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Abstract

This review gives an overview of possible fields of activity for astronomers and
astrophysicists in industry, especially in the chemical industry. The focus is on those
fields with a close relation to what astronomers and astrophysicists learn during their
education or while being involved in research projects.

Major activities are related to mathematical modeling and problem solving re-
quiring diverse mathematical techniques and algorithms, knowledge in applied and
numerical mathematics, computer algebra or scientific software packages. Familiarity
with computers and software (operating systems, programming languages, etc.) is
implicitly assumed.

Different problems as well as their mathematical solution are presented. Often,
these projects have a science background, e.g., the analysis of the dynamics of chro-
matographic reactors (Navier-Stokes equation, partial differential equations, adaptive
grids), modeling of chemical reactions (stiff ordinary differential equations), or the
analysis of experimental data in reaction kinetics, pharmacokinetics or material sci-
ences (parameter estimation in systems of nonlinear ordinary differential equations).
Typical are also projects closely related to operations research, e.g., blending prob-
lems, production planning and scheduling problems leading to mathematical optimiza-
tion (linear programs, mixed-integer problems, combinatorial optimization). Interest-
ingly enough, there are even industrial problems which require proper astronomical
knowledge.

The summary stresses the significance of a rigid and broad mathematical and
physical education as well as the interest in problems with practical relevance, math-
ematical core and often with a strong interdisciplinary background.

1 Introduction

This contribution is most likely one of the more unexpected to be found in ”Reviews of
Modern Astronomy”. First, because professional astronomers and astrophysicists have
only little connections to industry in general unless they are ordering a large telescope or
satellite device. Second, because one would not expect to find many astronomers and as-
trophysicists in industry, especially chemical companies. And, having the picture in mind
that astronomers are more interested in heavenly bodies, and less in the more practical
things in life, the question might arise, can astronomers and astrophysicists be useful in in-
dustry at all? The answer is certainly yes: astronomers and astrophysicists are accustomed
to describe difficult and diffuse problems. Real world problems occurring in industry are



full of difficulties that are fuzzy and require methods from different disciplines in physics
and chemistry. In particular, those astrophysicists involved in modeling usually have some
background in different physical disciplines, e.g., thermodynamics, fluid dynamics, plasma
physics or optics. This broad background and the astrophysicists’ habit to use tools and
techniques from all sources gives them some advantage to pure physicists who are used to
more rigid techniques, higher precision and are sometimes specialized in one discipline, e.g.,
solid physics, elementary particle physics, or nuclear physics. And finally there are famous
examples of astrophysicists in industry. Bernhard Timm (1909-1992), from 1965 to 1974
the head of the board of directors of BASF-AG in Ludwigshafen (Germany) was an astro-
physicist. He had studied mathematics, physics, astronomy and chemistry at Heidelberg
University and had been Carl Bosch’s assistant in Bosch’s private observatory.

The primary focus of this article are not jobs related to marketing, personnel division
and all kinds of positions which could be held by any academic but are rather those fields
which have a close relation to the natural science background astronomers and astrophysi-
cists have acquired during their studies, PhD, or time being a postdoctoral fellow. In times
such as the present when the job situation is not too promising for astronomers and as-
trophysicists, the Board of Directors of the ” Astronomische Gesellschaft” and the author
felt that this article might be helpful to and useful for both astronomers and astrophysi-
cists in their education, diploma or PhD thesis or time being a postdoctoral fellow, and
also tenured professors advising and encouraging their younger colleagues in nonpermanent
positions.

In principle, all kinds of industries are possible employment areas for astronomers and
astrophysicists as long as these branches have some connection to mathematical mod-
eling based on the laws of physics, chemistry, biology and sometimes even economics.
Concerning the mathematical focus, theoretical astronomers and astrophysicists may have
better chances than their observing colleagues; they may be better trained for mathemat-
ical modeling and have a closer relation to mathematical algorithms. However, observing
astronomers and astrophysicists may have advantages when it comes to designing exper-
imental equipment. Typical employers in this context may be optics companies like Carl
Zeiss or Schott-Glaswerke, but also the electronic companies (Siemens, ABB, etc.) or the
automobile industries (designing reflectors for the head lights in cars, or crash simulations
are formidable modeling tasks).

Related to the background of the author, the overview and experiences described in
this article are in the chemical industry. The author works as a mathematical consultant
in a small group called ”Systems for Chemistry” at BASF-AG Ludwigshafen/Germany®.
The group has about 10 people with a background in mathematics, physics and theoretical
chemistry and is organized within an information services division. Their main fields of
activities are computational chemistry? and mathematical methods, especially mathemat-
ical optimization. This group is responsible for mathematical consulting and solutions,
i.e., problem analysis, model building, providing solutions, integrating these into existing
systems, and providing advice on the choice of mathematical scientific software. Since
knowledge transfer is an important topic, presentations, workshops, forums, meetings, and
visiting conferences are a regular part of the work. Contacts and cooperation with uni-

1Similarly, at CIBA (Basel/Switzerland) a department called ”Scientific Services” is organized in the
division Information Services.

2Computational chemistry could be another interesting field for astrophysicists. The group at BASF-
AG runs a big Silicon Graphics Power Challenge server (3.6 Gflops) and an IBM Workstation-Cluster
(1.2 Gflops) to perform quantum chemical computations using mainly the program systems TURBO-
MOLE, SPARTAN and MOPAC. These programs feature the approximate solution of the electronic time-
independent Schrodinger equation for the molecular systems of interest on various levels of theory. Recently,
density-functional-theory has become the main work-horse. The software calculates geometries, energies,
spectroscopic properties and reaction pathways for molecules in the gas phase. The calculation of such
data gives insight into the microscopic details of molecular systems which are difficult to access through
experiments.



versities and scientific centers are quite normal and frequent. As part of such contacts
the author holds a lecturership at Heidelberg University in applied mathematics, and the
group usually hosts about 4-6 guests, e.g., working as co-op students, students doing their
master’s thesis, graduate students doing PhD research, or postdoctoral fellows as visit-
ing scientists. When this article was written two postdoctoral fellows, one from Vienna
Observatory, another one from the Astronomische Institute der Universitat Bonn were vis-
iting the group. It needs to be said that this group has counterparts in other (chemical)
companies, e.g., at BAYER-AG (Leverkusen/Germany) with Dr. Ulrich Pallaske (e-mail:
debaywr9@ibmmail.com) being the head of a group called ”Mathematische Methoden und
Modelle”, or at CIBA (Basel/Switzerland) there is a ”Mathematical Application” a group
with a branch on computational physics, and another group called ”Operation Research”
with Dr. Klaus Braun (e-mail: ibrauk@chbs.ciba.ch) as the head of that group. These
groups may have the strengths in different areas, e.g., at BAYER-AG there is expert
knowledge of differential algebraic systems, while the CIBA group concentrates more on
operations research methods and simulation.

Section 2 gives an overview of mathematical modeling related to projects the author
has been involved in.

Section 3 describes some typical problems in greater detail, ¢.e., the problem description,
the modeling approach, and the method used to solve it. In some cases a reference to a
publication is given where a full description is provided.

The paper closes with a summary of helpful hints and topics from the discussion after a
talk presented on the annual meeting 1995 of the ” Astronomische Gesellschaft”, and finally
some conclusions.

2 Brief Survey of Typical Applications

This section, and in particular the table below summarizes some fields of activity mostly
covered by the group ”Systems for Chemistry”. In the left column it mentions the area
of application. Some of these areas are typical for chemistry (reactive flows, kinetics,
pharmacokinetics), others (statistics, production planning, scheduling) are also found in
other industries. The right columns blocks it into mathematical disciplines and techniques.
Systems of ordinary differential equations occur in kinetics, pharmacokinetics, or in the
modeling of polymer reactions. They appear as Laplace transformations of partial dif-
ferential equations, models describing whole plants, and sometimes isolated applications.
Usually ODE’s are used in the context of data analysis, i.e., fitting the ODE models to data.
Fluid dynamics or heat conduction problems are solved in the mathematics group only in
exceptional cases, namely if the problem structure or complexity exceeds the capability of
commercial packages, or if special integration techniques are needed. Standard applications
for process engineering are usually solved using these commercial packages in engineering
departments. Although data analysis and data fitting usually involve art rather than exact
science, such problems can be attacked with powerful mathematical methods (for instance
the multiple shooting method (Bulirsch, 1971) used by Bock (1987) for solving least squares
problems for models based on ODE’s). This method is also useful in astronomy (Kallrath
et al., 1993). Statistics problems appear in all kinds of applications. Most challenging is ez-
perimental design, less exciting perhaps quality control. No further comments are given on
statistics because that is covered by a different group within the information services divi-
sion [”Mathematical Statistics”, Dr. M.T. deMehr, e-mail:marite. demehr@zra.basf-ag.de].
Finally, there is the broad field of mathematical optimization and operations research. The
techniques used in this field are pretty general. The solvable problems do not only occur
in chemical industry, or industry in general, but also in economics or finance.



