
Noname manuscript No.
(will be inserted by the editor)

Continuous Piecewise Linear Delta-Approximations for1

Univariate Functions: Computing Minimal Breakpoint2

Systems3

Steffen Rebennack· Josef Kallrath4

November 12, 20145

Abstract For univariate functions, we compute optimal breakpoint systems subject6

to the condition that the piecewise linear approximator, under- and overestimator7

never deviates more than a givenδ -tolerance from the original function over a given8

finite interval. The linear approximators, under- and overestimators involve shift vari-9

ables at the breakpoints allowing for the computation of an optimal piecewise linear,10

continuous approximator, under- and overestimator. We develop three non-convex11

optimization models: two yield the minimal number of breakpoints, and another in12

which, for a fixed number of breakpoints, the breakpoints areplaced such that the13

maximal deviation is minimized. Alternatively, we use two heuristics which com-14

S. Rebennack (B)

Division of Economics and Business, Colorado School of Mines, Golden, Co, USA

E-mail: srebenna@mines.edu

J. Kallrath

Department of Astronomy, University of Florida, Gainesville, FL, USA

E-mail: kallrath@astro.ufl.edu

2 Steffen Rebennack, Josef Kallrath

pute the breakpoints subsequently, solving small non-convex problems. We present15

computational results for ten univariate functions. Our approach computes breakpoint16

systems with up to one order of magnitude less breakpoints compared to an equidis-17

tant approach.18

Keywords Global optimization· nonlinear programming· mixed-integer nonlinear19

programming· non-convex optimization20

Mathematics Subject Classification (2000)90C2621

1 Introduction22

We are interested in computing piecewise linear, continuous functions. These func-23

tions should approximate a given non-convex function such that the maximal, abso-24

lute deviation from the approximator to the non-convex function does not exceed a25

pre-defined toleranceδ . We call such a piecewise linear function aδ -approximator.26

The goal of this paper is to develop algorithms for univariate functions which can27

compute suchδ -approximators using a minimal number of breakpoints.28

Theδ -approximators are useful to approximate a nonlinear programming prob-29

lem (NLP) or a mixed-integer nonlinear programming problem(MINLP) by a mixed-30

integer linear programming problem (MILP). Theseδ -approximators have to be con-31

structed carefully such that valid bounds on the original (MI)NLP can be recovered32

from the approximated MILP. Such MILP representations are of particular interest,33

if the (MI)NLP is embedded into a much larger optimization problem, typically a34

MILP. By including the nonlinear optimization problem, oneobtains a large-scale35

Optimal Piecewise Linear Approximations. 3

MINLP, which tends to be very difficult to solve to global optimality. By reformu-36

lating the nonlinear problem as a MILP, one obtains a large-scale MILP formulation37

of the original problem. Such MILPs can then be solved using commercial solvers38

like CPLEX, Gurobi, or Xpress. Furthermore, the obtained solutions can be fed into39

a local (MI)NLP solver for the final refinement.40

We mention two potential applications fitting into this framework: (1) supply net-41

work problems and (2) power system optimization problems. (1) Typical supply net-42

work problems, which gave the primary motivation for this work, are those produc-43

tion planning and distributions problems with additional design aspects [1,2]. (2)44

Power system optimization problems involving (highly) non-convex constraint sys-45

tems due to gas or electricity networks [3–5].46

The modeling of such piecewise linear functions is closely related tospecial or-47

dered sets. Ref. [6] is a good resource on the historical milestones of the concept of48

special ordered sets (of type 1, SOS-1, and of type 2, SOS-2; originally named S149

and S2 sets) explicitly introduced by Beale and Tomlin in Ref. [7], but already used50

earlier by Beale in [8] to deal with piecewise linear functions. Ref. [9] presents the51

idea of linear approximations to compute the global minimumof non-convex non-52

linear functions using non-negative variables forming an SOS-2 set. The variables53

contained in an SOS-2 set are subject to the condition that atmost two of them can54

have a non-zero value and the two non-negative variables canonly occur for adja-55

cent indices. Beale and Forrest develop efficient branchingschemes to exploit this56

structure. Since 1976, various contributions elaborated on the usage of SOS-2:57

– optimizing a discontinuous separable piecewise linear function [10,11],58

4 Steffen Rebennack, Josef Kallrath

– constructing a Branch-and-Refine algorithm for mixed-integer non-convex global59

optimization [12],60

– developing a unifying framework and extensions to mixed-integer models for61

nonseparable piecewise linear optimization problems [13],62

– using significantly fewer binary variables growing only logarithmically in the63

number of breakpoints [14].64

All publications above use agivenset of breakpoints,i.e., the piecewise linear ap-65

proximators are known.66

Given these latest developments in the representation of piecewise linear func-67

tions, one might argue that the number of breakpoints is not so critical anymore.68

While in many cases this may be true for well behaved functions, for large intervals69

and expressions involving trigonometric functions or functions with many local ex-70

trema, it still may be crucial to keep the number of breakpoints as small as possible71

if piecewise linear approximations are embedded in otherwise large MILP models.72

Also recall that we aim for tight approximators with a guaranteed accuracy by ex-73

ploiting the placement of breakpoints as a degree of freedom. The framework in [14]74

profits from tight approximators greatly: For the same number of breakpoints and75

constraints, we can expect to have (better) bounds on the original (MI)NLP when76

using tight approximators.77

Next, we review two bodies of work, dealing with the computation of such piece-78

wise linear approximators. The first work is by Rosen and Pardalos [15,16]. They79

proposed piecewise linear interpolators using equidistant breakpoints for concave80

quadratic minimization problems. They are able to derive a condition for the number81

Optimal Piecewise Linear Approximations. 5

of breakpoints needed in order to achieve a given error tolerance. By concavity, their82

interpolators are underestimators. To the best knowledge of the authors, [15] is the83

first work which allows for the computation of breakpoints for a given error tolerance.84

Our work differs in the following important points: (1) we distribute the breakpoints85

freely, (2) we allow shifts at the breakpoints, (3) we can treat general functions, and86

(4) we can compute the minimal number of breakpoints required for a given accuracy.87

The second body of work is by Geißler and co-workers [17,18].They come in88

some parts close to our ideas but differ in the following aspects. The authors do not89

target on computing optimal breakpoint systems (minimal inthe number of break-90

points) and they only estimate the approximation error (or errors for over- and un-91

derestimating) for the general case of indefinite functionswhile we solve non-convex92

NLP problems to global optimality leading to the tightest approximators. Their ap-93

proach does not involve shift variables at the breakpoints which is an important degree94

of freedom leading to a smaller number of breakpoints and tighter approximations.95

Our approach is more general because it can handle arbitrary, indefinite functions96

regardless of their curvature. Our only requirement is thatthe functions have a finite97

number of discontinuities over a compactum and is bounded,e.g., no singularities.98

Figure 10 of their paper shows discontinuities while we compute continuous ones.99

Ensuring that the approximator and the original function donot deviate more than100

δ from each other, leads to sets of constraints which have to hold over a continuum,101

resulting in semi-infinite programming (SIP) problems [19–21]. We evaluate this con-102

tinuum conditions at discrete points, followed by a test involving the computation of103

a global maximum of the deviation function. If the test fails, we refine the grid [22].104

6 Steffen Rebennack, Josef Kallrath

The contributions of this paper are various methods to systematically construct105

optimal or “good” breakpoint systems, for univariate functions. More specifically:106

1. We develop algorithms which compute theprovenminimal number of break-107

points required to piecewise linearly and continuously approximate, under- or108

overestimate any continuous function over a compactum (themethodology works109

also if the function has finitely many discontinuities).110

2. For a given number of breakpoints, we develop an algorithmwhich can compute111

the tightest possible piecewise linear and continuous approximator; tightest in the112

sense of minimizing the largest deviation.113

The remainder of the paper is organized as follows: We start with the definition114

of δ -approximators,δ -under- andδ -overestimators in Section 2. We discuss exact115

models in Section 3 and heuristics in Section 4 to construct such approximators. In116

Section 5, we present our computational results. Finally, we conclude in Section 6.117

This paper is continued by a second paper discussing bivariate functions and118

transformations of multivariate functions to lower dimensional functions [23].119

2 Approximators, Under- and Overestimators120

In one dimension, we call a continuous functionℓ over a compact intervalD ⊂ IR121

piecewise linear, if there are finitely many intervals partitioningD (we are particularly122

interested in partitions whose intervals intersect in at most one point), such that the123

restriction ofℓ on each interval yields an affine function. We call the two end-points124

of each interval abreakpoint. As such, any functionf has at least two breakpoints.125

