
Noname manuscript No.
(will be inserted by the editor)

Continuous Piecewise Linear Delta-Approximations for1

Bivariate and Multivariate Functions2

Steffen Rebennack· Josef Kallrath3

4

November 12, 20145

Abstract For functions depending on two variables, we automaticallyconstruct tri-6

angulations subject to the condition that the continuous, piecewise linear approxi-7

mation, under- or overestimation never deviates more than agivenδ -tolerance from8

the original function over a given domain. This tolerance isensured by solving sub-9

problems over each triangle to global optimality. The continuous, piecewise linear10

approximators, under- and overestimators involve shift variables at the vertices of the11

triangles leading to a small number of triangles while stillensuring continuity over12

the entire domain. For functions depending on more than two variables, we provide13

appropriate transformations and substitutions, which allow the use of one- or two-14

S. Rebennack (B)

Division of Economics and Business, Colorado School of Mines, Golden, Co, USA

E-mail: srebenna@mines.edu

J. Kallrath

Department of Astronomy, University of Florida, Gainesville, FL, USA

E-mail: kallrath@astro.ufl.edu

2 Steffen Rebennack, Josef Kallrath

dimensionalδ -approximators. We address the problem of error propagation when15

using these dimensionality reduction routines. We discussand analyze the trade-off16

between one-dimensional and two-dimensional approaches and we demonstrate the17

numerical behavior of our approach on nine bivariate functions for five differentδ -18

tolerances.19

Keywords global optimization· nonlinear programming· mixed-integer nonlinear20

programming· non-convex optimization· error propagation21

Mathematics Subject Classification (2000)90C2622

1 Introduction23

In this paper, we are interested in approximating nonlinearmultivariate functions.24

The computed approximations should not deviate more than a pre-defined tolerance25

δ > 0 from the original function. In addition, the approximatedfunctions should26

be continuous and piecewise linear so they can be represented using mixed-integer27

linear programming (MILP) techniques. Thus, we are not seeking the computation of28

a global optimum of a nonconvex function but a function approximation instead.29

The motivation to compute theseδ -approximations is to approximate a global30

optimization problem via an MILP problem. Theδ -tolerance of the obtained approx-31

imation allows for the computation of safe bounds for the original global optimiza-32

tion problem, if the approximation is constructed carefully. Such MILP representa-33

tions are of particular interest if the global optimizationproblem is embedded into a,34

typically much larger, MILP problem. Examples are water supply network optimiza-35

tion and transient technical optimization of gas networks,generalized pooling and36

Continuous Piecewise Linear Approximations. 3

integrated water systems problems, gas lifting and well scheduling for enhanced oil37

recovery, and electrical networks [1,2]. Our own motivation comes from large-scale38

production planning problems [3,4], and power system optimization problems [5–7].39

The incremental approach [2,8] producing Delaunay triangulations is most closely40

related to our work, but does not involve shift variables at the vertices of the trian-41

gles. Our approach can also handle arbitrary, indefinite functions regardless of their42

curvature. Instead of reviewing a rich body of literature related to piecewise linear43

approximation, we point the reader to the following papers:Ref. [1] presents explicit,44

piecewise linear formulations of two- or three-dimensional functions based on sim-45

plices; Ref. [9] uses triangulations for quadratically constrained problems; Ref. [10]46

compares different formulations (one-dimensional, rectangle, triangle) to approxi-47

mate two-dimensional functions; and Refs. [11,12] are the first to compute optimal48

breakpoint systems for univariate functions. The recent invention of modified SOS-249

formulations, growing only logarithmically in the number of support areas (break-50

points, triangles, or simplices), relieves somewhat the pressure to seek for a minimum51

number of support areas involved in the linear approximation of functions [13].52

We extend the ideas for univariate functions [11] to higher dimensions. The con-53

tributions of this paper are threefold:54

1. We develop algorithms to automatically compute triangulations and the construc-55

tion of continuous, piecewise linear functions over such systems of triangles56

which approximate nonlinear functions in two variables toδ -accuracy.57

2. We classify a rich class ofn-dimensional functions which can be transformed into58

lower dimensional functions along with the error propagation.59

4 Steffen Rebennack, Josef Kallrath

3. We demonstrate both the one- and two-dimensional approximation techniques on60

a test bed of nine bivariate functions.61

In the remainder of this paper, we constructδ -accurate piecewise linear approx-62

imators, over- and underestimators for bivariate functions in Section 2. Transforma-63

tions and higher dimensional functions are treated in Section 3. Section 4 provides64

our numerical results. We conclude in Section 5.65

2 Bivariate Functions66

In the one-dimensional case, we construct convex linear combinations of breakpoint-67

limited disjunct intervals covering the region of interest. In the two-dimensional case,68

we start with rectangular regions and we are seeking supportareas which cover the69

rectangle and which can easily be made larger or smaller reflecting the curvature of70

the function we want to approximate. While functions depending on two or more vari-71

ables are treated by equally-sized simplices leading to direct SOS-2 representations72

in [1], our approach utilizes different-sized triangles tobetter adjust to the function.73

Consider a triangleT1 ⊂ IR2 in thex1-x2-plane established by three points (ver-74

tices)Pj = (X1 j,X2 j) ∈ IR2, j = 1,2,3. We assume that at most two of them are col-75

inear,i.e., all three of them never lie on the same line. Each pointp = (x1,x2) ∈ T176

can be represented as a convex combination of these three points,i.e.,77

p =
3

∑
j=1

λ jPj with λ j ≥ 0 and
3

∑
j=1

λ j = 1.

