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Tailored for a complex application in the process industry, this paper examines
a multi-product production planning and scheduling problem with sequence-
dependent setup cost and times. The manufacturing process is characterized
by a two-stage structure where the sequencing problem occurs on the first level
and contribution margin, holding cost, penalty cost are accounted on the sec-
ond level. We present a hybrid mixed-binary optimization model based on the
General Lot-sizing and Scheduling Problem (GLSP) of Fleischmann and Meyr
(1997), which combines discrete and continuous-time elements within a stan-
dard Inventory and Lot-size (I&L) formulation. Since the I&L formulation does
not provide sharp LP-relaxation bounds, we present two alternative reformula-
tions based on a transportation problem. In a numerical study inspired by real
industry data we show that on average both reformulations yield significant
improvements in computation time and integrality gap.

Keywords: Lot-sizing; scheduling; mixed-integer programming; reformulations; process
industry

1. Introduction and literature review

Applications of quantitative models and computer-based planning systems have received
considerable attention in the process industry. Since changeover operations are com-
plex and expensive in time and cost, spreadsheet-based planning and scheduling quickly
becomes inadequate and more sophisticated solutions are required. Advances in informa-
tion technology and progress in the development of quantitative methods enabled many
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successful implementations of advanced planning systems (APS) tailored to industry re-
quirements and to support decision-making on strategic, tactical, and operational levels
(Günther and Van Beek 2003). However, complex product and manufacturing structures
are often not properly incorporated within standard APS so that customized planning
models are required.

Simultaneous lot-sizing and sequencing problems with sequence-dependent setup cost
and setup times have received a lot of attention in the literature. Drexl and Kimms
(1997) summarize contributions up to 1996. A comprehensive overview is provided in
Sürie (2005) and Jans and Degraeve (2008). An extensive overview of planning and
scheduling problems with a focus on the process industry is given by Kallrath (2002).

The majority of lot-sizing and scheduling problems are formulated on a discrete time
scale using either a large-bucket time scale where multiple items can be produced in each
period, or a small-bucket time scale where only one item is produced in each period. The
Capacitated Lot Sizing and Scheduling Problem (CLSP) is the most basic large-bucket
lot-sizing problem where scheduling decisions are not incorporated are usually solved
separately from the lot-sizing problem (Karimi et al. 2003). In order to integrate the lot-
sizing and scheduling problem into large-bucket problems, Lasserre (1992) develops a two-
stage integrated production planning and job-shop scheduling approach. Clark and Clark
(2000) develop a mixed-integer programming formulation for a multi-product lot-sizing
problem with sequence-dependent setup times where multiple setups per planning period
are allowed. They test static and rolling-horizon formulations. Clark and Clark (2010)
propose a lot-sizing and scheduling approach with sequence-dependent setup times at
an animal nutrition plant, which is based on the asymmetric traveling salesman problem
(ATSP). The Discrete Lot Sizing and Scheduling Problem (DLSP), introduced by Lasdon
and Terjung (1971) is the fundamental small-bucket model. It provides the ability to
completely integrate lot-sizing and scheduling decisions. Several papers have examined
theoretical and computational aspects of the DLSP in general and of the DLSP with
sequence dependencies (DLSDSD), among others Salomon et al. (1997), Fleischmann
(1994), and Jordan and Drexl (1998). The primary limitation of using discrete time
scales is the unnecessary increase of the overall problem size due to the introduction
of additional binary variables associated with each discrete time interval. This inherent
limitation has attracted the development of continuous time scale models. The basic idea
is that beginning and/or ending of a period, usually defined as events, are endogenous
variables with the consequence that the duration of periods is not necessarily equal.
Due to the variability of events, the scheduling process becomes challenging since the
mathematical model is more complicated compared to a discrete-time model. However,
continuous-time approaches require much less computational effort compared to discrete-
time models (Floudas and Lin 2004).

Hybrid models refer to a class of models which combine large-bucket and small-bucket
time scales. The most general hybrid model is the General Lot Sizing and Scheduling
Problem (GLSP) introduced by Fleischmann and Meyr (1997). The GLSP is essentially
a large bucket model but it also includes an internal variable time scale within each
particular large bucket period that determines the size and position of production lots.
Koçlar and Süral (2005) show that the GLSP of Fleischmann and Meyr (1997) has
the limitation in a way that the production state between two consecutive periods is
only conserved if the available capacity exceeds the minimum production quantity. They
generalize the model by a additional constraints. The most comprehensive study of the
GLSP with sequence-dependent changeovers is provided by Koçlar (2005) who discusses
the impact and validity of some commonly encountered assumptions.
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It is commonly known that the conventional I&L modeling approach that uses produc-
tion and inventory variables for every production period does not provide strong lower
bounds in the LP relaxation for traditional capacitated lot-sizing and scheduling prob-
lems. Pochet and Wolsey (2006) provide the fundamental theory on reformulations for
lot-sizing and scheduling problems. Models with variable redefinitions as a network rep-
resentation are originally introduced by Krarup and Bilde (1977), Rosling (1986), and
Eppen and Martin (1987). Many authors use their findings to investigate tighter formu-
lations of the CLSP, e.g., Stadtler (1996) and Denizel and Süral (2006) (“tighter” in this
context means that the respective LP relaxation is closer to the optimal objective value).

