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Abstract We present and solve a new computational geometry optimization problem. Spheres
with given radii should be arranged such that a) they do not overlap and b) the surface area of the
boundary of the convex hull enclosing the spheres is minimized. An additional constraint could
be to fit the spheres into a specified geometry, e.g., a rectangular solid. To tackle the problem, we
derive closed non-convex NLP models for this sphere arrangement or sphere packing problem.
For two spheres, we prove that the minimal area of the boundary of the convex hull is identical to
the sum of the surface areas of the two spheres. For special configurations of spheres we provide
theoretical insights and we compute analytically minimal area configurations. Numerically, we
have solved problems containing up to 200 spheres.

Keywords Packing problem · convex hull minimization · isoperimetric inequality · computa-
tional geometry · non-convex nonlinear programming · global optimization

1 Introduction

In this paper we address a novel kind of arrangement problem or packing problem: The 3 dimen-
sional (3D) minimal-area convex hull sphere arrangement problem (3D-MACH). In this problem
we arrange congruent and non-congruent spheres with given, possibly differing radii in a 3D
Euclidean space such that the surface area of the boundary of convex hull hosting the spheres
is minimized. We assume that each sphere can be moved freely in space but spheres must not
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Fig. 1 Square-type arrangement of four equal spheres and illustration of the convex hull. Note that this is not a
minimal area arrangement. In 3D, a tetrahedron-type arrangement of spheres minimizes the surface area of the
convex hull (see Section 3.3).

overlap; no other restrictions are imposed, except for some selected numerical studies in which
we require the spheres to fit into a rectangular solid. A square arrangement of four equal spheres
and their convex hull in the 3D Euclidean is depicted in Figure 1.

This problem could be useful in the context of living cells trying to minimize the area sur-
rounding them to the outside world for minimizing the energy loss or surface of attack from the
outside world, or molecule configurations to minimize surface tension.

3D-MACH belongs to the class of sphere packing problems in which a given number of
congruent or non-congruent spheres have to be packed into a given geometric domain (see [7]).
In the closed-packing problem, a set of spheres is arranged in a Euclidean space such that the
occupied density of the spheres in space is minimized (cf. [19], [23], [26]); for a general overview of
sphere packing problems cf. [8], [13], or [30]. In contrast to the classical sphere packing problem
or the closed-packing problem, we arrange congruent and non-congruent spheres such that the
surface area of the boundary of the convex hull is minimized. For spheres with fixed center
coordinates in a Euclidean space of arbitrary dimension there are some articles about calculating
the minimal convex hull, cf. [2], [5], [18], or [6]. According to [2], the convex hull in the 3D
Euclidean space can even be calculated in polynomial time. However, as the spheres of different
radii in the 3D-MACH have to be arranged in space such that we obtain the minimal area convex
hull, the problem complexity is established as NP-hard; see Section 3. The 3D-MACH is a natural
extension of the minimal perimeter problem of [16] in which discs have to be arranged in a 2D
space such the length of the perimeter of the boundary of the convex hull is minimized.

To the best of our knowledge, the present paper contains the first mathematical programming
model for the 3D-MACH and provides some theoretical insights into the problem. We will provide
analytical solutions for optimal arrangements of small numbers of spheres. Moreover, we will show
for up to five spheres, that an optimal arrangement is always reached if the spheres reach the
highest number of possible touching points. The paper builds the missing bridge between the
field of sphere packing and the field of finding the minimal convex hull for fixed center positions.

A slight modification of the proposed model also allows us to pack spheres into a rectangular
solid. From a practical perspective, the rectangular solid could be, for example, a container or
the loading area of a truck into which spherical items are to be loaded. The remainder of the
paper is structured as follows: In Section 2 we derive the model formulation for the 3D-MACH.
Analytic solutions are given in Section 3. Numerical experiments are defined and presented in
Section 4. Conclusions in Section 5 complete this paper. Within the paper we use column vectors
in IR3, e.g., x ∈ IR3, xT refers to the transposed vector of x and is a row vector, and indices i
and j to refer to the spheres involved in the optimization problem.
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Among the major contributions of this paper are:

1. the first mathematical programming models for this problem, i.e., closed NLP formulations
for 3D-MACH,

2. theoretical insights related to the structure of the minimal-area boundary of the convex hull,
3. analytic solutions for smaller cases and special configurations,
4. polylithic1 approaches to compute configurations for larger sets of spheres for which the non-

linear and global solvers embedded in the algebraic modeling language GAMS (cf. [1], [3], [4],
or [9]) do not even find feasible points after running several hours.

2 Model Formulation for the 3D-MACH Problem

In this section we derive the mathematical model for the 3D-MACH problem. For ease of reading,
the NLP model for computing the boundary of the convex hull is summarized in Section 2.4.

Not only arranging n spheres in IR3 such that the surface area A(∂S) of the boundary or
surface ∂S of the convex hull S to be minimized is challenging, but also the construction of ∂S
itself. In general, ∂S consists of three different types of facets: a) parts of spheres, i.e., spherical
polygons with up to n− 1 vertices, b) triangles in a plane tangent to three spheres, and c) parts
of the lateral surface of a cone (circular or elliptic) tangent to two spheres. For four spheres with
equal radii arranged 2x2 in the plane, we have two triangles on each side forming a square (see
Figure 1). To construct ∂S we evaluate three ideas or approaches, respectively, and discuss their
advantages as well as disadvantages.