Kinetics
Pharmacokinetics
Polymer reactions

Plant Design/Simulation?

Reactive Flows
Leaching Problems
Frost Penetration

Data Analysis
Kinetics
Pharmacokinetics
Material Sciences

Ordinary Differential Equations (ODFE’s)
Stiff systems, Multiple Shooting
Special Integration Techniques
Differential Algebraic Systems

Partial Differential Equations (PDE’s)
Numerical integration techniques
‘steep gradients’, adaptive grids

Least Squares Problems and Approximation
least squares techniques in ODE’s
homotopy methods
Padé approximants and convergence acceleration

Statistics
descriptive methods, statistical tests
multivariate data analysis
time series

Experimental Design
Quality Control
Process Control
Empirical Modeling

Mathematical Optimization and Operation Research
Linear Programming
Mixed Integer Linear Programming
Network Theory
nonlinear constrained optimization

Blending

Production Planning
Production Scheduling
Material Flow Optimization
Process Engineering
Optimal Facility Location

3 Description of Mathematical Projects

This section describes some representative projects which require a great deal of modeling
and mathematical techniques, and in which the author was involved. Concerning the
mathematics, some of the projects are one-person projects. However, more typical is team
work in groups of two or three persons. Finally, in some projects a master’s student or a
postdoctoral fellow was involved. The projects presented here are applied projects which
means that a client benefits from it and has also been involved in it providing background
on his discipline or daily operational business.

3The task of designing and simulating/optimizing the operation of chemical plants is solved by process
engineers usually located in engineering departments. The objective of those calculation is to predict the
behaviour and states of all units in the plant (e.g., distillation columns, chemical reactors, heat exchangers,
etc.) and its interconnecting streams. The focus of interest in such a study may be a single apparatus (e.g.,
a chemical reactor or a distillation column) or a large, highly interconnected plant. The process engineer is
interested in state variables such as pressure and temperature in the units but also in other variables such
as vapour and liquid phases, enthalpies and densities of streams and sometimes in transport properties
(viscosities, diffusion coefficients and others). The set of those variables is determined by an according set
of equations. For instance there is one such set that correlates the concentrations of chemical components
in vapour and liquid phase. Other important conditions in those systems are the conservation of mass
and energy (or enthalpy). Together with the fixed quantities in the system as for example the conditions
of feed streams or the given pressure profile of a column there have to be at least as many equations as
there are unknown variables in the system to make it uniquely solvable. A numercial solver now takes
care of the solution of that nonlinear algebraic or, in the time dependent case, differential algebraic system
of equations. Depending on the size of the plant, the number of chemical components, and the depth
of the modeling of the units the system of equations can contain several thousand up to several hundred
thousand equations. There is commercial software available especially designed for these types of problems.
Yet, the scientist still has the difficult task to push the solver towards convergence and to find feasible
solutions. Once such a state has been found the user can try different variants or look for better conditions
of operation by changing parameters.



Figure 1. Reaction scheme and geometry of a chromatographic reactor

The first subsection considers fluid dynamics applications based on PDE’s. The methods
applied are found frequently in astrophysical articles although they are not in the standard
curriculum of the education of physicists, astronomers, or even mathematicians. Note that
the problems in this category are solved in teams which were joined by an astronomer or
astrophysicist (external consultant, or postdoctoral fellow).

The second subsection covers methods for the analysis of experimental data. There is a
strong focus on least squares methods but also less frequently used methods, such as e.qg.,
convergence acceleration are applied. Since the days of Legendre and Gauss, least squares
methods are well known among astronomers (Eichhorn, 1993), but usually they are only
used for explicit models. Some typical applications in chemistry show how least squares
methods are used in the context of implicit models, in particular for models described by
ODE’s. An example where least squares methods are applied to a PDE based model is
found in ZieBe et al. (1996).

Finally, the last subsection focuses on projects which require methods from mathe-
matical optimization and operation research. They are used in the context of blending,
production planning, production scheduling, logistics and distribution.

3.1 Partial Differential Equation Applications
3.1.1 Dynamics of Chromatographic Reactors

In this project the dynamics of a one dimensional fixed-bed reactor (Fig.1) in which a
species, A, in the gas phase reacts with another species, B, which is absorbed onto a solid
catalyst, was analyzed. The purpose of the reactor was to reduce the concentration of A
by a large factor and at the same time ensure that no B leaves the reactor. A combination



of analytical and numerical techniques was used to show that a chromatographic reactor
with flow reversal and side stream feed could be effectively operated depending upon the
existence of sharp slowly moving reaction and adsorption fronts and that for certain cases
it can be much more efficient than an equivalent continuous flow reactor. Observing that
the partial differential equations governing the flow in the reactor can be expressed in
conservation form, and that sharp moving fronts occur in the reactor it is not a surprise
that the numerical methods used to solve the problem are similar to the method used
to study the dynamics of colliding binary stellar winds (Kallrath, 1991). Here again, the
Godunov scheme and more elaborate schemes implemented in S.A.E.G. Falle’s software
package pfCOBRA proved to be useful. Note, that this project has been done with the
help of S.A.E.G. Falle who is a friend of the author and mathematician and astronomer at
Leeds University who consults for industry (another branch in which astrophysicists can
become active!). Naturally, the work resulted in a joint paper (Falle et al., 1995) describing
the problem and its solution in great detail.

3.1.2 TFrost Penetration and Stefan Problem

The purpose of this project was to model and to investigate the frost-intrusion into solid
ground in order to design appropriately heat-isolating materials. Possible applications of
this problem are given in the fields of road and railroad construction where one has to
avoid frost damage. It is a heat-transfer problem in multi-layer systems including phase
transitions at the freezing point. In addition, energy radiation into the surfaces are con-
sidered. The problem can be seen as a generalization of the well-known Stefan Problem
(Stefan, 1891).

In the case of homogeneous material, constant surface temperature and initial tem-
perature of 0° C the so-called Stefan problem is obtained for which an analytic solution
exists (Stefan, 1891). Here we have several layers of different materials and varying sur-
face temperature so that a numerical treatment is necessary. Considering the power of
modern computers, we refrain from applying approximative methods such as described in
Apostolopoulos et al. (1981), for example.

The starting point is the Fourier equation
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For each layer the equivalent heat capacity C and the thermal conductivity A will be
different which induces the dependence on the depth z. The equivalent heat capacity is
connected with the (ordinary) heat capacity C' by
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where A is the latent heat. At the freezing temperature 7y both C and X have discontinu-
ities which may be smeared out by
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Hence, we get the approximative Fourier equation
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Its solutions converge to those of the corresponding Stefan problem for AT — 0 (cf.
Bonacina et al., 1973).

The numerical method applied is the discretisation of the Fourier equation utilizing
a forward time—centered space method. This comparably simple scheme proved to be
suitable for the project; the resulting integration program can be executed on PC systems
effectively. The singularity of the specific heat at the temperature of phase-transition is
avoided by an approximating delta-form function as described above. At the boundaries of
the space domain Dirichlet or Neumann boundary conditions are to be defined [in addition
to the initial temperature T (x,t =1p)]. Radiative heat-flux into the boundaries can be
treated by considering the duration of sunshine for each day of the year®*. The method is
described in Maindl et al. (1995) in more detail.

Again, the project team was joined by an astronomer, in this case Thomas 1. Maindl
from the University of Vienna who spent a few months in our group as a postdoctoral
fellow .

3.1.3 Leaching Problem

The purpose of this project was to derive estimates of the expected leaching of pesti-
cides and its metabolites from agricultural soils to the groundwater. The basic properties
associated with the substances of interest are persistence and mobility. The most impor-
tant processes determining the fate of pesticides are degradation, sorption, transport and
uptake by plant roots (Tiktak et al., 1993). The interaction between these processes is
complex and nonlinear. These processes are functions of soil temperature and soil water
status which vary considerably within the year. To understand and analyze the dynamics
of these processes we used a onedimensional, dynamic, multi-layer model for simulating
transient flow, hydrodynamic dispersion, equilibrium sorption, transformation and uptake
of pesticides by plant roots in the unsaturated soil zone and the uppermost part of the
saturated zone. The model consists of four major components (Fig.2): evapotranspiration
and interception, soil hydrology, heat transport and chemical transport. A brief description
of the underlying mathematics is given below.

