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Abstract For univariate functions, we compute optimal breakpoirstems subject
to the condition that the piecewise linear approximatodar and overestimator
never deviates more than a givérolerance from the original function over a given
finite interval. The linear approximators, under- and osgneators involve shift vari-
ables at the breakpoints allowing for the computation of jgtimeal piecewise linear,
continuous approximator, under- and overestimator. Weeldevthree non-convex
optimization models: two yield the minimal number of breakys, and another in
which, for a fixed humber of breakpoints, the breakpointspdaeed such that the

maximal deviation is minimized. Alternatively, we use tweuistics which com-
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2 Steffen Rebennack, Josef Kallrath

pute the breakpoints subsequently, solving small hon-eopvoblems. We present
computational results for ten univariate functions. Ourrapch computes breakpoint
systems with up to one order of magnitude less breakpoimgpaced to an equidis-

tant approach.

Keywords Global optimization nonlinear programmingmixed-integer nonlinear

programming non-convex optimization

Mathematics Subject Classification (200090C26

1 Introduction

We are interested in computing piecewise linear, contisufanctions. These func-
tions should approximate a given non-convex function shehthe maximal, abso-
lute deviation from the approximator to the non-convex fiorcdoes not exceed a
pre-defined tolerancé. We call such a piecewise linear functio®aapproximator.
The goal of this paper is to develop algorithms for univarifanctions which can
compute sucld-approximators using a minimal number of breakpoints.

The d-approximators are useful to approximate a nonlinear rogning prob-
lem (NLP) or a mixed-integer nonlinear programming prob{&iNLP) by a mixed-
integer linear programming problem (MILP). TheS@pproximators have to be con-
structed carefully such that valid bounds on the original){LP can be recovered
from the approximated MILP. Such MILP representations drganticular interest,
if the (MI)NLP is embedded into a much larger optimizatiomlgem, typically a

MILP. By including the nonlinear optimization problem, onbtains a large-scale
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Optimal Piecewise Linear Approximations. 3

MINLP, which tends to be very difficult to solve to global aptlity. By reformu-
lating the nonlinear problem as a MILP, one obtains a laggesMILP formulation
of the original problem. Such MILPs can then be solved usimgmercial solvers
like CPLEX, Gurobi, or Xpress. Furthermore, the obtainddtians can be fed into

a local (MI)NLP solver for the final refinement.

We mention two potential applications fitting into this frawork: (1) supply net-
work problems and (2) power system optimization problehsT{pical supply net-
work problems, which gave the primary motivation for thisrigcare those produc-
tion planning and distributions problems with additionakdn aspects [1,2]. (2)
Power system optimization problems involving (highly) raomvex constraint sys-

tems due to gas or electricity networks [3-5].

The modeling of such piecewise linear functions is closelgted tospecial or-
dered setsRef. [6] is a good resource on the historical milestonesiefdoncept of
special ordered sets (of type 1, SOS-1, and of type 2, SOSdinally named S1
and S2 sets) explicitly introduced by Beale and Tomlin in.[Ré&f, but already used
earlier by Beale in [8] to deal with piecewise linear funato Ref. [9] presents the
idea of linear approximations to compute the global minimafnrmon-convex non-
linear functions using non-negative variables forming &5 set. The variables
contained in an SOS-2 set are subject to the condition thrabat two of them can
have a non-zero value and the two non-negative variablesiclgnoccur for adja-
cent indices. Beale and Forrest develop efficient branchiimgmes to exploit this

structure. Since 1976, various contributions elaboratethe usage of SOS-2:

— optimizing a discontinuous separable piecewise lineactfan [10,11],
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4 Steffen Rebennack, Josef Kallrath

— constructing a Branch-and-Refine algorithm for mixed-getenon-convex global
optimization [12],

— developing a unifying framework and extensions to mixetger models for
nonseparable piecewise linear optimization problems [13]

— using significantly fewer binary variables growing only &ghmically in the

number of breakpoints [14].

All publications above use givenset of breakpointd,e., the piecewise linear ap-

proximators are known.

Given these latest developments in the representationegepiise linear func-
tions, one might argue that the number of breakpoints is aatriical anymore.
While in many cases this may be true for well behaved funstifor large intervals
and expressions involving trigonometric functions or fiimres with many local ex-
trema, it still may be crucial to keep the number of breakfsoas small as possible
if piecewise linear approximations are embedded in otrsewarge MILP models.
Also recall that we aim for tight approximators with a gudessd accuracy by ex-
ploiting the placement of breakpoints as a degree of freedtw framework in [14]
profits from tight approximators greatly: For the same nundfebreakpoints and
constraints, we can expect to have (better) bounds on tiggnali(MI)NLP when
using tight approximators.

Next, we review two bodies of work, dealing with the compiatabf such piece-
wise linear approximators. The first work is by Rosen and &asd[15,16]. They
proposed piecewise linear interpolators using equididta@akpoints for concave

quadratic minimization problems. They are able to deriveradion for the number
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Optimal Piecewise Linear Approximations. 5

of breakpoints needed in order to achieve a given errordantar. By concavity, their
interpolators are underestimators. To the best knowledgigecauthors, [15] is the
first work which allows for the computation of breakpointsdagiven error tolerance.
Our work differs in the following important points: (1) wedtiiibute the breakpoints
freely, (2) we allow shifts at the breakpoints, (3) we camtigeneral functions, and

(4) we can compute the minimal number of breakpoints regdoea given accuracy.

The second body of work is by Geil3ler and co-workers [17,TBpy come in
some parts close to our ideas but differ in the following asperhe authors do not
target on computing optimal breakpoint systems (minimahie number of break-
points) and they only estimate the approximation error (oors for over- and un-
derestimating) for the general case of indefinite functishée we solve non-convex
NLP problems to global optimality leading to the tightespagximators. Their ap-
proach does notinvolve shift variables at the breakpoihisiis an important degree
of freedom leading to a smaller number of breakpoints arftteigapproximations.
Our approach is more general because it can handle arbiinaefinite functions
regardless of their curvature. Our only requirement is thafunctions have a finite
number of discontinuities over a compactum and is bounéd&d,no singularities.

Figure 10 of their paper shows discontinuities while we catagontinuous ones.

Ensuring that the approximator and the original functiomdbdeviate more than
o from each other, leads to sets of constraints which haveltbdwer a continuum,
resulting in semi-infinite programming (SIP) problems [22} We evaluate this con-
tinuum conditions at discrete points, followed by a tesbliing the computation of

a global maximum of the deviation function. If the test faile refine the grid [22].
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6 Steffen Rebennack, Josef Kallrath

The contributions of this paper are various methods to syatieally construct

optimal or “good” breakpoint systems, for univariate fuons. More specifically:

1. We develop algorithms which compute thmvenminimal number of break-
points required to piecewise linearly and continuouslyragimate, under- or
overestimate any continuous function over a compactunm(gthodology works
also if the function has finitely many discontinuities).

2. For a given number of breakpoints, we develop an algonitinich can compute
the tightest possible piecewise linear and continuouscgpiator; tightest in the

sense of minimizing the largest deviation.