2.1 Approach 1: Exploiting the Shadow Property for Spheres with Fixed Center Coordinates

Given spheres with radii Ri centered at known coordinates x0
i , we could numerically compute the

points on spheres contributing to ∂S by exploiting the shadow property ; cf. [11] or [17]: Parts of
the spheres in the shadow area of light flow from all other spheres are part of the convex hull; see
Figure 13 for illustration. Similarly as in modeling the surface of eclipsing binary stars, cf. [17] or
[28], where the Roche surfaces are subject to the reflection effect, we could cover the surface of
the spheres by a grid of approximately uniformly distributed points. If the scalar product of the
normal vector of a grid point x1 on sphere 1 and another grid point x2 on sphere 2 is negative,
i.e., the angle is greater than 90 and less or equal 180, the points have a visual connection or
line of light connection them. In such cases, we could eliminate both points, x1 on x2, from the
overall set of grid points contributing to ∂S. If we would proceed like this for all combinations
of points on both spheres, we would obtain a retaining set of points forming those parts of the
spheres contributing to ∂S.

For free arrangements of spheres, this approach suffers from the quadratic dependence on
both the number of points on spheres and on the number of spheres. In addition to the inhibitive
numerical effort, it is not clear how to combine this approach with minimizing the surface integral
of ∂S, as we have only access to those grid points of spheres contributing to ∂S, but no access
to points of ∂S not belonging to the spheres. Therefore, we have not followed this track further
on in this paper.

1 The term polylithic has been coined by Kallrath (2009, [14]; 2011, [15]) to refer to tailor-made modeling and
solution approaches to solve optimization problems exploiting several models and their solutions.
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2.2 Approach 2: Numerical Grid over a set of Direction Vectors

Using spherical coordinates, we cover the surface of the spheres by a grid of approximately
uniformly distributed points with the radial distance from a suitable selected coordinate origin
being the most relevant variable describing ∂S. Over the angular index domains θ and ϕ we
generate a grid of direction vectors mθϕ with center at xc,

xc :=
1

∑

i Ri

∑

i

Rix
0
i , (2.1)

the averaged radius-weighted center of centers-of-spheres, x0
i . To each mθϕ we associate a non-

negative variable rθϕ and describe ∂S based on this spherical coordinates x = (rθϕ; θ, ϕ). The
∂S-vector points are subject to the condition that the distance of all spheres’s centers x0

i is
greater or equal to their radii, i.e.,

nθϕx
0
i − nD ≥ Ri, (2.2)

where the normal vector nθϕ and origin-distance nD describe the tangential plane at xθϕ, i.e.,

nθϕx
T
θϕ = nD. (2.3)

Note that the angle between nθϕ and mθϕ has to be in the range of 90 and 180 degrees, or

nθϕm
T
θϕ ≤ 0, (2.4)

i.e., the normal vector of the tangential plane points into the interior of the convex hull. We
minimize the surface integral

∫ π

0

∫ 2π

0

r2θϕ sin θdϕdθ,

or its discretized version
Nθ
∑

µ=1





Nϕ(θµ)
∑

j=1

r2θµϕν
sin θµ∆ϕ(θµ)



∆θ, (2.5)

with the number, Nθ of θ-circles θµ, and the θ-grid points

θµ := (µ− 1)∆θ, ∆θ :=
π

Nθ − 1
.

To obtain an approximately uniform distribution of grid points, as in [17], we place Nϕ(θµ)
equidistant ϕ-angles on each θ-circles θµ, i.e.,

Nϕ(θµ) = 2

⌊

4

3
Nθ sin θµ + 1

⌋

,

the ϕ-increments

∆ϕ(θµ) :=
2π

Nϕ(θµ)
,

and finally, the ϕ-grid points on the θ-circle θµ

ϕν(θµ) :=

(

ν − 1

2

)

∆ϕ(θµ).
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To keep our non-convex NLP problem computationally tractable, we want to maintain the total
number of grid points at a reasonable level of a few hundred points. However, if we want to
integrate only the unit sphere, i.e., r2θµϕν

, we need several thousand surface elements to obtain
the approximate value of 12.56637 for the exact value of 4π.

The approach has been implemented and works for up to two hundred spheres. We have also
implemented and tested Gauß and Chebyshev integration schemes for integration of function
over the unit spheres, but they required approximately the same number of grid points and were
not better.

2.3 Approach 3: Complete Analytic Representation of the Individual Facets of the Convex Hull
Boundary

Analytic representation of ∂S and its minimal surface would be similar to [16], but so far we
have not yet succeeded in transferring these ideas from the 2D to the 3D case as it is not clear
how to parameterize the individual facets (parts of spheres, conic bits, and triangles).