Optimal Piecewise Linear Approximations. 7

Definition 2.1 (δ -approximator) Let f : D→ IR be a function on the compact in-126

tervalD⊂ IR and let scalarδ > 0. A piecewise linear, continuous functionℓ : D→ IR127

is called aδ -approximatorfor f , iff the following property holds128

max
x∈D
|ℓ(x)− f (x)| ≤ δ . (1)

For any continuous functionf on the compactumD and any constantδ , there ex-129

ists such aδ -approximator function [24]. The existence ofδ -approximator functions130

raises the question as to how (computationally) difficult they are to construct. The131

answer is sobering: For an arbitrary, continuous functionf and an arbitrary scalar132

δ > 0, it is NP-hardto check if a piecewise linear, continuous functionℓ satisfies (1),133

i.e., to determine if there exists an ˜x∈ D such that|ℓ(x̃)− f (x̃)|> δ is NP-complete.134

This follows because solving135

max
x∈D
|ℓ(x)− f (x)|

has the same complexity as finding the global maximum of function f itself – it136

is NP-hard to determine a global extremum of an arbitrary, continuous function f137

[25]. (The reduction can be strictly proven by choosingℓ ≡ 0.) Thus, to compute a138

δ -approximator for an arbitrary, continuous function isNP-hard.139

Under- and overestimators are defined as follows:140

Definition 2.2 (δ -underestimator / δ -overestimator) Let scalarδ > 0. We call141

functionℓ : D→ IR on the compact intervalD ⊂ IR a δ -underestimatorof function142

f : D→ IR, iff condition (1) is satisfied along with143

ℓ(x)≤ f (x) ∀x∈ D. (2)

We call functionℓ aδ -overestimatorof f , iff −ℓ is aδ -underestimator of− f .144

8 Steffen Rebennack, Josef Kallrath

The existence ofε-underestimator /ε-overestimator is also ensured for any con-145

tinuous functionf on the compactumD, by usingδ = ε
2 and shifting the constructed146

δ -approximator byδ down / up. This procedure sustains the minimality of the num-147

ber of breakpoints:148

Corollary 2.1 LetD⊂ IR be a compact interval,ℓ : D→ IR be aδ -approximator for149

f : D → IR with a minimal number of breakpoints and letε = 2δ . Then150

ℓ−(x) = ℓ(x)−δ andℓ+(x) = ℓ(x)+δ define anε-underestimator and anε-overesti-151

mator, respectively, for f with a minimal number of breakpoints.152

Proof The proof is by contradiction. Assume that there is anε-underestimatorℓ∗−153

for f with less breakpoints thanℓ− for f . Then,ℓ∗− has also less breakpoints thanδ -154

approximatorℓ. With ℓ∗ := ℓ∗−+
ε
2, ℓ∗ is δ -approximator forf with less breakpoints155

thanℓ, contradicting the minimality of the number of breakpointsof ℓ. �156

Next to the minimality of the number of breakpoints, we are interested in obtain-157

ing tight approximators, under- or overestimators. This leads to the following158

Definition 2.3 (tightness)A δ -approximator,δ -underestimator orδ -overestimator159

with B breakpoints for functionf is calledtighter than aϑ -approximator,ϑ -under-160

estimator orϑ -overestimator, respectively, withB breakpoints for functionf , iff161

δ < ϑ . A δ -approximator,δ -underestimator orδ -overestimator withB breakpoints162

is calledtight for f (x), iff there is notighter ϑ -approximator,ϑ -underestimator or163

ϑ -overestimator forf .164

Interestingly, tightness is preserved when shifting approximators to obtain under- or165

overestimators:166

Optimal Piecewise Linear Approximations. 9

Corollary 2.2 Letℓ :D→ IR be a tightδ -approximator for f:D→ IR and letε = 2δ .167

Thenℓ−(x) = ℓ(x)− δ andℓ+(x) = ℓ(x)+ δ define a tightε-underestimator and an168

ε-overestimator, respectively, for f with the same number ofbreakpoints.169

Proof The proof is by contradiction. Assume that there is aϑ -underestimatorℓ∗− for170

f which is tighter thanℓ−, i.e., ϑ < 2δ . Then, ℓ∗ := ℓ∗− + ϑ
2 , is a tighter171

ϑ
2 -approximator forf thanℓ becauseϑ

2 < δ , contradicting the tightness ofℓ. �172

Note that we call a piecewise linear approximatorℓ tight for function f , if themaximal173

deviation ofℓ and f is minimal. However, we are also interested in minimizing the174

area betweenℓ and f . Thus, ideally, one should compute175

1. the minimum number of breakpoints,B∗, to achieve theδ -approximation, then176

2. find a tightϑ -approximator withB∗ breakpoints (ϑ ≤ δ), and then177

3. compute aϑ -approximator withB∗ breakpoints which minimizes the area be-178

tween theϑ -approximator andf .179

This applies also to under- and overestimators. In this paper, we treat only on the first180

and the second computational step of this three phase method. The computation of181

area-minimizing approximators is treated in [26].182

Note that all definitions and results in this section naturally extend ton-dimensional183

functions.184

3 Univariate Functions: Exact Approaches185

In this section, we discuss the construction of breakpoint systems for one-dimensional186

functions f : D→ IR for the compact intervalD := [X−,X+].187

10 Steffen Rebennack, Josef Kallrath

3.1 Computing an Optimal Set of Breakpoints188

We are looking for a piecewise linear, continuous functionℓ : D→ IR that satisfies189

condition (1),i.e., a δ -approximator forf , which contains the minimal number of190

breakpointsb ∈B. Let B := {1, . . . ,B} be a sufficiently large, finite set of break-191

points. Later, we explicitly define what “sufficiently large” means in this context, see192

Corollary 3.2.193

We allow the linear approximator to deviatesb ∈ [−δ ,+δ] from the function194

valuesf (xb). Once, we have computedxb andsb, we can approximate functionf by195

f (x) = ∑
b

(f (xb)+ sb)λb with x= ∑
b

xbλb and ∑
b

λb = 1.

For ease of notation, we define196

φ(xb) := f (xb)+ sb, ∀b∈B. (3)

Now, we are able to construct a piecewise linear, continuousfunctionℓ (OBSC):197

z∗ = min ∑
b∈B

χb (4)

s.t. xb−1≤ xb, ∀b∈B (5)

xb≥ X−+(X+−X−)(1− χb) , ∀b∈B (6)

xb− xb−1≥
1
M

χb, ∀b∈B (7)

xb− xb−1≤ (X+−X−)χb, ∀b∈B (8)

yb = xb− xb−1+(X+−X−)(1− χb) , ∀b∈B (9)

∑
b∈B

χx
bx = 1, ∀x∈ [X−,X+] (10)

xb−1− (X+−X−)(1− χx
bx)≤ x≤ xb+(X+−X−)(1− χx

bx) ,

Optimal Piecewise Linear Approximations. 11

∀b∈B, ∀x∈ [X−,X+] (11)

ℓb(x) := φ(xb−1)+
φ(xb)−φ(xb−1)

yb
(x− xb−1) ,

∀b∈B, ∀x∈ [X−,X+] (12)

ℓ(x) := ∑
b∈B

ℓb(x)χx
bx, ∀x∈ [X−,X+] (13)

|ℓ(x)− f (x)| ≤ δ , ∀x∈ [X−,X+] (14)

xb ∈ [X−,X+], sb ∈ [−δ ,+δ], χb ∈ {0,1}, χx
bx∈ {0,1},

yb≥
1
M
, ∀b∈B, ∀x∈ [X−,X+] (15)

where we definex0 := X− andφ(xb) according to (3).198

The binary indicator variableχb has value 1, if breakpointb∈B is included in199

the linear approximationℓ and 0 otherwise. Constraints (5) sort the breakpoints while200

(6) connect variablesχb with the coordinatesxb of the breakpoints. Particularly, if201

χb = 0, inequalities (6) implyxb = X+, i.e., all inactive breakpoints are placed on the202

upper bound, or equivalently, all breakpoints not includedin the construction ofℓ are203

set toX+. Moreover, if OBSC is feasible, then there must exist a breakpoint b such204

thatxb = X+ with χb = 1 andχb̃ = 0 for all b̃> b andb̃∈B, ensured by constraints205

