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Summary. We discuss a portfolio optimization problem occurring in the energy
market. Energy distributing public services have to decide how much of the re-
quested energy demand has to be produced in their own power plant, and which
complementary amount has to be bought from the spot market and from load fol-
lowing contracts. This problem is formulated as a mixed-integer linear programming
problem and implemented in GAMS. The formulation is applied to real data of a
German electricity distributor.
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1 Introduction

We consider large German public services distributing energy in the order of
magnitude of Düsseldorf, Hanover or Munich. On the one hand, the public
services have to be large enough in order to utilize the optimization techniques
discussed here but on the other hand they have to be smaller than the supra-
regional electric distributor, i.e. RWE or E.ON.

The major difference of public services to supra-regional electric distrib-
utors is that public services usually do not sell excess energy in the energy
market. They are price takers and their objective is to minimize the cost while
meeting the demand for energy or electric power, resp.; in this paper we treat
energy (physical unit: Wh or MWh) and electric power (physical unit: W or
MW) as two different utilities which can be traded in the market.

The optimization model discussed in this article also does not apply to
small public utility companies as they usually have one exclusive supplier of
vendor, i.e. RWE or E.ON. Therefore, they do not have a portfolio of sources
of supply which can be optimized.
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The considered electric distributor has several sources of supply in order
to satisfy the demand for power of their customers. Among these possibilities
are:

• The electric power generation in a single power plant operated autarkic
by the electric distributor.

• The electric power generation in an external power plant. The operation
of the plant is regulated by the carrier to a great extend.

• The purchase of energy in arbitrary quantities at any time from a business
partner, known by name, with a bilateral treaty. This form of trading is
called “Over The Counter.” It stands in contrast to the anonymous stock
jobbing.

• The purchase of standardized power products on the stock exchange, in
the so-called spot market, abbreviated by SM. This is short term trading.

• The purchase of power on the stock exchange in the forward market. This
is long term trading.

• The purchase of power in arbitrary quantities though so-called load fol-

lowing contracts or short LFCs.

The complete range of the opportunities can only be exploited in the long-run;
for instance in an optimization over the whole year. In this article, we focus
on the short-term portfolio optimization; i.e. within one or two days. That is,
we are given the operating conditions including the long-run decisions. The
task is then to optimize the power plant operation and the purchase of energy
in such a way that the total cost are minimized while satisfying the demand.
The energy demand is given via a power forecast for the following day.

In this article, we develop a mixed-integer linear programming (MILP) for-
mulation for the energy portfolio optimization problem allowing the following
three sources of energy supply:

• The electric power generation in the own power plant,
• the purchase of standardized products from the spot market, and
• the purchase of power via the load following contracts with one supplier

of vendor.

The mathematical programming formulation is implemented in the modeling
language GAMS. The code has been added to the GAMS model library with
the name poutil.gms (Portfolio Optimization for electric UTILities) [16].

This electricity optimization problem falls in the scope of the unit com-

mitment problem and economic dispatch problem. In contrast to the unit com-
mitment problem, our model does not include any constraints on the power
transmission, reverse spinning or ramping. The economic dispatch problem
differs from ours in the way that the different energy sources are only subject
to capacity constraints whereas we have to deal with additional technical or
production restrictions such as minimum idle time periods of the plant.

Dillon et al. [12] provide a mixed-integer linear programming formulation
of the unit commitment problem, also taking into account energy exchange
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contracts. The model by Carrion and Arroyo [9] for thermal plants uses
less binary variables than the model by Dillon. Our model assumes a discrete
cost structure for the power plant in contrast to the quadratic one discussed by
Carrion and Arroyo. Mixed integer programming was also used by Hobbs

et al. [20] to solve the unit commitment problem. The optimal selling of energy
in the electricity spot market is modeled as an MILP problem by Arroyo

and Conejo [1] and as a stochastic program by Philpott and Schultz [30].
In the literature, there are many specialized algorithms for solving the unit
commitment problem [43, 35, 29, 34, 3] and the economic dispatch problem
[26, 10, 11].

As we do a day-ahead planning, we assume that all data are reasonably
well known. The day-ahead forecast is rather accurate but nevertheless subject
to uncertainties. The forecast is derived from historical data, annual load
profiles, weekday specifics tendencies, temperature profiles for the next days,
and considers public holidays as well as special events such a soccer finals,
formula I racings etc. Smoothing and averaging over many influence factors
leads to a rather stable forecast. The remaining uncertainties are of the order
of a few percent and may lead to minor changes; they are mostly covered by
load following contract costs. The prices for the purchased energy are given
through contracts and the spot market. Furthermore, we assume that we have
a quite accurate power forecast for the planning horizon. However, when such
data are not reliable or when looking at longer planning horizons, a stochastic
model would be preferable against a deterministic one; taking into account for
instance the stochastic spot prices and/or stochastic demand. Such models and
algorithms are discussed, for instance, in [38, 39, 36]. Including hydro, wind or
solar as an energy source into the model leads also to stochastic components
[27, 17, 5].

A simple unit commitment model code is available in the LINGO library
model unitcom1.lg4 [24, 23].

We start with the description of the problem in Section 2. The mathe-
matical formulations are discussed in detail in Section 3 including the special
cost structure of the different energy sources and the constraints associated
with the power plant operation. In Section 4, we discuss some limitations of
the model and provide possible modifications of the formulation. Computa-
tional results for the implemented model in GAMS are given in Section 5.
Conclusions of this article are provided in Section 6.

Throughout the article, we will introduce several sets, variables and in-
put data given. We denote all variables with small letters and input data
as capital ones. In the Appendices, all sets (App. A), variables (App. B),
constraints (App. C), input data and parameters (App. D) used in the math-
ematical model are summarized along with their synonym in the GAMS model
poutil.gms which is included in the GAMS model library [16].
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2 Description of the Problem

In this section, we discuss the short term optimization problem for the day-
ahead planning of the energy portfolio.