The remainder of the paper is organized as follows: We stiint tive definition
of d-approximatorsd-under- andd-overestimators in Section 2. We discuss exact
models in Section 3 and heuristics in Section 4 to constuuch spproximators. In
Section 5, we present our computational results. Finakycanclude in Section 6.
This paper is continued by a second paper discussing bigdiiactions and

transformations of multivariate functions to lower dimiemsl functions [23].

2 Approximators, Under- and Overestimators

In one dimension, we call a continuous functibover a compact intervadd C IR
piecewise linear, if there are finitely many intervals gantiingD (we are particularly
interested in partitions whose intervals intersect in ashome point), such that the
restriction of¢ on each interval yields an affine function. We call the two-poihts

of each interval &@reakpoint As such, any functiori has at least two breakpoints.
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Optimal Piecewise Linear Approximations. 7

Definition 2.1 (d-approximator) Let f : D — IR be a function on the compact in-
tervalD C IR and let scalad > 0. A piecewise linear, continuous functiénD — IR

is called ad-approximatorfor f, iff the following property holds

max|{(x) — f(x)| < d. 1)

xeD

For any continuous functioh on the compactur®® and any constard, there ex-
ists such a-approximator function [24]. The existenced@fapproximator functions
raises the question as to how (computationally) difficuéiytlare to construct. The
answer is sobering: For an arbitrary, continuous funcficemd an arbitrary scalar
d > 0, itisNP-hardto check if a piecewise linear, continuous functiosatisfies (1),
i.e, to determine if there exists arc™D such that/(X) — f(X)| > J is NP-complete

This follows because solving

max|¢(x) — f(x)]

xeD
has the same complexity as finding the global maximum of fanct itself — it
is NP-hardto determine a global extremum of an arbitrary, continuausfion f
[25]. (The reduction can be strictly proven by choosirgg 0.) Thus, to compute a
d-approximator for an arbitrary, continuous functiomNB-hard

Under- and overestimators are defined as follows:

Definition 2.2 (3-underestimator / d-overestimator) Let scalard > 0. We call
function/ : D — IR on the compact intervdb C IR a d-underestimatoof function

f: D — IR, iff condition (1) is satisfied along with
0(x) < f(x) vxeD. 2

We call function/ a d-overestimatoof f, iff —¢ is ad-underestimator of-f.
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145 The existence of-underestimator é-overestimator is also ensured for any con-
us tinuous functionf on the compactur®, by usingd = § and shifting the constructed
w7 O-approximator byd down / up. This procedure sustains the minimality of the num-

us  ber of breakpoints:

u  Corollary 2.1 LetD C IR be a compactinterval,: D — IR be ad-approximator for
10 f D — IR with a minimal number of breakpoints and let= 25. Then
s £_(X) =£(x)— 0 and/ (x) = £(x) + 0 define are-underestimator and ag-overesti-

12 mator, respectively, for f with a minimal number of breakjisi

153 Proof The proof is by contradiction. Assume that there iscamnderestimatof*
1« for f with less breakpoints thah. for f. Then,/* has also less breakpoints than
155 approximator. With ¢* := ¢* + §, ¢* is 5-approximator forf with less breakpoints

16 than/, contradicting the minimality of the number of breakpoiotg. O

157 Next to the minimality of the number of breakpoints, we atteiiasted in obtain-

158 INQ tight approximators, under- or overestimators. Theglketo the following

10 Definition 2.3 (tightness)A d-approximatord-underestimator od-overestimator
10 With B breakpoints for functiorf is calledtighter than ad-approximator3-under-
e estimator ord-overestimator, respectively, witB breakpoints for functionf, iff
e 0 < J. A d-approximatorp-underestimator od-overestimator wittB breakpoints
2 IS calledtight for f(x), iff there is notighter 3 -approximator-underestimator or

1we  IJ-overestimator forf.

165 Interestingly, tightness is preserved when shifting apipnators to obtain under- or

166 OVerestimators:
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Optimal Piecewise Linear Approximations. 9

Corollary 2.2 Let/: D — IR be atightd-approximator for f: D — IR and lete = 2.
Then/_(x) = ¢(X) — 0 and {4 (x) = £(x) + o define a tight-underestimator and an

g-overestimator, respectively, for f with the same numbédredkpoints.

Proof The proof is by contradiction. Assume that there &-anderestimatof* for
f which is tighter than¢_, i.e, 3 < 28. Then, ¢* .= ¢* + %, is a tighter

%-approximatorforf than/ because% < 9, contradicting the tightness éf O

Note that we call a piecewise linear approximdttght for functionf, if the maximal
deviation of¢ and f is minimal However, we are also interested in minimizing the

area betweehandf. Thus, ideally, one should compute

1. the minimum number of breakpoin;, to achieve thé-approximation, then
2. find a tightd-approximator wittB* breakpoints€ < ), and then
3. compute a3-approximator withB* breakpoints which minimizes the area be-

tween thed -approximator and .

This applies also to under- and overestimators. In thispagetreat only on the first
and the second computational step of this three phase methedcomputation of
area-minimizing approximators is treated in [26].

Note that all definitions and results in this section natyeattend ton-dimensional

functions.

3 Univariate Functions: Exact Approaches

In this section, we discuss the construction of breakpgtesns for one-dimensional

functionsf : D — IR for the compact intervaD := [X_, X, ].



188

189

190

191

192

193

194

195

196

197
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3.1 Computing an Optimal Set of Breakpoints

We are looking for a piecewise linear, continuous functio — IR that satisfies
condition (1),i.e., a 6-approximator forf, which contains the minimal number of
breakpointd € £. Let # := {1,...,B} be a sufficiently large, finite set of break-
points. Later, we explicitly define what “sufficiently lafgmeans in this context, see
Corollary 3.2.

We allow the linear approximator to deviasg € [—9,+0] from the function

valuesf (xp). Once, we have computed ands,, we can approximate functiohby

f(x) = %(f(xbﬂ—sb)/\b with x= %xb)\b and %)\b: 1
For ease of notation, we define

P(%p) 1= f(%) +s, Vbe % 3)

Now, we are able to construct a piecewise linear, continfmugtion/ (OBSC):

Z=min 5 Xo (4)
be#
St Xp_1 <Xy, VbeR (5)
Xp > X+ (X =X) (1= Xp), VbeX (6)
1
Xp—Xp-1 2 7 Xb, Vbe % (7
Xp—Xo-1 < (X4 =X )Xo, VbeZ (8)
Yo=Xo—Xp-1+ (X =X)(1—-Xp), VbeZH 9)
> Xox=1 Vxe[X..Xi] (10)
be#

Xo-1— (Xp = X0) (1= Xp) <X <X+ (X = X2) (1= X3 »
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vbe B, vxe[X_,X] (11)
R )

Vbe B, xe X ,X] (12)
100:= 3 s xe XX 13)
(00— 11 <3, Wxe X X,) (14)

Xp € (X, Xy], s€[-0,+0], Xoe{0,1}, xpe{0,1},

vbe B, Wxe[X_,X,] (15)

L1
yb_M,

where we defingg := X_ and@(x,) according to (3).