Heat transport The model for heat transport in the soil yields the soil temperature in
dependence of space and time. The following equations describe the development of the
volumetric heat content () and the soil heat flux Jj, in space and time, i.e., the conductive
and convective heat transport in the solid and liquid phases. Convection resulting from
water uptake by roots and from net-lateral drainage are not taken into account. Notice
that all downward fluxes are negative and that the lower boundary condition is a constant
temperature. The equations of the model are:

7 7
—Q =/ 3.8
Y9="2u (33

Q=C,-T |, (3.9)

4Thus the project required proper astronomical knowledge.




Figure 2: Evapotranspiration and interception, soil hydrology, chemical transport and soil
heat transport as components of the model [picture by courtesy of Tiktak et al. (1993)]
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The symbols have the following meaning: the saturated volumetric water content O, the
specific heat capacity of the solid phase of soil H, and of water H,,, the specific heat
capacity of the complete soil compartment C},, the specific density of water p,, and soil ps,
the hydraulic conductivity K (k) and the pressure head h which is used as an alternative
variable to the water content © because of numerical reasons.

Hydrology The water transport in soil is described by the continuity equation

00  aJ,
E——E—SW—DTW (313)

for the volumetric water content © and the flux equation (3.12) for the soil water flux J,,.
The transformation from the pressure head h to the water content © or vice versa can be
realized by the van—Genuchten—relation:

O, if h>0
o= . (3.14)
[1+|a~h|N]N (0,-0,)+0, i  h<0

with the residual water content ©, and the van—Genuchten—parameters a and V.



Pesticide transport The convection, hydrodynamic dispersion and molecular diffusion
of pesticides in soil are described by the continuity equation:

0 0

&C*: —&JS+SS+D7~S+RS , (3.15)
where ¢* denotes the mass content of pesticide in the soil system, J; the mass flux of
pesticide through the soil, S, the volumetric uptake of the pesticide, Dr, the volumetric
net lateral drainage rate of the pesticide and R, the volumetric rate of transformation of
the pesticide in the soil system.

¢ = O-c+p-X (3.16)

X = Kp-cvr (3.17)
dc J,
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with the pesticide concentration in the liquid phase ¢, the Freundlich coefficient K and
the Freundlich exponent 1/n, the dispersion length Lprs and the tortuosity .
A major concern of the model simulation was a sensitivity analysis in order to

e identify the most relevant input parameters of pesticide simulation models
e identify the relative importance of different processes

e identify the unreasonable use of simulation models (model behavior, regions in the
parameter space, parameter values, unreasonable scenario)

e setup proposals for the improvement of experiments

One method for a local sensitivity analysis in space and /or time is the computation of the
local sensitivity coeflicients, i.e., the partial derivatives of the solution with respect to a
parameter. This method is almost obvious because of its variable and easy applicability,
and because some derivatives might be calculated analytically.

Since one is interested in the dependence of a function ¢ (¢,2,p), ¢ € R" (e.g., con-
centration of pesticide, water content), ¢ time, z depth of soil, due to a parameter or a
parameter combination p, p € R™, the central difference approximation is

de; ¢t z,p; +Apj) —ci(t,2,p; —Ap;)  1<i<n
6ij 2Ap; 1<3<m”’

i,j €N (3.19)

where Ap; is a pregiven variation of p; (e.g., Ap/p is of the order of 0.01 to 0.10). For a
better comparison with results of other methods these coeflicients should be normalized,

e.g., by

<60i> _0g D; (3.20)
apj NRC . apj %(Ci (t,Z,pj +Apj) + G (tvzvpj - Apj)) 7 .

where N RC stands for 'normalized regression coefficient’. Beside the numerical estimation
of the sensitivity coeflicients another way of evaluating the pesticide leaching model presents
itself: for well-defined cases it is possible to solve the pesticide transport equation (3.15)
analytically, e.g., by means of Laplace transformations. The results of this investigations
will be published by Vormbrock et al. (1996) .

In this case, the project team reflects the interdisciplinary character of the modeling
task: the client is a horticultural scientist, Norbert Vormbrock an astrophysicists and
postdoctoral fellow visiting our group and S.A.E.G. Falle from Leeds University joined the
author in this project.



3.2 Data Analysis, Least Squares and Other Methods

Data analysis very often uses the classical least squares approach to fit models to data.
However, other methods such as convergence acceleration and time series analysis are also
very valuable.

3.2.1 A Typical Data Analysis Case

The aim of this project was to compute mean molecular weights M,,, M,, and M, of certain
polymers. These M values are given as ratios of statistical moments of the molecular weight
distribution w (M) according to

Zwi ZwiMi szME

M, = M, = —+
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M., = S
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k3 k3

(3.21)

The distribution w (M) can be measured; however, the experimental data are of rather poor
accuracy and do not reach far enough towards large M; values to allow direct computation
of the M's. To overcome this difficulty, we applied two different strategies:

e curve fitting
e convergence acceleration

Because the value of M, can be measured independently it was possible to check the quality
of our computations.

Curve fitting Using the measured values w; (M;) , we tried to fit several two- and three-
parameter distribution functions suggested in the literature to the data. Except for the
Schulz-Flory distribution which can be derived by theoretical considerations (cf. Vollmert,
1988) all the distributions are purely empirical. One example of the distributions under
considerations is the Wesslau distribution
1 _ (InM —1n Myp,)2
wr, (M)=100 —— M e 203, 3.22
W= 522
which has two parameters M,, and o,. The fitting procedure is a highly nonlinear least
squares problem and was solved using damped Gauss-Newton techniques with the con-
straint condition

Mn,computed - Mn,measured - (323)

In addition, we took into account the measurement errors which are unfortunately only
qualitatively known.

Convergence acceleration This approach starts at the expressions in (3.21). Caused
by the experimental limitations the sums—which are infinite sums Z?io in the case of real
distributions—terminate at some index i,,... Hence, we were looking for the values

M= lim MMwe AfMemex = A ({(M;,w0;), My < Mpax}) - (3.24)
We did this by using convergence acceleration techniques such as the e-algorithm [cf.
Wynn (1956a, 1966), Weniger, (1989)], Aitken’s §2-scheme (cf. Weniger, 1989) and the
p-algorithm [cf. Wynn (1956b), Weniger (1989)] to accelerate the series that are given
by the ‘mean molecular weights’ calculated using small upper limits in the summations.
We succeeded in applying the e- and §2-schemes which indicates linear convergence of the
involved series.
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Figure 3: Examples of simple compartment models

Results While the fitted distributions fit rather poorly to the data in most of the cases
and therefore deliver similarly poor estimates for M, and M, (M, fixed), the method of
convergence acceleration worked quite well in nearly all of the test cases. However, M, is
too small compared to the independently measured value so that the other mean molecular
weights can be expected to be systematically too small as well. This is probably due to
the systematic errors in the measured distribution curves.

3.2.2 Pharmacokinetics

In pharmacokinetics compartment models are used to describe the dynamics of medical
substances in organisms. The compartments may represent different parts of the body.
Substances follow a concentration gradient between compartment and diffuse from one
compartment to another one. The models are usually systems of linear or nonlinear dif-
ferential equations, often with a discontinuous right side. The goal of experiments in this
disciplines is sometimes to derive transfer rates, or elimination rates.

Linear compartment models In linear models the diffusion rate is proportional to the
concentration in the source compartment. An example [Fig.3a)] is the elimination of a
substance from blood which is described by the differential equation

dc

¢=—=-K"¢ 3.25

o , (325)
where K% is a elimination constant. It is common practice to add side-compartments to
the model in order to reproduce observed data [Fig.3b)]. This leads to systems of linear
equations which can be solved analytically by Laplace transforms leading to a sum of
exponential functions

c(t) = Zn:AieAit . (3.26)

A measure for the amount of a substance passing a compartment is the area under curve
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This quantity usually is already directly available from observed data and can be used as
a useful constraint in estimation transfer and elimination rates.

