multilinear functions, convex relaxation results for trigonometric functions, and a piecewise quadratic
convex underestimator for twice continuously differentiable functions, and (ii) the recently proposed novel generalized�BB framework.
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omputational studies will illustrate the potential of these advances.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

It is now established that global optimization has ubiqui-
ous applications not only in chemical engineering but also
cross all branches of engineering, applied sciences, and sci-
nces (e.g., see the textbook byFloudas (2000a)). As a result,
e have experienced significant interest in new theoretical
dvances, algorithmic and implementation related investi-
ations, and their application to important scientific prob-

ems. A review paper discussed the advances in determinis-
ic global optimization and their applications in the design
nd control of chemical process systems(Floudas, 2000b). A
econd review paper presented at the FOCAPD-1999 meet-
ng outlined the chemical engineering research contributions
n global optimization for the period 1994–1999, presented
he advances, and identified research opportunities and chal-
enges(Floudas & Pardalos, 1999). During the last 5 years,
998–2003, several outstanding textbooks have been pub-
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lished addressing different facets of global optimizat
These include the textbooks byBard (1998),Floudas (2000a,
Horst, Pardalos, and Thoai (2000),Sherali and Adams (1999,
Tawarmalani and Sahinidis (2002), Tuy (1998)andZabinsky
(2003). A handbook of test problems in local and global
timization (Floudas et al., 1999), as well as two edited vo
umes of the research contributions presented at the m
conferences on global optimization held in 1999 and 2
(Floudas and Pardalos, 1999, 2003)were published. A re
cent survey paper byNeumaier (2004)discusses constrain
global optimization and continuous constraint satisfac
problems with a particular emphasis on the use of inte
arithmetic for addressing rounding off errors and reliab
issues.

Global optimization addresses the computation and
acterization of global optima (i.e., minima and maxim
of nonconvex functions constrained in a specified dom
Given an objective functionf that is to be minimized an
a set of equality and inequality constraintsS, Determinis-
tic Global Optimizationfocuses on the following importa
issues :
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(a) determine a global minimum of the objective functionf
(i.e., f has the lowest possible value inS) subject to the
set of constraintsS;

(b) determinelower andupper boundson the global mini-
mum of the objective functionf onSthat are valid for the
whole feasible regionS;

(c) determine an ensemble of qood quality local solutions in
the vicinity of the global solution;

(d) enclose all solutions of the set of equality and inequality
constraintsS;

(e) prove that a constrained nonlinear problem is feasible or
infeasible.

In this review paper, we will discuss the deterministic
global optimization advances during the last 5 years for
the following classes of mathematical problems: (i) twice
continuously differentiable nonlinear optimization, NLPs,
(ii) mixed-integer nonlinear optimization, MINLPs, (iii)
differential-algebraic systems, DAEs, (iv) grey-box and
nonfactorable problems, and (v) bilevel nonlinear and
mixed integer optimization. We will first present all the
contributions in the aforementioned classes, and we will sub-
sequently focus on a few advances from Princeton University
on (a) convex envelope results for trilinear monomials, (b)
convex relaxation results for trigonometric functions, (c)
new convex underestimators based on piecewise convex
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relaxation ofx/y, and suggested convex envelopes for func-
tions of the formf (x)y2 andf(x)/y.Ryoo and Sahinidis (2001)
studied the bounds for multilinear functions via arithmetic
intervals, recursive arithmetic intervals, logarithmic transfor-
mation, and exponential transformation, and provided com-
parisons of the resulting convex relaxations.Tawarmalani,
Ahmed, and Sahinidis (2002a)showed that tighter linear pro-
gramming relaxations are produced if the product of a con-
tinuous variable and the sum of several continuous variables
is disaggregated, and applied it to the instance of rational
programs that include a nuclear reactor reload pattern de-
sign, and a catalyst mixing in a packed bed reactor problem.
Tawarmalani and Sahinidis (2002)introduced the convex ex-
tensions for lower semi-continuous functions, studied condi-
tions under which they exist, proposed a technique for con-
structing convex envelopes for nonlinear functions, and stud-
ied the maximum separation distance for functions such as
x/y. Tawarmalani, Ahmed, and Sahinidis (2002b)studied 0–1
hyperbolic programs, developed eight mixed-integer convex
reformulations, proposed analytical results on the tightness
of these reformulations, developed a global optimization al-
gorithm and applied it to ap-choice facility location problem.

Liberti and Pantelides (2003)proposed a nonlinear con-
tinuous and differentiable convex envelope for monomials
of odd degree, derived its linear relaxation, and compared
to other relaxation.Björk, Lindberg, and Westerlund (2003)
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uadratic representations, and (d) the generalized�BB
lobal optimization approach.

. Twice continuously differentiable NLPs

In the first part of this section, we will review the advan
n convex envelopes and convexification techniques. We
ubsequently focus on theoretical and algorithmic adva
or (a) generalC2 NLPs, (b) concave, bilinear, fractional, a
ultiplicative problems, (c) phase equilibrium problems,

d) parameter estimation problems.

.1. Convexification techniques and convex envelopes

Adjiman, Dallwig, Floudas, and Neumaier (1998a)and
ertz, Adjiman, and Floudas (1999)proposed several ne

igorous methods for the calculation of theα parameter
or (i) uniform diagonal shift of the Hessian matrix and
onuniform diagonal shift of the Hessian matrix, and t
stablished their potential trade-offs.Adjiman, Androulakis
nd Floudas (1998b)presented the detailed impleme

ation of the �BB approach and computational stud
n process design problems such as heat exchange
orks, reactor–separator networks, and batch design
ncertainty.

Tawarmalani and Sahinidis (2001)developed the conve
nvelope and concave envelope forx/yover a unit hypercub
ompared it to the convex relaxation proposed byZamora and
rossmann (1998a, 1998b, 1999), proposed a semidefin
tudied convexifications for signomial terms, introdu
roperties of power convex functions, compared the e
f the convexification schemes for heat exchanger net
roblems, and studied quasi-convex convexifications.

Meyer and Floudas (2003)studied trilinear monomia
ith positive or negative domains, derived explicit exp
ions for the facets of the convex and concave enve
nd showed that these outperform the previously prop
elaxations based on arithmetic intervals or recursive a
etic intervals.Meyer and Floudas (2004)presented explic

xpressions for the facets of convex and concave enve
f trilinear monomials with mixed-sign domains.Tardella
2003)studied the class of functions whose convex enve
n a polyhedron coincides with the convex envelope b
n the polyhedron vertices, and proved important condi

or a vertex polyhedral convex envelope.
Caratzoulas and Floudas (2005)proposed novel con

ex underestimators for trigonometric functions wh
re trigonometric functions themselves.Akrotirianakis and
loudas (2005)introduced a new class of convex unde

imators for twice continuously differentiable NLPs, stud
heir theoretical properties, and proved that the resulting
ex relaxation is improved compared to the�BB one.Meyer
nd Floudas (2004)proposed two new classes of convex
erestimators for generalC2 NLPs which combine the�BB
nderestimators within a piecewise quadratic perturba
erived properties for the smoothness of the convex u
stimators, and showed the improvements over the cla
BB convex underestimators for box-constrained optim

ion problems.
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2.2. GeneralC2 NLPs

Adjiman et al. (1998a, 1998b)introduced the�BB global
optimization approach, which is applicable to general twice-
continuously differentiable NLPs, and presented extensive
computational studies in process design problems such as
heat exchanger networks, reactor–separator networks, and
batch design under uncertainty.Yamada and Hara (1998)
proposed a global optimization approach based on the tri-
angle covering for H-infinity control with constant diagonal
scaling.Androulakis et al. (1998)studied the parallel com-
putation issues that arise using the�BB global optimization
approach.

Klepeis, Androulakis, Ierapetritou, and Floudas
(1998)and Klepeis and Floudas (1999a)proposed new
global optimization approaches for the structure prediction
of solvated peptides using area and volume accessible to
the solvent models. A review of the global optimization
activities in the areas of protein folding and peptide docking
can be found inFloudas, Klepeis, and Pardalos (1999b).
Klepeis and Floudas (1999b)proposed a novel deterministic
global optimization approach for free energy calculations of
peptides.Westerberg and Floudas (1999a, 1999b)introduced
a global optimization framework for the enclosure of all
transition states of potential energy hypersurfaces, and stud-
ied the reaction pathways and dynamics of helical formation
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a at
c nal
a sing
a

ed
l eres-
t theo-
r P is
m
a e-
m hes,
i piv-
o erse
m lts in
a ce in
s rr
( and
a onal
t ting
i ear
s and
p
i a dif-
f tion
o nd
t and
i onal
e rium
s qua-

tion, and a CSTR equation.Klepeis, Schafroth, Westerberg,
and Floudas (2002)presented the advances in deterministic
global optimization based on the�BB approach and its ap-
plications for structure prediction of oligopeptides, dynamics
of helical formation, and protein–peptide interactions.