The binary indicator variablg, has value 1, if breakpoirit € % is included in
the linear approximatiofand 0 otherwise. Constraints (5) sort the breakpoints while
(6) connect variablegy, with the coordinatesy, of the breakpoints. Particularly, if
Xb = 0, inequalities (6) imply, = X,, i.e,, all inactive breakpoints are placed on the
upper bound, or equivalently, all breakpoints not includtetthe construction of are
set toX.. Moreover, if OBSC is feasible, then there must exist a hpeak b such
thatx, = X; with x, = 1 andx; = O for all b > b andb € %, ensured by constraints
(6) and (8). Note that the number of breakpoints include@li;thusz* +1, because
the objective (4) does not couxg = X_ as breakpoint fof. Variablesy, take value
Xp — Xp_1 if Xp —Xp_1 > 0 andX, — X_ otherwise. This is modeled via constraints
(7)-(9) with an appropriate constaht, e.g, ﬁ equals machine precision. Variable
Xox is 1, if X € [xp_1,%] and O otherwise, modeled via constraints (10)-(11). The
definitions (12)-(13) should not be interpreted as constsabut rather as auxiliary

definitions to construct the functiohas a shifted interpolation of functioh Note
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12 Steffen Rebennack, Josef Kallrath

that constraints (10) and (14) turn our problem into theslalsSIP. As formula-
tion (4)-(15) leads to an Optimal Breakpoint System usingatuum approach for

X, we call it “OBSC.” This discussion implies

Corollary 3.1 If OBSC is feasible, thefis a d-approximator for f with the mini-

mum number of breakpoints beingiz 1.

Note that any feasible solution to OBSC widtbreakpoints can be extended to be
valid for OBSC for anyB > B, by assigning(, = 0, Xy, = X, , andy, = 1 for any %\ %
and copying the values for other variables from the solutigh B breakpoints. This
implies thatz*(B) > z*(B). If OBSC is infeasible foB, then it is also infeasible for
B. Furthermore, if OBSC is feasible f&; thenz*(B) = z*(B). Thus, they are either
equal, or one is finite and the other4so. The existence of a finite choice f8rto

make OBSC feasible is established in

Corollary 3.2 If f is a continuous function over{)then there exists a finite'Buch

that for all B> B* OBSC is feasible.

Note thatx in OBSC is not a decision variable and can vary in the interval
[X_,X]. This makes OBSC a semi-infinite MINLP problem — a class dfrojza-
tion problems which are notoriously difficult to solve. Totaim a computationally
tractable mathematical program, we discretize the contmaonstraints (14) intd

finite constraints of the form
[0(xi)— f(x)] <9, Viel:={1,...,1}, (16)

for appropriately selected grid points Applying this approach teachof the B

breakpointsx, in formulation OBSC, leads to the following Discretized Oyl
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24 Breakpoint System (OBSD):

2% = min bezerb (17)

st (5 —(9) (18)

xbisz,1+|+i—1(xb—xb,1), Vbe %, Viel (19)

i = o0y 1) + LB o) vbe g vieT 20

i — f(x6i)| <3, VYbeB, Viel (21)
%MK HE[-E+8, Xoe (0L w2

Xpi € X2, Xy], lpi freg vbe B, Viel, (22)

25 With xg = X,.. Decision variablesw,; uniformly discretize the breakpoint interval
2 [Xp_1,Xp] iNtO | + 1 segments, each with Iengf:{%I (Xp — Xp—1)- This is modeled via
a7 (19). Variabledy; evaluate the interpolation af(x,_1) and @(xy) at grid pointxy;
28 through constraints (20). The maximal absolute deviatibthe computed approx-
20 imator to functionf (x) is then bounded by at the grid points through constraints
20 (21), replacing constraints (14).
2a1 The number of variables and constraints of OBSD dependsgtron the num-
22 ber of breakpointsB, and the discretization side Constraints (20) and (21) make
23 problem OBSD a highly non-convex MINLP. HoweverXf andX, are relatively
24 close together, then OBSD might be computationally trdet#ilf is not too “bad.”
A piecewise linear, continuous functiércan be constructed by using the break-
pointsxg obtained from solving OBSD using interpolation as in (2@y. fhis function
¢, one must solve

é=m&%ﬁaw—ﬂm
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to global optimality. Ifz; < &, then/ defines ad-approximator forf. If not, then
increasing the interval discretization sizand resolving OBSD might help. However,

one may be forced to also increase the number of breakp®@istsummarize this in

Corollary 3.3 Let OBSD be feasible for B and I.4fconstructed fronj20) satisfies
(1), then? is a d-approximator for f with the minimum number of breakpoireig
Z°* 4 1. If £ does not satisfy (1), the®z+ 1 defines a lower bound on the minimum

number of breakpoints on ayapproximator for f.

Alternatively to discretizinggachbreakpoint interval intd grid points, one can

distribute theentireinterval [X_, X ] into |, a priori given, grid points (OBSI):

Z=min 5 Xo (23)
be

st (5)—(9) (24)

Z Xbi = 1, Viel (25)
be#

Xp—1— (X4 —X2) (1= Xbi) <% <Xp+ (Xe —X2) (1= Xbi),

Vbe B, Viel (26)
i = 1) + 2P0t oy vbe sz vieT (2)
li = bezﬁﬁbiXbi, viel (28)
li—f(x)[ <o, Viel (29)
%EDCX] (0T Xie (0L w2,
S €[-0,+40], |p free Iy free, YVbe B, Viel (30)

4 Where theg = ,l (Xy —X_)+X_ are input datag(x,) is obtained by (3) as previously.

255

Binary decision variablegy, take value 1, if grid point; € [x,_1,%,] and 0 otherwise.
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This is modeled by constraints (25) and (26), replacing @) (11). Constraints
(27)-(29) model the approximator for the obtained breakpsystem.

Let us compare OBSD with OBSI. For one, OBSD does not requith the
B-1 binary variablegy,; and constraints (25), (26), (28). Second, additiddlcon-
tinuous variablesy; are introduced in the OBSD formulation, requiring constisi
(19). Furthermore, constraints (20) involve the additlorzaiablesx,; compared to
constraints (27). Though binary variables tend to be coatfmrtally burdensome,
non-convex terms are at least as computationally chalgngihus, it is not a priori

clear which formulation, OBSD or OBSI, is computationallypgrior.