(6) and (8). Note that the number of breakpoints included inℓ is thusz∗ +1, because206

the objective (4) does not countx0 = X− as breakpoint forℓ. Variablesyb take value207

xb− xb−1 if xb− xb−1 > 0 andX+−X− otherwise. This is modeled via constraints208

(7)-(9) with an appropriate constantM, e.g., 1
M equals machine precision. Variable209

χx
bx is 1, if x ∈ [xb−1,xb] and 0 otherwise, modeled via constraints (10)-(11). The210

definitions (12)-(13) should not be interpreted as constraints but rather as auxiliary211

definitions to construct the functionℓ as a shifted interpolation of functionf . Note212

12 Steffen Rebennack, Josef Kallrath

that constraints (10) and (14) turn our problem into the class of SIP. As formula-213

tion (4)-(15) leads to an Optimal Breakpoint System using a Continuum approach for214

x, we call it “OBSC.” This discussion implies215

Corollary 3.1 If OBSC is feasible, thenℓ is a δ -approximator for f with the mini-216

mum number of breakpoints being z∗+1.217

Note that any feasible solution to OBSC withB breakpoints can be extended to be218

valid for OBSC for anyB≥B, by assigningχb= 0,xb =X+, andyb =1 for anyB\B219

and copying the values for other variables from the solutionwith B breakpoints. This220

implies thatz∗(B) ≥ z∗(B). If OBSC is infeasible forB, then it is also infeasible for221

B. Furthermore, if OBSC is feasible forB, thenz∗(B) = z∗(B). Thus, they are either222

equal, or one is finite and the other is+∞. The existence of a finite choice forB to223

make OBSC feasible is established in224

Corollary 3.2 If f is a continuous function over D3, then there exists a finite B∗ such225

that for all B≥ B∗ OBSC is feasible.226

Note thatx in OBSC is not a decision variable and can vary in the interval227

[X−,X+]. This makes OBSC a semi-infinite MINLP problem – a class of optimiza-228

tion problems which are notoriously difficult to solve. To obtain a computationally229

tractable mathematical program, we discretize the continuum constraints (14) intoI230

finite constraints of the form231

|ℓ(xi)− f (xi)| ≤ δ , ∀i ∈ I := {1, . . . , I}, (16)

for appropriately selected grid pointsxi . Applying this approach toeachof the B232

breakpointsxb in formulation OBSC, leads to the following Discretized Optimal233

Optimal Piecewise Linear Approximations. 13

Breakpoint System (OBSD):234

zD∗ = min ∑
b∈B

χb (17)

s.t. (5)− (9) (18)

xbi = xb−1+
i

I +1
(xb− xb−1) , ∀b∈B, ∀i ∈ I (19)

lbi = φ(xb−1)+
φ(xb)−φ(xb−1)

yb
(xbi− xb−1) , ∀b∈B, ∀i ∈ I (20)

|lbi− f (xbi)| ≤ δ , ∀b∈B, ∀i ∈ I (21)

xb ∈ [X−,X+], sb ∈ [−δ ,+δ], χb ∈ {0,1}, yb ≥
1
M
,

xbi ∈ [X−,X+], lbi free, ∀b∈B, ∀i ∈ I, (22)

with xB = X+. Decision variablesxbi uniformly discretize the breakpoint interval235

[xb−1,xb] into I +1 segments, each with length1I+1 (xb− xb−1). This is modeled via236

(19). Variableslbi evaluate the interpolation ofφ(xb−1) andφ(xb) at grid pointxbi237

through constraints (20). The maximal absolute deviation of the computed approx-238

imator to functionf (x) is then bounded byδ at the grid points through constraints239

(21), replacing constraints (14).240

The number of variables and constraints of OBSD depends strongly on the num-241

ber of breakpoints,B, and the discretization sizeI . Constraints (20) and (21) make242

problem OBSD a highly non-convex MINLP. However, ifX− andX+ are relatively243

close together, then OBSD might be computationally tractable if f is not too “bad.”244

A piecewise linear, continuous functionℓ can be constructed by using the break-

pointsx∗b obtained from solving OBSD using interpolation as in (20). For this function

ℓ, one must solve

z∗ℓ = max
x∈[X−,X+]

|ℓ(x)− f (x)|

14 Steffen Rebennack, Josef Kallrath

to global optimality. Ifz∗ℓ ≤ δ , thenℓ defines aδ -approximator forf . If not, then245

increasing the interval discretization sizeI and resolving OBSD might help. However,246

one may be forced to also increase the number of breakpoints.We summarize this in247

Corollary 3.3 Let OBSD be feasible for B and I. Ifℓ constructed from(20) satisfies248

(1), thenℓ is a δ -approximator for f with the minimum number of breakpoints being249

zD∗+1. If ℓ does not satisfy (1), then zD∗+1 defines a lower bound on the minimum250

number of breakpoints on anyδ -approximator for f .251

Alternatively to discretizingeachbreakpoint interval intoI grid points, one can252

distribute theentire interval[X−,X+] into I , a priori given, grid points (OBSI):253

z∗ = min ∑
b∈B

χb (23)

s.t. (5)− (9) (24)

∑
b∈B

χbi = 1, ∀i ∈ I (25)

xb−1− (X+−X−)(1− χbi)≤ xi ≤ xb+(X+−X−)(1− χbi) ,

∀b∈B, ∀i ∈ I (26)

lbi = φ(xb−1)+
φ(xb)−φ(xb−1)

yb
(xi− xb−1) , ∀b∈B, ∀i ∈ I (27)

l i = ∑
b∈B

ℓbiχbi, ∀i ∈ I (28)

|l i− f (xi)| ≤ δ , ∀i ∈ I (29)

xb ∈ [X−,X+], χb ∈ {0,1}, χbi ∈ {0,1}, yb≥
1
M
,

sb ∈ [−δ ,+δ], lb free, lbi free, ∀b∈B, ∀i ∈ I (30)

where thexi =
i
I (X+−X−)+X− are input data;φ(xb) is obtained by (3) as previously.254

Binary decision variablesχbi take value 1, if grid pointxi ∈ [xb−1,xb] and 0 otherwise.255

Optimal Piecewise Linear Approximations. 15

This is modeled by constraints (25) and (26), replacing (10)and (11). Constraints256

(27)-(29) model the approximator for the obtained breakpoint system.257

Let us compare OBSD with OBSI. For one, OBSD does not require both the258

B· I binary variablesχbi and constraints (25), (26), (28). Second, additionalB· I con-259

tinuous variablesxbi are introduced in the OBSD formulation, requiring constraints260

(19). Furthermore, constraints (20) involve the additional variablesxbi compared to261

constraints (27). Though binary variables tend to be computationally burdensome,262

non-convex terms are at least as computationally challenging. Thus, it is not a priori263

clear which formulation, OBSD or OBSI, is computationally superior.264

3.2 Computing a Tightδ -Approximator for a Fixed Number of Breakpoints265

Problems OBSC, OBSD and OBSI are in general too large and difficult to solve.266

Only for a modest number of breakpoints and not too many discretization points267

there is a chance to solve these problems to global optimality. Alternatively, we fix268

the number of breakpoints toB + 1 and compute an optimal breakpoint placement269

which minimized the deviationµ , obtained by the discretized continuum constraint270

|ℓ(xi)− f (xi)| ≤ µ , ∀i ∈ I.

This is then followed by a check whetherµ is less than or equal to ourδ -tolerance.271

We use the idea of formulation OBSD and discretize each interval (xb−1,xb) into272

I equidistant grid points. This puts us into the advantageoussituation that we know to273

which breakpoint interval the variablesxbi belong to,i.e., we do not need the binary274

variablesχbi. By forcing the usage of exactlyB breakpoints (note, we do not count275

16 Steffen Rebennack, Josef Kallrath

x0 = X− as breakpoint in the formulation), we can also eliminate thebinary variables276

χb. We obtain the continuous NLP (FBSD)277

µ∗ = min µ (31)

s.t. (19)− (21) (32)

xb− xb−1≥
1
M
, ∀b∈B (33)

|lbi− f (xbi)| ≤ µ , ∀b∈B, ∀i ∈ I (34)

xb ∈ [X−,X+], xbi ∈ [X−,X+], lbi free,

µ ≥ 0, sb ∈ [−δ ,+δ], ∀b∈B, ∀i ∈ I (35)

Note that at the breakpoints the function deviation is bounded byδ . Therefore, we278

do not need discretization points at the breakpoints. The solution of FBSD provides279

a breakpoint systemx∗b, the shift variabless∗b, and the minimal value,µ∗. Note that280

they are functions ofB andI , e.g., µ∗ = µ∗(B, I) andx∗b = x∗b(B, I).281

The obtained breakpoints and shift variables yield aϑ -approximator forf (x). In282

order to computeϑ , we solve the maximization problem283

δb(B, I) := max
x∈[xb−1,xb]

|ℓ(x)− f (x)|

for each interval[xb−1,xb], to yield

ϑ = δ ∗(B, I) := max
b∈B

δb(B, I).