Zilinskas and Bogle (2003)studied the evaluation of
ranges of functions through balanced random interval arith-
metic, investigated the hypothesis on the normal distribution
of the centers and radii of the evaluated balanced random in-
tervals through several computational studies, and concluded
that this hypothesis is incorrect.Klepeis and Floudas (2003a)
introduced a deterministic global optimization approach,
�BB, coupled with torsional angle dynamics for the pro-
tein structure prediction given restraints predicted from the
identification ofα-helices andβ-sheets.Klepeis and Floudas
(2003b)proposed the first principles framework, Astro-Fold,
for the protein structure prediction, described the global opti-
mization and mixed-integer optimization advances, and pre-
sented a variety of test systems including several blind protein
predictions.Klepeis, Pieja, and Floudas (2003a)introduced
a new class of hybrid global optimization methods denoted
as integrated hybrids for the oligopeptide structure predic-
tion. Klepeis, Pieja, and Floudas (2003b)proposed new al-
ternating hybrid global optimization methods, studied and
developed their distributed computing algorithms, and ap-
plied them to the structure prediction of met-enkaphalin and
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m cess
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ith and without solvation.Klepeis, Floudas, Morikis
nd Lambris (1999)introduced a novel approach th
ombines deterministic global optimization and torsio
ngle dynamics for the prediction of peptide structures u
sparse set of NMR data.
Byrne and Bogle (1999)introduced a bound constrain

inear relaxation, developed two classes of linear und
imators using the natural extension and mean value
ems of interval analysis, and showed that the interval L
ore efficient than other interval analysis approaches.Gau
nd Stadtherr (2002c)studied the computational improv
ent of interval Newton/generalized bisection approac

ntroduced a hybrid preconditioning strategy where a
ting preconditioner is combined with the standard inv
idpoint method, and showed that this approach resu
large reduction of the needed subintervals and hen

ignificant computational improvements.Gau and Stadthe
2002b)studied synchronous work stealing, synchronous
synchronous diffusive load balancing on a two-dimensi

orus virtual network, developed a distributed compu
nterval Newton framework, and showed that superlin
peedups can be obtained for vapor–liquid equilibrium
arameter estimation problems.Lucia and Feng (2002)stud-

ed the least squares function landscape, introduced
erential geometry based framework for the determina
f all physically meaningful solutions, singular points, a

heir connectivity, developed a global terrain algorithm,
llustrated the framework through one and two-dimensi
xamples from glass temperature calculations, equilib
tates in nanostructured materials, a simplified SAFT e
ellitin. These two classes of hybrid global optimization
roaches combine the�BB for the generation of rigorou

ower bounds with the modified genetic algorithm, CSA,
he upper bounding calculations.Lucia and Feng (2003)ex-
ended the terrain methodology to multivariable problems
ntegral curve bifurcations associated with valleys and rid
howed that the terrain methods are superior to arc hom
ontinuation in the presence of parametric disconnected
nd studied examples for the location of all azeotropes
ograde flash calculations, and CSTR problems.

Schafroth and Floudas (2004)studied the protein–peptid
nteractions via deterministic global optimization, atomis
evel modelling, and several solvation methods that inc
he area accessible to the solvent, the volume accessible
olvent, and the Poisson–Boltzmann method, and rep
xcellent agreement on the binding motifs.

Akrotirianakis and Floudas (2004)presented comput
ional results of the new class of convex underestima
mbedded in a branch-and-bound framework for b
onstrained NLPs. They also proposed a hybrid gl
ptimization method that includes the random-link
tochastic approach with the aim at improving the comp
ional performance.

.3. Concave, bilinear, fractional and multiplicative
odels

Zamora and Grossmann (1998b)introduced a dete
inistic branch-and-bound approach for structured pro

ystems that have univariate concave, bilinear and l
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fractional terms. They proposed several properties of
the contraction operation, embedded them in the global
optimization algorithm and studied the contraction effects
on several applications.Shectman and Sahinidis (1998)
proposed a finite global optimization method for sepa-
rable concave problems.Zamora et al. (1999)proposed
a branch-and-contract global optimization algorithm for
univariate concave, bilinear, and linear fractional models.
The emphasis was on reducing the number of nodes in the
branch-and-bound tree through proper use of the contraction
operator.Van Antwerp, Braatz, and Sahinidis (1999)studied
the bilinear matrix inequality problem as a formulation
of the globally optimal controller problem and applied a
branch-and-bound global optimization approach to generate
lower and upper bounds and prove optimality for a mass
spring model and a reactive ion etching problem.

Adhya, Tawarmalani, and Sahinidis (1999)studied bilin-
ear models of the pooling problem, proposed a Lagrangian
relaxation approach for the generation of valid lower bounds,
and showed that these bounds are tighter when compared to
linear programming based relaxations.Ryoo and Sahinidis
(2003) studied linear and generalized linear multiplicative
models, applied the recursive arithmetic interval approach for
the derivation of lower bounds, introduced greedy heuristics
for a branch-and-reduce approach, and applied it to bench-
mark problems and randomly generated problems.Goyal and
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mization approach, and applied it to binary systems.Zhu and
Xu (1999a)used simulated annealing for the stability anal-
ysis of liquid–liquid equilibrium systems modelled via the
NRTL and UNIQUAC equations for the activity coefficients
and studied ternary systems with up to three liquid phases.

Harding and Floudas (2000a)introduced a novel global
optimization approach for the phase stability of several cubic
equations of state based on analytical findings and the princi-
ples of the�BB global optimization framework.Harding and
Floudas (2000b)studied the enclosure of all heterogeneous
and reactive azeotropes, developed a rigorous framework
based on the�BB global optimization principles, and demon-
strated its potential for a variety of case studies.Tessier, Bren-
necke, and Stadtherr (2000)introduced monotonicity based
and mole fraction weighted averages based enhancements
for the application of interval Newton methods to the phase
stability problem using the NRTL and UNIQUAC models.
Zhu, Wen, and Xu (2000)proposed an enhanced simulated
annealing algorithm for the tangent plane stability problem
using the PR and SRK cubic equations of state.

Zhu and Inoue (2001)introduced a branch-and-bound ap-
proach based on a quadratic underestimating function and
applied it to the tangent plane distance criterion using the
NRTL equation.Xu, Brennecke, and Stadtherr (2002)stud-
ied the phase stability criterion using the SAFT equation of
state, introduced an interval Newton/generalized bisection
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a il-
erapetritou (2003a)introduced an approach for the syste
tic evaluation of the infeasible domains using a simpl
uter approximation framework that is applicable to conc
r quasiconvex constraints.

.4. Phase equilibrium

Maier, Brennecke, and Stadtherr (1998)applied an in
erval analysis based approach for the enclosure of h
eneous azeotropes. They employed the formulations
osed byHarding, Maranas, McDonald, and Floudas (19
nd studied systems with activity coefficient and equatio
tate models.Meyer and Swartz (1998)proposed a new a
roach for testing convexity for phase equilibrium proble
cKinnon and Mongeau (1998)proposed a generic glob
ptimization approach for the phase and chemical rea
quilibrium problem that is based on interval analysis
ombines the stability criterion with the minimization of
ibbs free energy.Hua, Brennecke, and Stadtherr (199
pplied an interval analysis method for the phase sta
omputations of binary and ternary mixtures using equa
f state models.Hua, Brennecke, and Stadtherr (1998b)intro-
uced two enhancements on their interval analysis app
ased on monotonicity and mole fraction weighted aver

or improving the efficiency in the tangent plane stab
nalysis for cubic equations of state.Zhu and Xu (1999b
sed simulated annealing for the tangent plane stability
sis criterion and they applied it to ternary systems.Zhu and
u (1999c)studied the tangent plane stability analysis for
RK cubic equation of state through a Lipschitz global o
pproach, followed a volume-based formulation base
he Helmholtz energy, and applied to nonassociating,
ssociating, and cross-associating systems.Cheung, Adji-
an, Kolar, and Ishikawa (2002)studied the global minimum
etermination of clusters for the solvent-solute interactio
hase equilibrium. They introduced the OPLS force field
ived tight convex underestimators, derived bounds on th
endent variables, developed a branch-and-bound app
nd applied it to a butane molecule and a butane–ethyla
ystem.

