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Abstract For functions depending on two variables, we automaticalystruct tri-

angulations subject to the condition that the continuoiexqwise linear approxi-
mation, under- or overestimation never deviates more thginea d-tolerance from

the original function over a given domain. This tolerancensured by solving sub-
problems over each triangle to global optimality. The ammius, piecewise linear
approximators, under- and overestimators involve shifedes at the vertices of the
triangles leading to a small number of triangles while stilsuring continuity over
the entire domain. For functions depending on more than taviables, we provide

appropriate transformations and substitutions, whicbmathe use of one- or two-
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2 Steffen Rebennack, Josef Kallrath

dimensionald-approximators. We address the problem of error propagatioen
using these dimensionality reduction routines. We disemssanalyze the trade-off
between one-dimensional and two-dimensional approacittsva demonstrate the
numerical behavior of our approach on nine bivariate fuundifor five different-

tolerances.

Keywords global optimization nonlinear programmingmixed-integer nonlinear

programming non-convex optimizationerror propagation

Mathematics Subject Classification (200090C26

1 Introduction

In this paper, we are interested in approximating nonlimealtivariate functions.
The computed approximations should not deviate more thae-agfined tolerance
d > 0 from the original function. In addition, the approximatieshctions should
be continuous and piecewise linear so they can be represesitey mixed-integer
linear programming (MILP) techniques. Thus, we are not sggthe computation of
a global optimum of a nonconvex function but a function agpration instead.

The motivation to compute theseapproximations is to approximate a global
optimization problem via an MILP problem. Tidetolerance of the obtained approx-
imation allows for the computation of safe bounds for thgjioal global optimiza-
tion problem, if the approximation is constructed cargfuBuch MILP representa-
tions are of particular interest if the global optimizatipmoblem is embedded into a,
typically much larger, MILP problem. Examples are watergymetwork optimiza-

tion and transient technical optimization of gas netwogeneralized pooling and



37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Continuous Piecewise Linear Approximations. 3

integrated water systems problems, gas lifting and welkkdahng for enhanced oil
recovery, and electrical networks [1,2]. Our own motivatammes from large-scale
production planning problems [3,4], and power system ojgtition problems [5-7].
The incremental approach [2, 8] producing Delaunay tridattgans is most closely
related to our work, but does not involve shift variableshet vertices of the trian-
gles. Our approach can also handle arbitrary, indefinitetfans regardless of their
curvature. Instead of reviewing a rich body of literaturkated to piecewise linear
approximation, we point the reader to the following papBesf. [1] presents explicit,
piecewise linear formulations of two- or three-dimensidnactions based on sim-
plices; Ref. [9] uses triangulations for quadratically swwained problems; Ref. [10]
compares different formulations (one-dimensional, negla, triangle) to approxi-
mate two-dimensional functions; and Refs. [11,12] are tls fo compute optimal
breakpoint systems for univariate functions. The recargrition of modified SOS-2
formulations, growing only logarithmically in the numbefr support areas (break-
points, triangles, or simplices), relieves somewhat tlesguire to seek for a minimum

number of support areas involved in the linear approxinmediifunctions [13].

We extend the ideas for univariate functions [11] to higherahsions. The con-

tributions of this paper are threefold:

1. We develop algorithms to automatically compute triaatjahs and the construc-
tion of continuous, piecewise linear functions over suchkteys of triangles
which approximate nonlinear functions in two variable$taccuracy.

2. We classify arich class afdimensional functions which can be transformed into

lower dimensional functions along with the error propagyati
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4 Steffen Rebennack, Josef Kallrath

3. We demonstrate both the one- and two-dimensional appedion techniques on

a test bed of nine bivariate functions.

In the remainder of this paper, we constrdeaccurate piecewise linear approx-
imators, over- and underestimators for bivariate fundaimnSection 2. Transforma-
tions and higher dimensional functions are treated in 8e@&i Section 4 provides

our numerical results. We conclude in Section 5.