In general, the power curve of one day is given by the continuous function

P (t) , 0 ≤ t ≤ 24 ,

given in MW. We brake the power process into quarters of an hour. The
use of quarter-hour-values as general time frame is a common standard in
worldwide energy economics; furthermore it is based on several directives,
as, for instance, in Germany the MeteringCode [42], in Austria a statistical
regulation [28]; as a practical example one can find the published maximum
load values of Stadtwerke Saarlouis GmbH in quarter hours [37]. Furthermore,
in the energy industry, the continuous process of the produced and provided
power is treated as fixed within a quarter-hour basis. With this convention,
we can approximate the power curve through a step function. Let T be the set
of quarter-hour time slices per day; i.e., T := {1, . . . , NT = 96}. We assume
that we are given the forecast of electric power for all 96 quarter-hour time
intervals per day

Pt , t = 1, . . . , NT ,

measured in MW. In order to meet the demand, the utility company disposes
of three sources of supply,

• a power plant (PP) with given capacity,
• the opportunity to buy power from the spot market at the energy bourse

in form of standardized products, and
• a load following contract with one supplier of vendor. The amount of en-

ergy is assumed to be unlimited.

The total cost for the fulfillment of the demand is then given by the sum of
the power plant operation cost, the cost for the purchase of power from the
spot market and the cost for the purchase of power from the open supply
contract.

The structure of the cost components and the constraints involved are
discussed in the following sections.

2.1 Power Plant Usage

We assume that we are given a natural gas power plant. The reasons are that
they are quite common in Germany (23% of primary energy supply in 2004
[15]) and that they can be operated very flexibly. This implies that we do not
have to consider restrictions which last for more then one day.

The costs of the power generation in the own power plant consist in prin-
ciple of the fix costs per day and the variable costs per MWh generated. To
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simplify matters, the variable costs of the power generation are assumed to be
constant. This disregards that operational costs depend on the actual degree
of efficiency and that operating a power plant beside the point of optimum
causes increasing variable costs; see Section 4.2 for further details.

Let us now discuss the constraints associated with the power plant usage.
The power plant has a maximal power of PPP

max, measured in MW. During
normal operation, the power plant should not be operated with less than 40%
of its maximal power. This is not a technical restriction or a generally accepted
convention, but a useful approach to avoid an obvious contradiction to the
assumption of constant variable costs.

Let pPP
t be the amount of power in MW of the power plant at time period

t. Then we get
pPP

t ≥ 0.4PPP
max , ∀t, (1)

in case the power plant is used; otherwise we have pPP
t = 0, obviously.

For technical reasons, the power of the plant is not a continuous variable
but fixed in steps of 10% of the maximal power. A restriction to 10% steps
while running a power-plant is obviously deliberate but shall remember that
an operator would never choose an infinite continuum of steps but only a small
number of usual operating points. These so-called partial load operation points

are ordinarily determined by technical attributes of the power plant and are
supposed to be given. Whether these in our model are defined as equidistant
steps or as a set of given figures does not matter. However, it is important to
define them as a small set of discrete numbers to approach reality.

Define stage 1 as the idle stage of the plant and stages 2, 3, . . . , 8 as
the stages corresponding to the power level of 40% PPP

max, 50% PPP
max, . . . ,

100% PPP
max. The stages and the corresponding power level with respect to

the maximal power level PPP
max are illustrated in Figure 1. This allows us to

substitute (1) by
pPP

t = 0.1(αs + 2)PPP
max , ∀t (2)

with αs ∈ {2, 3, 4, 5, 6, 7, 8}.
In order to avoid permanent changes of the power level, we require any

power stage to continue for at least DPP
act quarter hours, with a typical value

of DPP
act = 8. A constant operation over a period of Dmin

act quarter hours is
a deliberate simplification of the model as well; but it covers the experience
that it could be considered as ineffective to change the operation mode of an
engine permanently. The change itself causes loss of energy through start up-

and shut down-losses [45] which we do not want to take into consideration
here. This restriction on the changes of the power plant can be formulated as

pPP
j = pPP

j+1 = . . . = pPP
j+k , with k ≥ 7 , (3)

where j is a time interval containing a shift of the power level.
To avoid a complete shut down of the power plant for only a short time

period, any idle period has to last for at least 4 hours:
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Fig. 1. Stages of the power plant vs. fraction of maximal power level

pPP
j = pPP

j+1 = . . . = pPP
j+m , with m ≥ 15 , (4)

where j is a time interval containing an idle time.
We relax this condition for the end of a day. The idle times can then be

shorter, as some part of this time can be transformed to the next day or
coming from the previous one. These boundary conditions show the drawback
of looking at each day separately. In reality, every day has some pre-history,
providing the boundary conditions.

2.2 Energy Purchase from the Spot Market

The European Energy Exchange (EEX) in Leipzig provides the spot market
as an opportunity to trade energy. This means that we can buy standardized
products in short-term. We consider here the so-called base load and peak

load contracts which belong to the continuous trading of EEX3 [25]. They are
traded at one day and delivered at the next day [13]. Special cases occurring
for instance on weekends are not considered here; those are the weekend-base
load contracts4.

Each base load contract specifies the delivery of a constant power of 1
MW from 0:00am to 12:00pm at the following day after the completion of the
contract.

Each peak load contract specifies the delivery of a constant power of 1
MW from 8:00am to 8:00pm at the following day after the completion of the
contract.
3 We do not consider selling in the auction market in our model.
4 Weekend-base load contracts specify the delivery for 48h, starting at Saturday

0:00am and ending on Sunday 12:00pm; peak load-contracts for the weekends are
not offered
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Provider and customer remain anonymous for this contracts. The com-
mercial clearing and settlement is handled by the EEX while the technical
delivery is done through the power grid operators in Germany. Currently, the
power grid in Germany is not uniform nationwide. There are four transmission
network operators: E.ON, Vattenfall, RWE Transportnetz Strom and EnBW
[41].