Nonlinear models Nonlinear models are described by Michaélis-Menten kinetics de-
scribing, besides diffusion, a saturation effect between compartments (e.g., active transport,
enzymatic change), i.e.,

V-c
- K+c
where V is the maximal transfer velocity, and K is the concentration at half transfer
velocity. If the concentration c is significantly smaller than the concentration at saturation
we get the linear diffusion case again.

c=

, (3.28)

Effect of application The method by which the substance is brought into the body
changes the model and is described by different initial conditions. The most simple case is
to apply it "intravenous”. In that case it presence in the first compartment (e.g., blood,
or plasma) is described by the doses D and the distribution volume V' while the initial
concentration of that substance in all other compartments is zero, i.e., ¢;(t = 0). The most
simple case is that of one side compartment and the initial condition

D
a(t=0)= v o ct=0)=0 . (3.29)

The system of differential equation reads
&1 = —(KFP+KE) c14+ Ko e (3.30)
ég = Klg -C1 — Kgl - C2 . (331)

Intravenous infusion of duration 7 is described by slightly different initial conditions. For
the time interval [0,7] the differential equation describing the concentration in the first
compartment has an additional right hand side term K/V

&1 = —(Kig+K¥e + Koo+ K/V | t<T (3.32)
& = —(Ki+K")o+Kney , t<7 (3.33)
¢ = Kioc1n — Koico . (3.34)

Parameter estimation in compartment models Since linear systems of differential
equations are the most frequently used models one might argue that explicit solutions (sums
of exponentials with unknown parameters \; related to the transfer rates) might be fitted
to data. There are two reasons why this approach fails: If more and more compartments
are involved it is no longer possible to derive analytic solution because it is not possible to
determine the roots of polynomials of degree larger than 4. The second reason is that the
implicit model (system of differential equations) leads to a parameter estimation problem
which behaves numerically much better than the problem of fitting sums of exponentials
to data.

Therefore, the problem class, briefly introduced has been further investigated in C.
Kilian’s (1992) master’s thesis. In that thesis she applies the boundary value problem
approach (see Section 3.2.4) and tries to estimate the relevant parameters. In addition,
an active set method has been developed which takes care of inequality constraints on the
elimination rates.
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Figure 4: Determination of the amplitude of the stress intensity factor AK

3.2.3 Material Sciences - Analysis of Fatigue Crack Grow

Fatigue besides impact is the most critical stress for any material. As described in Herzberg
and Manson (1980) fracture mechanics fatigue crack propagation rate experiments are a
very fast and effective method to determine material parameters mg and n which are used
for the lifetime calculation of the material. For the experimental investigation of fatigue
crack propagation a CT-specimen (Fig.4) is dynamically stressed with a servohydraulic
test machine until fracture occurs. Prior to testing the CT-specimen is provided with a
sharp pre-crack of the length ag. Then it is subjected to a periodically changing load. The
effective stress at the crack top is the amplitude of the stress intensity AK. During the
loading an increase of the crack length resulting from fatigue crack propagation is observed
indirectly through a quasi continuous measurement of the increase of the compliance C
of the sample as a function of the number of cycles. At the same time the force ampli-
tude Pz — Prmin is measured. The experiments are load-controlled. Simultaneously, the
test frequency f and the stress ratio R = F,4./ Finin of the maximum and load are held
constant. Therefore an incremental increase of the crack length due to fatigue crack prop-
agation automatically leads to an increase of the amplitude of the stress intensity factor,
AK, and this in turn leads to an accelerated fatigue crack propagation.

The independent quantity in the measurement is the number of cycles N which can be
regarded as a measure of time. Associated with each instance IV; is a measured value of
the compliance C; and the force amplitude difference AF;.

The parameter vector p to be estimated contains the elastic modulus F, the propor-
tionality factor mg and the exponent 7 in the Paris-Erdogan equation, i.e.,

p:=(E,mo,n) , peR™ , n,=3 . (3.35)
The relation between the compliance C and the number of cycles N can be described at
least for a certain region N~ < N < N7, by the differential equation (Paris-Erdogan-
equation)



dN dc

The crack length a can be expressed in terms of the compliance C' by use of the phenom-
enological relation

A0 _da Jda N Cop) = mo - {AKa( }/ . (336

o(C,B) = UL

= in(ﬂ'* , U(C,E) = ﬁjL - (3.37)

with the sample thickness d and known coefficients ;. Furthermore, from (3.37) the
relation
da w

ac -2 WZ

can be derived. Finally the stress intensity factor AK := Kz (N) — Kimin(IV),

) - ;U (3.38)

AF(N)
d-w

can be calculated with the auxiliary function determined by the geometry of the specimen

AK = W(C.B)-Y[2(C,E)] , AP(N) = Praa(N) — Prin(N)  (3.39)

6
1 2+ 2(C,E)
Y[2(C,B) = ———y(C,E) , y(C,B)=——"—2-> yU"" (340)
2(C,E) 1_:(C.E) =

with known coeflicients y;. The differential equation then results finally in the desired form

dC
N, C 3.41
ay —/.Cp) (3.41)

with
/[0

F(N.C.p) = oy 2 o [—-AF(NM(GE)
(3.42)

Note that the differential equation (3.41) has already the form in which it is used in
the context of a least squares problem constrained by a differential equation (see next
Section 3.2.4). The difference AP(N) = Praz(IN)— Ppin (IV) consists of piecewise constant
functions. Between two adjacent number of cycles N; and N;.; the value AF(N) for N;
is used in the right hand side of (3.41).

For the solution of the least squares problem one must remember that the estimated
or measured precrack length ag (it is assumed that this value has been measured without
error) has to be reproduced by the model, i.e., by the crack length a(Co, E) computed for
the initial value Cy. This is guaranteed by the condition

apg = CL(C(),E) s (343)

which leads to an additionally equality constraint in the least squares problem. The prob-
lem, more detailed background, and the solution of the problem including a homotopy
method will be described by Kallrath et al. (1996).

Fig.3 shows a typical least squares fit of the differential equation model to the measured
compliance C as a function of the number of cycles N with the help of the least squares
function (3.49), vis. afit of the model to the data achieved with the boundary value problem
approached (see Subsection 3.2.4). The calculated curve reproduces the measuring data
with high precision.
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Figure 5: Compliance C' versus cycles IV, measured data, fit and residuals

3.2.4 Parameter estimation in systems of differential equations

In many least squares problems in chemistry, the model is usually described by a sys-
tem of nonlinear differential equations. For such problems the boundary value problem
methods for the identification of parameters in systems of nonlinear differential equations
(Bock, 1987) can be applied successfully. The model is described as a system of differential
equations with independent variable ¢ and state variable x

x'(t) = f(t,x,p), x €R"™ ,pc R" ; f: R+ _ R (3.44)

with the right hand side depending on an unknown parameter vector p. Additional con-
straints on the solution of the ODE (3.44) like periodicity, initial or boundary conditions,
or range restrictions to the parameters can be formulated in a vector whose components
are subjected to equality and inequality conditions, respectively:

ro [x(t1),...,x(tx),p)=00r >0 . (3.45)

The multipoint boundary value problem is linked to experimental data through the mini-
mization of a least squares objective function

lo(x,p) == ||ry x(t1),. .. 7x(tk),p]Hg . (3.46)

A special case of (3.46) in which the component %k of the vector ry is an “equation of
condition” and has the form

ND
rie =0 i — 9:(x(t5),p)] é:l,...,L::ZJj
j=1



Figure 6: The initial value problem approach

leads to the function to be minimized

NP J;

lo(x,p) =Y _ > o/ [y — ai(x(t),P)]* (3.47)

j=1 =1

Here, N denotes the number of points in time at which observed data are available,
J; denotes the number of observables measured at time ¢; and 7;; denotes the observed
value which is compared to the observable ¢ at time ¢; evaluated by the model where the
function ¢;(x(t;),p) relates the state variables x with this observable. Examples for such
observables are energy and momentum derived from spatial coordinates and velocities (the
states variables of a dynamical system for instance) at different times. 0;; are weights that
have to be adequately chosen, e.g., as the variances.

For the problem described in Section 3.2.3 we have nqg = 1, 1, = 3 and t; = IV;, and
the following identifications

z=C ,p=(mo,n, E) ni; =C; , gi=g(z(N;),p)=C(N;) . (3.48)

Finally the least squares function
ND
wW; 2
GL(N,Cp) = 3 26— C(y) (3.49)
j=1"717

was used, where C'(IV;) denotes the calculated compliance, C; denotes the measured value
of the compliance at number of cycles N; and w; is a weight assigned to the measured
value C;.

An obvious approach to estimate parameters in ODE which is also implemented in many
commercial packages is the initial value problem approach (Fig.6). The idea is to guess
parameters and initial values for the trajectories, compute a solution of the initial value
problem (IVP) (3.44) and iterate the parameters and initial values in order to improve the



Figure 7: The boundary value problem approach

fit. This method is not recommend for nonlinear problems; see Bock (1987) and Kallrath
et al. (1993) for reasons and a discussion.

Alternatively to the IVP approach (Fig.6) in the boundary value problem approach’ the
inverse problem is interpreted as an over-determined, constrained, multiple-point boundary
problem (Fig.7). The algorithm consists of a multiple shooting method® (Bulirsch, 1971)
for the discretization of the boundary value problem side condition and a generalized
Gauss-Newton method for the solution of the resulting structured nonlinear constrained
least squares problem (Bock, 1981).