Let δ ∗-approximator be a tight approximator withB+1 breakpoints. Then the op-284

timal solution value of FBSD is a lower bound onδ ∗, i.e., µ∗ ≤ δ ∗. Thus, ifµ∗ = ϑ ,285

thenϑ = δ ∗ and the computedϑ -approximator is tight. By choosing the discretiza-286

tion sizeI appropriately,µ∗(B, I) andδ ∗(B, I) can get arbitrarily close to each other.287

Optimal Piecewise Linear Approximations. 17

In other words, for a fixed number of breakpoints, FBSD can calculate the tightest288

possible approximator. This is formalized in the next289

Corollary 3.4 Let f be a continuous function and B be fixed. Then, for eachη > 0,290

there exists a finite I∗, such thatµ∗(B, I∗)+η ≥ δ ∗(B, I∗).291

Proof Functiond(x) := |ℓ(x)− f (x)| is continuous in[X−,X+]. By definition of a292

continuous function inx0 ∈ [X−,X+], we can find for eachη > 0 (this is the sameη293

as in the Corollary) aγ > 0 such thatd(x) ∈ Bη
2
(d(x0)) for all x∈ Bγ(x0). Now, we294

just need to make sure that each open ballBγ(x0) contains (at least) onexbi (the shift295

variables are continuous and, thus, not of a concern here).296

For a givenη > 0, we can find a finite series ofγ ’s such that the corresponding297

open balls cover[X−,X+], because[X−,X+] is compact. Letγ∗ be the smallest among298

all γ ’s and chooseI∗ := (X+−X−) 1
γ∗ +1. �299

The proof of Corollary 3.4 does not provide a practical way ofchoosingI∗. Fur-300

thermore,µ∗(·, I) is not a monotonic decreasing function inI . However, for given301

I , µ∗ provides a lower bound on any approximator quality whileδ ∗ defines an up-302

per bound. Thus, ifµ∗ andδ ∗ are close enough to each other (e.g., machine pre-303

cision), thenδ ∗-approximator is the tightest possibleδ -approximator for f with304

B breakpoints. This suggests the following algorithm on how to compute a tight305

δ -approximator: chooseI ∈ IN and solve FBSD; ifδ ∗(B, I) = µ∗, then we have found306

a tightϑ -approximator, otherwise increaseI and start over untilδ ∗(B, I) = µ∗. By307

Corollary 3.4, this procedure terminates in finitely many steps (at least up to a certain308

precision whenδ ∗(B, I)≈ µ∗).309

18 Steffen Rebennack, Josef Kallrath

Observe thatµ∗(B, Ĩ) is a monotonic non-increasing function in the number of310

breakpointsB, with Ĩ ≥ I∗(B). This monotonicity enables us to compute aδ -approxi-311

mator with the least number of breakpoints as follows: startwith an initial number of312

breakpoints and compute a tightϑ -approximator via the methods described above;313

if ϑ ≤ δ , thenϑ -approximator is aδ -approximator with the least number of break-314

points, otherwise, increase the number of breakpoints by one and start over.315

4 Univariate Functions: Heuristic Approaches316

In this section, we present two heuristic methods which respect theδ -tolerance. How-317

ever, they cannot guarantee the minimality in the number of breakpoints.318

4.1 Successively Computing a Good Set of Breakpoints319

In Section 3.1, we provided formulations to compute all breakpoints simultaneously320

by solving one optimization model. Here, we propose a forward scheme moving suc-321

cessively from a given breakpoint,xb−1, to the next breakpointxb with (BSB)322

ζ ∗ = max xb (36)

s.t.

∣

∣

∣

∣

φ(xb−1)+
φ(xb)−φ(xb−1)

xb− xb−1
(x− xb−1)− f (x)

∣

∣

∣

∣

≤ δ , ∀x∈ [xb−1,xb] (37)

xb ∈ (xb−1,X+], sb ∈ [−δ ,+δ]. (38)

until the entire interval[X−,X+] is covered. When BSB is solved and an optimal323

x∗b as well as the shift variables∗b is obtained, then bothx∗b ands∗b are fixed for the324

problemb+1 (if xb <X+). Thus, BSB contains only two decision variables forb> 1.325

However, forb = 1, we use the convention thatx0 := X− and thats0 ∈ [−δ ,+δ] is326

Optimal Piecewise Linear Approximations. 19

an additional decision variable for BSB. Though BSB only hastwo or three decision327

variables, it is difficult to solve because of the continuousconstraints (37).328

Note that successively computing breakpoints by maximizing the length of the329

intervals does not necessarily lead to an optimal breakpoint system,i.e., aδ -approxi-330

mator with the least number of breakpoints. It might be beneficial, in certain cases, to331

consider intervals between two breakpoints which are not ofmaximal length; particu-332

larly as maximizing the interval length may lead to a large shift variable which might333

decrease the length of the proceeding intervals. Therefore, consider the following334

continuous functionf (x) for fixed δ = 0.25 andx∈ [0,5]:335

f (x) :=















































1, if x∈ [0,2)

−0.50+0.75x, if x∈ [2,3)

1.75− δ (x−3), if x∈ [3,4)

1.75− δ +2δ (x−4), if x∈ [4,5]

. (39)

Figure 1 showsf (x) together with a (unique) optimalδ -approximator using three336

breakpoints and aδ -approximator using four breakpoints obtained by a method max-337

imizing the interval length successively fromX− to X+.338

We present two heuristic methods to compute a breakpoint system iteratively,339

based on two different approaches on how to tackle problem BSB.340

4.1.1α-Forward Heuristic with Backward Iterations341

Similar to the setup in the previous section, we assume that abreakpointxb−1 is al-342

ready given and that we want to find the next one,xb. The heuristic presented in this343

section fixes bothxb and the shift variables; they are decision variables in the heuris-344

20 Steffen Rebennack, Josef Kallrath

f (x)

x

1−δ
1

1+δ
1.75−δ

1.75
1.75+δ

1 2 3 4 5

Fig. 1: Maximizing the length of the intervals successivelyis not optimal, in general

— f (x) — δ -tube aroundf (x) - - (unique) optimalδ -approximator

· · · δ -approximator maximizing interval length successively

tic presented in Section 4.1.2. We then need to check whetheror not the obtained345

approximator satisfies∆b≤ δ , by solving346

∆b := max
x∈[xb−1,xb]

|ℓ(x)− f (x)| (40)

for interpolator347

ℓ(x) := φ(xb−1)+
φ(xb)−φ(xb−1)

xb− xb−1
(x− xb−1) (41)

to global optimality. If∆b≤ δ , then we acceptxb as the new breakpoint together with348

the shift variables. Otherwise, we try a different value forthe shift variables or shrink349

the interval and replace the current value ofxb by350

xb← xb−1+α(xb− xb−1), 0< α < 1. (42)

This idea is summarized in pseudo-code format in Algorithm 4.1. This heuristic351

method never gets “stuck:”352

Optimal Piecewise Linear Approximations. 21

Algorithm 4.1 α-Forward Heuristic with Backward Iteration

1: // INPUT: Function f , scalarδ > 0, parameterα ∈ (0,1), and shift variable discretization sizeD

2: // OUTPUT: Number of breakpoints,B, breakpoint systemxb and shift variablessb

3: x0 := X−, B := 0, b= 1, ands0 := 0 // Initialize

4: // Outer loop

5: repeat

6: xb := 1
α X+−

1−α
α xb−1 // xb equalsX+ after first counter update in line 9

7: // Inner loop

8: repeat

9: xb← xb−1+α(xb−xb−1) andd := 0 // update breakpoint and reset counter

10: repeat

11: d← d+1 andsbd :=
(

2d
D+1 −1

)