Let f (p) = f (x1,x2) be a real-valued function in two argumentsx1 andx2 defined78

over a rectangleD := [X1−,X1+]× [X2−,X2+] ⊃ T1. We can construct a linear ap-79

Continuous Piecewise Linear Approximations. 5

proximationℓ(p) of f over T1 by a convex combination of the function values,80

f j = f (Pj) = f (X1 j,X2 j), at the pointsp:81

ℓ(p) =
3

∑
j=1

λ j f j .

2.1 Constructing the Triangulation82

Our goal is now to construct a triangulation ofD by a setT of trianglesTt , with83

⋃

Tt∈T Tt ⊇ D, with a minimal number of triangles subject to the constraint84

∆t := max
p∈Tt
|ℓ(p)− f (p)| ≤ δ , ∀Tt ∈T . (1)

The construction of triangulations with a minimum number oftriangles remains85

an open problem. Thedirect approach, in which we proceed similarly as in the one-86

dimensional case by allowing a fixed number of breakpointspb := (xb,yb) distributed87

in planeD, raises severe problems:88

1. How to construct non-overlapping triangles (from thepb) covering the rectangle?89

2. How to ensure continuity in the vertices? If we know that two trianglesT1 and90

T2 share edgee12, then we have to apply the continuity constraints to the two91

shared verticesvv
e12T1

= vv
e12T2

with v = 1,2 belonging to edgee12.92

Using amarching scheme (cf. the moving breakpoint approach [11, Section 4])93

leads to complications in constructing an irregular grid oftriangles. Therefore, we94

proceed differently and use a triangle refinement approach.95

To begin with, we divideD into two trianglesT1 andT2. Then, for a given tri-96

angleTt with vertices [vt1,vt2,vt3] and fixed shift variables [st1,st2,st3], we solve the97

6 Steffen Rebennack, Josef Kallrath

following (potentially nonconvex) nonlinear programming(NLP) problem:98

∆t := max |ℓ(pt)− f (pt)| (2)

s.t. pt = ∑3
j=1 λ jvt j (3)

∑3
j=1 λ j = 1 (4)

ℓ(pt) := ∑3
j=1 λ jφ (vti) (5)

λ j ∈ [0,1], pt ∈ Tt , j = 1,2,3, (6)

with φ(·) defined as99

φ(vt j) = f (vt j)+ st j, j = 1,2,3 (7)

for verticesvt j contained in triangleTt ; (7) is the analogon to equation (3) in [11].100

If ∆t ≤
δ
2 , then we keep the triangleTt along with the shift variablesst j; i.e., we101

addTt to T . Otherwise, we try a different value for the shift variablesst j as follows102

st jd :=

(

2d
D+1

−1

)

δ
2

(8)

for someD ∈ IN andd ∈ {1, . . . ,D}. Care has to be taken to identify shift variables103

which have been fixed before. Thus, for each triangleTt , we solve between 1 andD3
104

NLP problems (2)-(6).105

If none of the shift variable combinations satisfy∆t ≤
δ
2 , we use a so-calledsub-106

division rule to sub-divide triangleTt into smaller triangles. Given isTt with ver-107

tices [vt1,vt2,vt3] and their three center pointspti of each side of the triangle,i.e.,108

pt1 := (vt1+ vt2)/2, pt2 := (vt2+ vt3)/2 andpt3 := (vt1+ vt3)/2. Now, we divideTt109

into four triangles as follows (see Figure 1):110

T̃1 = [vt1, pt1, pt3], T̃2 = [vt2, pt1, pt2], T̃3 = [vt3, pt2, pt3], T̃4 = [pt1, pt2, pt3]. (9)

Continuous Piecewise Linear Approximations. 7

Once all triangles inT yield a piecewise linearδ2 -approximator forf , we need111

to remove potential discontinuities at the boundary of the triangles. The idea is to112

sub-divide suchTt , which contain vertices of other triangles at the boundary of Tt ,113

into smaller triangles, without introducing any new vertices. The piecewise linear114

functions constructed on the smaller triangles deviate then at mostδ from f ; the115

shift variables at the vertices remain untouched. One simple rule of sub-division is116

to iteratively connect one of the vertices on the boundary ofTt with another vertex117

of the boundary or with a vertex ofTt , but not with a vertex at the same side of the118

triangle. This idea is illustrated in Figure 1 as well.119

vt1 vt2

vt3

pt1

pt2pt3

T̃1 T̃2

T̃3

T̃4

vt1 vt2

vt3

vt̃1

vť1

vt̂2

Fig. 1: Sub-division rule (left) and removal of discontinuities (right).