3.2 Computing a Tighd-Approximator for a Fixed Number of Breakpoints

Problems OBSC, OBSD and OBSI are in general too large anduliffio solve.
Only for a modest number of breakpoints and not too many éligation points
there is a chance to solve these problems to global optynaliternatively, we fix
the number of breakpoints 8 + 1 and compute an optimal breakpoint placement

which minimized the deviatiop, obtained by the discretized continuum constraint

[e(xi) = f(x)| <p, Viel

This is then followed by a check whethgris less than or equal to odrtolerance.
We use the idea of formulation OBSD and discretize eachvatéx, 1,xy) into

| equidistant grid points. This puts us into the advantagseituation that we know to

which breakpoint interval the variableg belong to,.e., we do not need the binary

variablesyy,. By forcing the usage of exact® breakpoints (note, we do not count
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Xo = X_ as breakpoint in the formulation), we can also eliminatedinary variables

Xb- We obtain the continuous NLP (FBSD)

p*=min u (31)
st (19)—(21) (32)
1
Xo—Xp-12 4, VDEZ (33)
loi — f(xoi)| <H, Vbe®B, viel (34)

Xp € [X*7X+]7 Xpi € [X*7X+]7 lbi free,

u>0, s€[-96,49], vbeRB, Viel (35)

Note that at the breakpoints the function deviation is bearayd. Therefore, we
do not need discretization points at the breakpoints. Theisa of FBSD provides
a breakpoint systers;, the shift variables;;, and the minimal valugy*. Note that
they are functions oB andl, e.g, u* = p*(B, 1) andxj = x;(B,1).

The obtained breakpoints and shift variables yiettlapproximator forf (x). In

order to compute?, we solve the maximization problem

X(B,l):= max [£{(x)— f(X)]

XE [Xp—1,Xp)]

for each intervalx,_1,xp], to yield
3 =0"(B,l) :=maxd(B,l).
beB

Let o*-approximator be a tight approximator w1 breakpoints. Then the op-
timal solution value of FBSD is a lower bound én, i.e,, u* < &*. Thus, ifu* = 3,
thend = 0* and the compute&-approximator is tight. By choosing the discretiza-

tion sizel appropriatelyu*(B,1) andd*(B,1) can get arbitrarily close to each other.
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In other words, for a fixed number of breakpoints, FBSD canudate the tightest

possible approximator. This is formalized in the next

Corollary 3.4 Let f be a continuous function and B be fixed. Then, for eachoO,

there exists a finite*| such thau*(B,1*) +n > d*(B,1*).

Proof Functiond(x) := |¢(x) — f(x)| is continuous in(X_,X;]. By definition of a
continuous function ixg € [X_, X ], we can find for eacly > 0O (this is the sameg
as in the Corollary) & > 0 such that(x) € B% (d(xg)) for all x € By(Xo). Now, we
just need to make sure that each open Blky) contains (at least) ong, (the shift
variables are continuous and, thus, not of a concern here).

For a givenn > 0, we can find a finite series @fs such that the corresponding
open balls coveliX_, X, ], becaus€X_, X, ] is compact. Ley* be the smallest among

all y's and choose” := (X; — X )+ + 1. O

The proof of Corollary 3.4 does not provide a practical wagldosing *. Fur-
thermore,u*(-,1) is not a monotonic decreasing functionlinHowever, for given
I, u* provides a lower bound on any approximator quality widitedefines an up-
per bound. Thus, iu* and &* are close enough to each othergy, machine pre-
cision), thend*-approximator is the tightest possibfeapproximator forf with
B breakpoints. This suggests the following algorithm on howcompute a tight
d-approximator: choosec IN and solve FBSD; iD*(B, ) = u*, then we have found
a tight 3 -approximator, otherwise increasend start over untid*(B,1) = p*. By
Corollary 3.4, this procedure terminates in finitely marmgpst(at least up to a certain

precision wherd*(B,1) ~ u*).
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Observe thau* (B, 1) is a monotonic non-increasing function in the number of
breakpoints, with i > 1*(B). This monotonicity enables us to computé-approxi-
mator with the least number of breakpoints as follows: stéttt an initial number of
breakpoints and compute a tightapproximator via the methods described above;
if 3 <9, thend-approximator is a8-approximator with the least number of break-

points, otherwise, increase the number of breakpoints byaowl start over.

4 Univariate Functions: Heuristic Approaches

In this section, we present two heuristic methods whicheesihed-tolerance. How-

ever, they cannot guarantee the minimality in the numberedikpoints.

4.1 Successively Computing a Good Set of Breakpoints

In Section 3.1, we provided formulations to compute all BpEants simultaneously
by solving one optimization model. Here, we propose a fodsaheme moving suc-

cessively from a given breakpoint,_1, to the next breakpoing, with (BSB)

{* =max X (36)
st | O(Xp-1) + w (X—xp_1)— F(X)| <9, VXE [Xp_1,%] (37)

Xp — Xp—1
Xp € (Xo-1,X4], S €[-0,+3]. (38)

until the entire intervalX_, X, ] is covered. When BSB is solved and an optimal
X, as well as the shift variablg is obtained, then botk) ands; are fixed for the
problemb+1 (if X, < X;). Thus, BSB contains only two decision variablesbor 1.

However, forb = 1, we use the convention thes := X_ and thatsy € [-9,+9] is
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an additional decision variable for BSB. Though BSB only tvés or three decision
variables, it is difficult to solve because of the continuooisstraints (37).

Note that successively computing breakpoints by maxirgizive length of the
intervals does not necessarily lead to an optimal breakggsiem|.e., a 5-approxi-
mator with the least number of breakpoints. It might be beradfiin certain cases, to
consider intervals between two breakpoints which are nota{imal length; particu-
larly as maximizing the interval length may lead to a largié stariable which might
decrease the length of the proceeding intervals. Thereéarsider the following

continuous functiorf (x) for fixed 4 = 0.25 andx € [0, 5]:

1, if xe [0,2)
—0.50+0.75x, if x € [2,3)
f(x):= : (39)
1.75— 5(x—3), if x € [3,4)
1.75— &+ 26(x—4), if x € [4,5]

Figure 1 showsf (x) together with a (unique) optimal-approximator using three
breakpoints and &-approximator using four breakpoints obtained by a methag-m
imizing the interval length successively fraf to X .

We present two heuristic methods to compute a breakpoitésygeratively,

based on two different approaches on how to tackle probleB1 BS

4.1.1 a-Forward Heuristic with Backward lterations

Similar to the setup in the previous section, we assume tha¢akpointx, 1 is al-
ready given and that we want to find the next oge,The heuristic presented in this

section fixes botl, and the shift variables; they are decision variables in theik-
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Fig. 1: Maximizing the length of the intervals successivslypot optimal, in general
—f(x) o-tube around (X) - - (unigue) optimab-approximator

-~ 0-approximator maximizing interval length successively

tic presented in Section 4.1.2. We then need to check whetheot the obtained

approximator satisfied, < 9, by solving

Ap:= max [¢(x)— f(x)] (40)
XE[Xp-1.%]

for interpolator

X—Xp_1) (41)

009 = p(xy 1) + 20 = P0-1)
Xo 1

Xp
to global optimality. IfA, < 8, then we accept, as the new breakpoint together with
the shift variables. Otherwise, we try a different valuetfa shift variables or shrink

the interval and replace the current valueby
Xp 4 Xp—1+0(Xp—Xp-1), O<a <l (42)

This idea is summarized in pseudo-code format in Algorithfin Zhis heuristic

method never gets “stuck:”
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Algorithm 4.1 a-Forward Heuristic with Backward Iteration

1: /IINPUT: Functionf, scalard > 0, parameterr € (0,1), and shift variable discretization size
2: //OUTPUT: Number of breakpoints3, breakpoint system, and shift variables,

3 X:=X_,B:=0,b=1,andsg:=0 [/ Initialize

4: /I Outer loop

5: repeat

6: Xp:= %X+ - PT“xb,l Il x, equalsX. after first counter update in line 9

7:  IlInner loop

8: repeat
9: Xp ¢ Xp—1+ 0 (Xp—Xp—1) @andd :=0  // update breakpoint and reset counter
10: repeat
11: d«d+1andsyg:= (Dz—fl - )6 /I assign discretized value for shift variable
12: solve (40) with fixed_1, Xp, Sp—1 andsyg to obtaind,  // optimize
13: until A, <dord=D

14:  until Ap <o
15 syi=Spg, b b+1,B+B+1 [/ fix shift variable and update counter

16: until x, = X4

Corollary 4.1 Algorithm 4.1 terminates after a finite number of iteratidos any
continuous function f, ang > 0, anya € (0,1) and any De IN. The calculated

breakpoints with the shift variables yielddaapproximator for f.