δ // assign discretized value for shift variable

12: solve (40) with fixedxb−1, xb, sb−1 andsbd to obtain∆b // optimize

13: until ∆b≤ δ or d = D

14: until ∆b≤ δ

15: sb := sbd, b← b+1, B← B+1 // fix shift variable and update counter

16: until xb = X+

Corollary 4.1 Algorithm 4.1 terminates after a finite number of iterationsfor any353

continuous function f , anyδ > 0, any α ∈ (0,1) and any D∈ IN. The calculated354

breakpoints with the shift variables yield aδ -approximator for f .355

Proof We need to show that both the inner and the outer loop are finite.356

For the inner loop, let̃ℓ(x) be aδ -approximator forf (x) on [xb−1,X+] with fixed

shift sb−1 (as constructed by the algorithm) and conditionℓ̃(X+) = f (X+). Consider

the continuous function d̃(x) :=
∣

∣ℓ̃(x)− f (x)
∣

∣ in x ∈ [xb−1,X+]. Let

δ̃ := δ − d̃(xb−1). Givenxb−1 and δ̃ > 0, then there existsη > 0 such that for all

x ∈ [xb−1,xb−1 +η): d̃(x) ∈ B δ̃
2

(

d̃(xb−1)
)

(becaused̃ is continuous inxb−1). Thus,

22 Steffen Rebennack, Josef Kallrath

choose anyxb ∈
(

xb−1,xb−1+
η
2

]

which can be obtained, for instance, by looping

n≥













log

(

η
2
(

X+−xb−1

)

)

log(α)













andn∈ IN times. Note that the functioñℓ(x) is not necessarily an approximator we357

can construct in the algorithm becaused̃(xb) might not be equal to one of the dis-358

cretized shift variables. However, for the corresponding functionℓ(x) on [xb−1,xb]359

with any shift variablesb ∈ [− δ̃
2 ,

δ̃
2], we have thatd(x) := |ℓ(x)− f (x)| ≤ δ for all360

x ∈ [xb−1,xb] becaused(x) ∈ B δ̃
2

(

d̃(x)
)

for all x ∈ [xb−1,xb]. Such ansb exists for361

D ∈ IN because minsbd{|
δ̃
2 |}= minsbd{|

δ−sbd
2 |}=

δ
D+1 ≥minsbd{|sbd|}.362

The outer loop is finite through the compactness of interval[X−,X+]: Construct an363

open cover of [X−,X+] as follows. For each outer iterationb, choose364

x1
b := xb−1 +

1
2(xb − xb−1) and ξ 1

b = 1
2(xb − xb−1) as well asx2

b := xb−1 and365

ξ 2
b ∈ (xb−1 − xb−2,xb − xb−1) with x−1 := X− − τ and appropriateτ > 0 (e.g.,366

τ = x1− x0), as shown in Figure 2. Then,
⋃

b

(

Bξ 1
b
(x1

b)∪Bξ 2
b
(x2

b)
)

is an open cover367

of [X−,X+]. Removing any of the open ballsBξ 1
b
(x1

b) or Bξ 2
b
(x2

b) from the cover de-368

stroys the cover. Thus, by compactness of[X−,X+], the number of open balls has to369

be finite. �370

xb−2 xb−1 =: x2
b x1

b
xb

Fig. 2: Cover obtained for outer iterationb of the proof of Corollary 4.1

In order to avoid solving too many global optimization problems (40), we placeI371

grid points,xbi, according to (19) into the interval[xb−1,xb]. For each grid point, we372

Optimal Piecewise Linear Approximations. 23

check whether or not373

|ℓ(xbi)− f (xbi)| ≤ δ . (43)

Only if condition (43) is satisfied for all grid points, we solve problem (40).374

Further, it is not necessary to fix the shift variable for the first breakpointX− at375

value 0. This value can be discretized in the same way as all other shift variables,376

however, this made it easier to present the algorithm. This discretization of[xb−1,xb],377

together with the global optimality check, as well as the discretization of the shift378

variables,s0, does not alter the correctness and finiteness of Algorithm 4.1.379

Note the trade-off of choosingα close to 0 (many subproblems to solve and380

many breakpoints) and close to 1 (smaller number of breakpoints but possibly many381

subproblems which fail the test “∆b≤ δ ?”). However, when using the discretization382

of [xb−1,xb], the computational burden for increasingα values is rather small as the383

bottleneck of Algorithm 4.1 is the solution of the global optimization problem (40).384

4.1.2 Forward Heuristic with Moving Breakpoints385

We again employ a marching procedure to cover the interval[X−,X+]. Similar to386

Heuristic 4.1, we are providing a heuristic to solve problemBSB. However, in this387

section, for a given breakpointxb−1 and shift variablesb−1, we maximize the interval388

length by treatingxb and the shift variablesb as decision variables. To decrease the389

notational burden, we assumes0 ≡ 0 and we discuss the generalization later.390

Using the idea of Section 3.2, we treat the continuum inequalities (37) by placing391

I grid points equidistantly into the interval[xb−1,xb] according to (19). At these grid392

24 Steffen Rebennack, Josef Kallrath

pointsxbi, we require:393

|ℓ(xbi)− f (xbi)| ≤ δ . (44)

Note that we do not need grid points at the breakpointsxb−1 andxb−1 because per394

defintionem the maximal deviation issb−1 andsb, which in turn is bounded byδ .395

Maximization ofxb leads to the following NLP396

∆ I∗ := max xb (45)

s.t. |ℓ(xbi)− f (xbi)| ≤ δ , ∀i ∈ I (46)

xbi = xb−1+
i

I +1
(xb− xb−1) , ∀i ∈ I (47)

xb ∈ [xb−1,X+], xbi ∈ [xb−1,X+], sb ∈ [−δ ,δ], ∀i ∈ I (48)

with the interpolatorℓ derived by (41).397

For given breakpointx∗b, we minimize the absolute value ofsb. That way, we get398

the tightest approximator for the given interval[xb,xb−1], by solving399

∆S∗ := min |sb| (49)

s.t. |ℓ(xbi)− f (xbi)| ≤ δ , ∀i ∈ I (50)

sb ∈ [−δ ,δ] (51)

where the discrete grid pointsxbi are now fixed together withxb.400

Due to the discretization of the continuum[xb−1,xb], we need to check whether for401

the given value ofxb−1, xb, sb−1, andsb inequalities (1) are fulfilled forD= [xb−1,xb].402

We do this by solving the unconstrained problem403

zmax∗ := max
x∈[xb−1,xb]

∣

∣ℓ(x)− f (x)
∣

∣ (52)

Optimal Piecewise Linear Approximations. 25

to global optimality. Ifzmax∗ ≤ δ , then we acceptxb andsb. Otherwise, we increaseI404

by a factor ofβ > 1. This algorithm stops when[X−,X+] is covered.405

Algorithm 4.2 Forward Heuristic with Moving Breakpoints

1: // INPUT: Function f , scalarδ > 0, initial discretization sizeI ini ∈ IN and parameterβ > 1

2: // OUTPUT: Number of breakpoints,B, breakpoint systemxb and shift variablesb

3: x0 := X−, I := I ini/β , B := 0, andb= 1 // Initialize

4: // Outer loop

5: repeat

6: // Inner loop

7: repeat

8: I ← ⌈β I⌉ // update discretization size

9: solve NLP (45)-(48) to obtainx∗b // calculate next breakpoint and shift variable

10: solve one-dimensional NLP (49)-(51) to obtains∗b

11: solve unconstrained NLP (52) to obtainzmax∗ // check if obtainedℓ is δ -approximator

12: until zmax∗ ≤ δ

13: xb := x∗b, sb := s∗b, b← b+1, B← B+1 // fix breakpoint, shift variable and update counter

14: until xb = Xb

This procedure is summarized in Algorithm 4.2. Similar to the heuristic 4.1, the406

Algorithm 4.2 always terminates in finitely many steps (given exact arithmetics):407

Corollary 4.2 Algorithm 4.2 terminates after a finite number of iterationsfor any408

continuous function f , anyδ > 0, any initial discretization size Iini ∈ IN and parame-409

ter β > 1. The calculated breakpoints with the shift variables yielda δ -approximator410

for f .411

There are several advantages and disadvantages of both heuristic methods 4.1412

and 4.2. While 4.1 needs to solve a much smaller number of optimization problems413

26 Steffen Rebennack, Josef Kallrath

to global optimality than 4.2, the number of breakpoints of theδ -approximator com-414

puted by 4.1 is expected to be larger than the one computed by 4.2. Particularly com-415

putationally expensive is solving problems (45)-(48) in 4.2.416

Both Algorithms 4.1 and 4.2 are of a “forward” nature,i.e., the interval[X−,X+]417

is successively covered by intervals of breakpoints “moving” from X− to X+. De-418

pendent on the shape of the functionf and given that both methods are heuristics, it419

might be beneficial to run the algorithm in a “backward” manner, e.g., the obtained420