To the best of our knowledge Koçlar (2005) is the only study that analyzes refor-
mulations of lot-sizing and planning problems in a GLSP context considering sequence-
dependent setup costs and setup times. Koçlar (2005) presents an alternative formulation
of the GLSP based on the Transportation Problem (TP) and tests LP-relaxation and
MIP performance, and shows that the MIP performance is highly sensitive with respect
to the parameter settings even for small test instances. However, the numerical experi-
ments is confined to small test instances. Koçlar (2005) also investigates the impact of
minimum production quantities. The results turn out that minimum production quanti-
ties do not affect the MIP performance for small test instances. However, we will show
later that this result does not hold for real world test instances. Although a wide range of
papers does exist that study lot-sizing and planning problems as well as the superiority
of efficient reformulations, only few studies evaluate models and reformulations based on
real industry data, e.g., Tempelmeier and Buschkühl (2008), Kimms and Motta Toledo
(2003), and Burman and Gershwin (1996).

This paper is the result of a project with a chemical company, specifically, a surfactant
manufacturer. The planning model contains a lot-sizing kernel where two subsequent
product batches require sequence-dependent setup costs and setup times. We present a
hybrid mixed-binary optimization model based on the General Lot-sizing and Scheduling
Problem (GLSP). We propose two alternative reformulations derived from the Trans-
portation problem (TP) formulation of Denizel and Süral (2006) and Koçlar (2005). The
first reformulation, called Quantity-based transportation problem (QTP), disaggregates
production variables of each period into separate variables related to the size of each pe-
riod demand satisfied from the period’s production (see e.g. Denizel and Süral (2006)).
The Proportional transportation problem (PTP) disaggregates production variables in
a similar way, however, instead of defining demand quantities, the PTP uses the pro-
portion of a period’s demand satisfied from the production in previous periods (see,
e.g., Tempelmeier and Buschkühl (2008) or Sürie and Stadtler (2003)). A computational
experiment using real industry data highlights the average superiority of the TP reformu-
lations compared to the conventional I&L formulation, however, it also indicates that the
TP reformulations do not always outperform the I&L formulation. Under tight runtime
restrictions, the average superiority is not statistically significant.

The remainder of the paper is organized as follows. In Section 2 we describe the tailored
hybrid GLSP model based on a conventional I&L formulation. Section 3 presents the two
reformulations. Section 4 illustrates the complexity of the hybrid-GLSP formulation and
shows results of a computational experiment using real industry data where the perfor-
mance the hybrid GLSP and both TP reformulations is analyzed under various runtime
restrictions. We also describe how the model has been integrated into the company’s
planning process. We summarize our work in Section 5.
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2. Model

2.1. Model assumptions and notation

We formulate the lot-sizing and scheduling problem as a mixed-binary model and include
several company-specific requirements. The production process is characterized by a two-
stage product structure. On the first stage (product level), lot-sizing and sequencing for
multiple products is planned. The production is characterized by sequence-dependent
setup cost and setup times, and for each product a minimum lot-size has to be satisfied.
During production, products are split up into one or multiple articles (article level).
Articles differ in their respective contribution margin, capacity consumption, and holding
cost.

We assume that K products are processed on a single resource with limited production
capacity. The production process splits these products into I articles where each article
is assigned to exactly one product. Products and articles are indexed by k ∈ K :=
{1, . . . ,K} and i ∈ I := {1, . . . , I}, respectively, with K ≤ I. The product-article
allocation is represented by an incidence matrix Aik with Aik = 1, if article i is an
outcome of product k and Aik = 0, otherwise. The finite planning horizon is divided
into a two-level time scale represented by macro and micro periods. Macro periods,
representing months, are denoted by t ∈ T := {1, . . . , T } and are assumed to be fixed
and equidistant. In any macro period t, multiple setup operations are allowed. However,
the available production time, in the following defined as available capacity, is limited
by Ct. Dti denotes demand of article i, which is supposed to be available at the end of
macro period t. In contrast to the macro period time scale, the micro period time scale,
indexed by s ∈ S := {1, . . . , S}, is a continuous event-based representation of time and
is characterized by variable and non-equidistant time periods. Any micro period s is
defined by the time points τs and τs−1, the ending time of micro period s and s − 1,
respectively. Since the production capacity in macro period t is the available production
time, the production capacity of a micro period s within a macro period t is the available
production time within micro period s, i.e., Ct(τs − τs−1). In any micro period s only a
single setup operation is allowed inducing that only one product can be produced.