The described procedure is summarized in Algorithm 2.1. SetT contains all tri-120

angles which have not been checked; setS is a set of ordered pairs{st j,vt j} which121

assigns each vertexvt j of a triangle a shift variablest j . Using Algorithm 2.1, we122

obtain a triangulation for the domainD, leading to a continuous, piecewise linear ap-123

proximation with the desired approximationδ . We make the following observations:124

(1) If continuity for an approximator is not required, then Algorithm 2.1 can be mod-125

ified as follows: steps 29-33 can be removed and the criteria for ∆t in steps 17 and126

19 can be relaxed to∆t ≤ δ .127

8 Steffen Rebennack, Josef Kallrath

(2) Computationally, it is an advantage to terminate loop 13-17 if the error∆t > δ .128

(3) Algorithm 2.1 works for any compact domain which can be partitioned into a129

(finite) set of triangles. Step 6 of the algorithm needs to be adjusted accordingly.130

(4) The only requirement for any sub-division rule is that after finitely many itera-131

tions, triangles of arbitrarily small side lengths can be computed. Thus, we sug-132

gest an alternative sub-division rule: using the pointp∗t of maximal deviation ofℓ133

and f overTt , obtained by solving (2)-(6), we divideTt with vertices [vt1,vt2,vt3]134

into three triangles as follows (we found fixing the free shift variables to zero for135

computing pointp∗t as computationally most efficient):136

[vt1,vt2, p∗t], [vt2,vt3, p∗t], [vt3,vt1, p∗t]. (10)

The case thatp∗t happens to lie on any of the three sides of the triangleTt needs137

special care. First, we remove the triangle with zero area. Second, we need to138

ensure that the calculated function approximation is continuous at this particular139

side of the triangleTt . The continuity can be ensured by a simple trick: divide the140

one neighboring triangle which contains pointp∗t into three triangles using (10).141

This preserves the approximation tolerance and a deviationof δ instead ofδ2 up142

front can be allowed. This sub-division rule has one drawback: one could imagine143

a case where the computed triangles get arbitrarily small inarea, but not in the144

side length. To avoid this issue, one could sub-divide the triangles into smaller145

triangles using the subdivision rule used by Algorithm 2.1 every fixed iteration146

count. The subdivision rule using a point of maximal deviation has the advantage147

over the other sub-division rule presented above that the number of triangles is148

expected to increase slower.149

Continuous Piecewise Linear Approximations. 9

Algorithm 2.1 Heuristic to Compute Triangulation andδ -Approximator

1: // INPUT: Continuous functionf , scalarδ > 0, and shift variable discretization sizeD ∈ IN

2: // OUTPUT: Set of trianglesT and shift valuesS

3: // Initialize

4: T := /0, S := /0

5: // rectangleD= [X1−,X1+]× [X2−,X2+] is divided into two triangles

6: T := {[(X1−,X2−),(X1+,X2−),(X1−,X2+)], [(X1−,X2+),(X1+,X2−),(X1+,X2+)]}

7: // Divide triangles until all triangles satisfy the δ
2 -criteria

8: repeat

9: // obtain and remove triangulation

10: chooseTt ∈T with vertices [vt1,vt2,vt3] and updateT ←T \Tt

11: // obtain fixed variables

12: if {st j ,vt j} ∈ S, then obtainst j and fix this variable for formulation (2)-(6); for allj = 1,2,3

13: repeat

14: for all verticesvt j with un-fixed shiftst j, obtain a discretized value via (8)

15: // optimize

16: solve (2)-(6) with fixed shift variables to obtain∆t

17: until ∆t ≤
δ
2 or all discretize values for the shift variables have been checked

18: // checkδ
2 -criteria

19: if ∆t ≤
δ
2 then

20: // update the set of triangles...