2 Bivariate Functions

In the one-dimensional case, we construct convex lineabauations of breakpoint-
limited disjunct intervals covering the region of interdatthe two-dimensional case,
we start with rectangular regions and we are seeking suppeas which cover the
rectangle and which can easily be made larger or smallectifiethe curvature of
the function we want to approximate. While functions depegadn two or more vari-
ables are treated by equally-sized simplices leading ectdBOS-2 representations
in [1], our approach utilizes different-sized triangledttter adjust to the function.
Consider a triangleZ; C IR? in the x;-x-plane established by three points (ver-
tices)P; = (Xyj,X2j) € IR?, j = 1,2,3. We assume that at most two of them are col-
inear,i.e., all three of them never lie on the same line. Each ppiat (x1,%2) € 71

can be represented as a convex combination of these thnets jpei,
3
p=">) AjP, with Aj>0 and Aj=1
) 2

Let f(p) = f(x1,%2) be a real-valued function in two argumengsandx, defined

over a rectangl® := [X;_,X1,] X [Xo—,Xo4] D Z1. We can construct a linear ap-
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Continuous Piecewise Linear Approximations. 5

proximation/(p) of f over 73 by a convex combination of the function values,

fi = 1(P)) = f(Xyj,Xzj), at the points:

3
Lp) =S Ajfj.
J; ity

2.1 Constructing the Triangulation

Our goal is now to construct a triangulationDfby a set.7 of triangles%, with

Uzez % 2 D, with a minimal number of triangles subject to the constrain
A =max|{(p)— f(p)|<9d, VI eT. Q)
pe A

The construction of triangulations with a minimum numbetrafngles remains
an open problem. Thdirect approach, in which we proceed similarly as in the one-
dimensional case by allowing a fixed number of breakpg@ipts- (x,, yp) distributed

in planeD, raises severe problems:

1. How to construct non-overlapping triangles (from tag covering the rectangle?
2. How to ensure continuity in the vertices? If we know thab twangles.7; and
5 share edge;,, then we have to apply the continuity constraints to the two

shared vertices‘élzyl = v‘,;lzy2 with v= 1,2 belonging to edge;».

Using amarching scheme (cf. the moving breakpoint approach [11, Section 4])
leads to complications in constructing an irregular gridrangles. Therefore, we
proceed differently and use a triangle refinement approach.

To begin with, we divideD into two triangles7; and.%. Then, for a given tri-

angle. % with vertices {41, vi2, 3] and fixed shift variablesy; , 52, %3], we solve the



98

99

100

101

102

103

104

105

106

107

108

109

110

6 Steffen Rebennack, Josef Kallrath

following (potentially nonconvex) nonlinear programmifil_P) problem:

Ay i=max [¢(p) — f(pr)| 2)
st p= z?zlf\ i 3)
SiaAi=1 (@)

(p) =Y Ao w) (5)

Ae0l, med =123, (6)

with @(-) defined as
o(vwj) = f(wj) +sj, j=123 )
for verticeswj contained in triangleZ; (7) is the analogon to equation (3) in [11].

If A < ‘—g, then we keep the trianglé; along with the shift variables;; i.e., we

add % to 7. Otherwise, we try a different value for the shift variabdgsas follows

_ [ )
s (53113 ®)

for someD € IN andd € {1,...,D}. Care has to be taken to identify shift variables

which have been fixed before. Thus, for each triangleve solve between 1 aridf
NLP problems (2)-(6).