We get from the conventions above that the contribution to the energy
portfolio from the spot market, eSM

t , is given though the number α of base
load and the number β of peak load contracts bought, while respecting the
above time intervals for energy delivered.

The cost for the energy from the spot market is calculated via the total
delivered energy amount in MWh.

2.3 Energy Purchase from the Load Following Contract

The load following contract can be seen as a compensation for the vacancy of
the previously discussed sources of energy supply [19]. An energy load can be
covered only partially by the standardized products from the spot market and
the relatively inflexible power plant operation. However, the utility company
is committed to meet the power demand of its customers. Therefore, the
vacancy has to be closed by a flexible instrument. Obviously, the flexibility of
this instrument makes the energy purchase from the load following contract to
the most expensive source of the three discussed in the paper as it transfers
all risk from the customer to the seller of the contract. The load following
contracts are also called full requirements contracts.

The costs for the load following contract are determined via the typical
two-component supply-contracts [14]. That is, the delivered power, or more
precise the power level peak, as well as the delivered energy amount, are
considered. In other words, it is the sum of the so-called power rate [e/MW]
and the energy rate [e/MWh].

The power rate CLFC
PR of the load following contract is based on the highest

drain of power (quarter-hour value) within a year pLFC
max . To avoid random

anomalies up to a certain amount, one usually applies the arithmetic mean of
the two – in some contracts also three – highest monthly peaks as the rated
value of the calculation of the power rate. We get for the cost of the power
rate

CLFC
PR = CLFC

PR,year · p
LFC
max , (5)

where CLFC
PR,year are the cost coefficient per MW of the power rate on an annual

basis.
For the demand rate contracts considered in this article, usually there are

defined annually quantity zones with different prices. Let Z1 and Z2 be the
borders of the quantity zones given in MWh and let PLFC

1 , PLFC
2 and PLFC

3

be the prices in e per MWh in these zones. We denote by eLFC
year the delivered

energy amount annually. Then, the prices in e per MWh are given by
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Recognize that the price PLFC
1 is paid for the amount of energy in zone 1,

where price PLFC
2 is only paid for the amount of energy within zone 2, ex-

ceeding the quantity zone 1.
The quantity price PLFC

year , or total variable cost per year associated with
the LFC, can then be stated as

P
LFC
year =



















PLFC
1 · eLFC

year , if 0 ≤ eLFC
year ≤ Z1

PLFC
1 · Z1 + PLFC

2

(

eLFC
year − Z1

)

, if Z1 < eLFC
year ≤ Z2

PLFC
1 · Z1 + PLFC

2 (Z2 − Z1) + PLFC
3

(

eLFC
year − Z2

)

, if Z2 < eLFC
year

.

The resulting piece-wise linear price curve is shown in Fig. 2.

e
LFC
year [MWh]

P
LFC
year [e]

Z1 Z2

P
LFC
1

· Z1

P
LFC
1

· Z1 + P
LFC
2

(Z2 − Z1)

Fig. 2. Piece-wise linear price curve for the load following contract (on an annual
basis)

This price system is adjusted annually. When using it on a daily basis,
it leads to the following effect. At the beginning of the year, we are always
in zone 1, growing steadily into zone 2 and resulting finally in zone 3 at a
particular point of time. With this interpretation of the model, the effective
current price depends on the relative position of the day within the year. This
leads to difficulties for the short term modeling. To overcome this problem,
we introduce a daily based model in Section 3.1.

The amount of energy from LFC is in principle unlimited and can vary
in each of the quarter-hour time periods without restrictions. Hence, no ad-
ditional constraints for the energy purchase from the load following contract
are needed.



Energy Portfolio Optimization 9

3 Mathematical Formulation

In this section, we formulate the described problem above as a MILP problem.
Our task is to minimize the total cost while meeting the demand forecast for
each quarter-hour time interval and while meeting the constraints associated
with the power plant usage.

3.1 Objective Function

The total cost ctot for the fulfillment of the demand for the particular day
d consists of the cost for the power plant operation, cPP, the cost for the
purchase of power from the spot market, cSM, and the cost for the purchase
of power from the load following contract, cLFC. Hence, we get for the total
cost

ctot = cPP + cSM + cLFC . (6)

Let us now discuss the three cost components in detail.

Cost for the Power Generation in the Own Power Plant

The cost associated with the power plant is given by the sum of the fix cost
CPP

fix and the variable cost CPP
var per MWh. Recognize that the variable cost

represent the cost for the produced energy and the fixed cost include the elec-
tric power cost; i.e. the power capacity of the plant influences the construction
cost of the plant which are included in the fixed cost CPP

fix . We can then write
the total cost in e as

cPP = CPP
fix + CPP

var · e
PP , (7)

where ePP is the total energy withdrawn from the power plant. If we denote
by pPP

t the electric power in MW of the power plant during time slice t, then
we get

ePP =

NT
∑

t=1

1

4
pPP

t . (8)

Cost for the Purchase of Energy from the Spot Market

As introduced in Section 2.2, let α be the number of base load and β be the
number of peak load contracts. The electric power purchased per time interval
t (quarter-hour) is then given by

pSM
t = α + IPL

t · β , (9)

with the usage of step function IPL
t for the peak load contracts. From the

description of Section 2.2, they are active within 48 quarter-hour intervals
respectively 12 hours
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IPL
t =

{

0, t = 1, . . . , 32 and t = 81, . . . , 96
1, t = 33, . . . , 80

. (10)

The payment has to be made over the total energy amount in MWh delivered,
resulting in

eSM =

NT
∑

t=1

1

4
pSM

t =

NT
∑

t=1

1

4

(

α + IPL
t · β

)

= 24 · α + 12 · β . (11)

Finally, the cost for the purchase of energy from the spot market at day d are
determined by the bourse. They are CBL e per MWh for the products base
load and CPL e per MWh for peak load, respectively. Finally, this yields to
the cost

cSM =

NT
∑

t=1

1

4

(

CBL · α + CPL · IPL
t · β

)

= 24 · CBL · α + 12 · CPL · β , (12)

associated with the purchase of energy from the spot market. As the electric
power for the base load and peak load contracts is constant, there is no addi-
tional cost for the electric power associated with the base load and peak load
contracts.