Depending on the stability behavior of the ODE and the availability of information
about the process (measured data, qualitative knowledge about the problem, etc.) a grid
T

T << ..<Tpm , Anj=Tj4—17 , 1<j<m—1, (3.50)

of m multiple shooting nodes 7; (m — 1 subintervals I;) adapted to the problem and data
is defined such that it includes the measuring interval ([71,7p] = [to,%f]). At each node T;
an IVP

x'(t) =f(t,x,p) , x(t=7;)=s; € R™ (3.51)

has to be integrated from 7; to 7;41. The m — 1 vectors of (unknown) initial values s; of
the partial trajectories, the vector s,, telling the state at the end point and the parameter
vector p are summarized in the (unknown) vector z

z' = (s],...,s!,p") . (3.52)

For a given guess of z the solutions x(f;s;,p) of the m — 1 independent initial value
problem in each sub interval I; are computed. This leads to an (at first discontinuous)
representation of x(¢). In order to replace (3.44) equivalently by these m — 1 IVPs the
matching conditions

5In astronomy, the multiple shooting method or a similar method named ” multiple fitting point method”
is used in stellar evolution computations, e.g., by Wilson (1981).



hy(sj,85:1,0) = X(7j+1;8;,P) = 8541 =0 , hy : R¥r — R™ (3.53)

are added to the problem. (3.53) ensures the continuity of the final trajectory x(t).
Replacing x(t) and p in (3.47) by z the least squares problem is reformulated as a
nonlinear constrained optimization problem with the structure

1
min {§||F1(z)||§ | Fa(z) =0 € R™ , Fs(z)>0¢ ]R”S} , (3.54)

wherein no denotes the number of the equality and nz the number of the inequality con-
straints. This usually large constrained structured nonlinear problem is solved by a damped
generalized Gauss-Newton method (Bock, 1981). If Jy(z;) := 9, F1(2zx), Jo(21) := 0, Fs(2r)
vis. J3(z1) := 8,F5(z1) denote the Jacobi matrices of Fy, Fg vis. Fg, then the iteration
steps

Zp+1 = Zp + Q- Az, (3.55)

with damping constant az,0 < s, < ag < 1, are based on the constrained linear problem

.1
min {5 |11 () Az, + Fy ()]

z

Jg(Zk)AZk + Fg(Zk) =0 }

J3(zr) Az, + F3(zg) > 0 (3.56)

As explained by Bock (1987), global convergence can be achieved if the damping strategy
is properly chosen. Under the assumption of the regularity of the Jacobians J; and J., i.e.,

rank(Ji(zg)) =n1 , rank(J.(z)) = n., (3.57)

a unique solution Az, of the linear problem (3.56) exists and a unique linear mapping J; ™
can be constructed, which satisfies the relation

AZk = —Jk+F(Zk) s Jk+Jka+ = Jk+ s J]i = [Jl(Zk)t7 Jc(Zk)t] . (358)
The solution Az of the linear problem or formally the generalized inverse J, ™ (Bock,
1981) of J;, results from the Kuhn-Tucker conditions (Kuhn and Tucker, 1951) associated
with (3.54). Tt should be noted, however, that zj is not calculated from (3.58) for reasons
of numerical efficiency but is based on an orthogonalizing procedure.

By taking into consideration the special structure of the matrices J; caused by the
continuity conditions (3.53) of the multiple shooting discretization the size of (3.56) can
be reduced by a condensing algorithm described in [Bock (1981), Bock (1987)] to a system
of smaller dimension

1
mln{§ - ||A1Xk —|—a1||§ | Aoxp, +a3 =0 s Asx;, +az > 0} s (359)

from which x;, can be derived at first and at last Azj. The damping constant o* in the k-th
iteration is computed with the help of a natural level function which locally approximates
the distance ||zx — z*|| of the solution from the Kuhn-Tucker point z* (Kallrath et al.,
1993).

3.3 Mathematical Optimization and Operation Research

This topic is probably less familiar to astronomers and astrophysicist. However, physicists
were the first in the Operations Research Community during World War II and the decade
following that. The astronomer Thornton L. Page was one of the pioneers in the field. This
discipline provides mathematical optimization methods and models for solving optimization



problems arising in almost all branches of industry or society, e.g., in product and process
design, production, economics, logistics, traffic control and even strategic planning. In
an optimization problem one tries to minimize or maximize a global characteristic of a
process such as elapsed time or cost, by an appropriate choice of parameters which can
be controlled, and under a set of constraints, linked for example to physical limits. A
traditional way for developing answers to optimization problems is to propose a number
of choices for the controlled parameters, using heuristic methods. The processes under
investigation are then simulated under these various options, and the results are compared.
Engineers in charge of these optimization problems have developed intuition and heuristics
to select appropriate conditions, and simulation software exists to analyze the problems.
The ”traditional” techniques may lead to proper results, but there is no guarantee that
the optimal solution or even a solution close to the optimum is found. This is especially
troublesome for complex problems or those which require decisions with large financial
impact.

In contrast to simulation, optimization methods search directly for an optimal solution
that fulfills all constraints and relations relevant for the real-world problem. By using
mathematical optimization it becomes possible to control and adjust complex systems even
when they are difficult for a human being to grasp. Optimization techniques therefore allow
one a fuller exploitation of the advantages inherent to complex systems.

Classical optimization theory (calculus, variational calculus, optimal control) treats
those cases in which the parameters can be changed continuously, e.g., the temperature in a
chemical reactor. On the other hand, mixed integer, combinatorial or discrete optimization
addresses parameters which are limited to integer values, for example counts (numbers of
containers, ships), decisions (yes-no), or logical relations (if product A is produced then
product B also needs to be produced). This discipline, years ago only a marginal discipline
within mathematical optimization, becomes more and more important (Grotschel, 1993).

3.3.1 A Survey of Typical Real World Optimization Problems

The brief survey of real world problems given in this section is typical for the chemical
industry but most of the topics also occur in other areas:

e blending problems (production & logistics),

e production planning (production, logistics, marketing),

e scheduling problems (production),

e process design and process engineering (process industry),

e depot selection problems (strategic planning),

e network design (planning, strategic planning),

e petrochemical network with steamcrackers (production planning).
Typical for the chemical industry, but in modified form also for the mineral oil or food
industry, are blending problems. They occur in a wide variety. Reuter (1995) and Kallrath
(1995a) describe a model for finding cost minimal blending which simultaneously include
container handling conditions and other logistic constraints. Especially companies which
are in a situation to utilize the advantages of a complex production network, often with the
background of several sites (Kallrath, 1995) may greatly benefit from production planning
and production scheduling. Scheduling problems occur of course also in other branches of
industry. They are operational and yield detailed answers to the questions: e.g., when is
the production of a specific product on a specific machine to be started? What does the
daily production sheet of a worker look like? Scheduling problems belong to a class of the
most difficult problems in discrete optimization. Typical special structures, which can be
tackled by discrete optimization, are minimal production rates, minimal utilization rates,
minimal transport amounts: these structures lead to so-called semi-continuous variables.
The question how a telecommunication network should be structured and designed when
the annual demand is known or the question, what the traflic infrastructure should look like



for a given traffic demand lead to network design problems. While the problems listed above
can be solved with linear mixed-integer methods, problems occurring in process design very
often lead to nonlinear discrete problems, e.q., the optimization of a petrochemical network
of processing units.

3.3.2 A Typical Blending problem

This project had as objective to derive recipes for blending fluids at minimum cost observing
several product requirements. Such properties are for instance viscosity, boiling point and
concentration of alcohol. Some logistic constraints had to be satisfied in addition such
as that all the material of some tanks had to be used, or that some other material was
available only in a limited amount.

Let z; denote the relative mass fractions of the components in kg/kg. The n components
have to observe the mass conservation

dowm=1 . (3.60)

More relevant to chemistry are the molecular weights ;. Let w; denote the relative fraction
in terms of molecular weight, i.e., mol/mol. The quantities z; and w; are coupled by the
relation

xT; - Tr
w; = = el 3.61
223 ]; HE ( )
with the normalization

Zn:wi =1 . (3.62)
i=1

The client interested in buying the product specifies some bounds for viscosity (17—, 7+),
boiling point (1'%, T'8), and alcohol concentration (C_,C.).