2.4 NLP-Model

Approach 2 yields the following intuitive NLP formulation: Consider given spheres i ∈ I – we
also use index j to refer to spheres – with radii Ri, with Ri ≥ Rj if i > j. The key variables
of the optimization problem are the center coordinates x0

i = (xi1, xi2, xi3)
T ∈ IR3 describing the

placing of the spheres. Depending on the needs and situations in which we use the NLP model,
we introduce two coordinate frameworks. The first one uses only the positive octant with vectors
x ∈ IR3, x ≥ 0, while in coordinate framework 2 we do not use the non-negativity constraint but
require that the sum of weighted distances from the center, xc,

xc :=
1

∑

i Ri

∑

i

Rix
0
i (2.6)

of centers x0
i of spheres is identical to the origin of the coordinate system, i.e., we fix xc = 0. In

coordinate framework 1, the center variables x0
i are subject to the lower bounds

x0
id ≥ Ri, ∀{id}. (2.7)

The non-overlap constraints for spheres i and j read

(

x0
i − x0

j

)2
=
∑

d∈D

(

x0
id − x0

dj

)2 ≥ D2
ij := (Ri +Rj)

2
, ∀{(ij)|i < j}, (2.8)

with radius Ri and decision variable x0
id modeling the center of sphere i in dimension d. Con-

straints (2.8) are non-convex constraints (the left hand side constitutes a convex function). Note
that for n spheres we have n(n− 1)/2 inequalities of (2.8).

To the grid of direction vectors mθϕ with center at xc, the average position of all sphere
centers, we seek the values of the non-negative variables rθϕ describing the boundary, ∂S, of the
convex hull based on the spherical coordinates x = (rθϕ; θ, ϕ). The convex hull vector points are
subject to the condition that their distance to all spheres’s centers x0

i is greater or equal to their
radii, i.e.,

nθϕx
0
i − nD ≥ Ri, (2.9)



6 Josef Kallrath and Markus Frey

where normal vector nθϕ and origin-distance nD describe the tangential plane at xθϕ, i.e.,

nθϕxθϕ = nD. (2.10)

The angle between nθϕ and mθϕ is forced to be in the range of 90 and 180 degrees, by

nθϕmθϕ ≤ 0. (2.11)

We minimize the discretized version of the surface integral

Nθ
∑

µ=1





Nϕ(θµ)
∑

ν=1

r2θµϕν
sin θµ∆ϕ(θµ)



∆θ. (2.12)

2.5 Symmetry Breaking Constraints

Translational and rotational symmetry is inherent to the problem and makes it very difficult
to prove global optimality. If we translate and rotate S, A(∂S) does not change. We can break
translational symmetry, for instance, by fixing the largest sphere, the first or any other sphere,
or the center-of-centers. However, some care is needed if we place the spheres only in the first
octant of the coordinate system, or within a rectangular box.

Breaking rotational symmetry is more difficult as we can rotate S over all 4π directions. If we
had no restrictions on where to arrange the spheres in the coordinate space, we could fix sphere
1 and request that sphere 2 is placed on a fixed line with its origin in the center of sphere 1 and
pointing to a fixed direction.

3 Structural Properties and Analytic Solutions

Here we compile various theoretical and analytic results, among them complexity analysis,
isoperimetric inequalties, center coordinates x0

i , area A(∂S) of ∂S, or volume, V (S), of S.
To begin with, we cannot expect that minimizing A(∂S) and minimizing the volume, V (S),

of S will in general give the same arrangement of spheres. For the 2D case, in [16] we have
provided an example that demonstrated this. For the 3D case, we have not yet found a case
which has minimal V (S) but not minimal A(∂S), but the following thought experiment indicates
that configurations should exist leading to minimal V (S) but not necessarily to minimal A(∂S).
Assume a very large number, say, 1023 of tiny spheres with all equal radius R, say, 10−23. Large
and tiny in this context means so many tiny spheres that the minimal volume V is essentially
independent on whether we prescribe the domain of this volume as a sphere or a cube, i.e., we
have so many spheres that boundary effects do not play a role. If the domain is a cube, we get
the side length a of that equivalent-volume cube as

a = V 1/3,

if it is a sphere, we get its radius r as

r =

(

3V

4π

)1/3

.

Thus, the convex hull is the cube with side a or the sphere with radius r, both leading to minimal
V (S). However, while the volume for both configurations is the same, the area is not. The cube
area is

Ac = 6a2 = 6V 2/3,
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while the surface of the equivalent-volume sphere is

As = 4πr2 =
3
√
36πV 2/3 ≃ 4. 836 · V 2/3.

Thus we have two arrangements with the same minimal volume convex hull with significant
difference in the surface area of the convex hull.

The formal justification for the difference of minimizing the A(∂S), and minimizing V (S) is
provided by the isoperimetric inequality

V ≤ 1

6
√
π
A3/2 (3.13)

in IR3; cf. [12], Formula (1). If r∗ denotes the radius of the largest spheres inscribed in S, we
have the tighter inequality proven by [12], formula (3):

A3 − 36πV 2 ≥
[√

A− 2
√
πr∗

]6

,

which is the base of Hadwiger’s proof that the inequality becomes an equality if and only if the
convex body or convex set is a sphere with radius r∗. Note that we obtain r∗ within our grid
approach as well.

The complexity status of sphere packing is not known for packing n equal spheres, but sphere
packing is NP hard for packing n spheres of different radii with the complexity growing in the
number of different radii; cf. [10]. Solving the 3D-MACH problem is thus also NP hard, as it
contains sphere packing with different radii as a subproblem.