Cost for the Energy Purchase from the Load Following Contract

In Section 2.3, we saw that the price of the LFC is given as the sum of the
power rate and the variable cost per MWh purchased, the energy rate.

The power rate CLFC
PR is given through formula (5), which depends on

the maximum yearly power level pLFC
max with respect to quarter hours. Notice

that optimization could lead to the scenario that for a short time period high
power is drained which contribute only very little energy but result in high
energy peaks implying a high power rate. In order to avoid such situations,
we introduce an electric power reference level PLFC

ref which is not allowed to be
exceeded by the electric power purchased from the LFC. This reference level
could either be the highest measured value so far, a corresponding last year
value, an arbitrary limit which is not allowed to be exceeded, or a reference
level determined by a long-run optimization model. Hence, we want to satisfy
the following constraint

pLFC
t ≤ PLFC

ref , ∀t , (13)

with pLFC
t being the electric power from the LFC for time slice t. This hard

constraint on pLFC
t allows us to substitute pLFC

max in formula (5) by PLFC
ref . Hence,

the power rate reduces to fixed cost on an annual basis. As our model is a
short term optimization model, these costs are not relevant. Therefore, the
cost for the purchase from the load following contract is given by the energy
rate cLFC

ER , which are variable cost per MWh, as
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cLFC = cLFC
ER . (14)

Now, consider the special zone prices of the load following contract de-
scribed in Section 2.3. As already mentioned, the annually based price system
is improper for our optimization model. To overcome this difficulties, we split
the zones into daily quantities and simulate daily zones. Instead of using Z1

and Z2, the zonal borders Zd
1 and Zd

2 are utilized with

Zd
1 = Z1/365 , Zd

2 = Z2/365 . (15)

With eLFC as the daily delivery quantity from the load following contract

eLFC :=
NT
∑

t=1

1

4
pLFC

t , (16)

we have that the quantity price of one day is given by

c
LFC

=



















PLFC
1 · eLFC, if 0 ≤ eLFC ≤ Zd

1

PLFC
1 · Zd

1 + PLFC
2

(

eLFC − Zd
1

)

, if Zd
1 < eLFC ≤ Zd

2

PLFC
1 · Zd

1 + PLFC
2

(

Zd
2 − Zd

1

)

+ PLFC
3

(

eLFC − Zd
2

)

, if Zd
2 < eLFC

.

In order to keep the model generic, we assume to have NB different zones;
where b ∈ B is one of the zones; i.e. b ∈ B := {1, . . . , NB}. In our case we
have NB = 3. To identify the appropriate prize segments, we use the binary
variables µb. These variables indicate in which interval the daily purchased
amount of energy lies, that is

µb :=

{

1, if Zd
b−1 ≤ eLFC < Zd

b

0, otherwise
, b = 1, . . . , NB , (17)

where we define for notational convenience Zd
0 = 0 and Zd

NB as a number large
enough. Let variable eLFC

b be the contribution to eLFC in segment b. Then we
get that the equalities

NB
∑

b=1

µb = 1 (18)

and

eLFC =

NB
∑

b=1

(

Zd
b−1µb + eLFC

b

)

, (19)

as well as the inequalities

eLFC
b ≤

(

Zd
b − Zd

b−1

)

µb , b = 1, . . . , NB (20)

connect variables eLFC
b and µb to the energy eLFC purchased from the LFC.

Hence, we get for the energy rate of the load following contract
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cLFC
ER =

NB
∑

b=1

(

CLFC
b · µb + PLFC

b · eLFC
b

)

, (21)

where CLFC
b are the accumulated cost up to segment b, i.e.,

CLFC
b =











0, if b = 1

PLFC
1 · Zd

1 , if b = 2

CLFC
b−1 + PLFC

b−1

(

Zd
b−1 − Zd

b−2

)

, if b = 3, . . . , NB

(22)

The breaking down of the zone prizes on a daily basis is a trick to present
the special price structure of the LFC. In practice, one could use the data of
previous years to estimate the cost of the LCF for each day. However, such a
method requires a huge amount of experience in order to adjust the price in
a meaningful way and it has to be seen in practice if it would outperform the
special modeling of the zone prices discussed above.

The set of variables µ1, . . . , µNB form a so-called Special Order Set of type

1 (SOS-1), as only one variable of the set can have a nonzero value. The SOS-1
was introduced by Beale and Tomlin in 1969 [4]. Description of SOS-1 in
the context of integer programming can be found, for instance, in [21, Chapter
6.7] and [22].

3.2 Demand and Power Plant Constraints

Let us now discuss the demand constraints and the constraints for the power
plant operation.

Power Demand Constraints

Clearly, we have to meet the electric power demand for each quarter-hour.
That gives us

pPP
t + pSM

t + pLFC
t = Pt , t = 1, . . . , NT . (23)

Recognize that the power demand has to be met exactly. The reason is that
(at least a large amount of) energy cannot be stored.

Power Plant Constraints

We have to discuss the modeling of the restricted operation of the power plant.
Therefore, we introduce the binary variables

δmt :=

{

1, if the power plant is at time t at stage m
0, otherwise

(24)
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to model the stages, m ∈ M := {1, . . . , NM = 8}, of the plant. Stage m = 1
corresponds to the idle state of the power plant. Values m = 2, . . . , NM = 8
refer to the capacity utilizations 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1, respectively.
The plant is in exactly one of those stages at any time, that is

NM
∑

m=1

δmt = 1 , ∀t . (25)

The utilized power can then be calculated according to the following for-
mula

pPP
t = PPP

max ·

NM
∑

m=2

1

10
(m + 2) δmt , ∀t , (26)

where PPP
max is the capacity of the power plant in MW. Note that this is the

counter part of equation (2) with binary variables but holds also true when
the plant is in the idle stage 1.