δ -approximator might have less breakpoints. To run both a forward and a backward421

algorithm might be particularly promising for functions which are highly asymmetric422

aroundX−+X+
2 . Such a backward algorithm can be achieved by substitutingf (x) by423

f̃ (x) := f (X++X−−x) and running the forward Algorithm 4.1 for̃f andx∈ [X−,X+].424

The breakpoint system for the backward algorithm is then obtained as follows: Letx∗b425

be the breakpoints obtained by the forward algorithm forf̃ (x). The new breakpoints426

are given by ˜x∗b := X++X−− x∗b.427

5 Computational Results428

We have implemented the models and algorithms in GAMS (v. 23.6). The global429

optimization problems are solved using LindoGlobal (v. 23.6.5). The computations430

are preformed by an Intel(R) i7 using a single core with 2.93 GHz and 12.0 GB RAM431

on a 64-bit Windows 7 operating system. We allow a maximal deviation from the432

δ -tube by at most 10−5; i.e., equation (1) and/or (2) is violated by at most 10−5.433

For our computational test bed, we consider ten different functions, summarized434

in Table 1. Figure 3 illustrates the ten functions (black line) together withδ -approxi-435

Optimal Piecewise Linear Approximations. 27

Table 1: One-dimensional functions tested.

f (x) X− X+ Comment

1 x2 -3.5 3.5 convex function, optimal distribution of breakpoints is uni-

form; axial symmetric atx= 0

2 lnx 1 32 concave function

3 sinx 0 2π point-symmetric atx= π

4 tanh(x) -5 5 strictly monotonically increasing; point symmetric atx= 0

5 sin(x)
x 1 12 for numerical stability reason we avoid the removable sin-

gularity and the oscillation at 0, the two local minima have

an absolute function value difference of≈ 0.126

6 2x2+x3 -2.5 2.5 in (−∞,∞), there is one local minimum atx = 0 and one

local maximum atx= 4
3

7 e−x sin(x) -4 4 one global minimum (xm≈−2.356 andf (xm)≈−7.460)

8 e−100(x−2)2 0 3 a normal distribution with a sharp peak atx=2

9 1.03e−100(x−1.2)2 0 3 sum of two Gaussians, with two slightly different maxima

+e−100(x−2)2 (their absolute function value difference is≈ 0.030)

10 [27] 0 2π three local minima (the absolute function value difference

of the two smallest local minima is≈ 0.031)

mators,δ -underestimators orδ -overestimators (gray line), obtained from different436

methods. Method FBSD is used to compute approximators for the first five functions.437

The number of breakpoints,B, is chosen a priori. FBSD is then used to compute the438

optimalδ ∗, δ ∗− or δ ∗+ (with a precision of< 0.001) together with an estimator. Esti-439

mators for functions six to ten are computed with the heuristic methods Algorithm 4.1440

and Algorithm 4.2, whereδ was chosen a priori. One can see,e.g., in Fig. 3(h)-(j),441

28 Steffen Rebennack, Josef Kallrath

that our models do not compute approximators which are “closest” possible to the442

original function but which instead stay within a givenδ -tube around the function.443

For each function and four different values ofδ ∈ {0.100,0.050,0.010,0.005},444

the number of breakpoints and the computational times for the two heuristic meth-445

ods, presented in Sections 4.1.1 and 4.1.2, are summarized in Table 2. Both heuristic446

methods are executed in a forward and backward fashion. One observes that the num-447

ber of breakpoints and the computational times are similar for both the forward and448

the backward iterations. However, the running time of Algorithm 4.2 is significantly449

higher than that of Algorithm 4.1, because Algorithm 4.1 requires less NLP solves.450

Algorithm 4.2 consistently computes the same or fewer number of breakpoints for a451

given accuracyδ than Algorithm 4.1.A good trade-off between computationaltime452

and number of breakpoints computed are parametersα = 0.985 andD = 3 for Algo-453

rithm 4.1 andI ini = 10 andβ = 2.5 for Algorithm 4.2.454

Table 3 summarizes the computational results obtained by FBSD. We use the455

lowest number of breakpoints calculated by any of the two heuristic methods for a456

given accuracyδ , cf.Table 2, to calculate the tightest possible approximator. We start457

with a grid size ofI = 1 and solve FBSD. This yields a lower boundδLB on δ ∗ (for458

the fixed number of breakpoints). For the computed approximator, we evaluate the459

maximal deviation to the functionf (x). This yields an upper boundδUB on δ ∗. If460

the upper bound and the lower bound are within 0.001, then we stop the algorithm.461

Otherwise, we increaseI to I ← max{1.5 · I , I + 1} and re-iterate.δini is used as a462

(tight) initial bound on the shift variables and the maximaldeviation.463

Optimal Piecewise Linear Approximations. 29

5

10

-4 -3 -2 -1 1 2 3 4

(a) Func 1: FBSD withB= 5 yieldsδ ∗ = 0.383

1

2

3

4

5 10 15 20 25 30

(b) Func. 2: FBSD withB= 3 yieldsδ ∗− = 0.361

-1

1

1 2 3 4 5 6

(c) Func. 3: FBSD withB= 4 yieldsδ ∗+ = 0.240

-1

1

-5 -4 -3 -2 -1 1 2 3 4 5

(d) Func. 4: FBSD withB=4 yieldsδ ∗= 0.063

0.5

1

1 6 12

(e) Func. 5: FBSD withB= 4 yieldsδ ∗− = 0.103

5

10

15

20

25

-2 -1 1 2

(f) Func. 6: Alg. 4.1 w/δ+ = 0.5 yieldsB= 9

Fig. 3: Continued.

30 Steffen Rebennack, Josef Kallrath

Table 2: Computational results forδ -approximators using heuristics.

δ
Algorithm 4.1 Algorithm 4.2

Forward Backward Forward Backward
B sec. B sec. B sec. B sec.

1 0.100 9 0.41 9 0.41 9 2.69 9 2.64
0.050 13 0.58 13 0.57 13 3.98 13 4.06
0.010 26 1.18 26 1.23 26 8.85 26 9.10
0.005 37 1.71 37 1.70 36 10.46 36 10.99

2 0.100 4 0.21 4 0.16 4 1.65 4 1.73
0.050 5 0.35 5 0.21 5 1.20 5 1.26
0.010 10 0.68 10 0.45 10 3.31 10 3.01
0.005 14 0.69 14 0.66 14 5.90 14 4.96

3 0.100 6 0.27 6 0.28 6 31.29 6 35.30
0.050 6 0.26 6 0.27 6 4.35 6 4.89
0.010 14 0.70 14 0.69 14 5.47 14 5.77
0.005 18 0.84 18 0.85 18 7.43 18 7.68

4 0.100 4 0.17 4 0.16 4 20.61 4 0.61
0.050 6 0.26 6 0.29 6 1.67 6 1.83
0.010 10 0.49 10 0.45 10 3.71 10 3.84
0.005 14 0.72 14 0.73 14 5.40 14 5.64

5 0.100 5 5.60 4 0.21 5 34.10 4 63.94
0.050 6 1.04 6 0.44 6 46.20 6 93.47
0.010 11 1.43 10 0.61 10 11.31 10 272.19
0.005 13 0.82 13 2.01 13 12.08 13 12.38

6 0.100 12 0.77 12 0.64 12 23.09 12 17.74
0.050 16 1.00 16 0.86 16 17.66 16 20.40
0.010 35 2.16 35 2.26 35 22.48 35 41.87
0.005 49 3.10 49 3.19 48 28.34 48 30.38

7 0.100 15 0.97 15 0.93 15 40.57 15 31.62
0.050 21 1.48 21 2.36 21 28.73 20 51.40
0.010 45 2.88 44 2.95 45 53.22 44 51.54
0.005 62 4.11 62 4.37 62 72.87 62 62.29

8 0.100 5 0.30 5 0.26 5 8.43 5 6.09
0.050 7 0.50 7 0.39 7 10.52 7 7.56
0.010 12 0.74 12 0.73 12 6.90 12 6.50
0.005 16 0.97 16 1.00 15 7.77 16 10.43

9 0.100 8 0.47 8 0.44 8 11.67 8 14.93
0.050 13 0.85 12 0.74 12 18.70 12 19.66
0.010 22 1.41 22 1.39 22 13.66 22 15.98
0.005 30 2.15 29 2.07 29 17.94 29 16.92

10 0.100 17 2.90 17 3.03 17 204.11 17 97.87
0.050 23 4.04 23 4.11 23 88.50 23 98.57
0.010 46 7.82 47 7.61 46 91.71 47 95.95
0.005 68 11.17 68 11.17 68 88.13 67 96.22

/0 0.100 1.21 0.65 37.82 27.25
/0 0.050 1.04 1.02 22.15 30.31
/0 0.010 1.95 1.84 22.06 50.58
/0 0.005 2.63 2.78 25.63 25.79

Optimal Piecewise Linear Approximations. 31

Table 3: Tightness obtained by FBSD for givenB.