At the beginning of each micro period s the machine is set up for a particular product
k. Within each period s, first the production process of product k is completed before the
changeover operation, if any, is performed. The length of s depends on the production
time of product k as well as the sequence-dependent setup time if the machine is set up
from product k to product l. Pk describes the capacity consumption to produce one unit
of product k, Zkl is the sequence-dependent setup time, and the sum of production and
setup time must not exceed the production capacity of s. If a changeover operation to
product k was performed in micro period s − 1, the minimum production requirement
of product k in period s is Qk. If no setup operation is performed, the machine setup is
carried over into the next micro period. We denote Pi as the capacity consumption to
produce one unit of article i with Pi = Pk for Aik = 1.

As changeover times alone would not cover the full picture of reality related to
changeovers (risk of startup, quality loss in part of the production, etc.), the number of
changeover operations should be limited in each period to at most W setups. Accordingly,
we assume that every period t contains exactly W micro periods and the total number
of micro periods over the entire planning horizon is S = WT . The special case W = K
allows that all products can be produced within a macro period. This most general for-
mulation provides the highest flexibility in terms of determining the optimal number of
setups. Let the subset St ⊂ S define the set of all micro periods s that form macro
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period t with |St| = W . Furthermore, we define S̄ ⊂ S with S̄ = {W, 2W, . . . , TW }
all micro periods s representing the last micro period of a macro period. To couple ex-
ogenous macro and endogenous micro period time scale, it is assumed that for all s ∈ S̄
the ending time τs is fixed and equal to the ending time of its macro period, i.e., τW = 1,
τ2W = 2.

Several company-specific requirements have been incorporated. According to the com-
pany’s production philosophy, the quantity which satisfies the demand in a certain period
has to be available at the end of the previous period. The underlying strategy having
all demand available at the beginning of a month is to provide a higher flexibility and
product availability. An implication of this philosophy is that the on-hand inventory at
the beginning of the first production period contains the demand of this period, which
is not element of the planning horizon. To determine the “actual” initial inventory level
being available to satisfy demand of the planning horizon, the demand of the first pro-
duction period has to be deducted from the initial on-hand inventory, which allows the
initial inventory to be negative. Let ȳ0i define the initial inventory level of article i after
deducting the first-period demand. For the sake of model feasibility, the model allows
unsatisfied demand (unscheduled products). However, in order to penalize unsatisfied
demand the company required to include penalty cost associated to each unit unsatisfied
demand. Furthermore, the planning tool has to be able to fix production quantities in cer-
tain macro period. In these “fixed macro periods” only a predetermined and exogenously
fixed production plan can be produced. Macro periods with fixed production schedules
are denoted by Tf := {1, . . . , Tf} ⊆ T , the set of “fixed macro periods”. For any period
tf ∈ Tf production quantities of all products are exogenously given by Q̄tf k ≥ 0. Another
requirement arose by a limited product availability. For example, if a certain product is
known to be limited with the consequence that only 80% of the capacity can be uti-
lized, the available production capacity for this particular product can be exogenously
reduced to 80%. Formally, let Gtk ∈ [0, 1] be the known unused fraction of capacity Ct

for product k in macro period t. Hence, (1 − Gtk)Ct is the maximum capacity available
to produce product k. If Gtk = 0, then the entire capacity is available for product k in
period t, and if Gtk = 1 no capacity is available. We furthermore define x(t) as the t−th
entry of set x, e.g., S̄ (t) is the t−th entry of set S̄ . We define the following revenue
and cost parameters: Ri denotes the marginal revenue per unit of article i, Vkl denotes
the sequence-dependent setup cost, if a setup operation from product k to product l is
performed, Hi denotes the inventory holding cost per unit of article i occurring at the
end of a macro period, and Fi denotes the penalty cost per unit lost sale of article i.

2.2. Model

We define the following decision variables:

qsk : Production quantity of product k in micro period s,
psi : Production quantity of article i in micro period s,
yti : Inventory level of article i at the end of macro period t,
xti : Sales of article i in macro period t,
γsk : Setup state variable; γsk = 1, if the system is set up for product k in micro period
s; otherwise γsk = 0,
ξskl : Sequence-dependent setup variable; ξskl = 1, if a setup operation from product
k to product l is performed in micro period s; otherwise ξskl = 0,
τs : Ending time of micro period s,
f0i : Unsatisfied demand given a negative initial inventory, which could not be satisfied
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in the first production period.