21: T ←T ∪{Tt}

22: // ...and the shift variables

23: S← S∪{{st j ,vt j}, j = 1,2,3}

24: else

25: construct new triangles via (9) and add them to setT

26: end if

27: until T = /0

28: // Remove discontinuities

29: for all Tt ∈T do

30: if ∃Tt̃ ∈T wherevt̃ j lies on one of the sides ofTt for somej then

31: sub-divide triangleTt

32: end if

33: end for

10 Steffen Rebennack, Josef Kallrath

2.2 Deriving Goodδ -Underestimators andδ -Overestimators150

The easiest way to constructδ -under- and overestimatorsℓ±(x) in the bivariate case151

is to exploit the interpolation-based approximationℓ(x) of f (x) with accuracyδ
2 by152

settingℓ±(x) := ℓ(x)± δ
2 . However, if theδ

2 -approximator forf does not possess a153

minimal number of triangles, then the computedδ -under- and overestimators are not154

minimal in the number of triangles used in the triangulation[11].155

Our specific calculation ofδ -underestimators orδ -overestimators follows very156

closely the idea ofδ -approximators. We focus our discussions onδ -underestimators.157

Instead of solving (1), we use forℓ−(p)|p∈Tt158

∆+
t := max

p∈Tt

(

f (p)− ℓ−(p)
)

≤ δ

s.t. ℓ−(p)≤ f (p), ∀p ∈ Tt . (11)

We discretize the continuum conditions (11), for a given triangle, intoI grid points159

pti. This is achieved by choosingλ1i and λ2i with i ∈ I := {1, . . . , I}, yielding to160

λ3i = 1−λ1i−λ2i. This generates a system of grid pointspti,161

pti =
3

∑
j=1

λ jivt j , ∀Tt ∈ T , ∀i ∈ I. (12)

Let Tt be a triangle with vertices [vt1,vt2,vt3]. The NLP (2)-(6) is replaced by:162

∆ D+
t := min η (13)

s.t. η ≥ f (pti)− ℓ−(pti), ∀i ∈ I (14)

ℓ−(pti)≤ f (pti), ∀i ∈ I (15)

ℓ−(pti) := ∑3
j=1 λ jiφ (vt j) , ∀i ∈ I (16)

η ≥ 0, st j ∈
[

− 1
3δ ,0

]

, j = 1,2,3, (17)

Continuous Piecewise Linear Approximations. 11

with φ(·) as given by (7); theλ ji are fixed and obtained by (12). Notice that the shift163

variables are not discretized, in contrast to the approach described in Section 2.1.164

If ∆ D+
t > 1

3δ , one can proceed with a sub-division rule as in the case for165

δ -approximators to further divide the triangleTt . However, if∆ D+
t ≤ 1

3δ , we need to166

ensure that the derivedℓ− is indeed an underestimator forf . Therefore, we check167

zmax∗
± := max

p∈Tt

(

f (p)− ℓ−(p)
)

≤
1
3

δ and zmin∗
± := min

p∈Tt

(

f (p)− ℓ−(p)
)

≥ 0.

If both conditions are met, then the computedℓ is an underestimator forf on triangle168

Tt . Thus, we can keepTt as well as the shift variabless∗ti. Otherwise, we have to169

divide the triangleTt further. To ensure continuity at the boundary of the triangles170

Tt , we proceed as in the case forδ -approximators (steps 29-33 of Algorithm 2.1).171

Shifting the obtained approximator by− 1
3δ ensures a piecewise linear, continuous172

δ -underestimator forf .173

3 Multivariate Functions and their Linear Approximations174

The ideas and concepts developed for univariate and bivariate functions can be ex-175

tended to approximate functions of higher dimensions by piecewise linear constructs.176

However, the number of support areas, usually simplices, increases exponentially [2].177

An open question is whether it worthwhile to exploit specialproperties,e.g., sep-178

arability, of the functions to reduce the dimensionality, or is it more efficient to ap-179

proximate the function directly in its dimensionality. Intuitively, one might argue that180

the reduction of dimensionality pays out, but this is not obvious and may depend both181

on the problem and on the branching strategy used by the selected MILP solver.182

12 Steffen Rebennack, Josef Kallrath

Transformations for special nonlinear expressions enableus to utilize one- and183

two-dimensional techniques to constructδ -approximators forn-dimensional func-184

tions. We summarize four function types and their transformation tricks in Table 1.185

I: Separable functions. We apply the one-dimensionalδ -approximators to each of186

the n one-dimensional functionsfi(xi) separately. The obtained approximation187

error for f (x) is then the sum of the individual errorsδi for each expressionfi(xi).188

II: Positive function products. For products of functions, we require that all func-189

tions are positive. Otherwise, assume without loss of generality that exactly one190

function, f j(x j), is non-positive. Asf j is continuous on the compactum[X j−,X j+],191

f j is bounded. Therefore,L j := minx∈[X j− ,X j+] f j(x) is finite. Now, substitute192

n

∏
i=1

fi(xi) = (f (x j)+D j)
n

∏
i=1,i6= j

fi(xi)−D j

n

∏
i=1,i6= j

fi(xi)

with D j = L j + k and some positive numberk, e.g., k = 1. As193

(f (x j)+D j)
n

∏
i=1,i6= j

fi(xi) := f̃ (x)> 0 and D j

n

∏
i=1,i6= j

fi(xi) := f̄ (x)> 0,

we can apply the transformation to both functionsf̃ (x) and f̄ (x) separately. Note

that the error obtained by the transformation of the productof positive functions

depends onf (x). If ln(f (x)) has errorδ = ∑i=1 δi, then∆ f (x) follows from

f (x)+∆ f (x) = eln(f (x))+δ = f (x) · eδ

and ∆ f (x) = f (x)
(

eδ − 1
)