If none of the shift variable combinations satigfy< 2, we use a so-calleslib-
division rule to sub-divide triangleZ into smaller triangles. Given i with ver-
tices M1, V2, 3] and their three center pointg; of each side of the triangle.e,
Pr1 = (i1 +V2)/2, P2 i= (V2 + W3) /2 andpyz := (W1 + W3) /2. Now, we divideZ

into four triangles as follows (see Figure 1):

G = M, P, Pral, To = ez, Pt Pra)s 93 = (3, Pras Prals Ja = [Puts Pras Pra)- (9)
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Continuous Piecewise Linear Approximations. 7

Once all triangles inZ yield a piecewise Iineag-approximator forf, we need
to remove potential discontinuities at the boundary of tiengles. The idea is to
sub-divide suchZ;, which contain vertices of other triangles at the bounddrgio
into smaller triangles, without introducing any new vestic The piecewise linear
functions constructed on the smaller triangles deviate titemostd from f; the
shift variables at the vertices remain untouched. One mge of sub-division is
to iteratively connect one of the vertices on the boundargiolvith another vertex
of the boundary or with a vertex af;, but not with a vertex at the same side of the
triangle. This idea is illustrated in Figure 1 as well.

Vi3 Vi3

V2

Vi1

Vil Vi2 Vil Vi, Vi2

Fig. 1: Sub-division rule (left) and removal of discontities (right).

The described procedure is summarized in Algorithm 2.1.%Bebntains all tri-
angles which have not been checked;$é a set of ordered pairssj, wj} which
assigns each vertex; of a triangle a shift variableg;. Using Algorithm 2.1, we
obtain a triangulation for the domalii leading to a continuous, piecewise linear ap-

proximation with the desired approximatidnWe make the following observations:

(1) If continuity for an approximator is not required, thelgérithm 2.1 can be mod-
ified as follows: steps 29-33 can be removed and the criteriafin steps 17 and

19 can be relaxed t4; < 0.
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s (2) Computationally, it is an advantage to terminate looflZ3f the error4; > d.

1

]

o (3) Algorithm 2.1 works for any compact domain which can betipaned into a

1

)

1

@

0 (finite) set of triangles. Step 6 of the algorithm needs todjesaed accordingly.

m (4) The only requirement for any sub-division rule is thaegfinitely many itera-

132 tions, triangles of arbitrarily small side lengths can benpated. Thus, we sug-
133 gest an alternative sub-division rule: using the pgjnbf maximal deviation of
134 andf over.%, obtained by solving (2)-(6), we dividg with vertices {41, Vi2, 3]
135 into three triangles as follows (we found fixing the free shériables to zero for
136 computing pointp as computationally most efficient):

Ven, V2, B ], M2, s, PE] [Mes, W, Y- (10)
137 The case thap; happens to lie on any of the three sides of the triatijlaeeds
138 special care. First, we remove the triangle with zero areaofd, we need to
139 ensure that the calculated function approximation is caoatiis at this particular
140 side of the triangleZ. The continuity can be ensured by a simple trick: divide the
141 one neighboring triangle which contains popjtinto three triangles using (10).
142 This preserves the approximation tolerance and a deviafiéninstead of% up
143 front can be allowed. This sub-division rule has one drawbaige could imagine
144 a case where the computed triangles get arbitrarily smadtréa, but not in the
145 side length. To avoid this issue, one could sub-divide tleagies into smaller
146 triangles using the subdivision rule used by Algorithm As&rg fixed iteration
147 count. The subdivision rule using a point of maximal dewiathas the advantage
148 over the other sub-division rule presented above that tinebeu of triangles is

149 expected to increase slower.
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Algorithm 2.1 Heuristic to Compute Triangulation addApproximator

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27

28

29

30:

31:

32:

DT = K X )y (X, Yoo ), (Kam s Xou )] [(Xam X4 ), (Xa s Yo ), (X, X )]}

/I INPUT: Continuous functiorf, scalard > 0, and shift variable discretization siPec IN
/I OUTPUT: Set of triangles7 and shift value$