Proof We need to show that both the inner and the outer loop are.finite

For the inner loop, lef(x) be ad-approximator forf (x) on [x,_1, X ] with fixed
shift s, 1 (as constructed by the algorithm) and conditi¢k, ) = f (X, ). Consider
the continuous functiond(x) = |[{(x)—f(x)| in x € [x-1,X:]. Let
5=56— dN(xb,l). Givenxy_1 andd > 0, then there existg > 0 such that for all

X € [Xo_1,%-1+N): d(X) € B; (dN(xb,l)) (becausal is continuous inx,_1). Thus,
2
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choose any, € (xb,l,xb,l + %] which can be obtained, for instance, by looping

09 (55

"= T Toga)

andn € IN times. Note that the functiof(x) is not necessarily an approximator we
can construct in the algorithm becauf(e(b) might not be equal to one of the dis-
cretized shift variables. However, for the correspondimgction ¢(x) on [X,_1,Xp]
with any shift variables, € [—3, 3], we have thati(x) := [¢(x) — f (x)| < & for all

X € [Xp—1,Xp] becausal(x) € B; (d(x)) for all x € [X,_1,X]. Such ans, exists for

Nion

D € IN because migd{|§|} = ming,,{| 5’25"d|} = DLH > ming,,{|Sod|}-

The outer loop is finite through the compactness of intdXal X, ]: Construct an
open cover of [X_,X;] as follows. For each outer iteratiol, choose
Xt = Xo-1+ 2(% — Xo-1) and & = J(xp — %o_1) as well asx2 := x,_1 and
Ebz € (Xp—1 — Xp_2,Xp — Xp—1) With x_1 := X_ — 1 and appropriate > 0 (e.g,
T = X1 — Xp), as shown in Figure 2. Thef), (bel(xtl’) U Bfg(xg)) is an open cover
of [X_,X;]. Removing any of the open baﬁé(x%) or ng(xg) from the cover de-

stroys the cover. Thus, by compactnes$f, X, |, the number of open balls has to

be finite. O

[ [

\ \ /)
Xp—2 Xo_1 =i X¢ X Xo

Fig. 2: Cover obtained for outer iteratidwrof the proof of Corollary 4.1

In order to avoid solving too many global optimization prerois (40), we plack

grid points,xy;, according to (19) into the intervét, 1,xp]. For each grid point, we
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check whether or not

[£(%61) — F(x0i)| < O. (43)

Only if condition (43) is satisfied for all grid points, we selproblem (40).

Further, it is not necessary to fix the shift variable for thistfbreakpoinX_ at
value 0. This value can be discretized in the same way as s @hift variables,
however, this made it easier to present the algorithm. Tisizetization ofx,_1,Xp),
together with the global optimality check, as well as thecditization of the shift
variablessy, does not alter the correctness and finiteness of Algoritim 4

Note the trade-off of choosing close to 0 (many subproblems to solve and
many breakpoints) and close to 1 (smaller number of breakpbit possibly many
subproblems which fail the testif, < & ?”). However, when using the discretization
of [xp_1,X%p], the computational burden for increasiagralues is rather small as the

bottleneck of Algorithm 4.1 is the solution of the global inpization problem (40).

4.1.2 Forward Heuristic with Moving Breakpoints

We again employ a marching procedure to cover the intgialX,]. Similar to
Heuristic 4.1, we are providing a heuristic to solve probB8B. However, in this
section, for a given breakpoirg_ 1 and shift variabley, ;, we maximize the interval
length by treating, and the shift variablg, as decision variables. To decrease the
notational burden, we assurge= 0 and we discuss the generalization later.

Using the idea of Section 3.2, we treat the continuum inetiesi(37) by placing

| grid points equidistantly into the intervid, 1, xp] according to (19). At these grid
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w3 POINtSXyi, We require:
[£06i) — F(%i)| < 3. (44)

s Note that we do not need grid points at the breakpoipts andx,_; because per

s defintionem the maximal deviationgs_; ands,, which in turn is bounded bg.

306 Maximization ofxy, leads to the following NLP
A" = max X, (45)
st [€(%i) — F(xpi)| <0, Viel (46)
[ i
X =Xo-1+ 17 (X0 —Xp-1), Vi€l (47)

Xo € [Xp—1, X ], Xpi € [Xo-1,X¢], S €[-0,0], Viel (48)

57 With the interpolato¥ derived by (41).
308 For given breakpoint;, we minimize the absolute value sf. That way, we get

w0 the tightest approximator for the given interyg), x,_1], by solving

A% :=min |sy| (49)
st [€(%i) — f(xi)| <6, Viel (50)
S € [-0,0] (51)

w0 Where the discrete grid points; are now fixed together with,.
401 Due to the discretization of the continuyxg_1,X,], we need to check whether for
«2 the givenvalue ok, 1, X, So_1, ands, inequalities (1) are fulfilled fob = [X,_1,Xp)-

w3 We do this by solving the unconstrained problem

" = max |0(x)— f(x)| (52)
XEXp-1.%]
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to global optimality. IfZ"®* < §, then we accept, ands,. Otherwise, we increade

by a factor of > 1. This algorithm stops whelX_, X, ] is covered.

Algorithm 4.2 Forward Heuristic with Moving Breakpoints

1: //INPUT: Functionf, scalard > 0, initial discretization sizé" < IN and parametef > 1
2: //OUTPUT: Number of breakpoints3, breakpoint system, and shift variables,

3 xg:=X_,l:=1M"/B B:=0,andb=1 //Initialize

4: /I Outer loop

5: repeat

6:  //Inner loop

7 repeat
8: | < [BI]  /lupdate discretization size
9: solve NLP (45)-(48) to obtair;  // calculate next breakpoint and shift variable
10: solve one-dimensional NLP (49)-(51) to obtgin
11: solve unconstrained NLP (52) to obtaiff*  // check if obtained is d-approximator

12:  until 2" <9
130 X=X, :=¢9,b<b+1,B«+B+1 /fix breakpoint, shift variable and update counter

14: until xy = Xp

This procedure is summarized in Algorithm 4.2. Similar te treuristic 4.1, the

Algorithm 4.2 always terminates in finitely many steps (giexact arithmetics):

Corollary 4.2 Algorithm 4.2 terminates after a finite number of iteratidos any
continuous function f, an§ > 0, any initial discretization size€l € IN and parame-
ter B > 1. The calculated breakpoints with the shift variables yeetapproximator

for f.