δini B δLB δUB Max Grid sec.

1 0.100 9 0.095703 0.095703 1 16.4

0.050 13 0.042535 0.042535 1 115.4

2 0.100 4 0.081899 0.081922 4 12.1

0.050 5 0.046281 0.046595 4 25.8

0.010 10 0.009211 0.009287 1 3.9

0.005 14 0.004429 0.004446 1 68.7

3 0.100 6 0.048109 0.048250 19 411.0

0.050 6 0.048109 0.048250 19 190.8

0.010 14 0.009696 0.010275 9 5659.3

0.005 18 0.004637 0.004829 6 11079.1

4 0.100 4 0.062853 0.063728 3 2.9

0.050 6 0.024160 0.024541 3 20.2

0.010 10 0.007855 0.008148 3 39.4

0.005 14 0.003578 0.004409 2 27.8

5 0.100 4 0.051237 0.051847 13 182.4

0.050 6 0.018513 0.022101 6 36162.8

6 0.100 4 0.085288 0.095080 9 108806.1

8 0.100 5 0.053910 0.054603 13 283.6

0.050 7 0.009178 0.990842 13 36416.9

0.010 12 0.009158 0.990842 9 42195.4

9 0.100 8 0.085773 0.941691 9 38712.4

0.050 12 0.000087 1.029913 4 36324.0

All other instances yieldδLB = 0 after 10h of CPU time.

32 Steffen Rebennack, Josef Kallrath

-10

10

20

30

40

-4 -3 -2 -1 1 2 3 4

(g) Func. 7: Alg. 4.2 w/δ = 0.6 yieldsB= 7

0.5

1

1 2 3

(h) Func. 8: Alg. 4.1 w/δ− = 0.2 yieldsB= 5

0.5

1

1 2 3

(i) Func. 9: Alg. 4.2 w/δ+ = 0.3 yieldsB= 8

1

2

3

-1

1 2 3 4 5 6

(j) Func. 10: Alg. 4.1 w/δ = 0.5 yieldsB= 7

Fig. 3: The ten univariate functions tested together with some approximator functions.

— original function — approximator function

Table 4 summarizes the computational results for the model OBSD. We limit the464

size of the breakpoint setB by the lowest number of breakpoints computed in Table465

2 for each discretization sizeδ . The continuum condition is initially discretized into466

Optimal Piecewise Linear Approximations. 33

two points,i.e., I = 2. By solving OBSD, we obtain a lower boundB− on B∗. If B−467

equals the initial number of breakpoints or the maximal deviation does not exceed468

δ (with an accuracy of 0.00125), then the algorithm stops withB∗ = B−. Otherwise,469

the grid size is updated byI ← 1.5· I and the process starts over again. One observes470

in Table 4 that for most of the problemsB∗ cannot be computed. Furthermore, the471

required discretization sizeI is quite large.472

OBSI performs much worse compared to OBSD. OBSI is able to obtain the op-473

timal B∗ = 4 only for function 5 withδ = 0.100. The computational time is ap-474

proximately 97 seconds, requiring a size ofI = 20. For most of the other problem475

instances, not even a feasible point for the original model (using I = 2 ·B) can be476

computed within 1800 seconds of CPU time.477

Table 5 summarizes the optimal number of breakpoints required for the various478

functions and approximation accuracies along with the methods computed (again, we479

have a numerical accuracy of 10−5). For 25 out of 40 instances, an optimalB∗ can be480

computed, while for 15 instances,B∗ is unknown. We do not report exact computa-481

tional times in seconds, as different solver versions, different parameter settings and482

initial values onB are used for each of the computations. To prove optimality ofB483

with the help of FBSD, one computes the optimalδ ∗ for B−1. If a lower bound on484

δ ∗ is greater thanδ , then the optimal number of breakpoints has to be≥ B.485

Let us compare our results when an equidistant distributionof the breakpoints is486

used together with a function interpolation. Table 6 summarizes the minimum num-487

ber of equidistant breakpoints needed to ensure a given accuracy δ . We computes488

these breakpoint systems with the following brute-force algorithm. Starting with two489

34 Steffen Rebennack, Josef Kallrath

Table 4: Computational results for model OBSD.

δ B∗ B− # iter. I sec.
1 0.100 – 5 9 42 1965.25†

0.050 – 5 8 28 1967.30†

0.005 – 5 5 9 1997.34†

2 0.100 4 – 9 42 24.16
0.050 5 – 10 63 550.41
0.010 – 5 9 42 2236.04†

0.005 – 5 8 28 2128.16†

3 0.100 6 – 11 94 195.33
0.050 6 – 11 94 212.71

4 0.100 4 – 10 63 29.95
0.050 – 5 11 94 2815.14†

0.010 – 5 9 42 2427.14†

0.005 – 5 8 28 2157.83†

5 0.100 4 – 9 42 150.40
0.050 – 4 9 42 1877.28†

0.010 – 5 8 28 2918.74†

0.005 – 5 7 19 2832.80†

6 0.100 – 4 7 19 1871.30†

0.050 – 4 7 19 1990.46†

0.010 – 0 1 2 1801.24†

0.005 – 0 1 2 1801.62†

7 0.100 – 5 8 28 2833.29†

0.050 – 0 1 2 1800.99†

0.010 – 0 1 2 1801.50†

0.005 – 0 1 2 1802.60†

8 0.100 – 4 11 94 2224.76†

0.050 – 4 10 63 2077.81†

0.010 – 4 8 28 1836.07†

0.005 – 5 8 28 2758.10†

9 0.100 – 4 9 42 2250.79†

0.050 – 4 8 28 2082.88†

0.010 – 4 6 13 1863.82†

0.005 – 4 5 9 1828.28†

10 0.100 – 4 6 13 3617.24†

0.050 – 4 5 9 3032.66†

0.010 – 0 1 2 1804.50†

0.005 – 0 1 2 1802.37†

†: time limit reached (1800 sec. per iteration)

breakpoints, compute the maximal deviation of the approximator to the functionf (x).490

This is accomplished by solving an NLP to global optimality.If the maximal devi-491

ation is less than or equal toδ (with a tolerance of 10−5), then we have found the492

minimum number of breakpoints. Otherwise, increment the number of breakpoints493

and start over. This leads to several order of magnitudes higher computational times494

Optimal Piecewise Linear Approximations. 35

Table 5: Benchmarks: Minimal numberB∗ of breakpoints needed forδ -
approximators.

δ B∗ B− B+ Algorithm Time
1 0.100 9 FBSD few sec.

0.050 13 FBSD few sec.
0.010 26 FBSD hours
0.005 36 FBSD hours

2 0.100 4 FBSD frac. sec.
0.050 5 FBSD few sec.
0.010 10 FBSD sec.
0.005 14 FBSD sec.

3 0.100 6 FBSD few sec.
0.050 6 FBSD few sec.
0.010 14 FBSD sec.
0.005 18 FBSD few min.

4 0.100 4 FBSD frac. sec.
0.050 6 FBSD few sec.
0.010 10 FBSD few sec.
0.005 14 FBSD few min.

5 0.100 4 FBSD frac. sec.
0.050 6 FBSD sec.
0.010 10 FBSD sec.
0.005 13 FBSD few min.

6 0.100 12 FBSD min.
0.050 16 FBSD few days
0.010 16 35
0.005 16 48

7 0.100 5 15 OBSD
0.050 5 20
0.010 5 44
0.005 5 62

8 0.100 5 FBSD sec.
0.050 5 7
0.010 5 12
0.005 5 15

9 0.100 8 FBSD few days
0.050 8 12
0.010 8 22
0.005 8 29

10 0.100 4 17 OBSD
0.050 4 23
0.010 4 46
0.005 4 67

B−: best known lower bound onB∗, only if B∗ is unknown
B+: best known upper bound onB∗, only if B∗ is unknown
frac.:≥ 1

10 and< 1
few:≥ 1 and≤ 10

36 Steffen Rebennack, Josef Kallrath

Table 6: Minimal numberBE of equidistant breakpoints needed for interpolator with

δ accuracy.