, which for small values ofδ reduces to194

∆ f (x)≈ f (x) ·δ . Thus, we loose the separation property between thexi variables195

regarding the discretization error,i.e., although the discretization errors ofxi and196

x j are separated fori 6= j, the discretization error of the productfi(xi) · f j(x j)197

Continuous Piecewise Linear Approximations. 13

depends on bothxi andx j (as well as onfi(xi) and f j(x j)). However, if “good”198

bounds onf (x) are available, then this approach may still be computationally199

feasible,e.g., 0< f (x)≤ 1 is desirable as this guarantees an approximation error200

for f (x) of at mosteδ −1, orδ for small values ofδ , respectively.201

III: Exponentials. Chains of exponentialsf1(x) f2(x) for n-dimensional functions202

f1(x) and f2(x) with x ∈ IRn require some care related to the arguments. The203

transformation works only forf1(x)> 0 and f2(x)> 1.204

IV: Substitutions. Complicated terms with more variables appearing as arguments205

of functions can always be replaced by substitutions. Letf (x) = f1
(

f2(x)
)

be a206

nested function withx ∈ D⊆ IRn. Defineu := f2(x) and f2 : D→ D̃. If function207

f2(x) is approximated with an absolute error ofδ2, then a maximal error ofγ(δ2)208

is derived forf1 (if f1 is represented exactly). The functionγ(δ2) is the maximal209

deviation of functionf1 in its domain over a small variation with magnitudeδ2.210

Note thatγ(δ2) can be overestimated using the derivative off1 as follows:211

γ(δ2)≤ f ′∗δ2, (18)

where f ′∗ = maxu∈D̃
∂ f1(u)

∂u , if f is differentiable in a domain containing̃D. The212

errors of an approximation off1 andγ(δ2) are then additive for functionf (x).213

4 Computational Results214

We use the modeling language GAMS (v. 23.6), employing the global optimization215

solver LindoGlobal and run the computational tests on a standard desktop computer216

as described in [11].217

14 Steffen Rebennack, Josef Kallrath

Table 1: Transformations forn-dimensional functions;fi(xi) : [Xi−,Xi+] ⊂ IR→ IR

for all i = 1, . . . ,n and f (x) : [X−,X+]⊂ IRn→ IR; all functions are continuous.

Function f (x) Transformation Approx. Comment

Error for f (x)

I ∑n
i=1± fi(xi) treat each termfi(xi) ∑n

i=1 δi δi is approx. error of

individually fi(xi)

II ∏n
i=1 fi(xi) ln(f (x)) = ∑n

i=1 ln (fi(xi)) f (x)
(

e∑n
i=1 δi −1

)

fi(xi)> 0 for all i; δi is ap-

prox. error of ln(fi(xi))

III f1(x) f2(x) ln(ln(f (x))) = f (x)
(

ee(δ1+δ2) −1
)

f1(x), f2(x)> 1; δ1 is

ln(f1(x))+ ln(ln(f2(x))) approx. error of ln(f1(x))

and δ2 is approx. error of

ln(ln(f2(x)))

IV f1
(

f2(x)
)

f1(u) and f2(x) δ1+ γ(δ2) δ1 is approx. error off (u)

and δ2 is approx. error of

f2(x)

γ(δ2) := max
x∈D, x−δ2≤y≤x+δ2

| f1(x)− f1(y)|

The nine different functions tested are summarized in Table2. The columnsX−218

andX+ define the lower and upper bounds, respectively, on both decision variables219

x1 andx2. The functions are plotted in Figure 2.220

Table 3 summarizes the transformations applied towards functions 1 though 7221

of Table 2. The column “Type” indicates which type of transformation, as defined222

in Table 1, has been applied. For all computations, we chooseboth δ1 and δ2 to223

be equal. For type I transformations, this leads toδ1 = δ2 =
δ
2 (cf. Table 1 column224

Continuous Piecewise Linear Approximations. 15

0
2

4
6

8 0

1

2

3

4

−20

0

20

40

60

(a) Function 1

0 1 2 3 4 5 6 7 8
0

2

4

0

10

20

30

40

50

60

70

(b) Function 2

2 3 4 5 6 7 8

2

3

4

0

5

10

15

20

25

30

35

(c) Function 3

0

1

2

0.511.52

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) Function 4

1

2

3

4 0
0.5

1
1.5

2
2.5

3
3.5

0

1

2

3

4

(e) Function 5

11.522.53

1
1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

(f) Function 6

0
1

2
3

4

0

1

2

3

4
0

0.5

1

1.5

2

(g) Function 7

1 1.2 1.4 1.6 1.8 21

1.5

2
0

1

2

3

4

5

6

7

8

9

(h) Function 8

1
1.2

1.4
1.6

1.8
2

1

1.5

2
0

0.2

0.4

0.6

0.8

1

(i) Function 9

16 Steffen Rebennack, Josef Kallrath

Table 2: Two-dimensional functions tested.