There are several advantages and disadvantages of botisticenrethods 4.1

and 4.2. While 4.1 needs to solve a much smaller number ofnigstion problems
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to global optimality than 4.2, the number of breakpointshefd-approximator com-
puted by 4.1 is expected to be larger than the one compute®bipdrticularly com-
putationally expensive is solving problems (45)-(48) iB.4.

Both Algorithms 4.1 and 4.2 are of a “forward” nature,, the intervallX_, X, ]
is successively covered by intervals of breakpoints “mgViinom X_ to X,. De-
pendent on the shape of the functiband given that both methods are heuristics, it
might be beneficial to run the algorithm in a “backward” mamesy, the obtained
d-approximator might have less breakpoints. To run both wdiod and a backward
algorithm might be particularly promising for functions igh are highly asymmetric
around%. Such a backward algorithm can be achieved by substitiftirgby
f(x) := f (X, +X_—x) and running the forward Algorithm 4.1 fdrandx € [X_, X, ].

The breakpoint system for the backward algorithm is theaiabt as follows: Lex;

be the breakpoints obtained by the forward algorithmff(oqj. The new breakpoints

are given byx = X, +X_ — .

5 Computational Results

We have implemented the models and algorithms in GAMS (\6)23.he global
optimization problems are solved using LindoGlobal (v.628). The computations
are preformed by an Intel(R) i7 using a single core with 2.8&@nd 12.0 GB RAM
on a 64-bit Windows 7 operating system. We allow a maximaiat@n from the
d-tube by at most 1; i.e., equation (1) and/or (2) is violated by at most %0

For our computational test bed, we consider ten differemttions, summarized

in Table 1. Figure 3 illustrates the ten functions (blaclk)itogether withd-approxi-
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Table 1: One-dimensional functions tested.

# f(x) X_  X; | Comment

1 X2 -3.5 3.5 | convex function, optimal distribution of breakpoints is-un
form; axial symmetric ak =0

2 Inx 1 32 | concave function

3 sinx 0 2 | point-symmetric ak = 11

4 tanh(x) -5 5 | strictly monotonically increasing; point symmetricat 0

5 &ix) 1 12 | for numerical stability reason we avoid the removable sin-
gularity and the oscillation at 0, the two local minima have
an absolute function value difference~f0.126

6 22 +x3 -25 25| in (—o,), there is one local minimum at= 0 and one
local maximum ak = 3

7 e *sin(x) -4 4 | one global minimumxmy ~ —2.356 andf (xm) ~ —7.460)

8 g 100x-2)? 0 3 | anormal distribution with a sharp peakat2

9 | 1.03e100x-12? 0 3 | sum of two Gaussians, with two slightly different maxima

1 100x-2)? (their absolute function value difference~s0.030)

10 [27] 0 2t | three local minima (the absolute function value difference

of the two smallest local minima s 0.031)

mators,d-underestimators od-overestimators (gray line), obtained from different

methods. Method FBSD is used to compute approximators édirt five functions.

The number of breakpointB, is chosen a priori. FBSD is then used to compute the

optimal %, 8* or &} (with a precision of 0.001) together with an estimator. Esti-

mators for functions six to ten are computed with the heignsethods Algorithm 4.1

and Algorithm 4.2, wher@® was chosen a priori. One can seqg, in Fig. 3(h)-(j),
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that our models do not compute approximators which are édtiossible to the

original function but which instead stay within a givértube around the function.

For each function and four different values®& {0.100,0.050 0.010,0.005},
the number of breakpoints and the computational times fetwo heuristic meth-
ods, presented in Sections 4.1.1 and 4.1.2, are summaniZedbie 2. Both heuristic
methods are executed in a forward and backward fashion. Bsexwes that the num-
ber of breakpoints and the computational times are similab6th the forward and
the backward iterations. However, the running time of Aitjon 4.2 is significantly
higher than that of Algorithm 4.1, because Algorithm 4.1uiees less NLP solves.
Algorithm 4.2 consistently computes the same or fewer nurobbreakpoints for a
given accuracy than Algorithm 4.1.A good trade-off between computaticimak
and number of breakpoints computed are parametef$).985 andD = 3 for Algo-

rithm 4.1 and™ = 10 andB = 2.5 for Algorithm 4.2.

Table 3 summarizes the computational results obtained yTFBNe use the
lowest number of breakpoints calculated by any of the twarika methods for a
given accuracy, cf. Table 2, to calculate the tightest possible approximatersvart
with a grid size ofl = 1 and solve FBSD. This yields a lower boudg on &* (for
the fixed number of breakpoints). For the computed appraximeve evaluate the
maximal deviation to the functiof(x). This yields an upper bound,g on d*. If
the upper bound and the lower bound are within 0.001, thenteygethe algorithm.
Otherwise, we increadeto | + max{1.5-1,1 + 1} and re-iteratedy; is used as a

(tight) initial bound on the shift variables and the maximaviation.
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10+
4__
5+ 3+
2__
1__
1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T T
4 -3 2 -1 1 2 3 4 5 10 15 20 25 30

(a) Func 1: FBSD wittB = 5 yieldsd* = 0.383

(b) Func. 2: FBSD withB = 3 yields6* = 0.361

1+ 1+
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T 1 T T T T T T T T T T
1 2 3\\4 5 5-4-32-1 12345
14 14

(c) Func. 3: FBSD wittB = 4 yieldsd} = 0.240

L > w

(e) Func. 5: FBSD wittB = 4 yieldsd* = 0.103

(d) Func. 4: FBSD withB = 4 yieldsd* = 0.063

20 +
15

10 1+

(f) Func. 6: Alg. 4.1 w/d, = 0.5 yieldsB =9

Fig. 3: Continued.
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Table 2: Computational results fdrapproximators using heuristics.

Algorithm 4.1 Algorithm 4.2
# ) Forward Backward Forward Backward
B sec.| B sec. | B sec.| B sec.