. I Initialize

1 7:=0,S=0

. Il rectangleD = [Xi—, X1 ] x [Xo—, X24] is divided into two triangles

. /I Divide triangles until all triangles satisfy the 5 -criteria

: repeat

// obtain and remove triangulation
chooseZ € .7 with vertices {41, V2, i3] and update7 < 7 \ %
/I obtain fixed variables
if {sj,wj} €, then obtairg; and fix this variable for formulation (2)-(6); for ajl=1,2,3
repeat
for all verticeswj with un-fixed shiftsj, obtain a discretized value via (8)
Il optimize
solve (2)-(6) with fixed shift variables to obtaln
until A < % or all discretize values for the shift variables have beercked
/I check$ -criteria
if A <$ then
/I update the set of triangles...
T +— TU{%}
/I ...and the shift variables
S« Su{{sjw} =123}
else
construct new triangles via (9) and add them to%Bet

end if

cuntl 7 =0
. //Remove discontinuities

cforall % €7 do

if 3.9 € 7 wherey; lies on one of the sides of; for somej then
sub-divide triangleZ

end if

33: end for
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10 2.2 Deriving Good-Underestimators and-Overestimators

151 The easiest way to construgtunder- and overestimatofs (x) in the bivariate case
152 1S to exploit the interpolation-based approximatidr) of f(x) with accuracy‘—g by

153 Settingly (X) := £(X) + g. However, if theg—approximator forf does not possess a
1« minimal number of triangles, then the computednder- and overestimators are not
155 minimal in the number of triangles used in the triangulafibhy.

156 Our specific calculation of-underestimators od-overestimators follows very
17 closely the idea ob-approximators. We focus our discussionsdeanderestimators.

s Instead of solving (1), we use fér (p)|pc 4

A’ ==max (f(p)—¢-(p) <o

pe %
st. /_(p) <f(p), VpeH. (11)
150 We discretize the continuum conditions (11), for a giveartgle, intd grid points

10 Pri. This is achieved by choosindp; and Ay with i € T:= {1,...,1}, yielding to

w1 Agi = 1— Ag; — Ag. This generates a system of grid poipts
3
ptiZZ)\jinj, VHeT, Viel (12)
=1

162 Let % be a triangle with verticesd, vi2,t3]. The NLP (2)-(6) is replaced by:

AP* :=min n (13)
st. n>f(pi)—Cl_(pi), Viel (14)
C—(pi) < f(pi), Viel (15)
C(pi)= 3 Ao (w), Viel (16)

n>0, sj€[-35,0], j=123, (17)
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Continuous Piecewise Linear Approximations. 11

with ¢(-) as given by (7); théj; are fixed and obtained by (12). Notice that the shift
variables are not discretized, in contrast to the approashribed in Section 2.1.

If AP+ > %6, one can proceed with a sub-division rule as in the case for
5-approximators to further divide the triangf®&. However, ifAP* < %6, we need to

ensure that the derived is indeed an underestimator for Therefore, we check

5 and ZM'"™ := mi

min (f(p) - ¢-(p) = 0.

Wl =

Zp™ = gg%(f(p)—&(p)) <

If both conditions are met, then the computed an underestimator fdron triangle
. Thus, we can keepx as well as the shift variables;. Otherwise, we have to
divide the triangleZ further. To ensure continuity at the boundary of the triasg|
%, we proceed as in the case i@rapproximators (steps 29-33 of Algorithm 2.1).
Shifting the obtained approximator by%c? ensures a piecewise linear, continuous

d-underestimator fof .

3 Multivariate Functions and their Linear Approximations

The ideas and concepts developed for univariate and bigdtiactions can be ex-
tended to approximate functions of higher dimensions bgepiése linear constructs.
However, the number of support areas, usually simpliceseases exponentially [2].
An open question is whether it worthwhile to exploit spegiapertiese.g., sep-
arability, of the functions to reduce the dimensionalityjoit more efficient to ap-
proximate the function directly in its dimensionality. tiitively, one might argue that
the reduction of dimensionality pays out, but this is notiobg and may depend both

on the problem and on the branching strategy used by thetsdIBtiLP solver.
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12 Steffen Rebennack, Josef Kallrath

Transformations for special nonlinear expressions enabl® utilize one- and
two-dimensional techniques to constrdeapproximators fom-dimensional func-

tions. We summarize four function types and their transtdrom tricks in Table 1.