In equation (3), we formulated the requirement that any power stage has
to be continued for at least two hours. This constraint is called minimum up

time constraint. For this purpose, the binary variables χS
t keep track, if there

is a change in the power plant level in time slice t

χS
t ≥ δmt − δmt−1 , ∀m , t = 2, . . . , NT , (27)

and
χS

t ≥ δmt−1 − δmt , ∀m , t = 2, . . . , NT . (28)

Inequalities (27) and (28) ensure that variable χS
t has value 1, if there is a

change in the stage of the plant; however, χS
t can also have value 1, if there

was no change in the stage. It is only important that it is now possible to
formulate the condition

χS
t + χS

t+1 + χS
t+2 + χS

t+3 + χS
t+4 + χS

t+5 + χS
t+5 + χS

t+6 + χS
t+7 ≤ 1 ,

t = 1, . . . , NT − 7

or generally

DPP
act

∑

k=1

χS
t+k−1 ≤ 1 , t = 1, . . . , NT −

(

DPP
act − 1

)

, (29)

ensuring that within any two hours, or DPP
act = 8 time intervals, at most one

stage change takes place.
In addition to the restrictions above, we discussed in Section 2.1 also the

requirement for any idle period to be at least four hours. This condition is
called minimum idle time requirement or minimum down time requirement.
Let us introduce the binary variable χI

t, indicating if the power plant has
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been started, i.e. if it left the idle state in time slice t. We get the following
inequalities

χI
t ≥ δ1t−1 − δ1t , t = 2, . . . , NT . (30)

The condition for the idle period given in (4), can then be modeled as

DPP
idl

∑

k=1

χI
t+k−1 ≤ 1 , t = 1, . . . , NT −

(

DPP
idl − 1

)

(31)

with DPP
idl = 16, or four hours respectively. Constraint (31) can be interpreted

in the way that the power plant is not allowed to leave the idle state more
than once within any DPP

idl time slices.
As already mentioned in Section 2.1, we relax the condition of the mini-

mum up and idle time for the beginning and the end of the planning horizon.
However, for t = 1, t = NT −

(

DPP
act − 1

)

, we have that the stage of the power
plant is allowed to change only once in the first, last, DPP

act time slices.
The variables χS

t are initially binary variables indicating a change of the
stage of the power plant. However, we can relax these variables to be non-
negative continuous. The reason is that constraints (27), (28) and (29) force
the variables χS

t to be binary in the case that the minimum uptime condition
is tight, as the right-hand-side of constraints (27), (28) and (30) can only take
the values 0 and 1. Recognize that this does not mean that the left hand side
of constraints (29) being equal to 1 implies that the variables χS

t are binary.
From the modeling point of view, it is therefore equivalent to use a binary or a
non-negative continuous domain for variables χS

t . However, computationally,
there is a difference5. The reason is that most Branch & Bound and Branch
& Cut algorithms use LP domain relaxations, treating binary variables as
continuous [44, 2]. The branching process ensures then that those continuous
variables are forced to be integral. In case of variable χS

t , we do not want
the solver to branch on those, as their integrality is already applied by the
binary variables δmt. However, if we can “forbid” the solver to branch on those
variables (in GAMS this is accomplished by setting the priorities to +inf),
then these two approaches of modeling the domain are also computationally
equivalent6. The same concept holds also true for the variables χI

t.
This idea of avoiding to branch on variables χS

t and χI
t can be realized

in the modeling language GAMS by defining branching priorities for these

5 For the real data of Stadtwerke Saarlouis, the running time of the continuous
model compared to the binary model was less than 40%, it needed 45% of the
iterations and 60% of the branching nodes.

6 Recognize that for this argument to be correct, we need also that the heuristics
treat both the binary and the continuous case equivalently as well as factional
solutions for the variables χS

t and χI
t are not rejected by the heuristics and during

the branching process. However, just setting the branching priorities low, i.e.
to value 10, has already a significant impact. For our case of the real data, the
running time decreased by 30%.
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variables, [31, 32, 6]. The default branching priority for integral variables in
GAMS is value 1. The higher the value, the lower is the priority to branch on
these variables. The GAMS code for our case can then look as follows

*
* avoid branching on variables "chiS(t)" and "chiI(t)"
*

chiS.prior(t) = +inf;
chiI.prior(t) = +inf ;

* use the branching priorities in the model
portfolio.prioropt = 1 ;

Defining an arbitrary value > 1 for the branching priority for the variables
χS

t and χI
t ensures that the branching on those variables is done only after all

other variables have integral value. However, as the integrality of the variables
δmt does not imply the variables χS

t and χI
t to be binary, it might be needed

to branch on those variables nevertheless. One way where such a branching
is not necessary is the case when there is a (non-zero) cost associated with
the variables χS

t and χI
t; for instance start-up cost for the power plan, see

Section 4.2.
Carrion and Arroyo give a compact formulation of the minimum up

and minimum idle time constraints using only one set of binary constraints –
instead of two sets of variables χS

t and χI
t [9]. However, they have a quadratic

cost structure for the power plant and binary variables indicating if the power
plant is used or not. Gröwe-Kuska et al. [18] also use binary variables in-
dicating if the plant is used in time slice t or not. Hence, they can also model
the minimum up/down time requirement without using additional binary vari-
ables.

4 Improvements of the Model Formulation

4.1 Assumptions and Limitations of the Model

Here, we discuss the assumptions needed for our model and present some
limitations.

1. The pricing for the load following contract is very simplified. In practice,
there are special rebates; e.g. they depend on the total energy purchased
or the ratio of energy purchased to maximal power drained.

2. Although the electric power forecast is accurate enough for about a week,
the increase of the time horizon to two or more days is computationally
expensive and thus limits the application of this model.

3. As public services in Germany usually do not sell energy in the spot
market, our model does not include this feature. Indeed, allowing to trade
excess energy, leads to a different kind of optimization problem: One would
operate the own power plant at an optimal efficient level and optimize the
sell and purchase of the remaining / excess energy in the market.
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An overview of the behavior of such a market can be found in the book
edited by Schweppe et al. [33].