The next step of the model formulation is to formulate some relations which allow one
to compute the properties of the mixture from the properties of the separate components:

n=TTn" . (3.63)
i=1

and

C=> Ci-w . (3.64)
i=1

The boiling point 77 is more difficult to compute because it can only be derived from the
implicit condition

PPy =1 |, (3.65)

which states that the vapor pressure P is equal to 1 at the boiling temperature T7. At a
given temperature T the vapor pressure P(t) is a linear combination of the partial vapor
pressure

P(T)=> P(T)-wi . (3.66)
i=1
The partial vapor pressures P;(¢) obey the Antoine law

P’L' (T) — eAi+Bi/(273-15+T) (367)



where the constants A; and B; are material parameters. Finally, the objective function to
be minimized, under the bounds specified above is

Z:Zci~xi::ct~x (3.68)

where ¢; are the costs to be paid for the components, and ¢ € IR" and x € IR" are vectors
containing the costs and unknown variables.

As a consequence of (3.63) and (3.66), the problem appears as a nonlinear constrained
optimization problem. However, a closer inspection shows that it can be transformed to a
linear programming problem. The alcohol concentration is already linear in the variables
w;. This follows from (3.64) and yields

C <> Ci-w <Oy (3.69)
i=1

Since the logarithm is a monotonically increasing function, the viscosity condition and
expression (3.63) can be transformed into a linear expression by taking the logarithm on
both sides of (3.63)

() < 3" In(n) i <o) (3.70)

The boiling temperature of the mixture is bounded by the temperature limits 77 and Tf.
This condition is equivalent to the requirement that the vapor pressure at temperature 72
is smaller than 1 bar, P(T%) < 1 resp. P(T'¥) > 1. To model this condition, we introduce
a small parameter €. Then we get

(TP)<1-e<1<14+e<P(TE),e>0e~10"° . (3.71)

The system of constraints derived so far is completed by (3.60), and possibly additional
inequalities
Lmin S €q S Tmazx (372)
or fixed bounds
r; = X; (3.73)

representing the logistic requirements.
The only remaining minor task is to eliminate the w; and to formulate the model in
terms of the z;. Let o denote one of the relations {<,>,=}. A constraint of the form

> Fi-wioF (3.74)
i=1

can, by use of (3.61), be transformed to the equivalent form

n

F, — F*
S EE e (3.75)
=1 Hi

Now the model is a linear programming problem. A linear programming problem or LP in
standard form is defined by

LP: Minimize: 2(x) = cTx, x€R", ceR" (3.76)
Subject to: Ax=b A € M(m x n,IR) matrix,
x>0 becR™



Other formulations of LPs using inequalities (like the one above) or containing uncon-
strained variables can be mapped to this standard form by introducing some slack vari-
ables. One of the best known algorithms for solving LPs is the simplex algorithm of G.B.
Dantzig [e.g., (Ravindran et al., 1987)] which can be understood both geometrically and
algebraically. The algebraic platform is the concept of the basis B of A, i.e., a linearly
independent collection B={A;, ,...,A;, } of columns of A. The inverse B~! gives a basic
solution X € IR"

z;=0ifA; ¢ B , z;, = k"™ component of B0,k =1,....m (3.77)

If X is in the set of feasible points S = {x : Ax = b, x > 0} , then X is called a
basic feasible solutionsolutionsolutionbasic feasible solution. If (¢) the matrix A has m
linearly independent columns A;, i.e. A is of rank m, (it) the set S is not empty and (i4%)
the set {ZTX : X € S} has an upper bound, then the set S defines a convex polytope P
and each basic feasible solution corresponds to a vertex of P (Papadimitriou and Steiglitz,
1982). (i¢) and (#¢) ensure that the LP is neither infeasible nor unbounded, i.e., has a
finite optimum. As the optimal solution of a LP is among the finite set of basic feasible
solutions, the idea of the simplex algorithm is moving from vertex to vertex of this polytope
to improve the objective function value. In this sense finding an optimal solution for
an LP is a combinatorial problem. In each iteration, one element of the actual basis is
exchanged, according to this exchange of basis variables, the matrix A, and the vectors b
and c are transformed to the matrix A’, and the vectors b’ and ¢’. Instead of computing
these components based on the previous iteration, the revised simplex algorithm is based
rather on the initial data A and c. By this, rounding errors do not accumulate. In
addition, A is very sparse in most practical applications whereas after several iterations
the transformed matrix A’ mostly gets much denser so that especially for large problems the
revised simplex algorithm usually needs far fewer operations. The simplex or the revised
algorithm finds an optimal solution of an LP problem after a finite number of iterations,
but in the worst case the running time may grow exponentially. Nevertheless, in many
real world problems it performs better than polynomial time algorithms developed in the
1980’s, by e.g., Karmarkar and Khachian [Nemhauser et al. (1989), Nemhauser and Wolsey
(1988)].

Based on the results of Karmarkar, in the last few years a large variety of interior point
methods has been developed [e.g., Gonzaga (1992), Lustig et al. (1992)], so called primal-
dual predictor-corrector methods have already been integrated into some LP-solvers, as
XPRESS-MP (Ashford and Daniel, 1991). The idea of interior point methods is to proceed
from an initial interior point x € S satisfying x > 0, towards an optimal solution without
touching the border of the feasible set S. The condition x > 0 is guaranteed by adding a
penalty term to the objective function. Thus (3.76) transforms to the logarithmic barrier
problem (LBP):

LBP: min 2x)=zlx—pd 0 Inxz; xeR"zeR" >0 (3.78)
s.t. Ax=b A=M(mxn,R),beR™

By suitable reduction of the homotopic parameter p > 0 , the weight of the penalty
term successively and the sequence of points obtained by solving the perturbed problems,
converges to the optimal solution of the original problem.

3.3.3 Some Mathematical Background on Mixed-Integer Optimization

If in the example above the client would have additionally imposed the condition that at
most the use of 3 different tanks was allowed, then the problem would have been a mixed
integer linear program (hereafter called MILP). The solution techniques for such prob-
lems are completely different and are usually not part away of an astronomer’s education.



Therefore, the review of some background on mixed integer optimization seems to be well
justified.

Restricting the domain of all or of a part of variables z; of problem LP to integer values
or to disjoint sets, e.g., € [dy,ds] V © € [d3,d4], d1 < dy < d3 < dy4, an integer (ILP) or a
mixed-integer linear programming problem (MILP) results.

MILP min 2(x,y) =cTx+h'y, x,c€Z", y,heR" (3.79)
s.t. Ax+By =b A e M(m xn,IR)
x>0, y>0 B e M(mxr,R), beR™

Building mixed-integer models requires great caution. Often there exist different possi-
bilities to formulate the restrictions of an optimization problem (Barnhart et al., 1993),
sometimes adding redundant constraints makes an algorithm work faster, e.g., if the gap be-
tween the optimal solutions of the LP-relaxation and of the original problem is diminished
by this. Even some nonlinear optimization problems can be transformed to MILP’s using
special types of discrete variables as shown for instance in Williams (1990) or Garfinkel
and Nemhauser (1972) .

»

e Logical conditions, such as "and”, ”or”, "not”, "implies”, and also disjunctive con-
straints are formulated with binary variables 6 € {0,1}.

e Binary variables can indicate the state of a continuous variable and at the same
time impose upper and lower bounds (L and U) on this variable. The constraints
=0V L <z <U defining a semi-continuous variables x are equivalent to L - § <
x < U-§, where 6 is a binary variable. Some software packages offer semi-continuous
variables to formulate this constraint directly without utilizing an additional binary
variable [(Ashford and Daniel, 1992), (Ashford and Daniel, 1991)] which provides
great advantages for the Branch & Bound procedure.

e Special ordered sets of type n (SOSn)special ordered sets of type n (SOSn)special
ordered sets of type n (SOSn)SOSnSOSn have been developed to formulate com-
mon types of restrictions in mathematical programming. In SOS1 sets of variables
exactly one variable (continuous or integer) must be nonzero. In an SOS2 set two
variables which are adjacent in the ordering of the set or one single variable must be
nonzero. S0OS2 sets often are used to model piecewise linear functions, e.g., linear
approximations of nonlinear functions.

e Programs with products of k binary variables §, = Hle 8i, 6; € {0,1} can be
transformed directly into integer models according to

) k
6y <85, G=1,.0k ; ijléj—épgk—l ;8 €01} . (3.80)

A survey of methods specially designed for solving mixed integer nonlinear problems is
given in Leyffer (1993). A great variety of algorithms to solve mixed integer optimization
problems has arisen during the last decades. Among the best known exact algorithms
for solving integer linear programming problems are the following methods: enumerative
methods, cutting-plane algorithms and dynamic programming.

Efficient enumerative algorithms include pruning criteria so that not all feasible solu-
tions have to be tested for finding the optimal solution and for proving optimality. The
widely used Branch&Bound algorithm with LP-relaxation is the most important represen-
tative of enumerative algorithms.