f (x) X− X+ Comment

1 x2
1− x2

2 [0.5,0.5] [7.5,3.5] D.C. function [14]

2 x2
1+ x2

2 [0.5,0.5] [7.5,3.5] convex function

3 x1 ·x2 [2.0,2.0] [8.0,4.0] –

4 x1 ·exp(−x2
1− x2

2) [0.5,0.5] [2.0,2.0] maximum function value:≈ 0.334

5 x1 sin(x2) [1.0,0.05] [4.0,3.1] concave function on domain

6 sin(x1)
x1

x2
2 [1.0,1.0] [3.0,2.0] –

7 x1 sin(x1)sin(x2) [0.05,0.05] [3.1,3.1] –

8
(

x2
1− x2

2

)2 [1.0,2.0] [1.0,2.0] –

9 exp
(

−10(x2
1− x2

2)
2
)

[1.0,1.0] [2.0,2.0] steep peak atx1 = x2

“approx. error”). The individual approximation errors fortype II transformations are225

δ1 = δ2 :=
1
2

ln

(

δ
m∗

+1

)

, with m∗ := max
x∈[X−,X+]

| f (x)|.

If the exact value ofm∗ is missing, then we use an overestimatorm+ for m∗, i.e.,226

m+ ≥ m∗. The values form+ and/orm∗ are given in column “Comment” of Table 3.227

For functions 8 and 9 of Table 2, we apply the substitution rule,i.e., case IV of Ta-228

ble 1. The resulting one-dimensional functionf1(u) : D̃→ IR is stated along with the229

two-dimensional, nested functionf2(x1,x2); the domain off2 is stated in Table 2. The230

choice for the approximation errorsδ1 andδ2 for f1 and f2, respectively, are stated in231

the last two columns of the table. The two-dimensional function f2(x1,x2) = x2
1− x2

2232

can be approximated by applying a type I transformation, choosing an individual ap-233

proximation error ofδ2
2 , for instance. In order to computeδ2 for function 9, we have234

used the maximal derivative of 2
√

5
e in order to overestimateγ(δ2), see (18).235

Continuous Piecewise Linear Approximations. 17

Table 3: Transformations to univariate functions for functions 1 to 7 of Table 2.

f1(x1) f2(x2) Type Comment

1 x2
1 −x2

2 I –

2 x2
1 x2

2 I –

3 ln(x1) ln(x2) II m+ = m∗ = 32

4 ln(x1)− x2
1 −x2

2 II m+ = 0.3341

5 ln(x1) ln
(

sin(x2)
)

II m+ = m∗ = 4

6 ln
(

sin(x1)
)

− ln(x1) 2ln(x2) II m+ = 3.37

7 ln
(

sin(x1)
)

+ ln(x1) ln
(

sin(x2)
)

II m+ = 1.82

For our computations via Algorithm 2.1, we use the maximal deviation point236

in each triangle as the sub-division rule, as described in Section 2.1. Empirically,237

we observed that a discretization of the shift variables of− δ
2 ,−

δ
4 ,0,

δ
4 ,

δ
2 is a good238

trade-off between computational time and number of triangles computed.239

Table 4: Substitutions for function 8 and 9 of Table 2.

f1(u) D̃ f2(x1,x2) δ1 δ2

8 u2 [0,4] x2
1− x2

2
δ
2 δ2 = 4−

√

4+ δ
2

9 exp(−10u2) [0.4] x2
1− x2

2
δ
2 δ2 =

δ
4

√ e
5

The computational results for functions 1 through 9 of Table2 are summarized240

in Table 5. For each functionf (x), we choose five consecutive values for the approx-241

imation errorδ among the set{1.50,1.00,0.50,0.25,0.10,0.05,0.03,0.01,0.001},242

dependent on the scaling of the function. The results for the2-D approach are com-243

puted by Algorithm 2.1. The column|T | states the number of triangles used. For244

18 Steffen Rebennack, Josef Kallrath

the 1-D approach, we use the Algorithm 4.1 in [11]. The approximation errorδi is245

applied to both functionsf1(x1) and f2(x2), except for functions 8 and 9.B1 andB2246

are the computed number of breakpoints for functionf1 and f2, respectively. Col-247

umn “|R|” reports on the number of rectangles resulting from the obtained breakpoint248

systems; again, functions 8 and 9 are different. There, we report the number of rectan-249

gular prisms leading to feasible values forx1, x2 andu. For both 1-D and 2-D, “dev.”250

summarizes the maximal deviation of the obtained piecewiselinear, continuous func-251

tion over the triangulation compared to the approximated function f (x). These values252

have been obtained by solving a series of global optimization problems after the ap-253

proximations have been computed (the computational times are not reported). The254

columns “CPU (sec.)” provide the computational times in seconds.255

From the numerical results presented in Table 5, we derive two main conclusions:256