4.2 Modifications

• EEG: Renewable Energy Act: A law to regulate the priority of renew-
able energies in Germany; last change on June 14, 2006 [7, 8]. Especially
the expansion of wind energy is intended. It forces electric distributor hav-
ing wind-energy plants in their portfolio for their service area. Hence, it
forces the additional purchase of wind-energy. However, the exact amount
produced by wind is unpredictable. The optimization model has to treat
this energy source stochastically. Stochastic optimization models and al-
gorithms for this topic have been widely discussed in literature.

• Hour Contracts: The power bourse EEX also offers hour contracts which
refer only to a specific hour. Those hour contracts can be used to fill up
some small portion of the portfolio which is not covered by the base load
and peak load contracts.

• Emission Modeling: The environmental issues in power generation play
an important role. Especially the emissions of CO2, NOx or SOx are cur-
rently under restriction. This can be modeled, for instance, via hard or soft
constraints on the generated emissions or by minimizing the cost associ-
ated with those emission. However, in the latter case, it is difficult to derive
appropriate costs for the emissions. This problem is called environmental

dispatch problem. More details can be found, for instance, in [40, 46].

• Efficiency Factor under Partial Load: The efficiency factor of a power
plant decreases when it is operated only under partial load. In particular,
the variable costs are not constant through the whole power range. Hence,
for each power stage, a separate cost has to be assumed. This is not so
much a problem from the point of view of the mathematical modeling, but
it is particularly difficult to get realistic data; i.e. the cost coefficients.

Let CPP
m be the variable cost in e per MWh for the power plant when

operated in stage m ∈ M, m ≥ 2. If those data are available, then we can
substitute the variable cost CPP

var · e
PP of the power plant in equation (7)

by

1

40
PPP

max

NT
∑

t=1

NM
∑

m=2

CPP
m (m + 2) δmt .

Recognize that we do not need any additional variables or constraints.

• Start-up Cost for the Power Plant: In equation (7), we stated that
the cost of the power plant consists of fixed cost CPP

fix and variable cost
CPP

var per MWh produced by the plant. Those fixed cost apply whether
we use the power plant during this day or not. Such fixed cost can be for
instance capital cost. However, it is more realistic, to have also start-up
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cost which occur whenever the power plant is operated from an idle state.
Those cost are typically fuel-costs for warming up.

Let CPP
su be the start-up cost for the power plant. Then, we can add the

following cost

CPP
su

NT
∑

t=1

χI
t

to the cost of the power plant cPP given in equation (7).

Similarly, one could define shut-down cost for the plant. However, in this
case, additional variables would be needed. Recognize that we can also
include stage switching cost, applying whenever the power plant changes
its stage of operation.

• Down-Time or Forced Operation of the Power Plant: In practice,
it could occur that the power plant has to be shut-down for some time
period; e.g. due to scheduled maintenance. This can be handled straight
forward with our model by defining

δ1t = 1 ,

for all time slices t where we want to force the plant to be in idle state.
This condition implies for a given t that δmt = 0 for all m ∈ M, m ≥ 2
according to constraint (25).
This can be easily done in GAMS with the following code

*
* force the power plant to be shut-down in time slice ’t17’
* i.e. to be in idle state in time slice ’t17’
*
delta.fx(’m1’,’t17’) = 1 ;

The same idea can be used to force the power plant to operate in a certain
stage m ∈ M, m ≥ 2 or just not to be in the idle stage. Recognize that in
all cases, the number of binary variables in our model are reduced.

5 Computational Results

The optimization model is implemented in GAMS, version 22.7. The code is
included in the GAMS model library [16] with the model name poutil.gms.
All computations are done with a Pentium Intel Centrino Dual 2.00 GHz with
1 GB RAM and Windows XP platform. In order to achieve computational
results which are comparable, we use only one processor. We observed that
with two processors, the speed-up time is almost linear in average.

A GAMS code to use multiple processors looks as follows
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*
* for parallel use of cplex
*
* create file ‘cplex.opt’
* and set the number of threads to 2
$ onecho > cplex.opt

threads 2
$ offecho

* use the option file ‘cplex.opt’ for the ‘energy’ model
energy.optfile = 1 ;

Using the real data for the year 2003 for the Stadtwerke Saarlouis [37], a
German distributor, we get a (proven) optimal solution within 987 seconds.
The computational details are given in the first row of Table 1 and the solution
is plotted in Figure 3. The total energy demanded is given in the area below
the power demand forecast.
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Fig. 3. Optimal solution for real data of Stadtwerke Saarlouis

Table 1 shows computational results for different electric power demand
forecasts. The basis are some real data for the power forecast. The new power
forecast are randomly generated within a 2% tolerance. The column with
label “# Nodes” gives the number of nodes in the Branch & Bound tree. The
running time is stated in the last column and is measured in seconds. In all 10
cases, the energy purchased from the LFC was enough to be in the cheapest
price segment three. The borderline from price segment two to three is 500
MWh on a daily basis. Interestingly, the solutions differ quite remarkable



Energy Portfolio Optimization 19

when the energy forecast changes slightly; especially the purchase of energy
from the spot market differ a lot.