.5. Parameter estimation

Esposito and Floudas (1998)studied the error-in-variable
pproach and proposed the first global optimization me

or the parameter estimation and data reconcilliation of
inear algebraic models using the principles of the�BB ap-
roach.Gau and Stadtherr (2000)introduced an interval ana
sis based approach for the error-in-variables method
tudied vapor–liquid equilibrium and reaction kinetics m
ls. Gau, Brennecke, and Stadtherr (2000)studied furthe

he parameter estimation of vapor–liquid equilibrium m
ls via interval analysis, applied it using the Wilson equa

or a variety of binary systems, and demonstrated that
ect predictions of azeotropes are attained only based o
lobal optimum parameter solutions in direct contrast to
echema data collection.Gau and Stadtherr (2002a)applied

he interval-Newton approach for the parameter estimati
catalytic reactor model, a heat exchanger network m

nd binary vapor–liquid equilibrium problems using the W
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son equation, and pointed out that problems of about 200
variables can be addressed.

3. Mixed-integer nonlinear optimization, MINLPs

Zamora and Grossmann (1998a)derived thermodynamic-
based convex underestimators, quadratic/linear fractional
convex underestimators, and proposed a hybrid branch-and-
bound and outer approximation method for the global opti-
mization of heat exchanger networks with no stream splits.
Westerlund, Skrifvars, Harjunkoski, and Pörn (1998)pro-
posed an extended cutting plane approach for the global opti-
mization of pseudoconvex MINLP problems, studied its con-
vergence properties, and applied it to an example from the
paper-converting industry.Vecchietti and Grossmann (1999)
introduced a disjunctive programming approach for MINLPs,
denoted as LOGMIP, discussed a hybrid modelling frame-
work for process systems engineering which allows both
binary variables and disjunctions as tools for discrete de-
cisions, implemented a modified logic-based outer approx-
imation approach, and presented computational studies on
two process synthesis problems and an FT-IR spectroscopy
example.Sinha, Achenie, and Ostrovsky (1999)studied the
class of solvent design problems, modelled it as a nonconvex
MINLP problem, identified the sources of nonconvexities in
t ints,
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SMIN-�BB is for separable continuous and integer domains
and it is based on the principles of�BB type of convex under-
estimators and a branch-and-bound approach for the mixed
set of continuous and binary variables. The second approach,
GMIN-�BB, is applicable to general mixed integer nonlin-
ear problems which are not separable in the continuous and
integer variables, and it is based on a branch-and-bound tree
constructed only in the integer domain while the�BB prin-
ciples are used to solve the nonconvex NLPs at each node so
as to generate valid lower bounds. The first approach was ap-
plied to heat exchanger network problems, while the second
one was applied to pump network configuration problems
and trim loss minimization problems in addition to a variety
of benchmark problems.Kesavan and Barton (2000)intro-
duced a generalized branch-and-cut algorithm for noncon-
vex MINLPs, showed that decomposition-based approaches
and branch-and-bound algorithms are special cases, and pro-
posed a number of heuristics towards addressing the compu-
tational efficiency issues.Sahinidis and Tawarmalani (2000)
presented two MINLP applications of global optimization
for the design of just-in-time flowshops, and the design of
an alterative to freon. In the first study, the model determines
the stagewise number of machines needed that minimizes
the total equipment costs, and they showed improvements
compared to the heuristic approaches. In the second study,
the model selects the constituent parts of a molecule so as
t , en-
v sed
a ative
c
a en-
s nic
c del,
p hich
i inci-
p and
a sive
t or
t tion
a ethod
f udo-
c ver-
g it on
s is and
s

al-
i con-
v der-
e ara-
b lgo-
r in the
d ial di-
v pace,
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w esis.
he properties and solubility parameter design constra
roposed linear underestimators based on a multileve
esentation approach for the functions, developed a red
pace branch-and-bound global optimization algorithm,
pplied it to a single component blanket wash design p

em. Noureldin and El-Halwagi (1999)studied mass inte
ration problems for pollution prevention, proposed tar

or the maximum achievable pollution, introduced an in
al analysis framework for the determination of these
ets, studied the pollution prevention via unit manipulat
ecycle and interception, and employed the interval-b
argets in a case study featuring the reduction of wate
ge and discharge in a tire-to-fuel plant.Pörn, Harjunkoski
nd Westerlund (1999)proposed convexification schemes
lasses of discrete and integer nonconvex models. They
ed the exponential transformation and potential-based t
ormations and applied them to integer posynomial probl
arjunkoski, Westerlund, and Pörn (1999)studied the trim

oss minimization problem for the paper converting indus
ormulated it as a nonconvex MINLP, proposed transfor
ions for the bilinear terms that are based on linear repre
ations and convex expressions, studied the reductions
ombinatorial space, investigated the role of different typ
bjective functions, developed and assessed several alg
ic alternatives, and showed that the global solution ca
btained with all strategies and certain convex formulat
erformed similarly to the linear models.

Adjiman, Androulakis, and Floudas (2000)proposed two
ovel global optimization approaches for nonconvex mi

nteger nonlinear programming problems. The first appro
o satisfy chemical and physical properties, economic
ironmental constraints through a group contribution ba
pproach, and provides a ranked order list of altern
ompounds.Parthasarathy and El-Halwagi (2000)studied
systematic framework for the optimal design of cond

ation which an important technology for volatile orga
ompounds, formulated it as a nonconvex MINLP mo
roposed an iterative global optimization approach w

s based on physical insights and active constraint pr
les that allow for decomposition and efficient solution,
pplied it to a case study for the manufacture of adhe

apes.Pörn and Westerlund (2000)introduced procedures f
he successive linear approximation of the objective func
nd line search techniques, proposed a cutting plane m

or addressing global MINLP problems that feature pse
onvex objective function and constraints, studied its con
ence properties and initialization schemes, and tested
everal benchmark problems arising in process synthes
cheduling applications.

Lee and Grossmann (2001)studied nonconvex gener
zed disjunctive programming models, constructed the
ex hull of each nonlinear disjunction, used convex un
stimators for bilinear, linear fractional and concave sep
le functions, introduced a two level branch-and-bound a
ithm where the lower bound requires a discrete search
isjunctions space and the upper bound requires a spat
ide and conquer search in the nonconvex continuous s
nd applied it to benchmark problems, a multicomponent
ration problem, multistage design/synthesis of batch p
ith parallel units, and heat exchanger network synth
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Björk and Westerlund (2002)studied the global optimiza-
tion of heat exchanger network synthesis through the sim-
plified superstructure representation that allows only series
and parallel schemes, applied convexification approaches for
signomials via piecewise linear approximations, developed
convex MINLP lower bounding models using the Patterson
formula for the log mean temperature difference considering
both isothermal and nonisothermal mixing, proposed a global
optimization approach for alternative models, and presented
extensive computational studies.Wang and Achenie (2002b)
studied solvent design problems which are formulated as non-
convex MINLPs, introduced a hybrid global optimization ap-
proach which combines outer approximation with simulated
annealing, applied it to several benchmark problems, case
studies for the extraction of acetic acid from water, and sol-
vent design for reversible reactions, and showed that near
optimal solutions can be located.Ostrovsky, Achenie, and
Sinha (2002)studied nonconvex MINLP models in which
most variables are in the conconvex terms and the number
of linear constraints is much larger than the nonlinear con-
straints, introduced the idea of branching on a set of linear
branching variables which depend linearly on the search vari-
ables, proposed a tailored branch and bound approach using
linear underestimators for tree functions based on a multi-
level function representation, showed that there is a signifi-
cant reduction in the branching variable space, and applied it
t e
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and presented comparative computational results.Ostrovsky,
Achenie, and Sinha (2003)revisited their molecular design
reduced dimension branch-and-bound algorithm by studying
further the branching functions concept and the special tree
function representation, proposed the sweep method for the
construction of the linear underestimators, investigated the
problem size dependency on the algorithmic performance,
and showed that the computational effort increases almost
linearly. Sinha, Achenie, and Gani (2003)studied the sys-
tematic design of cleaning solvent blends for lithographic
printing, modelled it as a nonconvex MINLP problem, in-
troduced an interval analysis based global optimization ap-
proach with modifications on the upper bounding calculation
and the local feasibility test which are solved via SQP, and
an interval-based domain reduction algorithm, and presented
computational results for the design of aqueous blanket wash
blends.Zhu and Kuno (2003)proposed a hybrid global op-
timization method for nonconvex MINLPs which combines
convex quadratic underestimation techniques with a revised
form of the generalized Benders decomposition, suggested
its convergence properties, and illustrated it via a two vari-
able problem.Goyal and Ierapetritou (2003b)studied MINLP
models where the objective function is convex, and the con-
straints are convex, concave or quasi-concave, introduced the
simplicial approximation of the convex hull of the feasible
region, proposed algorithmic procedures and illustrated them
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o solvent design and recovery problems.Wang and Acheni
2002a)studied the molecular design of solvents for ext
ive fermentation including solvent attributes such as bioc
atibility, inertness and phase splitting, introduced a g
ontribution framework which results in a conconvex MIN
odel, studied a local MINLP algorithm, OA/ER/AP, a
pplied it to case studies on ethanol extractive fermenta
ua, Bozinis, and Pistikopoulos (2002)proposed novel ap
roaches for multiparametric mixed-integer quadratic mo