(1) At a first glance, the advantage of applying approximations schemes seems not257

as striking as expected because separate one-dimensional piecewise linear approxi-258

mations seem to require less breakpoints (particularly forfunctions which separate259

well, e.g., functions 1 and 2). However, whether this is really an advantage depends260

on the behavior of the MILP solver when both the triangles andthe one-dimensional261

breakpoint systems are implemented. (2) A limitation of one-dimensional separable262

approaches is the numerical accuracy required. For instance, the numerical errors263

when using logarithmic separations approaches involve thefunction values them-264

selves. This may request very small errors of the order of 0.001 or smaller.265

Triangulations calculated by Algorithm 2.1 are shown in Figure 3 for different266

values ofδ , before the final refinement, to ensure continuity, has been applied.267

Continuous Piecewise Linear Approximations. 19

Table 5: Computation results for triangulations and one-dimensional transformations.

2-D 1-D

δ |T | dev. CPU δi B1 B2 |R| dev. CPU

(sec.) (sec.)

1 1.50 16 1.4844 30.8 0.7500 4 3 6 1.4764 0.5

1.00 20 0.9844 84.4 0.5000 5 3 8 0.9967 0.4

0.50 48 0.5000 150.4 0.2500 6 4 15 0.4990 0.5

0.25 80 0.2461 272.6 0.1250 9 5 32 0.2499 1.2

0.10 224 0.1000 380.6 0.0500 13 6 60 0.1000 1.6

2 1.50 24 1.5000 26.8 0.7500 4 3 6 1.5000 0.5

1.00 28 0.9712 7.4 0.5000 5 3 8 1.0000 0.4

0.50 84 0.4554 38.0 0.2500 6 4 15 0.5000 0.5

0.25 121 0.2428 35.8 0.1250 9 5 32 0.2500 1.2

0.10 351 0.0949 171.7 0.0500 13 6 60 0.1000 1.6

3 1.00 4 0.7500 0.8 0.0153 4 3 6 0.5446 0.4

0.50 12 0.4444 72.4 0.0077 5 3 8 0.4966 0.5

0.25 20 0.2344 4.7 0.0038 7 4 18 0.1697 0.6

0.10 59 0.0968 59.3 0.0015 10 6 45 0.0889 1.0

0.05 94 0.0490 45.3 0.0007 15 8 98 0.0413 1.3

4 0.10 2 0.0976 0.3 0.1309 3 3 4 0.0908 0.4

0.05 6 0.0346 18.7 0.0697 4 4 9 0.0454 0.6

0.03 10 0.0288 12.7 0.0429 5 4 12 0.0279 0.7

0.01 31 0.0097 54.6 0.0147 7 6 30 0.0100 0.9

0.001 350 0.0010 652.6 0.0014 19 16 270 0.0009 2.7

5 1.00 5 0.9542 1.0 0.1115 3 7 12 0.8911 0.6

0.50 8 0.4803 13.1 0.0588 3 9 16 0.3219 1.2

0.25 16 0.2442 30.0 0.0303 3 13 24 0.2441 1.3

0.10 44 0.0975 74.6 0.0123 5 19 72 0.0924 1.7

0.05 85 0.0483 141.9 0.0062 6 26 125 0.0434 2.4

6 0.50 2 0.4461 1.8 0.0691 4 2 3 0.4988 0.5

0.25 4 0.2104 1.0 0.0357 6 3 10 0.1813 0.6

0.10 9 0.0976 25.8 0.0146 8 4 28 0.0971 1.4

0.05 23 0.0451 14.4 0.0073 10 4 27 0.0495 1.0

0.03 40 0.0297 161.4 0.0044 13 5 48 0.0228 2.6

7 1.00 6 0.4885 7.7 0.2189 5 6 20 0.9764 1.2

0.50 6 0.4885 1.3 0.1213 7 8 42 0.4280 1.4

0.25 21 0.2351 30.8 0.0643 9 11 80 0.2089 1.3

0.10 96 0.0980 73.0 0.0267 13 15 168 0.0944 2.6

0.05 274 0.0498 305.5 0.0135 18 21 340 0.0497 3.4

8 1.00 6 0.8204 22.8 0.0310 4 4 6 0.6117 0.5

0.50 9 0.4340 15.6 0.0155 4 4 7 0.2852 0.5

0.25 12 0.2439 22.9 0.0077 6 6 18 0.1575 0.7

0.10 40 0.0959 202.8 0.0031 8 8 40 0.7312 0.8

0.05 87 0.0500 174.1 0.0015 11 11 83 0.0384 1.0

9 1.00 2 1.0000 0.8 0.1100 2 3 3 0.5000 0.3

0.50 4 0.4909 66.6 0.0460 3 3 4 0.2507 0.3

0.25 6 0.1744 4.4 0.0230 3 4 7 0.1359 0.4

0.10 84 0.0945 231.5 0.0092 5 5 18 0.0737 0.6

0.05 86 0.0480 57.8 0.0046 5 7 34 0.0412 0.7

20 Steffen Rebennack, Josef Kallrath

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

(a) Func. 1:x2
1− x2

2, δ = 1.00

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7

(b) Func. 2:x2
1+ x2

2, δ = 0.50

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8

(c) Func. 3:x1 ·x2, δ = 0.10

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(d) Func. 4:x1 ·exp(−x2
1− x2

2), δ = 0.05

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 1.5 2 2.5 3 3.5 4

(e) Func. 5:x1 sin(x2), δ = 0.25

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

(f) Func. 6: sin(x1)
x1

x2
2, δ = 0.03

 0.5

 1

 1.5

 2

 2.5

 3

 0.5 1 1.5 2 2.5 3

 0.5

 1

 1.5

 2

 2.5

 3

 0.5 1 1.5 2 2.5 3

(g) Func. 7:x1 sin(x1)sin(x2), δ = 0.50

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

(h) Func. 8:
(

x2