δ = 0.100 δ = 0.050 δ = 0.010 δ = 0.005

BE B δ ∗ BE B δ ∗ BE B δ ∗ BE B δ ∗

1 13 9 0.0851 17 13 0.0479 36 26 0.0100 51 36 0.0049

2 23 4 0.0956 37 5 0.0480 96 10 0.0100 141 14 0.0050

3 8 6 0.0966 11 6 0.0489 24 14 0.0093 33 18 0.0048

4 6 4 0.0923 15 6 0.0378 32 10 0.0099 45 14 0.0049

5 7 4 0.0989 10 6 0.0450 21 10 0.0093 29 13 0.0048

6 25 12 0.0997 36 16 0.0474 78 35 0.0099 110 48 0.0050

7 77 15 0.0993 109 20 0.0492 241 44 0.0100 340 62 0.0050

8 19 5 0.0879 64 7 0.0465 151 12 0.0097 213 15 0.0050

9 46 8 0.0777 68 12 0.0481 151 22 0.0099 216 29 0.0049

10 33 17 0.0973 46 23 0.0495 103 46 0.0100 146 67 0.0050

than the reported times in Table 2; however, we decided not toreport computation495

times because there might be more efficient algorithms and implementations to ob-496

tain the minimum number of equidistant breakpoints. Table 6reports on the mini-497

mum number of equidistant breakpoints,BE, and the actual maximal deviation,δ ∗,498

of the interpolation function tof (x). BE is contrasted with the minimum number of499

breakpoints,B, computed with our methods. For a givenδ , observe that the required500

number of equidistant breakpoints is between 1.3 and 14.2 times the actual number501

of breakpoints needed.502

Fig. 4 plots the maximum deviation of the interpolation function for different503

number of equidistant breakpoints. The function is not monotonic decreasing but504

Optimal Piecewise Linear Approximations. 37

δ ∗

BE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200

Fig. 4: Maximal deviationδ ∗ for different number of equidistant breakpointsBE for

function 8.

the tendency is clearly visible. The curve seems to follows an reciprocal logarith-505

mic curve. Thus, the number of equidistant breakpoints grows exponentially in the506

reciprocal ofδ .507

6 Conclusions508

For univariate functions, we have constructed various methods to compute optimal509

breakpoint systems to be used for piecewise linear approximation, under- and over-510

estimation satisfying a specified accuracyδ . The exact models and heuristic methods511

require the solution of global optimization problems to ensure theδ -tolerance.512

We have introduced the following models and methods:513

38 Steffen Rebennack, Josef Kallrath

1) Two MINLP models (OBSD & OBSI) which yield the minimal number and best514

distribution of breakpoints for a givenδ -tolerance,515

2) a MINLP model (FBSD) which computes the tightest approximation for a fixed516

number of breakpoints, and517

3) two heuristic methods which compute the breakpoints subsequently by solving518

MINLPs with a small number of variables.519

The heuristics always work,i.e., even for complicated functions requiring large520

numbers of breakpoints we are able to obtain a breakpoint system satisfying the re-521

quiredδ -tolerance, and more so, an upper bound on the minimal numberof break-522

points. This upper bound can be used to solve 1) or 2) with a significant smaller523

number of variables. If 1) gives the proven minimal number ofbreakpoints, 2) can be524

used to compute the tightestδ -approximation.525

Future research might develop explicit, piecewise-linearformulations of univari-526

ate functions that are only defined at regular or irregular grid points, but are not avail-527

able in a closed algebraic form. This is an interesting problem relevant to various situ-528

ations and industries. Such situations occur if the functions are evaluated by complex529

black box models involving, for instance, differential equations, or if the functions530

have been established only by experiments or observations.An important subtask is531

also to reduce the number of grid points,i.e., to replace them by a coarser grid which,532

relative to the system of given grid points, preservesδ -accuracy.533

Acknowledgements We thank Jan Jagla (GAMS GmbH, Cologne) for discussions on bi-level programs534

and Dr. Alexander Mitsos (MIT, Boston) for his favorable comments related to the SIP nature of our prob-535

lem, Timo Lohmann and Greg Steeger (both Colorado School of Mines) for their careful proof-reading.536

Optimal Piecewise Linear Approximations. 39

References537

1. Kallrath, J.: Combined strategic and operational planning - an MILP success story in chemical indus-538

try. OR Spectrum24(3), 315–341 (2002)539

2. Kallrath, J., Maindl, T.I.: Real optimization with SAP-APO. Springer (2006)540

3. Zheng, Q.P., Rebennack, S., Iliadis, N.A., Pardalos, P.M.: Optimization models in the natural gas541

industry. In: S. Rebennack, P.M. Pardalos, M.V. Pereira, N.A. Iliadis (eds.) Handbook of power542

systems I, chap. 6, pp. 121–148. Springer (2010)543

4. Frank, S., Steponavice, I., Rebennack, S.: Optimal powerflow: a bibliographic survey I. Energy544

Systems3(3), 221–258 (2012)545

5. Frank, S., Steponavice, I., Rebennack, S.: Optimal powerflow: a bibliographic survey II. Energy546

Systems3(3), 259–289 (2012)547

6. Tomlin, J.A.: Special ordered sets and an application to gas supply operating planning. Mathematical548

Programming45, 69–84 (1988)549

7. Beale, E.L.M., Tomlin, J.A.: Special facilities in a general mathematical programming system for550

nonconvex problem using ordered sets of variables. In: J. Lawrence (ed.) Proceedings of the fifth551

international conference on operational research 1969, pp. 447–454. Tavistock Publishing, (1970)552

8. Beale, E.L.M.: Two transportation oroblems. In: Proceedings of the third international conference on553

operational research 1963, pp. 780–788. Dunod, Paris and English Universities Press, (1963)554

9. Beale, E.M.L., Forrest, J.J.H.: Global optimization using special ordered sets. Mathematical Program-555

ming 10, 52–69 (1976)556

10. de Farias Jr., I.R., Johnson, E.L., Nemhauser, G.L.: A generalized assignment problem with special557

ordered sets: a polyhedral approach. Mathematical Programming Ser. A89, 187–203 (2000)558

11. de Farias Jr., I.R., Zhao, M., Zhao, H.: A special orderedset approach for optimizing a discontinuous559

separable piecewise linear function. Operations ResearchLetters36, 234–238 (2008)560

12. Leyffer, S., Sartenaer, A., Wanufelle, E.: Branch-and-refine for mixed-integer nonconvex global opti-561

mization (2008)562

13. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear563

optimization: unifying framework and extensions. Operations Research53, 303–315 (2009)564

40 Steffen Rebennack, Josef Kallrath

14. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary565

variables and constraints. Mathematical Programming128, 49–72 (2011)566

15. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic prob-567

lems by separable programming. Mathematical Programming34, 163–174 (1986)568

16. Pardalos, P.M., Rosen, J.B.: Constrained global optimization: algorithms and applications. Lecture569

Notes in Computer Science. Springer (1987)570

17. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs.571

In: J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics572

and its Applications, vol. 154, pp. 287–314. Springer (2012)573

18. Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applica-574

tions in gas network optimization. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg,575

(2011)576

19. Hettich, R., Kortanek, K.O.: Semi-infinite programming. SIAM Review35, 380–429 (1993)577

20. Lopez, M., Still, G.: Semi-infinite programming. European Journal of Operational Research180,578

491–518 (2007)579

21. Tsoukalas, A., Rustem, B.: A feasible point adaptation of the blankenship and falk algorithm for580

semi-infinite programming. Optimization Letters5(4), 705–716 (2011).581

22. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. Journal of Optimization582

Theory and Applications19, 268–281 (1976)583

23. Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for MINLP problems.584

II. Bivariate and multivariate functions. Tech. rep., Colorado School of Mines (2012).585

24. Duistermaat, J., Kol, J.: Multidimensional real analysis I: differentiation. Cambridge Studies in Ad-586

vanced Mathematics (2004)587

25. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction toglobal optimization, 2nd edn. Kluwer (2000)588

26. Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators589

and tubes for univariate functions. In: S. Butenko, C. Floudas, T. Rassias (eds.) Optimization in590

Science and Engineering. Springer (2014)591

27. Maranas, C., Floudas, C.A.: Global minimum potential energy conformations of small molecules.592

Journal of Global Optimization4, 135–170 (1994)593