Let us now focus on arrangements of spheres leading to minimal A(∂S). They are obtained
if we have maximal contact (see, for instance, the arrangement of four spheres with two larger
spheres and two smaller spheres). We prove this formally for two spheres and extend the idea to
three and four spheres. For five spheres, we have two subsets of spheres with maximal contact:
A double tetrahedron formed by spheres (1,2,3,4) and spheres (1,2,3,5) in maximal contact as
displayed in Figure 5. A subgroup of configurations for which we derive analytic results are planar
configurations of spheres, defined as:

Definition: An arrangement of spheres is called planar if the centers of all spheres are con-
tained in one plane.

Examples for planar spherical configurations are the configurations Cp
2 , Cp

3 , or C2x2
4 , and all

sausage configurations discussed below (see Fig. 2). The tetrahedral configuration Ct
4 is not planar.

In coordinate framework 2, we can easily enforce planar configurations by fixing x0
i3 = 0 for all

spheres i.

Fig. 2 The sausage configuration for four congruent spheres with radius 1.

An upper bound on the surface of ∂S for n spheres with radius R follows from the sausage

configuration, i.e., the spheres are lined-up, are only in contact with the adjacent sphere, and
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have center coordinates

x0
i1 = (2i− 1)R, i = 1, . . . , n

x0
id = R, i = 1, . . . , n; d = 2, 3.

The convex hull area, As
n, of this configuration is established by two sphere segments and one

cylinder jacket with radius R and length or height, resp., h = (n− 1)2R

As
n := 4πR2 + 2πR(n− 1)2R = 4πR2n,

for all sausage configurations of congruent spheres, the convex hull’s area A(∂S) is identical to
the sum of areas of the spheres.

A comparison with the 2D sausage configuration case

As2
n := 2πR+ (n− 1)2R ≤ 2πRn

shows that the length of the perimeter of the 2D-convex hull is smaller than the sum of the
length of perimeters of the circles.

The volume V s
n of sausage configurations with n spheres of radius R is made up of two

half-spheres and a cylinder of radius R and height h, i.e.,

V s
n =

4

3
πR3 + πR2 [(n− 1)2R]

=
4

3
πR3 3n− 1

2
.

Before we analyze special configurations and their solutions in detail, we formulate the following
Lemma 1 : For n spheres with arbitrary radius R, the solid angles contributed by the sphere

facets to ∂S add up to 4π. For n spheres with equal radius R, the surface areas of all partial
sphere facets contributed to ∂S add up to the surface of the full sphere, i.e., 4πR2.

In [16], we have been able to prove this Lemma for the 2D case. In Appendix B.2.1, we develop
the proof for the 3D case for n < 4 3 and symmetric configurations for n = 4, and a general
proof for any configuration of n spheres based on a generalization of the proof in [16].

3.1 Two Spheres

Let us now consider two spheres with radii R1 and R2, R1 ≥ R2 arranged such that their center
distance is d ≥ D12 = R1 + R2. This configuration, Cp

2 , is planar according to the definition
above. With the abbreviations

δ :=
R2

R1
, ε :=

d−D12

R1
=

d− (R1 +R2)

R1

and exploiting Fig. 3 we obtain, as carried out in Appendix B.1.1, the general results for two
spheres

A = A(Cp
2 ; ε) = 4πR2

1

[

1 + δ2 +
ε

4

4δ + ε+ δε

1 + δ + ε

]

.

For small values of ε, the non-negative detached-correction term

∆ :=
ε

4

4δ + ε+ δε

1 + δ + ε
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Fig. 3 Two non-touching spheres in the z-x-plane and their basic geometry to derive an analytic expression for
the area of ∂S.

approaches zero, while for ε → +∞ the term diverges to +∞. As ∆ ≥ 0, for ε = 0, A(∂S) takes
its minimal value (see Figure 3)

A2c = A(Cp
2 ; 0) = 4πR2

1

[

1 + δ2
]

= 4πR2
1 + 4πR2

2.

This proves our intuitive view that we get the minimal area of ∂S if the two spheres touch each
other (see Fig.3), i.e., they are in contact. Moreover, we can derive the following interesting
property of two touching spheres.

Lemma 1 The surface area, A2c, of the boundary of the convex hull of two touching spheres

equals the sum of the areas of both spheres.

In coordinate framework 1, the center coordinates, x1 and x2, of the two spheres are given
by

x0
1 = R1(1, 1, 1)

T, x0
2 = (2R1 +R2, 1, 1)

T.

The center-of-centers, xc, is given by

xc = (R1 +R2, 1, 1)
T.

In coordinate framework 2, the center-of-centers is identical to the origin and the center coordi-
nates, x1 and x2, of the two spheres are given by

x0
1 = (−R2, 0, 0)

T, x0
2 = (R1, 0, 0)

T.

3.2 Three Spheres

At first, we consider the planar configuration Cp
3 of three touching spheres with equal radius R:

∂S is made up by two triangles contributing an area of

2 · 1
2
2R ·

√
3R = 2

√
3R2,

three half cylinder jackets adding an area of

3 · 1
2
2πR · 2R = 6πR2,
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and three partial spheres, by Lemma 1, contributing an area of

3 · 1
3
4πR2 = 4πR2,

2 · 1
2
2R ·

√
3R+ 3 · 1

2
2πR · 2R+ 3 · 1

3
4πR2

i.e., the total surface area of ∂S is

2R2
[

5π +
√
3
]

≈ 11.1πR2 < 4πR2n, n = 3.