hrough the decomposition into a multiparametric quad
IQP model for the upper bound and a potentially nonc

ex MINLP model for the lower bound, suggested way
ddressing the nonconvexity in the MINLP, and gener
nvelopes of parametric solutions and the enclosure o
ultiparametric MIQP.
Sahinidis, Tawarmalani, and Yu (2003)revisited the de

ign of alternative refrigerants problem, introduced an int
ormulation for previously described structural constra
roposed new structural constraints between one-bonde
igher-bonded groups in the absence of rings and new c
onstraints for rings, applied a branch-and-reduce globa
imization algorithm with a modification so as to generat
easible integer solutions, and generated new compoun
efrigerants.Vaia and Sahinidis (2003)studied the simultane
us parameter estimation and model structure identific

n infrared spectroscopy, proposed two methods out of w
he second corresponds to a single nonconvex MINLP m
resented a branch-and-bound approach which is base
elaxation of terms that are logarithmic, bilinear, and m
inear depending on the determinant of the covariance m
ia small benchmark problems.Kallrath (2003)studied and
olved a nonconvex product portfolio problem via an app
mate MILP formulation of the objective function and ex
inear relations for the constraints, modelled it as a non
ex MINLP problem for the optimization of the number a
ize of batch process units, analyzed the sources of no
exity consisting of concave functions and trilinear produ
nvestigated the piecewise linear approximation of the ob
ive function, the use of a local MINLP solver, SBB, an
lobal optimization solver, Baron, and reported that for

arge instances weak lower bounds are generated.Grossman
nd Lee (2003)studied generalized disjunctive programm
DP, problems which feature convex nonlinear inequa

n the disjunctions, proposed a convex nonlinear relaxa
f the nonlinear GDP problem based on the convex hull
esentation of each of the disjunctions which was der
y variable disaggregation and reformulation, formulated
onlinear GDP as a MINLP which was shown to prod

mproved bounds compared to big-M models, and prese
omparative computational studies of the two formulati
ee and Grossmann (2003)studied nonconvex GDP pro

ems with bilinear equality constraints, derived convex
erestimators and overestimators for the bilinear constr
sing the reformulation/linearization approach, expresse
iscrete choices as disjunctions which were subsequen

axed by their convex hull representations, used their ea
wo level global optimization approach(Lee & Grossmann
001), and presented computational studies for pooling p

ems, water usage problems, and wastewater network
ems.
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Lin, Floudas, and Kallrath (2004)revisited the noncon-
vex product portfolio problem introduced byKallrath (2003),
presented an improved formulation consisting of a concave
objective function with linear constraints in the continuous
and binary variables, proposed several techniques for tight-
ening the model and accelerating its solution, developed a
customized branch-and-bound approach which addresses the
problem to global optimality, applied it to small and large in-
stances, and demonstrated that global solutions can be ob-
tained very efficiently in contrast to commercial MINLP
solvers.Kesavan, Allgor, Gadzke, and Barton (2004)stud-
ied separable MINLP models with nonconvex functions, pro-
posed two decomposition algorithms based on alternating
sequences of relaxed master problems, two nonlinear pro-
gramming problems, and outer approximation, showed that
the first algorithm yields the global solution while the sec-
ond provides a rigorous bound on the global solution, and
presented computational results on several benchmark prob-
lems and heat exchanger network problems.

4. Differential-algebraic models, DAEs

Esposito and Floudas (2000a)studied the global opti-
mization in parameter estimation of systems described by
differential-algebraic models, proposed a rigorous global op-
t and
t ach
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parameter estimation of nonlinear dynamic systems, formu-
lated it as an optimal control that optimizes the Fischer infor-
mation matrix, introduced two stochastic global optimization
approaches to address the nonsmoothness and the multiplic-
ity of solutions, and applied it to the parameter estimation
of a fed-batch bioreactor.Papamichail and Adjiman (2002)
introduced a deterministic spatial branch-and-bound global
optimization approach for nonconvex models with ordinary
differential equations, proposed a convex relaxation based on
the theory of differential inequalities which allowed them to
generate rigorous bounds for the parametric ODEs and their
sensitivities, and applied their framework to small optimal
control problems and reaction kinetics parameter estimation
models.

Adjiman and Papamichail (2003)developed further their
branch-and-bound approach, proposed three convex relax-
ations for the parameter estimation of the initial value prob-
lem, and presented computational results on several parame-
ter estimation problems in kinetics.Singer and Barton (2003,
2004)studied the global optimization of integral objective
functions subject to ordinary differential equations, derived
convex relaxations for the integral based on a pointwise in-
tegrand scheme, developed a branch-and-bound global opti-
mization approach on a Euclidean space which combines the
integrand convex relaxations with differential inequalities,
McCormick’s composition approach, and outer approxima-
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imization approach based on a collocation framework
he�BB principles, proposed a global optimization appro
ased on an integration framework, and investigated
iety of benchmark problems and complex kinetic mec
isms.Esposito and Floudas (2000b)studied the determin

stic global optimization of nonlinear optimal control pro
ems, introduced the integration-based framework, inv
ated the properties of the input–output map of soluti
uggested three alternative ways of calculating theβ values
or the lower bounding problems, and demonstrated thr
everal challenging case studies the algorithmic trade
f the different strategies, as well as the determinatio

he global solution.Barton, Banga, and Galan (2000)stud-
ed the optimization of hybrid discrete/continuous dyna
ystems, presented a framework based on hybrid optima
rol, investigated existence and sensitivity results, introd

modified stochastic search approach, and presented
utational results for a tank changeover problem.Esposito
nd Floudas (2001)pointed out the theoretical rigor and a
antages of the proposed global optimization method
sposito and Floudas (2000a)and the differences betwe

ocal search approaches and global optimization metho
Esposito and Floudas (2002)studied the isothermal r

ctor network synthesis problem, formulated it as non
ex NLP with differential-algebraic constraints, introduce
lobal optimization framework based on the integration
roach and the�BB, investigated alternative types of ref
ulations, and reported extensive computational studie

omplex reaction/reactor networks.Banga, Versyck, and Va
mpe (2002)studied the optimal experimental design for
-

ion, and illustrated their approach with several small be
ark problems.Lee and Barton (2003)studied the globa
ptimization of linear time varying hybrid systems wh
xhibit both discrete state and continuous state beha
nd extended their recently developed approach for th

ermination of the optimal mode sequence when the trans
imes are fixed(Barton & Lee, 2003), proposed a reformu
ation of the problem via binary variables while mainta
ng the linearity of the dynamical system, derived con
elaxations of Bolza-type functions using recent results
inear time varying continuous systems(Lee, Singer, & Bar
on, 2004), and applied it to benchmark problems and
sothermal plug flow reactor problem.Chachuat and Lati
2003) introduced a spatial branch-and-bound global o
ization approach for problems with ordinary differen
quations in the constraints, presented results on the fir
econd order derivatives for the initial value problem and
wo point boundary value problem, compared the sensit
nd the adjoint approaches, developed convex underes

ors using the�BB principles, and presented computatio
tudies and comparisons of the sensitivity versus the ad
pproach for several problems.Banga, Moles, and Alons
2003)studied integrated process design and operation
ameter estimation in bioprocess models, and focuse
tochastic global optimization methods for dynamic syst
ddressed handling of constraints in stochastic methods
ented hybrid approaches for dynamic optimization, and
ented computational studies on the optimal control of b
ctors, the integrated design of a waste treatment plan(see
lso Moles, Gutierrez, Alonso, & Banga, 2003)where they
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provided comparisons for several algorithmic approaches,
and discussed advances in the parameter estimation of bio-
processes.Banga, Balsa-Canto, Moles, and Alonso (2003)
reviewed and introduced optimization as a key technology
for food processing and discussed stochastic global optimiza-
tion methods and their potential applicability in food process
engineering.