I: Separable functions. We apply the one-dimension&tapproximators to each of
the n one-dimensional function§(x;) separately. The obtained approximation
error for f(x) is then the sum of the individual errodsfor each expressiofy(x;).

II: Positive function products. For products of functions, we require that all func-
tions are positive. Otherwise, assume without loss of gdityethat exactly one
function,fj(x;), is non-positive. Ad; is continuous on the compactuXy _, X, |,

fj is bounded. Thereforé, := mincx; x| f;(x) is finite. Now, substitute

fi(x) = (f(x;) +Dj) fi (X fi(x)
e VLR
with Dj = Lj 4k and some positive numbkye.g., k= 1. As
n n _
f(x;) +Dj) |'| fi(x) : X)>0 and Dj |_| fi(x):=f(x) >0,
i=1i#] i=1i#]

we can apply the transformation to both functicfr@s) and f_(x) separately. Note
that the error obtained by the transformation of the prodéigiositive functions

depends orf(x). If In(f(x)) has errod = 5_1 &, thenA f (x) follows from
f(x)+Af(x) = F+0 — f(x).€°

and Af(x) = f(x)(e® — 1), which for small values ofd reduces to
Af(x) =~ f(x)-d. Thus, we loose the separation property betweemthariables
regarding the discretization errarg., although the discretization errorsxfand

Xj are separated fdr# j, the discretization error of the produt(x) - f;(x;)
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Continuous Piecewise Linear Approximations. 13

depends on botk andx; (as well as onfi(x;) and f;(x;)). However, if “good”
bounds onf (x) are available, then this approach may still be computaliypna
feasiblee.g., 0 < f(x) < 1is desirable as this guarantees an approximation error
for f(x) of at moste® — 1, or & for small values oB, respectively.

lll: Exponentials. Chains of exponentiald;(x)©2® for n-dimensional functions
f1(x) and f2(x) with x € IR" require some care related to the arguments. The
transformation works only fof;(x) > 0 andf(x) > 1.

IV: Substitutions. Complicated terms with more variables appearing as argtamen
of functions can always be replaced by substitutions.fi(g = f1(f2(x)) be a
nested function wittx € D C IR". Defineu := fo(x) and f, : D — D. If function
f2(x) is approximated with an absolute errord®f then a maximal error of(5,)
is derived forf; (if f; is represented exactly). The functigtd,) is the maximal
deviation of functionfy in its domain over a small variation with magnitudge

Note thaty(d,) can be overestimated using the derivativépés follows:
(&) < ., (18)
where f; = max 5 %, if f is differentiable in a domain containirig. The

errors of an approximation df andy(d,) are then additive for functiofi(x).

4 Computational Results

We use the modeling language GAMS (v. 23.6), employing todajloptimization
solver LindoGlobal and run the computational tests on adstahdesktop computer

as described in [11].
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Table 1: Transformations far-dimensional functionsfi(x) : [X-,X+] C IR = IR

foralli=1,...,nandf(x) : [X_,X;] C IR" — IR; all functions are continuous.

Function f(x) Transformation Approx. Comment

Error for f(x)

Iosh,fi(x) treat each tern (x;) 5N, 5 5 is approx. error of
individually fi(x)

I fi) () =3y n(fix))  F9(eM13 ~1)  fi(x) > 0foralli; & is ap-
prox. error of In( fi (%))

M f(x)=20 In(In(f(x))) = Fo(™ —1)  f1(x), fa(x) > 1; 81 is

In(f1(x)) + IN(In( f2(x))) approx. error of Igfy(x))

and &, is approx. error of
In(In(f2(x)))

IV fi(f2(x) f1(u) and f2(x) o1 +y(%) &1 is approx. error off (u)
and & is approx. error of

f2(x)

y(&) == ‘e, xjggw 5 [f2(x) = fa(y)]

The nine different functions tested are summarized in TablEhe columns<{_
andX, define the lower and upper bounds, respectively, on bottsidecvariables

X1 andxy. The functions are plotted in Figure 2.