The objective is to maximize the total profit Π over the entire planning horizon and is
expressed by (1).

Π =
∑

t∈T

∑

i∈I

Rixti

︸ ︷︷ ︸
Revenue

−
∑

s∈S

∑

k∈K

∑

l∈K

Vklξskl

︸ ︷︷ ︸
Setup cost

−
∑

t∈T

∑

i∈I

Hi(yti + xti)

︸ ︷︷ ︸
Holding cost

−
∑

t∈T

∑

i∈I

Fi(Dti − xti) −
∑

i∈I

Fif0i

︸ ︷︷ ︸
Penalty cost

(1)

Π is the total revenue minus total cost, i.e., inventory holding cost, setup cost, and
penalty cost. Sequence-dependent setup cost are charged in every micro period s where
a product changeover occurs. Holding cost are computed at the end of a macro period
t. Unlike classic lot-sizing problems where the demand of a period is not included in the
final inventory of this period, in our problem the demand, which has to be available at
the end of period t is actually needed to satisfy demand of period t + 1. Accordingly,
holding cost are also charged to sales of period t. The first term of penalty costs
represents cost that occur if the inventory level at the end of a macro period t does not
cover demand. The second term represents penalty cost for unsatisfied demand out of
a negative initial inventory which could not be satisfied in the first production period.
The following constraints have to be taken into account.

Inventory balance equation

ȳ0i +
∑

s∈S1

psi − x1i + f0i = y1i ∀i ∈ I (2)

ȳ0i +
∑

s∈S1

psi + f0i ≥ 0 ∀i ∈ I (3)

yt−1,i +
∑

s∈St

psi − xti = yti ∀t ∈ T \{1} and i ∈ I (4)

Constraints (2) and (4) are standard inventory balance equations. Constraint (3) is
necessary since we allow ȳ0i to be negative, i.e., there might be some unsatisfied demand
from past periods, which can be produced in the first macro period. If there is no
remaining capacity, this demand is lost and f0i is positive.

Sales restriction

xti ≤ Dti ∀t ∈ T and i ∈ I (5)

The sales constraint ensures that sales of article i in macro period t cannot be larger
than the demand of that particular period.
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Capacity constraint of micro period s

∑

k∈K

Pkqsk +
∑

k∈K

∑

l∈K

Zklξskl ≤ Ct(τs − τs−1) ∀t ∈ T and s ∈ St (6)

The available production capacity of every s is given by Ct(τs − τs−1), which is the
fraction of the available capacity in macro period t used in micro period s. Constraint
(6) ensures that the production time plus setup time never exceeds available capacity.

Coupling of endogenous micro-period and exogenous macro-period time scale

τS̄ (t) = t ∀t ∈ T (7)

To couple micro periods and macro periods the ending time of a micro period s which
is also the last period of macro period t has to be equal to t, the fixed ending time of
macro period t.

Logic condition

qsk ≤ Ctγsk ∀t ∈ T , s ∈ St, and k ∈ K , (8)

This condition ensures that product k can only be produced in micro period s, if the
system is set up on product k at the beginning of this micro period.

Minimum production requirement

qsk ≥ Qk(γsk − γs−1k) ∀s ∈ S \S̄ and k ∈ K , (9)

qsk + qs+1k ≥ Qk(γsk − γs−1k) ∀s ∈ S̄ and k ∈ K , (10)

Constraints (9) and (10) ensure that after a product changeover from any arbitrary
product to product k a lot of at least the minimum production quantity of Qk units is
produced. The original GLSP formulation of Fleischmann and Meyr (1997), which only
contains constraint (9), is unable to find feasible solutions for cases when producing
the minimum production quantity spills over two macro periods. In their formulation
it is necessary to complete the minimum production quantity within a micro period,
which is satisfied by constraint (9). Constraint (10) is necessary to ensure a continuous
production process across macro periods, i.e., if the time interval of the last micro
period within a macro period is not sufficient to produce the minimum quantity and
production is continued in the next macro period, then the sum of two consecutive
production quantities qsk and qs+1k has to satisfy the minimum production quantity.
However, constraints (10) are only necessary for all s ∈ S̄ since these periods have a
fixed ending time (Koçlar and Süral 2005).

Changeover logic

γs−1k + γsl ≤ ξs−1kl + 1 ∀s ∈ S and k, l ∈ K (11)
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This constraint satisfies that a changeover operation from product k to l is performed if
the setup state in two consecutive micro periods is on k and l.

Product-article balance

qsk =
∑

i∈I

Aikpsi ∀s ∈ S and k ∈ K (12)

Constraints (12) ensure that the production quantity of product k in micro period s is
equal to the sum of all associated articles produced in s.