Table 1. Computational results for different demand forecast. The first row are the
real data and all other data are (uniform) randomly generated within an absolute
difference of 2%

#
Power Plant Spot Market LFC

c # Nodes CPU

eP P cP P α β eSM cSM eLF C cLF C

1 6,015.0 150,375.0 90 5 2,220 71,580 694.00 44,838 266,793.0 59,300 986.61
2 6,120.0 153,000.0 82 14 2,136 69,864 663.75 43,265 266,129.0 24,100 734.63
3 6,172.5 154,312.5 78 12 2,016 65,808 747.75 47,633 267,753.5 100,500 1678.67
4 6,045.0 151,125.0 90 0 2,160 69,120 728.25 46,619 266,864.0 50,000 992.30
5 6,142.5 153,562.5 82 10 2,088 67,896 726.00 46,502 267,960.5 53,800 1511.08
6 6,165.0 154,125.0 80 11 2,052 66,852 723.75 46,385 267,362.0 87,100 1225.34
7 5,977.5 149,437.5 94 0 2,256 72,192 713.75 45,865 267,494.5 53,300 1550.58
8 6,292.5 157,312.5 71 18 1,920 63,384 707.25 45,527 266,223.5 41,700 1020.03
9 6,202.5 155,062.5 79 11 2,028 66,084 714.75 45,917 267,063.5 48,400 2020.84

10 6,202.5 155,062.5 79 9 2,004 65,100 727.75 46,593 266,755.5 51,400 845.41

In Table 2, the computational results for different minimum duration times
between state changes of the power plant are shown. The power forecast are
the same in all computations. We can observe that the change in the duration
does not effect the solution very much. In fact, the difference in the total
cost between a duration time of 1 hour and 4 hours is less than 2%. One
explanation can be found in Figure 3 as the power level of the power plant
does not change every 2 hours. Hence, a change in the duration has not such
a big effect. As expected, the computational running time decreases when
increasing the duration DPP

act. An optimal solution for the duration of 4 hours
is shown in Figure 4.

Table 2. Computational results for different minimum duration times DPP
act between

state changes of the power plant

DPP
act

Power Plant Spot Market LFC
c # Nodes CPU

eP P cP P α β eSM cSM eLF C cLF C

4 6,112.5 152,812.5 90 5 2,220 71,580 596.50 39,768 264,160.5 1471,000 15039.56
6 6,075.0 151,875.0 90 5 2,220 71,580 634.00 41,718 265,173.0 165,700 1736.77
8 6,015.0 150,375.0 90 5 2,220 71,580 694.00 44,838 266,793.0 59,300 986.61

10 6,022.5 150,562.5 90 2 2,184 70,104 722.50 46,320 266,986.5 25,300 685.06
12 6,165.0 154,125.0 75 17 2,004 65,964 760.00 48,270 268,359.0 19,500 798.44
14 6,060.0 151,500.0 80 15 2,100 68,820 769.00 48,738 269,058.0 15,900 459.86
16 6,060.0 151,500.0 80 15 2,100 68,820 769.00 48,738 269,058.0 7,700 358.73

We also made some computational tests for the case of a two-day plan-
ning horizon, NT = 192. The tested instance could not be solved to global
optimality and after 10 hours of computation time, the gap was still 5.99%.
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Fig. 4. Optimal solution for real data of Stadtwerke Saarlouis with DPP
act = 16 (4

hours)

6 Conclusion

In this article, we developed a model for the portfolio optimization of an elec-
tric services distributor. This study was motivated by a real case of Germany
public services. It brings together the real energy world and mathematical
optimization. The model is very generic and can be easily extended with
additional features but nevertheless, it has an appropriate degree of details
matching the real world case. We also showed that the developed model is
computationally effective for one-day ahead planning. The developed model
has also didactic value as some modeling tricks and their computational im-
plications are discussed. The GAMS code is available in the GAMS model
library [16].
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A Indices and Index Sets

The indices, index sets and the indicator function of the mathematical programming
model of Section 3 are given in the first column of Table 3. The second column states
the name of the corresponding set / function used in the GAMS model poutil.gms
included in the GAMS model library [16]. The third column gives some explanations
along with the size of the sets.

The model is generic and can tolerate in principle any number of time slices Nt.
However, when changing the planning horizon, the modeling of the spot market has
to be adjusted; e.g. there has to be a variable α and β for each day of the planning
horizon. In addition, the zones for the LFC have to be adjusted for the new horizon;
e.g. the step function IPL

t in formula (10) has to be redefined.
In principle, the model can handle any number of power plant stages Nm. How-

ever, when changing this number, the formula for the power level pPP
t , stated in

equation (26), has to be changed, too.

http://www.stadtwerke-saarlouis.de/index.php?id=strukturdaten0
http://www.stadtwerke-saarlouis.de/index.php?id=strukturdaten0
http://www.vdn-berlin.de/uebertragungsnetz.asp
http://www.vdn-berlin.de/uebertragungsnetz.asp
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Table 3: Indices, index sets and indicator function

t ∈ T := {1, . . . , NT} t Set of time slices per day.
The day is split in NT time intervals of 15
minutes each. NT = 96

m ∈ M := {1, . . . , NM} m Set for the power level stages of the power
plant. The first stage corresponds to the sta-
tionary or idle phase of the plant; all other
stages correspond to the 60% – 100% plant
utilization stages. NM = 8

b ∈ B := {1, . . . , NB} b Set of support points of the zone prices for the
LFC. NB = 3

IPL
t IPL(t) Indicator function for the peak load contract.

It is defined in equation (10)

B Variables

All variables used in the mathematical model are summarized in the first column of
Table 4. The corresponding variable name of the GAMS model poutil.gms, included
in the GAMS model library [16], is given in the second column. A “-” in the second
column states that this variable is not used in the GAMS model formulation, e.g. the
variable could be substituted by other variables. The units are stated in []-brackets
in the third column and the forth column gives the type of the variable in the
GAMS model formulation. R+, Z+, {0, 1} means that the variable is non-negative
continuous, non-negative integer or binary, respectively. Recognize that this does
not represent the domain of the variable but the type of the variable in the GAMS
model. Particularly, the binary variables χS

t and χI
t are modeled being non-negative

continuous; see Section 3.2.