Now we consider the general case C3 of three touching spheres with radii R1 ≥ R2 ≥ R3 (see
Fig. 4). We exploit the result of two spheres, that minimal A(∂S) is obtained when the three
spheres are in contact, i.e., the center coordinates are subject to the simultaneous conditions

(

x0
i − x0

j

)2
= D2

ij , ∀(ij) ∈ {(1, 2), (1, 3), (2, 3)}.

Without loss of generality, we fix the z-coordinate x13, x23, x33 = 0 for all spheres, and the y-
coordinate x12, x22 = 0 for spheres 1 and 2. We further fix x11 = 0, i.e., spheres 1 is placed
at (0, 0, 0). This leaves us with three unknown variables x21, x31, and x22. If we want to place
all spheres in the first octant, we just transform all coordinates to (R1, R1, R1) and obtain the
center coordinates of the spheres as derived in Appendix B.1.2

x0
1 = (x11, x12, x13)

T = R1(1, 1, 1)
T (3.14)

x0
2 = R1(2 + ρ, 1, 1)T, ρ := R2/R1 (3.15)

x0
3 =

(

R1 +
R1R2 +R1R3 −R2R3 +R2

1

R1 +R2
, R1 +

2
√

(R1 +R2 +R3)R1R2R3

R1 +R2
, R1

)T

. (3.16)

Fig. 4 Optimal arrangement of three non-congruent spheres. In an optimal solution, leading to the minimal area
of the surrounding convex hull, the three spheres touch each other.

In the special case of three equal spheres with radius R, we obtain

x0
1 = R(1, 1, 1)T (3.17)

x0
2 = R(3, 1, 1)T (3.18)

x0
3 = R

(

2, 1 +
√
3, 1
)T

. (3.19)
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3.3 Four Spheres

At first, we consider the planar configuration C2x2
4 of four spheres with equal radius R arranged

as a square (see Fig. 1). The boundary, ∂S, of S is made up by two squares yielding an area of

2 · 4R2 = 8R2,

four half cylinder jackets adding an area of

4 · 1
2
2πR · 2R = 8πR2,

and four partial surfaces of a spheres, by Lemma 1, adding an area of

4 · 1
4
4πR2 = 4πR2,

i.e., the total surface of ∂S is

A4,2x2 = 4R2 [3π + 2] ≈ 45.7 < 4πR2n, n = 4.

This result remains valid when we shift the spheres to a rhombus arrangement as displayed in
Fig. 5 (a). Note that the volume of C2x2

4 is given by the volume of a cube, four half cylinders and
for quarter spheres, i.e.,

V (S) = (2R)3 + 4 · 1
2
πR22R+ 4 · 1

4

4

3
πR3

=
8

3
(3 + 2π)R3.

Second, we consider configuration Ct
4 which consists of four spheres with equal radius R arranged

as a regular tetrahedron (see Fig. 5 b):
The derivation exploits the dihedral or face-edge-face angle β of the base area to the sides of

a regular tetrahedron, i.e., the angle formed by the intersection of two planes (cf. [20])

β = 2arcsin
1√
3
= arccos

1

3
≃ 70◦.52877936,

The area Ath
4 of ∂S for this tetrahedron configuration consists of four triangles contributing an

area of

4 · 1
2
2R ·

√
3R = 4

√
3R2

plus six cylinder jackets with arc length 180− β leading to an area of

6 · 180− β

360
2πR · 2R =

180− β

15
πR2 ≃ 7.298πR2

plus four quarter-spheres (Lemma 1) contributing an area of

4 · 1
4
4πR2 = 4πR2,

i.e., the total surface, Ath
4 , of ∂S is

Ath
4 = 4R2

[(

180− β

60
+ 1

)

π +
√
3

]

≃ 42.4222R2 < 4πR2n, n = 4.
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For the volume V th
4 consisting of four rectangular solids corresponding to the four triangles, a

tetrahedron in in the interior, six partial cylinders and four quarter spheres, we obtain similarly

V th
4 = 4 ·

(

1

2
2R ·

√
3R

)

·R+
(2R)

3

6
√
2

+ 6 · 180− β

360
πR2 · 2R+ 4 · 1

4
· 4
3
πR3

=
1

30
R3
(

220π − πβ + 20
√
2 + 120

√
3
)

≃ 23. 524R3.

while the numerical integrations yields 23.5217.
We compute the center coordinates of four spheres with radii R1 ≥ R2 ≥ R3 ≥ R4 by

exploiting the solution of x0
1, x

0
2, and x0

3. For convenience, we work with x0
i −(1, 1, 1)T, i = 1, 2, 3,

and obtain the three conditions for sphere 4 and its center coordinates x0
4 = (x41, x42, x43)

T:

(x41 − x11)
2
+ (x42 − x12)

2
+ (x43 − x13)

2
= d241 := (R1 +R4)

2

(x41 − x21)
2
+ (x42 − x22)

2
+ (x43 − x23)

2
= d242 := (R2 +R4)

2

(x41 − x31)
2
+ (x42 − x32)

2
+ (x43 − x33)

2
= d243 := (R3 +R4)

2

With the special fixations

x13, x23, x33 = x12, x22 = x11 = 0

we obtain

x41 =
1

2x21

(

d241 − d242
)

x42 =
1

2x32

[

d242 − d243 − (x41 − x21)
2 + (x41 − x31)

2
]

+
1

2
x32

x43 = ±
√

d241 − x2
41 − x2

41.