1 |0100| 9 041 9 041 9 269 | 9 2.64
0.050 | 13 0.58 | 13 0.57 | 13 3.98 | 13 4.06
0.010 | 26 1.18| 26 123 26 8.85| 26 9.10
0.005 | 37 1.71| 37 1.70 | 36 10.46 | 36 10.99
2 | 0100 4 021| 4 0.16 | 4 165 4 1.73
0.050 | 5 035 5 021| 5 120| 5 1.26
0.010 | 10 0.68 | 10 0.45| 10 3.31| 10 3.01
0.005 | 14 0.69 | 14 0.66 | 14 590 | 14 4.96
3 | 0100 6 027 | 6 028 | 6 3129 6 35.30
0.050 | 6 0.26| 6 0.27| 6 435| 6 4.89
0.010 | 14 0.70| 14 0.69 | 14 547 | 14 5.77
0.005 | 18 0.84| 18 0.85| 18 7.43 | 18 7.68
4 | 0.100| 4 017 | 4 0.16 | 4 20.61| 4 0.61
0.050 | 6 0.26| 6 029 | 6 1.67| 6 1.83
0.010 | 10 0.49| 10 0.45] 10 3.71| 10 3.84
0.005 | 14 0.72| 14 0.73| 14 540 14 5.64
5 ] 0100 5 560| 4 021 5 34.10| 4 63.94
0.050 | 6 1.04| 6 044 | 6 46.20 | 6 93.47
0.010 | 11 1.43| 10 0.61| 10 11.31| 10 272.19
0.005 | 13 0.82| 13 2.01| 13 12.08 | 13 12.38
6 | 0.100 | 12 0.77 | 12 0.64| 12 23.09| 12 17.74
0.050 | 16 1.00| 16 0.86 | 16 17.66 | 16 20.40
0.010 | 35 2.16| 35 2.26| 35 22.48| 35 41.87
0.005 | 49 3.10 | 49 3.19 | 48 28.34 | 48 30.38
7 | 0.100 | 15 0.97 | 15 0.93| 15 40.57| 15 31.62
0.050 | 21 148 21 236 21 28.73| 20 51.40
0.010 | 45 2.88 | 44 2.95 | 45 53.22 | 44 51.54
0.005 | 62 4.11| 62 4.37| 62 72.87| 62 62.29
8 | 0100 | 5 030 | 5 026 | 5 843 | 5 6.09
0.050 | 7 050 | 7 039 | 7 1052 | 7 7.56
0.010 | 12 0.74 | 12 0.73| 12 6.90 | 12 6.50
0.005 | 16 0.97 | 16 1.00| 15 777 | 16 10.43
9 | 0.100| 8 047 | 8 044 | 8 11.67| 8 14.93
0.050 | 13 0.85| 12 0.74 | 12 18.70 | 12 19.66
0.010 | 22 141 22 139 22 13.66 | 22 15.98
0.005 | 30 2.15| 29 2.07 | 29 17.94 | 29 16.92
10 | 0.100 | 17 290 | 17 3.03| 17 204.11| 17 97.87
0.050 | 23 4.04| 23 4.11| 23 88.50 | 23 98.57
0.010 | 46 7.82 | 47 7.61 | 46 91.71 | 47 95.95
0.005| 68 11.17| 68 11.17| 68 88.13 | 67 96.22

0 | 0.100 1.21 0.65 37.82 27.25
0 | 0.050 1.04 1.02 22.15 30.31
0 | 0.010 1.95 1.84 22.06 50.58
0 | 0.005 2.63 2.78 25.63 25.79
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Table 3: Tightness obtained by FBSD for given

# Sni B A B dus  Max Grid sec.
1| 0.100 9| 0.095703 0.095703 1 16.4
0.050 13| 0.042535 0.042535 1 1154
2 | 0.100 4| 0.081899 0.081922 4 12.1
0.050 5| 0.046281 0.046595 4 25.8
0.010 10| 0.009211 0.009287 1 3.9
0.005 14| 0.004429 0.004446 1 68.7
3| 0.100 6| 0.048109 0.048250 19 411.0
0.050 6| 0.048109 0.048250 19 190.8
0.010 14| 0.009696 0.010275 9 5659.3
0.005 18| 0.004637 0.004829 6 11079.1
4 | 0.100 4| 0.062853 0.063728 3 29
0.050 6| 0.024160 0.024541 3 20.2
0.010 10| 0.007855 0.008148 3 39.4
0.005 14| 0.003578 0.004409 2 27.8
5 | 0.100 4| 0.051237 0.051847 13 182.4
0.050 6| 0.018513 0.022101 6 36162.8
6 | 0.100 4| 0.085288 0.095080 9 108806.1
8 | 0.100 5| 0.053910 0.054603 13 283.6
0.050 7| 0.009178 0.990842 13 36416.9
0.010 12| 0.009158 0.990842 9 421954
9 | 0.100 8| 0.085773 0.941691 9 387124
0.050 12| 0.000087 1.029913 4 36324.0

All other instances yield g = 0 after 10h of CPU time.
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40+

101

-101 1 2 3

(g) Func. 7: Alg. 4.2 wb = 0.6 yieldsB=7 (h) Func. 8: Alg. 4.1 wb_ = 0.2 yieldsB=5

0.5

(i) Func. 9: Alg. 4.2 w/d, = 0.3 yieldsB=8 () Func. 10: Alg. 4.1 wid = 0.5 yieldsB=7

Fig. 3: The ten univariate functions tested together witheapproximator functions.

— original function — approximator function

a6 Table 4 summarizes the computational results for the moB8&M We limit the
w5 Size of the breakpoint se# by the lowest number of breakpoints computed in Table

w6 2 for each discretization siz& The continuum condition is initially discretized into
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two points,i.e., | = 2. By solving OBSD, we obtain a lower boud on B*. If B_
equals the initial number of breakpoints or the maximal déwnh does not exceed
d (with an accuracy of 0.00125), then the algorithm stops Bith- B_. Otherwise,
the grid size is updated Hy— 1.5-1 and the process starts over again. One observes
in Table 4 that for most of the problen® cannot be computed. Furthermore, the

required discretization siZeis quite large.

OBSI performs much worse compared to OBSD. OBSI is able taiolihe op-
timal B* = 4 only for function 5 withd = 0.100. The computational time is ap-
proximately 97 seconds, requiring a sizel cf 20. For most of the other problem
instances, not even a feasible point for the original modsing! = 2-B) can be

computed within 1800 seconds of CPU time.

Table 5 summarizes the optimal number of breakpoints redduor the various
functions and approximation accuracies along with the patltomputed (again, we
have a numerical accuracy of 19). For 25 out of 40 instances, an optinilcan be
computed, while for 15 instanceB} is unknown. We do not report exact computa-
tional times in seconds, as different solver versionsedifiit parameter settings and
initial values onB are used for each of the computations. To prove optimaliti of
with the help of FBSD, one computes the optimalfor B— 1. If a lower bound on

o* is greater tham, then the optimal number of breakpoints has to>bB.

Let us compare our results when an equidistant distributfdhe breakpoints is
used together with a function interpolation. Table 6 sunipegrthe minimum num-
ber of equidistant breakpoints needed to ensure a giverramcd. We computes

these breakpoint systems with the following brute-forgmethm. Starting with two
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Table 4: Computational results for model OBSD.