5. Grey-box and nonfactorable models

Byrne and Bogle (2000)studied the global optimization
of modular flowsheeting systems, introduced an approach to
modular based process simulation which is based on inter-
val analysis and which can generate interval bounds, deriva-
tives and their bounds for generic input–output modules, pro-
posed a branch-and-bound global optimization algorithm,
and applied it to an acyclic problem, and flowsheet with
recycle.

Meyer, Floudas, and Neumaier (2002)studied the global
optimization of problems with nonfactorable constraints for
which there does not exist an analytical form, proposed a
sampling phase in which the nonfactorable functions and
their gradients are sampled and a new blending function is
constructed, presented a global optimization phase in which
linear underestimators and overestimators are derived via in-
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Pistikopoulos, Dua, and Ryu (2003)studied bilevel opti-
mization models which are of linear–linear, linear–quadratic,
quadratic–linear, or quadratic–quadratic type, and introduced
approaches from parametric programming to transform the
bilevel problem into a family of single level optimization
problems which can be solved to global optimality, and pre-
sented computational results on several small benchmark
problems.Gumus and Floudas (in press)studied the global
optimization of bilevel mixed-integer optimization problems,
proposed an approach that is applicable to mixed-integer non-
linear outer problem and twice continuously differentiable
nonlinear inner problem, introduced another approach based
on the convex hull representation of the inner problem, which
is applicable when the inner level problem features functions
which are mixed integer nonlinear in the outer variables and
linear, polynomial, or multilinear in the inner integer vari-
ables, and linear in inner continuous variables; and applied it
to several challenging benchmark problems.

In the remainder of this paper, we will present recent ad-
vances from Princeton University on (i) explicit facets for
convex and concave envelopes for trilinear functions, (ii)
convex underestimators for trigonometric functions, (iii) new
convex underestimators based on a piecewise quadratic per-
turbation function, and (iv) the generalized�BB convex un-
derestimators.
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erval analysis and the interpolants are used as surroga
branch-and-cut global optimization algorithm, discuss

ocal optimization stage where the global optimum solu
f the interpolation problem becomes the starting poin
ptimizing locally the original problem, and illustrated th
pproach through a small benchmark problem, an oils
yrolysis problem, and a nonlinear continuous stirred
eactor model. Theoretical and algorithmic advances ou
f Chemical Engineering in this area include the work
utmann (2001), Jones (2001), Jones, Schonlau, and We

1998)and the recent book byZabinsky (2003).

. Bilevel nonlinear optimization

Gumus and Floudas (2001)studied the global optimiza
ion of bilevel nonlinear programming problems which
olve twice continuously differentiable functions, propo
convex relaxation of the inner problem followed by

quivalent representation via necessary and sufficient
ality conditions, introduced the�BB global optimization
rinciples, presented a branch-and-bound framework, an
lied it to several benchmark problems and parameter
ation problems.Floudas, Gumus, and Ierapetritou (20

ntroduced the first rigorous global optimization approach
he calculation of the flexibility index and the feasibility t
hich are bilevel nonlinear optimization models, and dem
trated its applicability to a heat exchanger network prob
pump and pipe run problem, a reactor–cooler system
prototype process flowsheet model.
. Explicit facets of convex and concave envelopes for
rilinear monomials

Approximations of the convex envelope of noncon
unctions play a central role in deterministic global o
ization algorithms and the efficiency of these algorithm
ighly influenced by the tightness of these approximati
eyer and Floudas (2003, 2004)proposed explicit expre

ions defining the facets of the convex and concave enve
or trilinear monomials, with mixed sign domains, as wel
ith positive or negative bounded domains for each varia
hese advances are discussed in the sequel.

.1. Facets of the convex envelope

The description of the nonvertical facets depends on
igns of the bounds onx. In this section, we present the se
acets for Case 1 (the complete set of cases can be fou
he papers byMeyer & Floudas, 2003, 2004a). The symbol
, y, andzare used to denote a permutation ofx1, x2 andx3.
n addition to the signs of the bounds, in some cases the
uxiliary inequalities that must be satisfied for the face
pply.
Case 1: x ≥ 0, y ≥ 0, z ≥ 0.
Mapping{x1, x2, x3} onto{x, y, z} in such a way that th

ollowing relations apply,

ȳz + xȳz̄ ≤ xȳz + x̄yz̄, x̄yz + xȳz̄ ≤ x̄ȳz + xyz̄,
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the linear equalities defining the facets ofC3(x) are:

w = yzx + xzy + xyz − 2xyz,

w = ȳz̄x + x̄z̄y + x̄ȳz − 2x̄ȳz̄,

w = yz̄x + xz̄y + x̄yz − xyz̄ − x̄yz̄,

w = ȳzx + x̄zy + xȳz − x̄ȳz − xȳz,

w = θ

x̄ − x
x + x̄zy +x̄yz +

(
− θx

x̄ − x
− x̄ȳz − x̄yz̄ + xȳz̄

)
,

whereθ = x̄ȳz − xȳz̄ − x̄yz + x̄yz̄,

w = θ

x − x̄
x + xz̄y + xȳz +

(
− θx̄

x − x̄
−xyz̄ − xȳz + x̄yz

)
,

whereθ = xyz̄ − x̄yz − xȳz̄ + xȳz.

7.2. Illustration

To construct the lower bounding facets ofC3(x) where
x = [1, 2] × [1, 2] × [1, 2] we first observe that all bounds
are positive (i.e., Case 1). As the bounds on all the vari-
ables are the same it makes no difference how we map
{x1, x2, x3} onto {x, y, z}. After substitution, the facets
become:

N we
o om-
p roxi-
m r
t ases
a 3,
2

7.3. Comparison with other bounding schemes

The recursive arithmetic interval (rAI) scheme for gen-
erating convex lower bounds for the multilinear monomial
was compared with the arithmetic interval (AI) scheme and
other bounding schemes studied byRyoo and Sahinidis
(2001).

The separation distances between the functionxyz
and the lower bounding functionsfAI (x, y, z) and
frAI (x, y, z) are defined asdAI (x, y, z) := xyz − fAI (x, y, z),
anddrAI (x, y, z) := xyz − frAI (x, y, z). These separation dis-
tances are compared withdC(x, y, z), the separation distance
betweenxyzand the convex envelope. Two graphs are pre-
sented for each sign combination. In each graphy andz are
constant, while the separation distances are plotted as a func-
tion of x.

In Fig. 1, the AI and rAI systems are shown to generate
poor bounds relative to the convex envelope.

8. Convex underestimators for trigonometric
functions

Caratzoulas and Floudas (2005)have recently proposed a
C∞ convex underestimator for the function

f

T one-
d olv-
i no-
m m of
s mbi-
n (
x pro-
p f the
m nc-
t

eparat
w = 1x1 + 1x2 + 1x3 − 2, w = 4x1 + 4x2 + 4x3−16,

w = 2x1 + 2x2 + 2x3 − 6, w = 2x1 + 2x2 + 2x3 − 6,

w = 2x1 + 2x2 + 2x3 − 6, w = 2x1 + 2x2 + 2x3 − 6.

ote that the last four facets are identical and hence
nly need three facets to define the convex envelope. C
arisons between the convex envelope and other app
ation schemes are provided inFig. 1. Explicit facets fo

he concave envelope and for the complete set of c
re presented in the papers byMeyer and Floudas (200
004).