Note that we can place sphere 4 above or below the plane in which the first three spheres are
fixed. We continue with only the above solution and obtain

x41 = R1 +
1

2x21

(

d241 − d242
)

(3.20)

x42 = R1 +
1

2x32

[

d242 − d243 − (x41 − x21)
2 + (x41 − x31)

2
]

+
1

2
x32 (3.21)

x43 = R1 +
√

d241 − x2
41 − x2

42 (3.22)

after transforming back to coordinate framework 1 with of x0
1, x

0
2, and x0

3 as in (3.14) - (3.16).
The resulting arrangement is shown in Fig. 5 (c).

As a special case, we get the tetrahedron configuration with four equal spheres of radius R.
In coordinate framework 1, the center coordinates are given by

x0
1 = R(1, 1, 1)T, x0

2 = R(1, 1 +
√
2, 1 +

√
2)T

x0
3 = R(1 +

√
2, 1, 1 +

√
2)T, x0

4 = R(1 +
√
2, 1 +

√
2, 1)T.
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(a) Four congruent spheres ar-
ranged as a rhombus

(b) Optimal regular-tetrahedron
arrangement of four congruent
spheres.

(c) Four non-congruent spheres ar-
ranged as an irregular tetrahedron.
The three largest spheres are posi-
tioned in a plane, and sphere 4 is
above this plane.

Fig. 5 Arrangement of four congruent spheres as a rhombus (a), and optimal arrangements as a regular tetra-
hedron (b), and four non-congruent spheres (c), such that A(∂S) is minimal.

3.4 Five Spheres

The center coordinates of configuration C5 of five touching spheres with radii R1 ≥ R2 ≥ R3 ≥
R4 ≥ R5 leading to minimal A(∂S) are derived similarly as in the case of four spheres, i.e., x0

1,
x0
2, x

0
3, and x0

4 are identical to (3.20) - (3.22) while for x0
5, we use the negative sign in formula

(3.22)

x51 = R1 +
1

2x21

(

d251 − d252
)

(3.23)

x52 = R1 +
1

2x32

[

d252 − d253 − (x51 − x21)
2 + (x51 − x31)

2
]

+
1

2
x32 (3.24)

x53 = R1 −
√

d251 − x2
51 − x2

52. (3.25)

3.5 General findings

The surface area A(∂S) for two touching spheres is

A = 4πR2
1(1 + δ2) = 4πR2

1 + 4πR2
2,

i.e., A(∂S) for two touching spheres is identical to the sum of the surface areas of both spheres.
The property

A(∂S) =
∑

i

4πR2
i

is also fulfilled for the sausage configuration of n congruent spheres. In all other configurations
and n > 2 we observe

A(∂S) <
∑

i

4πR2
i .
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(a) Optimal arrangement of five
congruent spheres.

(b) Optimal arrangement of five
non-congruent spheres.

Fig. 6 Optimal arrangement of five spheres with equal radius (a) and different radii (b) leading to minimal
A(∂S).

4 Computational insights

In the next section, we show implementation details as well as conducted numerical experiments.
First, in Section 4.1 we provide insights how we visualize our sphere arrangements in IR3. In
Section 4.2, five experimental setups are presented to solve the problem of arranging spheres.
Section 4.3 contains numerical studies. In the last Section 4.4, we wrap up insights produced by
the computational experiments.

4.1 Visualization

To display the boundary ∂S of the convex hull S, we use the QuickHull algorithm by [25]
and generate an input file for a 3D viewing program (in the case of this paper GLC Player

2.3.0 www.glc-player.net). We feed the QuickHull algorithm with the points xθϕ represent-
ing ∂S as computed by our NLP models (usually, 1,107 grid points), and alternatively, by
numerically approximating the surface of the spheres using a Catmull–Clark subdivision (see
https://en.wikipedia.org/wiki/Catmull–Clark subdivision surface), which divides a dodecahedron
several times and in this way approximates a sphere. Establishing ∂S from our grid points xθϕ,
we also obtain an approximate value AgP of A(∂S). The area based on the dodecahedron division
is denoted by AsL (2,761 hull vertices), and AsH with higher resolution (41,755 hull vertices),
respectively. Similarly, we denote the volumes V gP, V sL, and V sH of S. We have tuned the reso-
lution by comparison with the analytic solutions in Section 3. For the tetrahedron arrangement
and R = 1, for instance, numerically we obtain AsL = 42.3979, AgP = 42.3155, and with highest
resolution, AsH = 42.4206, which differs from the theoretical value of 42.4222 only by 0.37%.

4.2 Experimental setup

The running time limit varies from 15 minutes to 24 hours. We use the global solver BARON

(cf.[27]) using a single core processor. We perform the followings sets of algorithmic experiments:
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1. Monolith (M): The NLP problem as it is. We distinguish between the two settings

(a) Exploiting contact (MT): In (2.8), we use equalities instead of inequalities.
(b) No contact (MnT): Non-overlap in (2.8) is modeled as greater-or-equal inequalities.

2. Polylithic 1 (P1): A polylithic approach which uses a homotopy approach. At first, we solve
the sphere packing problem minimizing the radius or the surface of the sphere hosting all
spheres. From this initial arrangement of spheres, we derive initial values for problem minACH.
We expect this approach to become more efficient when n becomes large.