Table 3 summarizes the transformations applied towardstifums 1 though 7
of Table 2. The column “Type” indicates which type of transfation, as defined
in Table 1, has been applied. For all computations, we chbosied; and J, to

be equal. For type | transformations, this lead9ic= &, = ‘—g (cf. Table 1 column
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(a) Function 1 (b) Function 2

(c) Function 3 (d) Function 4

35

25

———_
e 23 25 2 15 !
(e) Function 5 (f) Function 6

(g) Function 7 (h) Function 8

(i) Function 9
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Table 2: Two-dimensional functions tested.

# f(x) X Xi Comment

1 X2 — %3 [0.5,0.5] [7.5,3.5]| D.C.function [14]

2 X2 +%3 [0.5,0.5]  [7.5,3.5]| convex function

3 X1 - Xo [2.0,2.0] [8.0,4.0]| —

4 | xq-exp(—x¢ —x3) [0.5,0.5]  [2.0,2.0]| maximum function valuex 0.334
5 X1.SiN(X2) [1.0,0.05] [4.0,3.1]| concave function on domain

6 )y [1.0,1.0] [3.0,2.0]| —

7 X1.8in(x1) sin(xz) [0.05,0.05] [3.1,3.1]| —

8 (& —x3)* [1.0,20] [1.0,2.0]]| —

9 | exp(—100¢ —x2)?) [1.0,1.0] [2.0,2.0]| steep peak at; = x,

“approx. error”). The individual approximation errors type Il transformations are

61:52:::—2[In (%4—1), with m"* ::X6&3£]|f(x)|.

If the exact value ofn* is missing, then we use an overestimator for m#, i.e.,
m" > m*. The values fom" and/orm* are given in column “Comment” of Table 3.
For functions 8 and 9 of Table 2, we apply the substitutios,jiué., case IV of Ta-
ble 1. The resulting one-dimensional functifyfu) : D — IR is stated along with the
two-dimensional, nested functidi(xs, xz); the domain off, is stated in Table 2. The
choice for the approximation errods andd, for f; andf,, respectively, are stated in
the last two columns of the table. The two-dimensional fiomct, (x1,%2) = x% - x%
can be approximated by applying a type | transformationpshmgy an individual ap-

proximation error of%, for instance. In order to compude for function 9, we have

used the maximal derivative of\ég in order to overestimatg &), see (18).
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Table 3: Transformations to univariate functions for fuoies 1 to 7 of Table 2.

# f1(x1) fa(x2) Type | Comment
1 X -3 I _
2 X X3 | -
3 In(x1) In(x2) I mt =m* =32
4 In(x) —x2 X3 I mt =0.3341
5 In(x1) In (sin(x2)) I mt=m‘=4
6 | In(sin(xy)) —In(x1) 2In(x2) I m* =3.37
7 | In(sin(xy)) +In(x2)  In(sin(x2)) I mt =182
23 For our computations via Algorithm 2.1, we use the maximaliat®on point

2z In each triangle as the sub-division rule, as described uotiGe 2.1. Empirically,
s Wwe observed that a discretization of the shift variables-§t —2.,0,9, 9 is a good

20 trade-off between computational time and number of triesgbmputed.

Table 4: Substitutions for function 8 and 9 of Table 2.