Table 4: Variables with corresponding GAMS name, unit, model domain,
equation reference(s) and explanations

Objective Function

ctot c [e] R+ (6) Total cost

Power Plant

cPP cPP [e] R+ (7) Cost associated with the power plant usage

Continued on next page
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Table 4 – Continued from previous page

ePP - [MWh] R+ (8) Total amount of energy withdrawn from
the power plant

pPP
t pPP(t) [MW] R+ (26) Amount of power withdrawn from the

power plant for time slice t.
This variables can only have the discrete
values 0, 0.6, 0.7, 0.8, 0.9 and 1.0 referred to
the power plant capacity PPP

max

δmt delta(m,t) [−] {0, 1} (24) Binary variable with value 1 if the power
plant is in time interval t in stage m and 0
otherwise

χS
t chiS(t) [−] R+ (27),

(28),
(29)

Binary variable with value 1 if the power
plant changes its stage at the beginning of
time interval t and 0 otherwise

χI
t chiI(t) [−] R+ (30) Binary variable with value 1 if the power

plant has been started up at the beginning
of time interval t and 0 otherwise; i.e. the
power plant left the idle condition

Spot Market

cSM cSM [e] R+ (12) Cost for the energy purchase from the spot
market

eSM - [MWh] R+ (11) Energy purchased from the spot market

pSM
t pSM(t) [MW] R+ (9) Electric power from the spot market for

time slice t resulting from base load and
peak load contracts

α alpha [−] Z+ Quantity / proportion of the base load con-
tracts of the portfolio contribution bought
from the spot market.
Typical range is between 0 and 200. We set
as an upper bound the maximal demand in
the planning horizon

β beta [−] Z+ Quantity / proportion of the peak load
contracts of the portfolio contribution
bought from the spot market.
Typical range is between 0 and 200. We set
as an upper bound the maximal demand in
the planning horizon

Load Following Contract

cLFC cLFC [e] R+ (14) Cost for the energy purchase from load fol-
lowing contract: energy rate

eLFC eLFCtot [MWh] R+ (16) Total energy from the load following
contract

Continued on next page
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Table 4 – Continued from previous page

eLFC
b eLFCs(b) [MWh] R+ (20) Contribution to the total energy of the

LFC in segment b

pLFC
t pLFC(t) [MW] R+ (13) Power from the load following contract for

time slice t

µb mu(b) [−] {0, 1} (17) Binary variables with value 1 if the daily
purchased amount of energy lies between
Zd

b−1 and Zd
b

C Constraints

All constraints of the GAMS model poutil.gms, included in the GAMS model li-
brary [16], are summarized in the Table 5. The first column of Table 5 states the
name of the constraint in the GAMS model, the second column gives the correspond-
ing equation number of the mathematical programming formulation introduced in
Section 3 and the third column gives a brief explanation.

Table 5: Constraints of the GAMS model with corresponding equation
number and explanations

Objective Function

obj (6) Total cost

Power Demand

demand(t) (23) Power demand constraint for each time slice t (quarter-
hour)

Power Plant

PPcost (7) Power plant cost. The fixed cost of the power plant are
not included in this model

PPpower(t) (26) Power of power plant at time slice t

PPstage(t) (25) The power plant is in exactly one stage at any time slice
t

PPchiS1(t,m) (27) Constraint on variable chiS(t) to track a stage change
m at time slice t

PPchiS2(t,m) (28) Constraint on variable chiS(t) to track a stage change
m at time slice t

Continued on next page
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Table 5 – Continued from previous page

PPstageChange(t) (29) At most one stage change takes place within any DPP
act

time slices

PPstarted(t) (30) Constraint on variable chiI(t) to indicate if the plant
left the idle state at the beginning of time slice t

PPidleTime(t) (31) The idle time of the power plant has to last for at least
DPP

idl time slices

Spot Market

SMcost (12) Cost for the power from the spot market

SMpower (9) Power from the spot market

Load Following Contract

LFCcost (21) Cost for the power from the LFC as the energy rate

LFCenergy (16) Energy from the LFC for one day via LFC power

LFCmu (18) Constraint on the price segment

LFCenergyS (19) Energy from the LFC for one day via energy from the
different segments

LFCemuo (20) Accumulated energy amount for the first segment

LFCemug(b) (20) Accumulated energy amount for all segments except the
first one

D Input Data and Parameters

All input data / parameters of the mathematical model are stated in the first column
of Table 6. The corresponding name of the GAMS model poutil.gms, included in
the GAMS model library [16], is given in the second column; a “-” states that this
variable is not used in the GAMS model formulation. The particular units of the data
are given the []-brackets in the third column. Column four states some explanations
as well as the value of the parameters. One instance, defining the values of the data,
is given in the GAMS model poutil.gms.

The fixed cost CPP
fix of the power plant are not included in the model as they are

irrelevant for the optimization decisions.

Table 6: Input data / parameters with corresponding GAMS name, unit
and explanations

Power Demand

Continued on next page
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Table 6 – Continued from previous page

Pt PowerForecast(t) [MW] Power demand forecast on a quarter-hour
base

Power Plant

CPP
fix – [e] Fix cost of the power plant

CPP
var cPPvar [e/MWh] Variable cost of the power plant

PPP
max pPPMax [MW] Power plant capacity in Megawatt

DPP
act – [-] Minimum number of time intervals be-

tween two consecutive stage changes of the
plant. DPP

act = 8. This is modeled in the
GAMS code via the set iS

DPP
idl – [-] Minimum number of time intervals for the

plant to remain in an idle period. DPP
idl =

16. This is modeled in the GAMS code via
the set iI

Spot Market

CBL cBL [e/MWh] Cost per base load contract purchased

CPL cPL [e/MWh] Cost per peak load contract purchased

Load Following Contract

CLFC
PR – [e/MW] Cost for power rate; given in formula (5)

CLFC
PR,year – [e/MWh] Cost for power rate on an annual basis

PLFC
ref pLFCref [MWh] Electric power reference level for load fol-

lowing contract

Zb eLFCbY(b) [MWh] Annual borders of quantity zones for LFC

Zd
b eLFCb(b) [MWh] Daily borders of quantity zones for LFC;

b ∈ B and Zd
0 = 0; calculated via for-

mula (15)

PLFC
b cLFCvar(b) [e/MWh] Variable cost/price of LFC in segment b

CLFC
b cLFCs(b) [e] Accumulated variable cost of LFC up

to segment b; calculated through equa-
tion (22)
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