Setup existence

∑

k∈K

γsk = 1 ∀s ∈ S (13)

These constraints impose that a certain setup state must exist in every micro period s.

Limited production capacity available for each product

∑

s∈St

Pkqsk ≤ (1 − Gtk)Ct ∀t ∈ T and k ∈ K (14)

These constraints exogenously limit the maximum available production capacity for
each product in each period. If Gtk = 0, there is no additional capacity limitation and
qsk is bounded by (6) and (8).

Macro periods with fixed production quantities

∑

s∈Stf

qsk = Q̄tf k ∀tf ∈ Tf and k ∈ K (15)

Constraints (15) ensure that if a macro period t is element of Tf , for any product k
only exogenously given production quantities can be produced.

Binary and non-negativity constraints

γsk ∈ {0, 1} ∀s ∈ S and k ∈ K (16)

qsk, psi, xti, yti, τs, ξskl ≥ 0, f0i ≥ 0 ∀t ∈ T , s ∈ S , k, l ∈ K , and i ∈ I (17)

The last two constraints, (16) and (17), define the domains of the binary and continuous
variables, respectively. Although the variables ξskl have to be binary, it is sufficient to
declare these variables as non-negative because objective function (1) and constraints
(11) ensure the binary property.
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3. Reformulation

In this section we consider two alternative reformulations of the hybrid GLSP formulated
in Section 2. We use the concept of the Transportation problem (TP) reformulation of
Denizel and Süral (2006) and Koçlar (2005). While the first reformulation (quantity-based
TP) is a quantity-based disaggregation where production quantities are allocated to the
required demand period (Denizel and Süral 2006), the second approach (proportional-
based TP) redefines production variables as a proportion of demand that is produced in
a particular period (Tempelmeier and Buschkühl 2008).

Quantity-based transportation problem (QTP)

The QTP disaggregates decision variables for every production quantity in micro period
s related to the demand period when the quantity is required. This reformulation requires
a transformation of production decisions on the article level. Let qsti denote the amount of
the article-i demand in macro period t, which is produced in micro period s, s = 1, . . . , S,
t = 1, . . . , T , and s ≤ tW to exclude backordering. Therefore, production variables on
product and article level are

psi =
T∑

t=d s

W
e

qsti and qsk =
∑

i∈I

T∑

t=d s

W
e

Aikqsti. (18)

Moreover, we define y0ti as the demand of article i and macro period t which is satis-
fied from initial inventory. By this reformulation, sales and production variables can be
replaced. Sales of article i in macro period t is the sum of the initial inventory reserved
to satisfy demand in period t and the production quantities from micro period 1 to tW
related to macro period t, i.e.,

xti = y0ti +
tW∑

s=1

qsti. (19)

Moreover, there is no longer the need to have additional inventory decision variables
since inventory can be replaced as follows:

yti = ȳ0i −
(t−1)W∑

l=1

y0li +
tW∑

s=1

T∑

l=t

qsli, (20)

where
(
ȳ0i −

∑(t−1)W
l=1 y0li

)
represents the initial inventory of article i after satisfying

demand from period 1 to t − 1. Thus, the optimization problem is:

ΠQTP =
∑

t∈T

∑

i∈I

Ri

(

y0ti +
tW∑

s=1

qsti

)

−
∑

t∈T

∑

i∈I

Hi



ȳ0i −
(t−1)W∑

l=1

y0li +
tW∑

s=1

T∑

l=t

qsli





−
∑

s∈S

∑

k∈K

∑

l∈K

Vklξskl −
∑

t∈T

∑

i∈I

Fi

(

Dti −

(

y0ti +
tW∑

s=1

qsti

))

−
∑

i

Fif0i(21)
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s.t. y01i +
∑

s∈S1

qs1i + f0i − Dti = 0 ∀i ∈ I (22)

ȳ0i +
∑

s∈S1

qs1i + f0i ≥ 0 ∀i ∈ I (23)

∑

t∈T

y0ti ≤ ȳ0i ∀i ∈ I (24)

y0ti +
tW∑

s=1

qsti ≤ Dti ∀t ∈ T and i ∈ I (25)

∑

i∈I

T∑

l=d s

W
e

Piqsli +
∑

k∈K

∑

l∈K

Zklξskl ≤ Ct(τs − τs−1) ∀t ∈ T and s ∈ St (26)

τS (t) = t ∀t ∈ T (27)

Aikqsti ≤ γskCt ∀s ∈ S , k ∈ K , i ∈ I , and t ∈ T (28)

∑

i∈I

T∑

t=d s

W
e

Aikqsti ≥ Qk(γsk − γs−1k) ∀s ∈ S \S̄ and k ∈ K (29)