Fig. 1. Comparison of lower bounding s
(x) = α sin(x + s), x ∈ [xL, xU ], α > 0.

he underestimation method can be applied to
imensional as well as multi-dimensional problems inv

ng trigonometric polynomials, since the product of trigo
etric functions can always be decomposed into the su

in and cos functions with arguments that are linear co
ations of the problem variables. The general case sink x),
∈ [xL, xU ], reduces to the above equation form by ap
riate scaling of the independent variable. A summary o
ethod is presented in the following for the translated fu

ion g(x) = f (x + xL), x ∈ [0, D], whereD ≡ xU − xL.

ion distances,x ∈ [1, 2], y ∈ [1, 2], z ∈ [1, 2].
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Caratzoulas and Floudas (2005)considered as underes-
timating function the following three-parameter (a, b, xs)
trigonometric function

φ(x) = −a sin[k(x − xs)] + b, x ∈ [0, D], a ≥ 0,

wherek = 2π/L, andL is the period ofφ(x). For φ(x) to
be convex, the conditionsxs ≤ 0 andL ≥ 2(D − xs) must
be satisfied. They consideredL = 2(D − xs) + M, where
M ∈ R+, an arbitrary positive, real number, that makes the
period ofφ(x) dependent on the phase shiftxs. They proved
that anyM ≥ 2D is sufficient, and by means of asymptotic
analysis of the solution have further shown, rigorously, that
the value ofM does not affect how tight the underestimator
will be.

Of the three equations necessary to uniquely determine
the parametersa, b and xs, two are obtained from the re-
quirement that at the bounds of the domainφ(x) match
g(x), that is,g(x0) = φ(x0), x0 ∈ {0, D}. If g(x) is noncon-
vex and the domain includes at least one minimum, the au-
thors obtain a third equation by settingg(q) = t(q), where
t(x) = g(x0) + g′(xt)(x − x0), x0 ∈ {0, D}, is tangent tog(x)
at the pointxt and passes through the pointx0; q ∈ (0, D)
denotes the minimum ofg(x) nearest tox0. From these equa-
tions,Caratzoulas and Floudas (2005)obtained

a
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D, one obtains the tangent linetu(x). Thus, they obtain two
sets of parameters, (al, bl, xsl) for q = ql, and (au, bu, xsu)
for q = qu, and the respective functionsφl(x) andφu(x). If
bothφl(x) andφu(x) are underestimators, the tighter one is
chosen—that is the one with the smaller amplitude parameter,
a. Caratzoulas and Floudas (2005)proved that:

Property 1: For M ≥ 2D, the functionF (x) = φl(x) −
φu(x) cannot have a single root in the interval[ql, qu].

Property2: If tl(ql) > tu(ql)andtl(qu) < tu(qu),asufficient
condition forφl(x) (φu(x)) to be an underestimator is
that the function(φl − tu)(x) ((φu − tl)(x)) has a root in
[ql, qu].

Theorem 1. At least one of the functionsφl(x) and φu(x)
constructed above is an underestimator.

If g(x) is nonconvex and the domain doesnot include a
minimum, in the rather trivial case whereg(0) > g(D) and
the tangent tog(x) passing throughx = 0 does not exist,
namelyxt /∈ [0, D], the underestimator is a line through the
end points; similarly ifg(0) < g(D) and the tangent tog(x)
passing throughx = D does not exist. That would also be
the case ifg(0) = g(D). If, however, either one of the two
tangents exists, an underestimator of the same form as be-
fore is sought. By enforcing the same end-points matching
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= � + δ�,0(fL − T )

sin(kxs) + sin{k[D − (D − q) δ�,0 − xs]} ,

nd

= fL − [� + δ�,0(fL − T )] sin(kxs)

sin(kxs) + sin{k[D − (D − q) δ�,0 − xs]} ,

here fL ≡ f (xL), fU ≡ f (xU ), � ≡ fL − fU = g(0) −
(D); T ≡ t(q); andδ�,0 = 1, if � = 0, and zero otherwis
or the phase shift,xs, they obtained

an(kxs) = −� sin(kq) + (T − fL) sin(kD)

�(1 − cos(kq))

+ (T − fL)(1 − cos(kD))

, � �= 0,

s = −M/2 > 0, � = 0.

his equation must be solved numerically (a few New
terations have proven sufficient) and it was shown th
lways has a solution, that is, for givenqandL (i.e.,M) there
lways exists a uniquexs < 0 satisfying it.

For x0 = 0, andq = ql the minimum ofg(x) nearest to
= 0, one obtains the tangent linetl(x). For x0 = D, and
= qu the minimum ofg(x) nearest to the end pointx =

max
x∈[0,D]

{
min

x∈[0,D]
[g(x)] − φ(x)

}
∼

onditions as before, one obtains the equations for the pa
tersa andb. However, in the absence of a minimum po

he conditionφ(q) = t(q) cannot be employed. Instead, th
et (dφ/dx)x=0 = 0 if g(0) < g(D), or (dφ/dx)x=D = 0 if
(0) > g(D), to obtain:

s =
{

−D − M/2, � < 0

D − M/2, � > 0.

aratzoulas and Floudas (2005)proved that the functionφ(x)
btained in this manner is also an underestimator.

.1. Maximum separation distance

Caratzoulas and Floudas (2005)investigated the be
aviour of the solutions with respect to the parameterM ≥
D as that becomes very large. In all cases, they showe
he curvature,ak2, of φ(x) approaches a finite value. Bas
n their asymptotic analysis, they also have investigate
axx∈[0,D]{minx∈[0,D] [g(x)] − φ(x)} and its dependence

he domain size,D, as a measure of high tight an undere
atorφ(x) is. Specifically, they showed that asM → ∞

inx∈[0,D] [g(x)] − fL + �/[4rD(1 − rD)], � �= 0

inx∈[0,D] [g(x)] − fL + (fL − T )D2/[4q(D − q)], � = 0,

here r ≡ [�q + (T − fL)D]/[�q2 + (T − fL)D2], with
∼ 1/D and 1− rD ∼ �q/[D(fL − T )]. As D increases

he quantity on the left-hand side grows linearly.
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Fig. 2. The functionf(x) in illustrative example and its underestimator. We
also plot the trigonometric terms, sinx and sin(10x/3), of f(x) and their
individual underestimators, as computed by the method of Caratzoulas and
Floudas (2005).

8.2. Illustration

As an example, let us consider the following function:
f (x) = sinx + sin 10x

3 + ln x − 0.84x, 1.5 ≤ x ≤ 12.484.
This function has a unique minimum with an objective func-
tion value of−8.7429 located atx = 10.914. Applying the
proposed convex underestimation approach on this example
to underestimate, individually, each of the first two terms in
f(x), the term lnx, being concave, has been underestimated
by a straight line connecting the end points of the domain.
The first initial lower bound is−9.7818 at x = 9.656.
Using �BB with the theoretical valueα = 6.0007, one
obtains an initial lower bound of−185.2376 located at
x = 6.992. Fig. 2 presents graphs off(x), of its trigono-
metric terms and their underestimators, and of the overall
underestimator.

9. Convex underestimators by piecewise quadratic
perturbation

Meyer and Floudas (in press)introduced a refine-
ment of the classical�BB convex underestimator, via a
smooth, piecewise quadratic, perturbation function,q. In
this section, we will briefly introduce the concepts be-
hind the �BB type of underestimators, and we will sub-
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The �BB convexification approach can be viewed as an
approximate solution to a more general convexification prob-
lem, that of finding a convexifying perturbation functionq(x)
which minimizes a measure,µ, of the separation between a
nonconvexC2 continuous functionf(x) and the convex un-
derestimatorf (x) − q(x). The size of the domainx affects
the result of every step in theα calculation and strongly in-
fluences the tightness of the resulting convex underestimator.
In particular, reducingx reduces the mismatch between the
assumed quadratic functional form and the ideal form; it re-
duces the overestimation in the interval extension of the Hes-
sian matrix; and the maximum separation distance has been
shown to be a quadratic function of interval length(Floudas,
2000a). Constructing a convex underestimator using a num-
ber of differentα vectors, each applying to asubregionof the
full domainx can lead to improved convex underestimators
and it is discussed in the sequel.