1− x2

2

)2, δ = 0.50

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

(i) Func. 9: exp
(

−10(x2
1− x2

2)
2
)

, δ = 0.25

Continuous Piecewise Linear Approximations. 21

5 Conclusions268

For bivariate nonlinear functions, we automatically generate triangulations for con-269

tinuous piecewise linear approximations as well as over- and underestimators satis-270

fying a specifiedδ -accuracy. The methods we have developed require the solution271

of nonconvex mathematical programming problems to global optimality. We allow272

the deviation of the computed interpolation, associated with the triangulation, at the273

vertices of the triangles through shift variables in an effort to reduce the number of274

required triangles.275

We presented four different dimension reduction techniques allowing to utilize276

approaches approximating lower dimensional functions. The computational results277

for the one-dimensional approaches applied to two-dimensional problems are quite278

promising in that the piecewise linear approximations are computed fast, requiring279

very few support areas.280

There are several promising directions for future research. We have mentioned281

two open problems in the paper. In addition, when using the proposed dimension282

reduction transformations, we face the problem of choosingthe individual approx-283

imation errorsδi. For our computations, we have chosen them equally. An optimal284

selection ofδi’s leading to a piecewise linear function requiring the least number of285

breakpoints for a given accuracyδ is an interesting problem in this context.286

References287

1. Misener, R., Floudas, C.A.: Piecewise-linear approximations of multidimensional functions. Journal288

of Optimization Theory and Applications145, 120–147 (2010)289

22 Steffen Rebennack, Josef Kallrath

2. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs.290

In: J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics291

and its Applications, vol. 154, pp. 287–314. Springer (2012)292

3. Timpe, C., Kallrath, J.: Optimal planning in large multi-site production networks. European Journal293

of Operational Research126(2), 422–435 (2000)294

4. Kallrath, J.: Solving planning and design problems in theprocess industry using mixed integer and295

global optimization. Annals of Operations Research140, 339–373 (2005)296

5. Zheng, Q.P., Rebennack, S., Iliadis, N.A., Pardalos, P.M.: Optimization models in the natural gas297

industry. In: S. Rebennack, P.M. Pardalos, M.V. Pereira, N.A. Iliadis (eds.) Handbook of Power298

Systems I, chap. 6, pp. 121–148. Springer (2010)299

6. Frank, S., Steponavice, I., Rebennack, S.: Optimal powerflow: a bibliographic survey I. Energy300

Systems3(3), 221–258 (2012)301

7. Frank, S., Steponavice, I., Rebennack, S.: Optimal powerflow: a bibliographic survey II. Energy302

Systems3(3), 259–289 (2012)303

8. Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with appli-304

cations in gas network optimization. Dissertation, Universität Erlangen-Nürnberg, (2011)305

9. Linderoth, J.: A simplicial branch-and-bound algorithmfor solving quadratically constrained306

quadratic programs. Mathematical Programming Ser. B103, 251–282 (2005)307

10. D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions of two variables308

in MILP models. Operations Research Letters38, 39–46 (2010)309

11. Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for univariate func-310

tions: computing minimal breakpoint systems. Journal of Optimization Theory and Applications311

(2014). Submitted312

12. Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators313

and tubes for univariate functions. In: S. Butenko, C. Floudas, T. Rassias (eds.) Optimization in314

Science and Engineering. Springer (2014)315

13. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary316

variables and constraints. Mathematical Programming128, 49–72 (2011)317

14. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction toglobal optimization, 2nd edn. Kluwer (2000)318