∑

i∈I

T∑

t=d s

W
e

Aik(qsti + qs+1ti) ≥ Qk(γsk − γs−1k) ∀s ∈ S̄ and k ∈ K (30)

γs−1k + γsl ≤ ξs−1kl + 1 ∀s ∈ S and k, l ∈ K (31)
∑

k∈K

γsk = 1 ∀s ∈ S (32)

∑

s∈St

Pi

∑

i∈I

T∑

t=d s

W
e

Aikqsli ≤ (1 − Gtk)Ct ∀t ∈ T and k ∈ K (33)

∑

s∈Stf

∑

i∈I

T∑

l=d s

W
e

Aikqsli = Q̄tf k ∀tf ∈ Tf and k ∈ K (34)

γsk ∈ {0, 1} ∀s ∈ S and k ∈ K (35)

y0ti, qsti, τs, ξskl, f0i ≥ 0 ∀t ∈ T , s ∈ S , k, l ∈ K , and i ∈ I (36)

As in the previous section, the total profit (21) is the total revenue minus total costs.
Constraints (22) and (23) are related to the inventory balance equations (2) and (3)
but are reformulated. (22) ensures that for any article i the sales in macro period 1
plus lost sales is equal to demand. Moreover, constraint (23) ensures that there is no
negative inventory at the end of macro period 1. Inventory balance equations (4) are
not needed anymore since inventory variables are replaced by production variables (20).
(24) makes sure that initial inventory sold over the planning horizon does not exceed
the actual inventory level. Since f0i and y0ti are non-negative for all i and t, by using
(24) and the objective function (21) it can be seen that if y0ti > 0 for at least one t,
then f0i = 0. Constraints (25) correspond to (5) with xti replaced by (19). (26) is the
capacity constraint in a micro period s corresponding to (6) with qsk replaced by (18).
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There is no need for a reformulation of constraint (27). In constraint (28) qsk is replaced
by Aikqsti with the effect that if article i is an outcome of product k, this article can only
be produced in period s, if the system is set up on product k. Constraints (29)-(30) and
(33)-(34) correspond to (9)-(10) and (12)-(13), respectively, with qsk replaced by (18).
Constraints (31), (32), (35), and (36) do not need to be reformulated.

Comparing the model dimensions of I&L and QTP formulation shows that the number
of constraints is not affected by the reformulation. Both types of formulations comprise
2IT + 2S + T (K + 1) + 2SK + K2S constraints (assuming we substitute qsk by psi in
the I&L formulation as in (12) and there is no macro period with a fixed production
schedule). The main distinguishing characteristics between I&L and QTP formulation is
the number of decision variables, in particular, the number of production and inventory
variables. The I&L formulation comprises IWT production variables on the article
level and IT inventory variables. Hence, the total number of production and inventory
variables is IWT + IT , which is linearly increasing with the number of setup operations
W and the number of macro periods T . The QTP comprises IWT

2 (T + 1) production
variables, but no inventory variables. It can be seen that the number of variables
quadratically increases with the number of macro periods but it linearly increases with
the number of allowable setup operations. Some algebraic manipulations allow a better
comparison of the number of decision variables. The number of variables in the QTP
formulation is IWT + IT + IWT

2 (T − 1 − 2
W ) where the term IWT

2 (T − 1 − 2
W ) is the

additional number of decision variables used by the QTP formulation, which is strictly
positive for T > 2 and W ≥ 2. Hence, there is a trade-off between an increasing model
complexity of the QTP because of an increasing number decision variables and a better
performance subject to a stronger LP relaxation.

Proportional transportation problem (PTP)

The proportional transportation problem disaggregates production quantities related
to the fraction of demand of that period in which the quantity is required. Let q′sti
denote the proportion of the demand of period t and product i produced in micro period
s for s = 1, . . . , S and t = 1, . . . , T . Compared to the QTP where decision variables
define quantities, decision variables of the PTP define fractions of demand, which are
real numbers in a range of [0,1]. We get the PTP by altering equations (21) - (36) of the
QTP and substituting all decision variables qsti by q′stiDti for all s, t, i. Although QTP
and PTP are characterized by nearly equivalent formulations, the PTP provides a tighter
bound because all q′sti are bounded between 0 and 1.