Let f(x) be aC2 continuous function. For each variablexi,
let the interval [xi, x̄i] be partitioned intoNi subintervals. The
endpoints of these subintervals are denotedx0

i , x1
i , . . . , x

Ni
i

where xi = x0
i < x1

i < · · · < xk
i < · · · < x

Ni
i = x̄i. In this

notation thekth interval is [xk−1
i , xk

i ]. A smooth convex un-
derestimator off(x) overx is defined by

φ(x) := f (x) − q(x),

w

I
t ll
m
q
f ted
f

d
f ts
I y-
p ing
c
equently focus on the new class of convex underes

ors that are based upon a piecewise quadratic perturb
unction.

The�BB algorithm is based on the idea of constructin
mooth convex underestimator of a nonconvex twice co
ously differentiable functionf(x) using a convex quadrat
erturbation function,q(x) The convex underestimatorφ(x)

s defined as follows:

(x) := f (x) − q(x).
here

q(x) :=
n∑

i=1

qk
i (xi) for xi ∈ [xk−1

i , xk
i ],

qk
i (xi) := αk

i (xi − xk−1
i )(xk

i − xi) + βk
i xi + γk

i .

n each interval [xk−1
i , xk

i ], αk
i ≥ 0 is chosen such that∇2φ(x),

he Hessian matrix ofφ(x), is positive semi-definite for a
embers of the set{x ∈ x : xi ∈ [xk−1

i , xk
i ]}. qk

i (xi) is the
uadratic function associated with variablei in intervalk. The

unction q(x) is a piecewise quadratic function construc
rom the functionsqk

i (xi).
The continuity and smoothness properties ofq(x) are pro-

uced in a spline-like manner. Forq(x) to be smooth theqk
i

unctions and their gradients must match at the endpoinxk
i .

n addition, we require thatq(x) = 0 at the vertices of the h
errectanglex. To satisfy these requirements, the follow
onditions are imposed for alli = 1, . . . , n:

q1
i (x0

i ) = 0,

qk
i (xk

i ) = qk+1
i (xk

i ) for all k = 1, . . . , Ni − 1,

q
Ni
i (xNi

i ) = 0,

dqk
i

dxi

∣∣∣∣∣
xk

i

= dqk+1
i

dxi

∣∣∣∣∣
xk

i

for all k = 1, . . . , Ni − 1.
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Expanding and solving these equations, we obtain:

β1
i =

(
Ni−1∑
k=1

sk
i (xk

i − x
Ni
i )

)
/(xNi

i − x0
i ),

βk
i = β1

i +
k−1∑
j=1

s
j
i for all k = 2, . . . , Ni,

γk
i = −β1

i x0
i −

k−1∑
j=1

s
j
i x

j
i for all k = 1, . . . , Ni,

with sk
i = −αk

i (xk
i − xk−1

i ) − αk+1
i (xk+1

i − xk
i ).

This class of convex underestimators satisfies the follow-
ing smoothness, underestimation, and convexity properties.

Property 1: φ(x) : x � x → R is a continuously differen-
tiable function.

Property 2: If αk
i ≥ 0 for all k = 1, . . . , Ni − 1, and i =

1, . . . , n, then q(x) is concave overx.
Property 3: φ(x) is an underestimator of f(x), that isφ(x) ≤

f (x) for all x ∈ x.
Property 4: Let f be a function differentiable on an open
setΩ ⊂ Rn, and let C be a convex subset ofΩ. Then, f
is convex on C if and only if its gradient∇f is monotone

-

-

9

n,

f

i s
f
w ates
w in
a

m

T in-
t y

Fig. 3. Lennard–Jones potential function and underestimators.

function, the classical�BB underestimator, and theφ(x) un-
derestimators are shown inFig. 3. In this figure theα spline
underestimator based on two subregions is denoted,φ(2),
while that based on 16 subregions is denoted,φ(16).

10. The generalized�BB global optimization
approach

In this section, the convex underestimators of the classical
�BB global optimization approach are outlined first, the
new class of convex underestimators is presented next along
with their key theoretical properties and an illustrative
example which compares the quality of the new convex
underestimators.

10.1. Convex underestimators of the�BB method

In �BB, a convex underestimator of a nonconvex function
is constructed by decomposing it into a sum of nonconvex
terms of special type (e.g., linear, bilinear, trilinear, frac-
tional, fractional trilinear, convex, univariate concave) and
nonconvex terms of arbitrary type. The first type is then
replaced by very tight convex underestimators which are
already known(Floudas, 2000a). For the nonconvex terms
of arbitrary type, whose convex envelopes are not known,
a convex underestimator is generated by adding to them the
r

φ

w
i

L

i e
φ

on C.
Property 5: Let f : R ⊃ x→ R be a twice contin
uously differentiable function overx. Let φ(x) :=
f (x) − q(x). If ∇2(f (x) −∑n

i=1 qk
i (x)) ≥ 0 for all

x ∈ I := [xk1−1
1 , x

k1
1 ] × · · · × [xkn−1

n , xkn
n ] where x

ki
i ∈

{x1
i , . . . , x

Ni−1
i }, i = 1, . . . , n, thenφ(x) is a convex func

tion onx.

.1. Illustrative example

Consider the Lennard–Jones potential energy functio

(x) = 1

x12 − 2

x6 ,

n the interval [x, x̄] = [0.85, 2.00]. The first term of thi
unction is a convex function and dominates whenx is small,
hile the second term is a concave function which domin
henx is large. The minimum eigenvalue of this function
n interval [x, x̄] can be calculated explicitly as follows:

inf ′′ =




156

x̄14 − 84

x̄8 if x̄ ≤ 1.21707

−7.47810 if [x, x̄] � 1.21707

156

x14 − 84

x8 if x ≥ 1.21707.

he classical�BB underestimator for this function and
erval isf (x) − 7.47810

2 (x̄ − x)(x − x). The potential energ
elaxation function,φ(x; α):

(x; α) = −
n∑

i=1

αi(xi − xL
i )(xU

i − xi),

hereαi ≥ 0, i = 1, 2, . . . , n. That is, if we assume thatf(x)
s an arbitrarily nonconvex function, then

�BB(x; α) = f (x) + φ(x; α),

s an underestimator of f(x). Note that sinc
(xL; α) = φ(xU ; α) = 0 the underestimatorL�BB(x; α)
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coincides withf(x) at the end-points ofX. Also by noting that
the relaxation functionφ(x; α) is separable we can derive
the following relationship that exists among the Hessian
matrices ofL�BB(x; φ), f (x) andφ(x; α):

∇2L�BB(x; α) = ∇2f (x) + 2A,

where A = ∇2φ(x; α) = diag{α1, α2, . . . , αn}. From the
above equation it can be derived thatL�BB(x; α) is convex
if and only if ∇2L�BB(x; α) is positive semi-definite matrix.
It is shown inAdjiman et al. (1998a)that if the parameters
αi, i = 1, 2, . . . , n, have values greater than or equal to
the negative one half of the minimum eigenvalue of the
Hessian matrix∇2f (x) in the whole domainX = [xL, xU ],
then the underestimatorL�BB(x; α) is convex function. The
calculation of the smallest eigenvalue of the Hessian matrix
of an arbitrarily nonconvex function is done by generating
the interval Hessian matrix and requiring that the interval
Hessian matrix is positive semi-definite.

Adjiman et al. (1998a)and Floudas (2000a)developed
several methods that calculate appropriate values for allαi,
i = 1, 2, . . . , n that ensure the positive semi-definiteness of
the interval matrix [∇2L�BB(x; α)] and consequently the con-
vexity of the underestimating functionL�BB(x; α). These
methods can be classified into two categories. The first cate-
gory consists of methods that find a common value for every
p cal-
c

her-
s y
t

α

w
a
p eters
i h a
w der-
e

1

-
i
a

L

w

Φ

andγ = (γ1, γ2, . . . , γn)T is a vector of non-negative param-
eters.Akrotirianakis and Floudas (2005)proved the follow-
ing properties of the functionL1(x; γ):

Property 1: L1(x; γ) ≤ f (x), for all x ∈ [xL, xU ], because
Φ(x; γ) ≤ 0 for all x ∈ [xL, xU ] andγ ≥ 0.

Property 2: L1(xC; γ) = f (xC), for every corner pointxC

of X, becauseΦ(xC; γ) = 0 for all xC ∈ X.
Property 3: There exist certain values of the parameters

γi so thatL1(x; γ) is a convex function. This is due to
the fact that the relaxation functionΦ(x; γ) is convex
for everyx ∈ X andγi ≥ 0, i = 1, 2 . . . , n. Hence if the
parametersγi have large enough values then all the non-
convexities in the original functionf(x) can be eliminated,
thereby producing a convex functionL1(x; γ).