Cutting plane algorithms for MILP’s are derived from the simplex algorithm. After
computing the continuous optimum by LP-relaxation of the integrality constraints step by
step new constraints are added to the MILP. With the help of these additional inequali-
ties noninteger variables of the continuous solutions are forced to take integer values, see



e.g., (Burkhard, 1972), (Nemhauser and Wolsey, 1988). Cutting plane methods are not
restricted to MILP’s, they are used e.g., in nonlinear and non-differentiable optimization
as well [Lemaréchal in (Nemhauser et al., 1989)].
Dynamic programming ((Nemhauser and Wolsey, 1988), (Ravindran et al., 1987)) is
not a general-purpose algorithm like methods belonging to the first two groups. Originally,
it was developed for the optimization of sequential decision processes. This technique
for multistage problem solving may be applied to linear and nonlinear OPs which can be
described as a nested family of subproblems. The original problem is solved recursively
from the solutions of the subproblems.

Furthermore there exist heuristics, local and global search algorithms as for instance
simulated annealing, tabu search or constraint net propagation (see Section 3.3.5).

3.3.4 Optimizing a Production Network Problem

The project goal was to develope a production planning system for three sites located in
Germany, USA and Asia. Each of the plants can produce the same three products with
equal quality in order to satisfy demands. The quality of products is only guaranteed if
the plant operates at least on a 50% level, otherwise there is no production. The number
of change-overs per year is limited, say 5/year, to reduce risk associated with machine
starting. The model describes a scenario including product changeover times dependent
on production site, discrete transportation capacities, transportation times and inventory
properties, and is characterized by

Plants capacities setuptimes utilization rate | production costs
Inventories | capacities additional inventory security stock inventory costs
'I‘ransport minimal amounts | transport times transport costs
Orders monthly satisfy where possible sales prices

The goal of the plan is to determine production, change-overs, inventory, shipping, and
sales such that demands are satisfied where possible and that the contribution margin
(income minus variable cost for production, changeover, inventory, external purchase and
transport) becomes maximized.

Due to the product change-over time, utilization rates and minimal transport amounts
the models become ”mixed integer”. In order to illustrate this feature, we only concentrate
in what follows on the changeover aspect. To build the model consider a scenario of Ng = 3
sites or plants ¢, Np = 3 products j, and Ny = 3 target countries or product consuming
regions 2. In order to set up the capacity utilization plan (worldwide production plans),
the entire production period Tp = 1 year (360 days) is split up into Nx = 12 discrete
production slices of size AT" = 30 days. Product change-over times Ay ;,, in which only
non-marketable products can be produced and which are dependent on sites and products,
are given. These times are between 2 and 8 days.

The capacity utilization plan (worldwide production plan) is characterized by binary
variables 8;;;, € {0,1}, which indicate whether (at the end of the time interval k) plant 4 is
prepared to produce product j (8;jz = 1) or not (6;;% = 0).

Furthermore, we introduce nonnegative unknowns m;;z (produced quantities) and non-
negative unknowns p;j¢,, which for 2 # ¢ indicate the quantity of product j shipped at
time ¢ from plant ¢ to target country z, and for z = i represent the quantity sold at site <.
The model also takes explicit account of the initial state of capacity utilization 8;;0 = A?j.
It must first be guaranteed that at the end of time interval r the plant is in a unique state



for producing at most one product at a plant, i.e.,
Np
Z&ijk =1 Vi Vk . (3.81)
j=1

The auxiliary variables &;, s,z € {0,1}, j1 # j2 describe whether a changeover is taking
place from product j; to a product jo during time interval k. We allow at most for one
changeover per time interval, i.e., the matrix &;;. either the zero matrix or there is at most
one element which is unity. The coupling of the time interval k to the adjacent production
intervals is guaranteed by the following equations:

Eijrjok 2 Oijih—1 + 0ijor — 1 5 Vi Yk Vi1 Vja with jo # 53 (3.82)

The conditions (3.81,3.82), together with a term describing the changeover costs in the
objective function, and the maximum property of the solution ensure that the &;,;,% au-
tomatically assume only the values 0 or 1; the reduction in computing time by comparison
with the explicit declaration as binary variables is considerable.

The material above could only give a brief idea on how the model is formulated. The
full mathematical model (Kallrath, 1995) including inventory and transport features leads
to a mixed-integer linear programming problem with 72 binary, 248 semi-continuous and
1401 continuous variables, and eventually 976 constraints. For the numerical computation
the commercial software package XPRESS-MP was used on an 80386-PC.

3.3.5 The Pooling Problem

The pooling problem is a typical example for a nonlinear relation occurring in mathematical
optimization. When one models a petrochemical network of plants one often faces the
problem to pool together n feed streams i of different quality. The feed streams have
unknown inflow rates x;. The quality of feed stream ¢ may be characterized, for instance,
by the contents or concentration C; of aromatic compounds in that stream. The pool yields
a product of average aromatic compound concentration, ¢,

c-x= Z Cix; (3.83)
i=1

where X is the total pool volume or the total out flow rate. Note that the quantities z, z;,
and ¢ are unknown variables while the concentrations C; may be known in advance. As
shown in Fig.8a) streams leaving the pool have concentration ¢. If such a stream is fed
into a process unit a illustrated in Fig.8b) then for instance the total amount of aromatic
compounds this unit could take may be limited by an upper bound A*. In that case a

constraint
yi-c < AT (3.84)

needs to be added. Both (3.83) and (3.84) are nonlinear constraints. If only a few nonlinear
equations are present then special techniques such as sequential linear programming (SLP)
or distributive recursion (DR) are applied. In sequential linear programming, the nonlinear
product terms ¢ -z and y; - ¢ are replaced by their Taylor series approximations. Letting
¢p and xo be the current values of ¢ and x, the first order approximation for c¢- x is

c-xeo-xo+ao-(c—co)teo-(x—x0)=co-x+z0-Ac . (3.85)
The right-hand-side of (3.85) is linear and has the unknowns x and Ac,

Ac=c—cy . (3.86)
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Figure 8: The pooling problem and a process unit fed by a pool

The pool concentration, ¢, acts as a nonlinear variable, whose change, Ac, is determined
by solving the LP. This leads to a new value of ¢, determined by (3.86), which is used
to initiate the next iteration, replacing cg. Note that x acts as a special linear variable
with nonconstant coefficient ¢y. Most SLP implementations include bounds on all ” Ac”
variables, of the form

—S<Ac< S (3.87)

where S is a step bound, imposed to insure that the Taylor series approximations are suf-
ficiently accurate. SLP and DR have different approaches towards the presence of the step
bounds and the logic for varying them. Using the rules described in Zhang et al. (1985),
convergence of SLP to a local optimum can be proven for any differentiable nonlinear
constraint or objective function.

Convergence question become even more important in mixed integer nonlinear opti-
mization problem (MINLP). Assume that in addition to the constraints (3.83) and (3.84)
some processing units can only be operated in specific, i.e., discrete modes. Then we have
a mixed integer nonlinear optimization problem. Within the framework of exact optimiza-
tion these problems can either be solved by combining the SLP method and the Branch &
Bound algorithm, or by transforming the nonlinear relations into piece-wise linear relations
represented by the SOS2 type variables introduced in Section 3.3.3.

Solving Scheduling Problems There is one class of problems, namely scheduling prob-
lems, whose complexity can easily exceed today’s hardware and algorithmic capabilities.
In some cases, it is not possible to prove optimality. To estimate the quality of the solution,
save bounds are derived, instead. In order to solve complex mixed-integer models with not
only a few hundred, but rather a few thousand, or even tenthousands of discrete variables,
BASF initiated the project PAMIPS. PAMIPS (Parallel Algorithm and software for Mixed
Integer Programming in Industrial Scheduling) is a project supported under ESPRIT con-
necting four industrial partners and three universities. The project team tries to solve
scheduling, production planning, and network design problems with parallel mixed-integer
optimisation.

The exact methods briefly described in Section 3.3.3 for solving mixed-integer problems



provide two different ways for the parallelization: the combinatorial part of the algorithm
and the linear program algorithm. The combinatorial part is either a Branch&Bound or
a Branch&Cut algorithm. In both cases it is necessary to solve many linear subproblems.
Obviously, the evaluation of the subproblems may be performed by a network of parallel
processors or workstations.

The linear optimization kernel is much more difficult to optimize. As described in
Section 3.3.2 commercial software uses two methods to solve linear programs: revised
Simplex-algorithm and interior point methods. There exist attempts to parallelize the
Simplex-algorithm, but they only obtained a low speed-up. Therefore, there is more op-
timism towards the parallelization of interior point methods. The major numerical work
of solving interior point methods is to solve nonlinear systems of equations. Linearization
in combination with Newton’s method leads to linear systems of equations. On that level,
broad experience with parallelization is available.