# f1(u) D fa(x1,%2) & &

8 u? 04 x-x3

NIt Nlor
&
Il
S

FN[Y) ‘

o j
+
Nilor

9 | exp(—100?) [04] X2—-x3

240 The computational results for functions 1 through 9 of Tablre summarized

a1 In Table 5. For each functiofi(x), we choose five consecutive values for the approx-
22 imation errord among the se{1.50,1.00,0.50,0.25,0.10,0.05,0.03,0.01,0.001},

23 dependent on the scaling of the function. The results foRtlReapproach are com-

2« puted by Algorithm 2.1. The columfY’| states the number of triangles used. For
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the 1-D approach, we use the Algorithm 4.1 in [11]. The appnation errorg is
applied to both function$; (x;) and f»(x2), except for functions 8 and ®8; andB,
are the computed number of breakpoints for functfgrand f,, respectively. Col-
umn “/R|” reports on the number of rectangles resulting from theiabthbreakpoint
systems; again, functions 8 and 9 are different. There, p@rtéhe number of rectan-
gular prisms leading to feasible values f@r x, andu. For both 1-D and 2-D, “dev.”
summarizes the maximal deviation of the obtained piecelivisar, continuous func-
tion over the triangulation compared to the approximatedtion f (x). These values
have been obtained by solving a series of global optimingitoblems after the ap-
proximations have been computed (the computational timesat reported). The

columns “CPU (sec.)” provide the computational times inosets.

From the numerical results presented in Table 5, we derigarain conclusions:
(1) At a first glance, the advantage of applying approxinretischemes seems not
as striking as expected because separate one-dimensieocalfse linear approxi-
mations seem to require less breakpoints (particularifdoctions which separate
well, eg., functions 1 and 2). However, whether this is really an athge depends
on the behavior of the MILP solver when both the trianglestwedone-dimensional
breakpoint systems are implemented. (2) A limitation of-diraensional separable
approaches is the numerical accuracy required. For instgdhe numerical errors
when using logarithmic separations approaches involvehetion values them-

selves. This may request very small errors of the order@Dor smaller.

Triangulations calculated by Algorithm 2.1 are shown inukeg 3 for different

values ofd, before the final refinement, to ensure continuity, has bppfie.
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Table 5: Computation results for triangulations and omaeatisional transformations.

2-D 1-D

# o | |7 dev. CPU 4 B1 B |R dev. CPU
(sec.) (sec.)

1 1.50 16 1.4844 30.8| 0.7500 4 3 6 1.4764 0.5
1.00 20 0.9844 84.4| 0.5000 5 3 8 0.9967 0.4
0.50 48 0.5000 150.4| 0.2500 6 4 15 0.4990 0.5
0.25 80 0.2461 272.6| 0.1250 9 5 32  0.2499 1.2
0.10 | 224 0.1000 380.6 0.0500 13 6 60 0.1000 1.6

2 1.50 24 1.5000 26.8| 0.7500 4 3 6 1.5000 0.5
1.00 28 0.9712 7.4| 0.5000 5 3 8 1.0000 0.4
0.50 84 0.4554 38.0| 0.2500 6 4 15 0.5000 0.5
0.25| 121 0.2428 35.8| 0.1250 9 5 32 0.2500 1.2
0.10 | 351 0.0949 171.7| 0.0500 13 6 60 0.1000 1.6

3 1.00 4 0.7500 0.8| 0.0153 4 3 6 0.5446 0.4
0.50 12 0.4444 72.4| 0.0077 5 3 8 0.4966 0.5
0.25 20 0.2344 4.7\ 0.0038 7 4 18 0.1697 0.6
0.10 59 0.0968 59.3| 0.0015 10 6 45  0.0889 1.0
0.05 94  0.0490 45.3| 0.0007 15 8 98 0.0413 1.3

4 0.10 2 0.0976 0.3| 0.1309 3 3 0.0908 0.4
0.05 6 0.0346 18.7| 0.0697 4 4 9 0.0454 0.6
0.03 10 0.0288 12.7{ 0.0429 5 4 12 0.0279 0.7
0.01 31 0.0097 54.6| 0.0147 7 6 30 0.0100 0.9
0.001| 350 0.0010 652.6 0.0014 19 16 270 0.0009 2.7