4. Computational illustrations and implementation

We performed a computational experiment to compare the performance of I&L with QTP
and PTP formulation. The experiment is based on confidential industry data which can-
not be provided in detail. A typical optimization run is done for a planning horizon of
13 months, 15 products, and a product-article allocation which results in 24 articles.
Information on demands, capacities, setup times, setup costs, profit margins, holding
costs, unit production requirements, initial inventories, and minimum batch sizes are
used exactly as given by the industry application. Sequence-dependent setup times of a
single product changeover range between 0 and 5% of the monthly capacity. Production
capacity required for producing the minimum batch size ranges between 3% and 14% of
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monthly capacity. Typically, no more than 4 product setups are allowed per month. Setup
and penalty cost are set equal to zero. Furthermore, capacity reductions as well as periods
with fixed production quantities are not considered here. The computational complex-
ity of lot-sizing and planning problems with sequence-dependent setup cost and setup
times is strongly sensitive to various parameters and their dependencies, e.g., monthly
capacity, length of the planning horizon, number of allowable product setups, product
structure (number of products, articles, and their allocation), demand characteristics
(sparse or dense demand matrix), as well as sequence-dependent setup times and costs
(Koçlar 2005). For the numerical design we identified eight main factors that influence
the performance and selected three factor levels (low, medium, high) for each factor.
Table 1 shows the selection of parameters derived from the base level instance. Running
a full factorial parameter analysis with 38 = 6, 561 instances is computationally expen-
sive, so that we are interested in selecting a representative sub-sample out of these 6 , 561
configurations. While this is unlikely to be achieved by random selection, we adopt a
Latin Hypercube Design (LHD) to find parameter configurations, which are as different
from one another as possible.

LHDs are spacefilling designs where the minimum distance between all design points,
i.e., factor combinations, is maximized (Chen et al. 2006). With this problem being NP
hard, we resort to the heuristic proposed by Grosso et al. (2009) to obtain an LHD with
21 factor combinations (also available online at http://www.spacefillingdesigns.nl). Since
this LHD comes with 21 different factor levels 0, ..., 20, we divide each factor level by seven
and round down to the next integer to obtain factor levels {0, 1, 2} → {low,medium,high}.
While the resulting LHD may not be optimal with respect to the maximin criterion
(maximizing the minimum distance), design points are sufficiently different to obtain
a representative sample. The resulting detailed experimental design of the 21 test in-
stances is presented in Table 1. For testing the performance of the three different model
formulations, we implemented each model in Xpress Mosel 2.4 and solved it with Xpress
Optimizer 19.0 on an Intel Core2Duo with 2.33 GHz and 2 GB memory. Default op-
tions concerning presolving and branch and cut options were used as provided by the
software and not altered. For a typical optimization run with 13 months, 15 products,
24 articles, and 4 allowed setups per month, the hybrid GLSP has 23,585 constraints
and 15,162 variables, 780 of which are binary. To evaluate the reformulations we carried
out computational experiments with different runtime restrictions of 600, 1800, and 5400
seconds after which the solution process of the MIP solver was terminated. As a further
termination criterion, we stopped the model optimization as soon as the integrality gap
dropped below 0.5% and returned the current best solution.

Table 2 shows detailed performance results obtained with the I&L, QTP, and PTP
formulation over all 21 test instances and for the three cut-off times of 600, 1,800, and
5,400 seconds. For any of the three cut-off times we observed that the I&L formulation is
outperformed by at least one TP reformulation. In contrast to the I&L formulation, the
QTP and PTP approaches found solutions with an integrality gap smaller than 0.5% for
several test instances. The QTP approach was able to find solutions with a gap below
0.5% in four (6,14,18,21) out of the 21 test instances within 60 seconds. In three out
of these four instances the solution was even found within 10 seconds. An increase in
runtime, however, did not yield significant performance improvements. For instance, an
increase of the time limit from 600 to 1800 seconds decreases the mean gap by only
0.48%. A further increase to 5400 seconds decreases the mean gap by another 0.3% (see
Table 3). All four test instances have in common that the number of setups and the
number of products is low or medium. Both parameters directly influence the model
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Run Capacity Number Minimum Profit Demand No. of Setup Holding
level setups lot size margin products times cost

1 low medium high medium medium medium medium high
2 low high low medium medium high high high
3 low low medium high high high medium low
4 low high medium low medium medium low low
5 low high medium medium low low high medium
6 low low low medium low low low high
7 low medium medium low high low high low
8 medium low high low low medium medium low
9 medium high high high high high medium medium
10 medium high medium low low high medium medium
11 medium low medium high low medium high high
12 medium medium high high medium low medium low
13 medium medium low low high high low high
14 medium medium low high low medium high low
15 high medium medium high high low medium high
16 high low high medium medium high low medium
17 high high low high low medium low medium
18 high low low low medium medium high high
19 high medium high medium high high high medium
20 high high high low medium low low medium
21 high low low medium high low low low

Table 1. LHD design of 21 test instances out of 38 factor combinations

size, i.e., the number of variables and constraints. While QTP could solve only four test
instances with a gap below 0.5%, the PTP approach solved six instances within 600
seconds, seven instances within 1800 seconds, and eight instances within 5400 seconds.
Even when the average PTP performance is better than the QTP performance, there
are four test instances (8,9,12,16) where the PTP was outperformed by the QTP. All
four test instances have in common that products require large minimum lot-sizes, i.e.
for production processes with large minimum lot-sizes, the QTP formulation seems to be
more appropriate.