# o B* B_ #iter. | sec.
1 | 0100 - 5 9 42 1965.25
0.050 | - 5 8 28  1967.30
0.005| - 5 5 9 1997.3%
2 | 0100| 4 - 9 42 24.16
0.050| 5 - 10 63 550.41
0.010| - 5 9 42 2236.04
0.005 | - 5 8 28 2128.16
3 | 0100 6 - 11 94 195.33
0.050| 6 - 11 94 212.71
4 | 0100 4 - 10 63 29.95
0.050 | - 5 11 94 2815.11
0.010| - 5 9 42 2427.1%
0.005 | - 5 8 28 2157.88
5 | 0100| 4 - 9 42 150.40
0.050 | - 4 9 42 1877.28
0.010| - 5 8 28 2918.7%
0.005 | - 5 7 19 2832.8b
6 | 0.100| - 4 7 19 1871.30
0.050 | - 4 7 19  1990.46
0.010| - 0 1 2 1801.24
0.005 | - 0 1 2 1801.6%
7 | 0100 - 5 8 28 2833.2%
0.050 | - 0 1 2 1800.99
0.010| - 0 1 2 1801.50
0.005 | - 0 1 2 1802.60
8 | 0.100| - 4 11 94 2224.76
0.050 | - 4 10 63 2077.81
0.010| - 4 8 28  1836.07
0.005| - 5 8 28 2758.10
9 | 0.100| - 4 9 42 2250.7%
0.050 | - 4 8 28 2082.88
0.010| - 4 6 13 1863.82
0.005 | - 4 5 9 1828.28
10 | 0.100 | - 4 6 13 3617.21
0.050 | - 4 5 9 3032.66
0.010| - 0 1 2 1804.50
0.005| - 0 1 2 1802.3Y

t: time limit reached (1800 sec. per iteration)

breakpoints, compute the maximal deviation of the appraxamto the functiorf (x).

This is accomplished by solving an NLP to global optimalifythe maximal devi-

ation is less than or equal @ (with a tolerance of 10°), then we have found the

minimum number of breakpoints. Otherwise, increment thelper of breakpoints

and start over. This leads to several order of magnituddshigomputational times
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Table 5: Benchmarks: Minimal numbeB* of breakpoints needed fo®-

approximators.

# 5 B* B_ B, | Algorithm Time

1| 0.100 9 FBSD few sec.
0.050 | 13 FBSD few sec.
0.010 | 26 FBSD hours
0.005 | 36 FBSD hours

2 | 0.100 4 FBSD frac. sec.
0.050 5 FBSD few sec.
0.010| 10 FBSD sec.
0.005| 14 FBSD sec.

3 | 0.100 6 FBSD few sec.
0.050 6 FBSD few sec.
0.010| 14 FBSD sec.
0.005 | 18 FBSD few min.

41 0100 4 FBSD frac. sec.
0.050 6 FBSD few sec.
0.010 | 10 FBSD few sec.
0.005 | 14 FBSD few min.

5 | 0.100 4 FBSD frac. sec.
0.050 6 FBSD sec.
0.010| 10 FBSD sec.
0.005 | 13 FBSD few min.

6 | 0.100| 12 FBSD min.
0.050 | 16 FBSD few days
0.010 16 35
0.005 16 48

7 | 0.100 5 15 OBSD
0.050 5 20
0.010 5 44
0.005 5 62

8 | 0.100 5 FBSD sec.
0.050 5 7
0.010 5 12
0.005 5 15

9| 0100| 8 FBSD few days
0.050 8 12
0.010 8 22
0.005 8 29

10 | 0.100 4 17 OBSD
0.050 4 23
0.010 4 46
0.005 4 67
B_: best known lower bound o&*, only if B* is unknown

B..: best known upper bound d@f, only if B* is unknown

frac..> 4 and< 1
few: > 1 and< 10
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Table 6: Minimal numbeBF of equidistant breakpoints needed for interpolator with

d accuracy.

# 6 =0.100 4 =0.050 6 =0.010 6 =0.005

BE B > | BE B > | BE B 5 | BE B o*

1] 13 9 0.0851| 17 13 0.0479| 36 26 0.0100f 51 36 0.0049
21 23 4 0.0956| 37 5 0.0480| 9 10 0.0100( 141 14 0.0050
3 8 6 0.0966| 11 6 0.0489| 24 14 0.0093] 33 18 0.0048
4 6 4 0.0923| 15 6 0.0378| 32 10 0.0099| 45 14 0.0049
5 7 4 0.0989| 10 6 0.0450( 21 10 0.0093| 29 13 0.0048
6 | 25 12 0.0997| 36 16 0.0474| 78 35 0.0099| 110 48 0.0050
7| 77 15 0.0993] 109 20 0.0492| 241 44 0.0100| 340 62 0.0050
8 | 19 5 0.0879| 64 7 0.0465| 151 12 0.0097( 213 15 0.0050
9| 46 8 0.0777| 68 12 0.0481| 151 22 0.0099( 216 29 0.0049

10 | 33 17 0.0973| 46 23 0.0495| 103 46 0.0100| 146 67 0.0050

than the reported times in Table 2; however, we decided noggort computation
times because there might be more efficient algorithms apdeimentations to ob-
tain the minimum number of equidistant breakpoints. Tabtegorts on the mini-
mum number of equidistant breakpoinB§, and the actual maximal deviatiod,

of the interpolation function td (x). BE is contrasted with the minimum number of
breakpointsB, computed with our methods. For a givénobserve that the required
number of equidistant breakpoints is between 1.3 and 1rh@stithe actual number

of breakpoints needed.

Fig. 4 plots the maximum deviation of the interpolation ftiog for different

number of equidistant breakpoints. The function is not ntonic decreasing but
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o*

1.0

0.91

0.81

0.71

0.61

0.51

0.41

0.31

0.2

0.1

BE

Fig. 4: Maximal deviatiord* for different number of equidistant breakpoiis for

function 8.

the tendency is clearly visible. The curve seems to followsexiprocal logarith-
mic curve. Thus, the number of equidistant breakpoints gremponentially in the

reciprocal ofd.

6 Conclusions

For univariate functions, we have constructed various ougho compute optimal
breakpoint systems to be used for piecewise linear appiatiom, under- and over-
estimation satisfying a specified accurdcyl he exact models and heuristic methods
require the solution of global optimization problems towmesthed-tolerance.

We have introduced the following models and methods:



514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

38 Steffen Rebennack, Josef Kallrath

1) Two MINLP models (OBSD & OBSI) which yield the minimal nuraband best
distribution of breakpoints for a givedrtolerance,

2) a MINLP model (FBSD) which computes the tightest appration for a fixed
number of breakpoints, and

3) two heuristic methods which compute the breakpoints eisntly by solving

MINLPs with a small number of variables.

The heuristics always work.e., even for complicated functions requiring large
numbers of breakpoints we are able to obtain a breakpoitgrsysatisfying the re-
quired d-tolerance, and more so, an upper bound on the minimal nuofbiEeak-
points. This upper bound can be used to solve 1) or 2) with mifgignt smaller
number of variables. If 1) gives the proven minimal numbdsrafakpoints, 2) can be

used to compute the tighte3tapproximation.

Future research might develop explicit, piecewise-lirieamnulations of univari-
ate functions that are only defined at regular or irregulat goints, but are not avail-
able in a closed algebraic form. This is an interesting prolielevant to various situ-
ations and industries. Such situations occur if the fumct@re evaluated by complex
black box models involving, for instance, differential atjons, or if the functions
have been established only by experiments or observattansnportant subtask is
also to reduce the number of grid points,, to replace them by a coarser grid which,

relative to the system of given grid points, preserdesccuracy.
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