3. Polylithic 2 (P2): Similar to P1, but this time, we solve the sphere packing problem minimizing
the volume of the rectangular box hosting all spheres. From this initial arrangement of spheres,
we derive initial values for problem minACH.

4. Polylithic 3 (P3): In this approach, initially, we minimize the sum of weighted distances from
the center xc of spheres’ centers x0

i ; see (2.6) for definition. Then, we fix xc and x0
i and solve

the minACH problem.
5. Polylithic 4 (P4): Similar to P3, but instead of re-solving after the initial problem allowing

the spheres to change their center coordinates, we fix the center coordinates and exploit that,
for fixed sphere center coordinates, we can decompose the problem into direction vectors and
solve minACH for each grid direction mk separately. For up to 40 spheres, these individual
problems are solved within 5 to 30 seconds yielding an initial solution for ∂S.

After P1, P2, P3, or P4 we relax all variables and try to improve the current solution by solving
minACH.

The monolith formulation (non-convex NLP) as well as the polylithic approaches P1 – P4
are implemented in GAMS 24.9.2. The computations are executed on a 64 bit machine with an
Intel(R) Core(TM) i7 CPU 3.33 GHz, 16 GB RAM running Windows 7.

4.3 Numerical study

In this subsection, we report the most interesting findings of our computational study for con-
gruent (see Section 4.3.1), and non-congruent spheres (see Section 4.3.2) as well as the packing
of non-congruent spheres in a rectangular solid (see Section 4.3.3).

As an instance identifier we apply a two field notation. Congruent spheres are denoted by Cx
where x stands for the number of spheres considered; similarly, we use NCx for non-congruent
spheres. To distinguish between instances having the same number of non-congruent spheres but
different sphere radii, we additionally label the instance with an alphabetical letter, e.g., NC100a
and NC100b.

In the computational study, we use the term global optimum, or global optimality, in the
sense of small relative gaps (difference between upper and lower bound divided by the lower
bound) of the order of 10−5 as numeric solvers dealing with finite number arithmetic are subject
to round-off errors. In this sense, all the presented results are only approximations, and although
the small gaps hint on (near) optimal results, due to the rounding errors, we do not obtain
reliable results in the mathematically strict meaning. For packing circles in a unit square, high
precision guaranteed enclosures for both the global optimizer and the global optimum value
and details of the interval arithmetic-based core elimination method are presented in a series of
publications by Markót and Csendes (2005,[22]) and Markót (2007,[21]). For some instances we
have derived analytic solutions. This enables us to evaluate the quality of our numerical solutions
independently of the gaps.
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4.3.1 Congruent spheres

For spheres with equal radius R, we are able to find feasible solutions for up to 200 spheres. As the
value of the radius neither affects the computational complexity nor the resulting arrangement
of spheres in the plane, we set the radius to R = 1. In Table 1 we report for different instances
(Inst) the experimental setup (ES), presented in Section 4.2, leading to the best arrangements
found with the area of the surrounding convex hull shown in row A(∂S).

Inst C5 C10 C25 C50 C80 C99 C200
ES P4 P3 P3 P3 P3 P1 P1
A(∂S) 34.8575 80.5739 157.647 265.546 356.138 383.875 704.188

Table 1 Results for congruent spheres. Best experimental setups leading to the smallest A(∂S) for instances
with congruent spheres.

The results reveal that experimental setup P3 outperforms the other setups in most instances
for n < 50. However, the more spheres are considered in the instance, the better experimental
setup P1 performs assuming that the spheres are arranged in a convex hull which itself approaches
a sphere. In general, our experiments for spheres support the Lemma from physics that a sufficient
number of congruent spheres (or molecules) in nature always arrange spherical, such that minimal
A(∂S) or diameter of S is reached (cf. [29] or [30]). Experimental setup P2, assuming that the
spheres arrange rather in a rectangular solid, never performed better than P3 except when using
two or three spheres. The resulting arrangements of spheres in Figure 7 for 10, 50, and 99 spheres
show that the more spheres are considered, the better the convex hull approximates a sphere.

(a) Best obtained arrangement for
25 congruent spheres.

(b) Best obtained arrangement for
50 congruent spheres.

(c) Best obtained arrangement for
99 congruent spheres.

Fig. 7 Spherical arrangements of congruent spheres for instances C25, C50, and C99. The convex hull approaches
a sphere only slowly.

4.3.2 Non-congruent spheres

The decision problem whether the given arrangement of non-congruent spheres is minimal area
of the convex hull is NP-hard, in contrast to problems with congruent spheres for which the
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complexity is not known; cf. [10]. The complexity increase for non-congruent spheres is also
reflected in our computational experiments: we have been able to solve problems involving up
to 200 congruent spheres with unit radius. For non-congruent spheres we have solved problems
of up to 200 spheres with some systematic distribution of radii. For example, for one large scale
experiment with non-congruent spheres we divide the spheres into two types with different radii.
However, beyond a number of 200 spheres, we have difficulties in even finding just feasible points.

In Table 2 we give the arbitrarily specified radii of the spheres in the considered instances.
According to Table 3 we obtain the best result with experimental setup P3.