Table 3 compares the average performance across all formulations. Column 3 shows
the mean integrality gaps for cut-off times of 600, 1,800, and 5,400 seconds, column 4
shows the paired differences between the I&L formulation and the two reformulations,
and column 5 shows the paired differences between the two reformulations. For the paired
differences, we report standard deviation and t-values together with the results of the
respective t-test. Paired differences are significant when p < 0.1 (*), p < 0.05 (**)
and p < 0.01 (***) or not significant (n.s.). We see that if cut-off times are low (600
sec.), the PTP is outperformed by the QTP and the difference between I&L and PTP
is not significant. Moreover, the PTP pays off for longer runtimes where it significantly
outperforms the QTP, i.e. at 1800 seconds (p < 0.1) and 5400 seconds (p < 0.01). This
effect can be explained by the larger number of Simplex iterations necessary for the PTP.
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Time Model Mean Gap Paired Differences
(sec.) # μ (in %) μ# − μGLSP St. Dev. t μ# − μQT P St. Dev. t

I&L 8.00

600 QTP 4.64 −3.35 3.50 −4.40 (∗∗∗)

PTP 6.52 −1.48 13.64 −0.59 (n.s.) 1.88 12.84 0.67 (n.s.)

I&L 7.32

1800 QTP 4.16 −3.16 3.29 −4.39 (∗∗∗)

PTP 3.57 −3.75 3.36 −5.12 (∗∗∗) −0.60 1.32 −2.07 (∗)

I&L 7.00

5400 QTP 3.86 −3.14 3.23 −4.45 (∗∗∗)

PTP 3.19 −3.82 3.21 −5.45 (∗∗∗) −0.68 0.98 −3.16 (∗∗∗)

Table 3. Means and paired differences of the integrality gaps for the three model formulations. (t-test:
significant difference when p < 0.1 (*), p < 0.05 (**), p < 0.01 (***) and n.s. when the difference is not
significant.)

The implemented planning model is used on a regular basis once a month to support
the short to mid-term rough cut planning. Currently, the company is using the I&L for-
mulation. However, an adjustment of the planning tool to the alternative reformulations
would be easy to obtain. Before implementation, the planning and scheduling process was
only supported by manual methods as spreadsheet modeling, whiteboard analysis, and
the experience of production planners. The planner manually evaluated a finite number
of production alternatives and designed the production schedule to his or her best knowl-
edge and experience so that due to the problem complexity only a small number of alter-
natives could be evaluated. Manual planning activities also complicated the coordination
between production and sales division. The implemented model allows the company to
generate optimal plans and to keep track of resulting costs. Short computation times
facilitate communication with marketing and sales managers when it comes to backlog
management and production priorities. Considering problem complexity and computa-
tional tractability of lot-sizing and scheduling problems with sequence-dependent setup
times including minimum batch sizes, an average integrality gap of under 5% (using
PTP with at least 1,800 sec. cut-off time) provides a reasonable starting point for de-
tailed short-term planning. The model enables the company to calculate the impact of
price and sales promotions on production schedules. Finally, the company declared that
the implemented model creates more stability in the planning process, e.g., the model
can be used by less experienced managers to generate alternative plans.

To integrate the model into the planning process, we created an interface between
Xpress and Microsoft Excel using Visual Basic. The supply chain planner can now use
Excel for planning the production campaign without getting involved with the Xpress
modelling language, which increased usability and acceptance.

5. Conclusion

We developed a tailored hybrid general lot-sizing and scheduling model based on the
GLSP for a complex practical problem from the process industry. Derived from the
conventional I&L formulation incorporating several company-specific features, compu-
tational performance was enhanced by two reformulations based on the Transportation
Problem. The reported numerical study gave an illustration of the performance of the
hybrid GLSP and the two reformulations with respect to computational time and inte-
grality gap for a real world lot-sizing and scheduling problem. The major findings are
that for short cut-off times, the reformulations did not perform significantly better than
the conventional I&L formulation. However, for a longer runtime the performance of both
reformulations improved significantly. The results also indicated that minimum lot-sizes
are an important performance driver. The planning tool is used by the company on a
regular basis once a month.
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For future work, it is worthwhile to investigate whether the inclusion of valid inequal-
ities will help to further improve the performance of the reformulations. Moreover, the
applicability of the GLSP framework together with an exact mixed integer programming
solver is rather limited, especially if the number of products and changeovers and thus
the number of micro periods increases. As a natural next step, decomposition approaches
need to be developed to extend this approach to larger and more detailed problems.
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