But even using parallel algorithms and hardware scheduling problems are often to
complex, and cannot be solved with exact methods. In that case the last resort is to
use heuristics, e.g., simulated annealing, tabu search, or as in the case discussed below,
constraint net propagation. In her master’s thesis, S. Heipcke (1995) investigated two
scheduling problems. During the time working on that thesis, she was a guest at BASF-
AG in Ludwigshafen and applied both methods, constraint net propagation versus mixed
integer programming.

Constraint nets are a concept of artificial intelligence research. They can be used to
represent complex solution spaces in a natural manner by local relations between variables,
generally called constraints. Concerning the structure of these relations there are no re-
strictions or limitations, e.g., to linear constraints. Local propagation techniques support
the search for optimal solutions in constrained problems. They can significantly reduce the
size of the solution space to be inspected.

The scheduling problem to be solved was the following: The client uses a set of machines
and employs a number of workers. He receives orders from his clients. Each order demands
a certain amount of a product, which can be produced on the machines of the client. The
machines are operated and supervised by the workers. Orders are often split up into several
identical jobs, which are necessary in order to produce the required amount of the product,
because many times orders demand more amount of product than the machine capacity.
A job for a given order is processed on a machine according to a procedure. A procedure
defines and describes the structure of a job. It consists of a sequence of tasks defining how
to produce some amount of a product. The amount of product produced by a job depends
on the capacity of the machine. The tasks have to be carried out in a predetermined order.
Each task has a demand for labour and a certain duration, defined by the detailed personnel
profile. The workers are allocated to the different tasks in order to keep the jobs running.
Allocation of the workers has to comply with working regulation rules, e.g. taking breaks,
washing time, equally spread labour among the workers, limits on labour intensive work,
over-occupation rate and time. The mathematical formulation of this scheduling problem
includes an assignment model, a sequencing model, and a time-indexed formulation in order
to incorporate the detailed personnel profile. The objective is to optimize this production
system, i.e., to minimise the makespan and/or to minimise the (variation in the) number
of workers.

The second example deals with scheduling a set of computations on a cluster of parallel
uniform workstations. Multiple resource constraints arise for each task from its require-
ments of harddisk space and memory of the processor. Some tasks may be processed on
several parallel machines, others may be subdivided into tasks with different resource re-
quirements each running on a single machine. A decomposition strategy for this problem
was formulated, dividing the constraint representation into two interacting constraint nets.
A heuristic based on simulated annealing generates feasible matchings of machines and
jobs, a second constraint net computes a feasible schedule for each configuration using a



branch-and-bound algorithm. This decomposition algorithm obviously does not prove op-
timality, theoretical results on the convergence of simulated annealing cannot be applied
in this case, because the schedules generated by the second ”inner” constraint net are not
necessarily optimal solutions.

For a full discussion and results achieved for both problems the reader is referred to
Heipcke et al. (1995).

4 Some helpful hints and topics from the discussion

A question often heard: How important is the age of an applicant for switching from
University to Industry ? The most frequently provided answer is that 30 or 32 years
is a critical age, since many decisions affecting the whole of one’s life are taken at that
time. Nevertheless, the age mentioned above is not a potential well as in classical mechan-
ics. What counts more, and that is true even for applicants of 35-40 is what kind of a
background the candidate has. Having spent some time abroad certainly increases one’s
chances. Some secondary qualification, e.g., a useful foreign language such as Spanish or
Japanese, or having run one’s own company for a while is a worthwhile extra qualification,
too. Although astronomers which have also studied law are pretty rare (usually it works
the other way round; remember E.P. Hubble), they do exist, and of course have increased
chances. Conclusion: there is life after 30. But some positive values, special qualification,
have to counterbalance the age. If two candidates fulfill all criteria equally, then usually
the younger one is chosen. After all, the company can expect longer service from a younger
individual.

Probably more important than age is the way how the application is made. The well-
defined way is to submit an application to the recruiting office of the company of choice
including all the necessary material such as curriculum vitae and certificates. Because
initiative is an important criterion it may increase chances for success if the applicant
seeks for direct contact with the people in the company with whom he wants to work.
Such action proves why he wants to join this company and this particular group, and it
supports an early matching of the profile between the applicant and the company possibly
seeking somebody with such a profile. The question is how to establish such contacts.
There is no recipe but there are a few opportunities that are worth checking:

e an increasing number of companies are on the WorldWideWeb;

e companies are usually happy to have students join them in a practicum, as co-op
students, or in other sorts of arrangements;

e if the special qualifications fit a group’s profile, PostDoc positions are available;

e the center of the ”Deutsche Physikalische Gesellschaft” in Bad Honnef keeps records
of companies that offer practica etc. for physicists; astronomers and astrophysicist
could also take advantage of this;

e there are conferences and symposia on applied physics and mathematics in industry,
usually this is the best place to meet people from physics or mathematics groups in
companies;

e the IM-NET, a German electronic newsletter for mathematics in industry which also
contains job offers; request detailed info at im-net@iwr.uni-heidelberg.de;

e there is also the ” Arbeitskreis Mathematik in Forschung und Praxis”; for details
contact bock@iwr.uni-heidelberg.de or koama@math.uni-duisburg.de;



e regionally, there are working groups, e.g., the ”Gesprachskreis Rhein-Neckar”; this
group meets regularly and brings together people from universities and industry; visit
them — usually a free dinner or snack is included.

The topics mentioned provide some options. Certainly, there are other ways to proceed.
When one does astronomy or astrophysics, one should do it with the joy and seriousness it
deserves. But it cannot do any harm to look over the fence and take some interest in what
other people and disciplines are doing. Most of all it is important whatever somebody
does, it should be done in a convincing way, and with joy. This point is also important
from the point of view that the group hiring somebody is interested in enriching the group
by an open minded, easy-going colleague. Social skills, integration into a group, and even
hobbies become important.

5 Conclusions

The problems discussed and presented show that work in industry, as far as it is related to
mathematical modeling using the laws of physics, chemistry, biology, or even economics,
and real world problem solving has at least four dimensions:

e the modeling part,
e the mathematical, usually numerical solution part,
e the software part, and

e documentation and presentation of results.

These allow one to bring in astronomers’ and astrophysicists’ broad mathematical and phys-
ical background. Concerning the modeling of real world problem, the scientist in industry
who is involved in the project finds himself often in a similar position as an astrophysicist
who models a cosmic object and is searching for appropriate equations to describe the
phenomenon. He has to formulate the proper relations that describe the essential charac-
teristics of the problem. If he has experience in modeling (it hardly matters in what field)
he will have a great advantage. Although the object of application is of course different
the principles and even some techniques used to solve the problem may be identical.

Often there is commercial software available especially designed for the problem in ques-
tion. Yet, the scientist still has the difficult task to apply the software, and e.g., to push
a least squares solver towards convergence quickly. This is only possible if he is familiar
with the basic techniques used by the algorithms and if he also has an understanding of the
behaviour of the mathematical system and the real chemical or physical system. Usually
there are several algorithms or numeric packages available. Knowledge about their exis-
tence and properties becomes often essential. Here astronomers and astrophysicists have
the advantage that they are the most frequent users of the InterNet and WorldWideWeb
which can also be used to gain familiarity with lots of software packages, utilities, retrieval
techniques etc.

While there is a lot of similarity to university work (sometimes entailing even scientific
proposals send to DFG, BMFT, or the European Community), there are a few important
differences: validation and communication. In contrast to some branches of astrophysics,
e.g., cosmology, practical modeling can and must be tested against reality.

Commaunication is very important for successful work in industry. Communication is
even more important when one works in a mathematics group in industry. Consider that
the chemical industry is a process industry, which makes it different from the automobile in-
dustry or others which produce by piece, there is another important point to be said about
chemistry. Chemists are practical scientists who are further removed from mathematical



modeling than physicists or astronomers (the quantum chemists are an exception; they
are actually more like physicists). Also, practical scientists regard mathematical modeling
sometimes with some scepticism. While scientists at universities and research institutes
usually communicate among themselves, in industry communication with colleagues from
completely different disciplines and with totally different background is necessary for suc-
cess. While this interdisciplinary character may create communication problems, it really
enriches the work by many new aspects.

The overall conclusion is that if one’s background and interest in practical problems
fit a field in which interdisciplinary communication and mathematical modeling play an
important role, then real chances for finding an interesting occupation exist and give reason
for some optimism.
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