5 1.00 5 0.9542 1.0 0.1115
0.50 8 0.4803 13.1| 0.0588
0.25 16  0.2442 30.0f 0.0303

~

12 0.8911 0.6
16  0.3219 12
24 0.2441 13

=
w ©

o oAl O W W W
N
[«2)

0.10 44 0.0975 74.6) 0.0123 19 72 0.0924 1.7
0.05 85 0.0483 141.9| 0.0062 125 0.0434 2.4
6 0.50 2 0.4461 1.8| 0.0691 2 3 0.4988 0.5
0.25 4 0.2104 1.0 0.0357 3 10 0.1813 0.6
0.10 9 0.0976 25.8| 0.0146 4 28 0.0971 1.4
0.05 23 0.0451 14.4| 0.0073 10 4 27 0.0495 1.0
0.03 40 0.0297 161.4| 0.0044 13 5 48 0.0228 2.6
7 1.00 6 0.4885 7.7| 0.2189 5 6 20 0.9764 1.2
0.50 6 0.4885 1.3| 0.1213 7 8 42  0.4280 14

0.25 21 0.2351 30.8| 0.0643 9 1 80 0.2089 13
0.10 96 0.0980 73.0| 0.0267 13 15 168 0.0944 2.6
0.05| 274 0.0498 305.5( 0.0135 18 21 340 0.0497 3.4
8 1.00 6 0.8204 22.8| 0.0310 4 4 6 0.6117 0.5
0.50 9 0.4340 15.6| 0.0155 4 0.2852 0.5
0.25 12 0.2439 22.9| 0.0077 6 6 18 0.1575 0.7
0.10 40 0.0959 202.8| 0.0031 8 40 0.7312 0.8
0.05 87 0.0500 174.1) 00015 11 11 83 0.0384 1.0

I
\,

[ee]

9 1.00 2 1.0000 0.8| 0.1100 3 0.5000 0.3
0.50 4 0.4909 66.6| 0.0460 0.2507 0.3
0.25 6 0.1744 4.4| 0.0230 0.1359 0.4

0.10 84 0.0945 231.5| 0.0092
0.05 86  0.0480 57.8| 0.0046

18 0.0737 0.6
34 0.0412 0.7

oo oW w N
N oh wow
~
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(a) Func. 132 —x2, 5 = 1.00 (b) Func. 2x¢ +x3, 5 = 0.50

06 08 1 12 14 16 18 2

(c) Func. 31 -X2,  =0.10 (d) Func. 4x; -exp(—x2 —x3), 5 = 0.05

3

25 12 1.4

(9) Func. 7xqsin(x1)sin(x2), = 0.50 (h) Func. 8:(x4 — x%)z, 5=050

18

16

14

12

12 14 16 18 2

(i) Func. 9: exq — 100¢ —x3)?), 5 =0.25
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5 Conclusions

For bivariate nonlinear functions, we automatically gatetriangulations for con-
tinuous piecewise linear approximations as well as oved-larderestimators satis-
fying a specifiedd-accuracy. The methods we have developed require the oluti
of nonconvex mathematical programming problems to gloptihmality. We allow
the deviation of the computed interpolation, associatet thie triangulation, at the
vertices of the triangles through shift variables in an effo reduce the number of
required triangles.

We presented four different dimension reduction techrécaleowing to utilize
approaches approximating lower dimensional functiong bmputational results
for the one-dimensional approaches applied to two-dinoeradiproblems are quite
promising in that the piecewise linear approximations amepguted fast, requiring
very few support areas.

There are several promising directions for future reseafdh have mentioned
two open problems in the paper. In addition, when using tlop@sed dimension
reduction transformations, we face the problem of choo#iegindividual approx-
imation errorsd. For our computations, we have chosen them equally. An @btim
selection ofg’s leading to a piecewise linear function requiring the teasnber of

breakpoints for a given accuraéyis an interesting problem in this context.
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