Property 4: The maximum separation distance between
the nonconvex function f(x) and its underestimator
LGαBB(x; γ) is

max
xL≤x≤xU

{f (x) − L1(x; γ)} =
n∑

i=1

(1 − e1/2γi(xU
i

−xL
i

))2.

Property 5: The underestimators constructed over super-
sets of the current set are always less tight than the

ons-

-
t ran-
t
e -
t

L

T ing
t

2

w -
o tion
i andi-
d scaled
G

t n the
m -
d

T e
a

arameterαi, whereas methods of the second category
ulate different values for eachαi.

The most efficient of those methods is the scaled G
chgorin. The value for each parameterαi is determined b
he equation:

i = max


0, −1

2


f

ii
−
∑
j �=i

max{|f
ij
|, |f̄ij|}dj

di




 ,

heref
ij

andf̄ij are the lower and upper bounds of∂2f/∂xixj

s calculated by interval analysis, anddi, i = 1, 2, . . . , n are
ositive parameters. A common choice for those param

s di = xU
i − xL

i , which reflects the fact that variables wit
ider range have a larger effect on the quality of the un
stimator than variables with a smaller range.

0.2. The new class of convex underestimators

Akrotirianakis and Floudas (2005)proposed the follow
ng new class of underestimating functions,L1(x; γ), of an
rbitrary nonconvex function,f(x):

1(x; γ) = f (x) + Φ(x; γ),

here

(x; γ) = −
n∑

i=1

(1 − eγi(xi−xL
i

))(1 − eγi(xU
i

−xi)),
underestimator constructed over the current box c
traints.

The values of the parametersγi, i = 1, 2, . . . , n are de
ermined by an iterative procedure that not only gua
ees the convexity of the underestimatorL1(x; γ) but also
nsures thatL1(x; γ) is tighter than the�BB underes

imator

�BB(x; α) = f (x) −
n∑

i=1

αi(xi − xL
i )(xU

i − xi).

he initial values of theγi parameters are selected by solv
he system of nonlinear equations

i + γ2
i + γ2

i eγ(xU
i

−xL
i

) = 0, i = 1, 2, . . . , n,

here2i ≤ 0, i = 1, 2, . . . , n. The parameters2i convey sec
nd order characteristics of the original nonconvex func

nto the construction process of the underestimator. C
ate values for these parameters can be provided by the
erschgorin method(Adjiman et al., 1998a).
Akrotirianakis and Floudas (2005)proved the following

wo important results regarding the relationship betwee
aximum separation distances betweenf(x) and the two un
erestimatorsL1(x; γ) andL�BB(x; α).

heorem 2. Letγ = (γ
1
, γ

2
, . . . , γ

n
)T be the solution of th

bove system. Then, the two underestimatorsL1(x; γ) and
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L�BB(x; α), where

α =
(

4(1− e0.5γ
1
(xU

1 −xL
1 ))2

(xU
1 − xL

1 )2
, . . . ,

4(1− e0.5γ
n
(xU

n −xL
n ))2

(xU
n − xL

n )2

)T

,

have the same maximum separation distance from f(x).

Theorem 3. Let ᾱ = (ᾱ1, ᾱ2, . . . , ᾱn)T be the values of the
α parameters as computed by(10).Then, the two underesti-
matorsL1(x; γ̄) andL�BB(x; ᾱ), where

γ̄ =
(

2 log(1+ √
ᾱ1(xU

1 − xL
1 )/2)

xU
1 − xL

1

, . . . ,

2 log(1+ √
ᾱn(xU

n − xL
n )/2)

xU
n − xL

n

)T

,

have the same maximum separation distance from f(x).

The above two theorems reveal that for anyγ ∈ [γ, γ̄]
there exists anα ∈ [α, ᾱ], such that the underestimators
L1(x; γ) andL�BB(x; α) have the same maximum separation
distance from the nonconvex functionf(x). From all these
pairs of underestimators, the only one that is known to be
convex a priori isL�BB(x; ᾱ), since this is the one resulting
from the classical�BB method. However, for most arbitrar-
i
L als
[ rva-
t
o of
t

ch
t ini-
m er-
e
m
t -
t l op-
t 4)

1

po-
t
F

f − 1079.1

(3r2
0 − 4 cos(θ)r2

0 − 2(sin2(θ) cos
(
x − 2π

3

)− cos2(θ))r2
0)3

1071.5

3r2
0 − 4 cos(θ)r2

0 − 2(sin2(θ) cos(x) − cos2(θ))r2
0)3

r2
0)6

−

w
c e
(

Fig. 4. Comparison of the underestimatorsL�BB(x; ᾱ) andL�BB(x; α) of
the nonconvex functionf1(x).

The value of theα parameter computed by the classical
�BB method using the scales Gerschgorin approach isᾱ =
77.124, and the corresponding value for theγ parameter, is
γ̄ = 1.0673. Solving forγ we obtainγ = 0.8521 and the cor-
responding value for theα parameter, isα = 18.579. The con-
vexity verification algorithm ofAkrotirianakis and Floudas
(2005)checks whether there exist values ofγ ∈ [γ, γ̄] and
α ∈ [α, ᾱ] such that the underestimatorL�BB(x; α) is convex.
After 16 iterations it concludes that ifα = α, thenL�BB(x; α)
is a convex underestimator off1(x). The minima of the two
underestimatorsL�BB(x; ᾱ) andL�BB(x; α) are−762.2377
and−184.4244, respectively.Fig. 4 compares the two un-
derestimatorsL�BB(x; ᾱ) andL�BB(x; α) and shows the im-
provement.

11. Summary

This paper reviewed the advances in global optimization
during the period 1998–2003. The focal point was novel

t nces
o eral
t p-
ly nonconvex functions the underestimatorsL�BB(x; α) and
1(x; γ) are convex within a large portion of the interv

α, ᾱ] and [γ, γ̄], respectively. Based on the above obse
ions, it is natural to search for a vectorγ in the interval [γ, γ̄]
r for a vectorα in the interval [α, ᾱ], so that at least one

he underestimatorsL1(x; γ), L�BB(x; α) is convex.
Akrotirianakis and Floudas (2005)proposed an approa

hat iteratively determines, using interval analysis, the m
um values of theγ or α parameters that result in an und
stimator that is convex and tighter than the classical�BB
ethod. They also developed the generalized�BB global op-

imization approach, denoted as G�BB, and performed ex
ensive computational studies for box constrained globa
imization problems(see Akrotirianakis and Floudas, 200.

0.3. Illustrative example

This example consists of the global minimization of a
ential function describing the pseudoethane molecule(see
loudas, 2000a)which takes the form:

1(x) = 588600

(3r2
0 − 4 cos(θ)r2

0 − 2(sin2(θ) cos
(
x − 2π

3

)− cos2(θ))r2
0)6

+ 600800

(3r2
0 − 4 cos(θ)r2

0 − 2(sin2(θ) cos(x) − cos2(θ))r2
0)6

−
(

+ 481300

(3r2
0 − 4 cos(θ)r2

0 − 2
(
sin2
(
θ + 2π

3

)
cos(x) − cos2(θ)

)
herer0 is the covalent bond length (r0 = 1.54 A), θ the
ovalent bond angle (θ = 109.5◦) andx the dihedral angl
x ∈ X = [0, 2π]).
1064.6

(3r2
0 − 4 cos(θ)r2

0 − 2
(
sin2
(
θ + 2π

3

)
cos(x) − cos2(θ)

)
r2

0)3
,

heoretical, algorithmic, and applications oriented adva
n deterministic global optimization methods for (i) gen

wice differentiable NLPs, (ii) mixed integer nonlinear o
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timization problems MINLPs, (iii) models with differential-
algebraic constraints, (iv) grey-box and nonfactorable mod-
els, and (iv) bilevel nonlinear and mixed-integer optimization.
Recent advances from Princeton University were also pre-
sented on convex and concave envelopes for trilinear mono-
mials, convex underestimators for trigonometric functions, a
new class of convex smooth piecewise underestimators with
a quadratic perturbation that use as a basis the classical�BB
type of underestimators, and a new class of generalized and
improved convex underestimators for twice continuously dif-
ferentiable functions. Illustrative examples were presented to
highlight the potential benefits of these recent advances.
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