Inst R

NC3 1.0; 1.5; 2.0
NC4 0.8; 1; 2.5; 3
NC5 0.5; 0.75; 1; 1.5; 2.0
NC6 0.5; 0.75; 1; 1.25; 1.5; 2.0
NC7 1.0; 1.2; 1.4; 1.6; 1.8; 2.0; 3.0
NC8 0.25; 1.0; 1.2; 1.4; 1.6; 1.8; 2.0; 3.0

Table 2 Radii of the non-congruent spheres for the instances NC3 to NC8.

Inst NC3 NC4 NC5 NC6 NC7 NC8
ES P4 P3 P3 P3 P3 P3
A(∂S) 194.985 86.8615 96.5994 218.584 218.737 218.758

Table 3 Results for non-congruent instances. For NC3, NC4, and NC5 we have analytic configurations to which
we compared our best experimental setups leading to the smallest A(∂S) for instances with non-congruent spheres.
The solution of NC6 is displayed in Figure 14 (b).

The resulting arrangements for instances NC6, NC7, and NC9 are displayed in Figure 8. The
obtained arrangements for instances NC3, NC4, and NC5 are similar to those shown in Figure
4, 5 (b) and 6 (b), respectively, and thus are proven to be optimal.

(a) NC6. (b) NC7. (c) NC8.

Fig. 8 Best obtained arrangements for instances NC6, NC7, and NC8.
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To get results for large scale non-congruent instances, we select the radii of the spheres in
a systematic way and reduce the number of sphere types with different radii to two. With this
instance setup we are able to conduct large scale experiments. In instances NC60, NC120, and
NC200a half of the spheres have radius R = 1 while the other half has radius R = 1/2. Table 4
reports the corresponding results.

Inst NC60 NC120 NC200a NC200b
ES P3 P1 P1 P1
A(∂S) 183.0810 289.9942 449.7677 9,557,823
ri 3.53 4.54 5.46 842.53
ro 3.97 4.91 6.21 885.71

Table 4 Results for non-congruent instances. Best experimental setups leading to the smallest A(∂S) for instances
with non-congruent spheres with systematical radii. Note that instance NC200b contains 200 non-congruent
spheres with radii Ri = 201− i and thus has a much larger value of A(∂S). The radii ri and ro of the inner and
outer sphere to S provide an estimation of how close the convex hull is to a sphere.

Observing the sphere arrangements in Figure 9, we come to Conjecture 1.

Conjecture 1 : For large numbers n of spheres with different radii Ri, the convex hull mini-
mizing A(∂S) approaches a sphere.

(a) 60 non-congruent spheres. (b) 120 non-congruent spheres. (c) 200 non-congruent spheres.

Fig. 9 Spherical arrangement of non-congruent spheres for two types of spheres, one half with radius R = 1 and
the other half with radius R = 1/2.

The validity of Conjecture 1 is strengthened by large scale experiments for spheres for which
we set the radii systematically in a slightly different way, which led to acceptable computing
times of 24 h. Instance NC200b contains 200 non-congruent spheres with radii Ri = 201− i. The
resulting arrangement is shown in Figure 10.

Another interesting finding is the area ratio ρa of A(∂S) and the area of all spheres enclosed
by S. The greater the number of instances, the lower this ratio. Analytically, for large numbers
n of spheres of radius R and volume utilization ρv, we would expect

∑

i

4

3
πR3 =

4n

3
πR3 = ρvV (S) = ρv

4

3
πr3,
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Fig. 10 Resulting arrangement of instance NC200b with 200 spheres with radius Ri = 201 − i for sphere
i = 1, . . . , 200.

from which the radius r of the convex hull follows as

r =

(

n

ρv

)1/3

R.

Similarly, for n/2 spheres of radius R and n/2 spheres of radius R/2, we obtain

4n

3
πR3 1 + 2−3

2
= ρv

4

3
πr3,

and thus

r =

(

9

16

n

ρv

)1/3

R.

This yields the area ratio

ρa =

(

n

ρv

)2/3
1

n
=

(

1

ρv

)2/3

n−1/3,

or

ρa =

(

9

16

n

ρv

)2/3
/(n

2
(1 + 2−2)

)

=
8

5

(

9

16

1

ρv

)2/3

n−1/3,

respectively, i.e., in both cases a slowly and monotonously decreasing function of n as displayed
in Fig. 11. For NC190, i.e., 95 spheres with radius R = 1 and 95 spheres with radius R/2, we
obtain numerically

ρv =
4
3π(95 + 95/23)

734.475
≃ 0.60952,

and, finally,

ρa =
8

5

(

16

9

4
3π(95 + 95/23)

734.475

)−2/3

· 190−1/3 ≃ 0.26381.

Fig. 11 Area ratio, ρa, of A(∂S) and the area of all spheres enclosed by S for instances NC60 to NC200.
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4.3.3 Results for spheres in a rectangular solid

As in practice we often face the problem of packing items into a restricted space, we also conduct
the study of packing spheres into a rectangular solid representing, for example, a container, the
loading area of a truck, or a box. The resulting packing problem is similar to the 3D bin packing
problem in which items of rectangular shape are arranged in a box (see [24]). Thus, we try to
find an answer to the decision problem whether a given number of spheres (items) fit into a given
rectangular solid. Similar to the 3D bin packing problem, finding an answer for this decision
problem is NP-hard to solve.

Although we have to only slightly change the model formulation, the new problem statement
significantly influences the resulting arrangement of spheres. On the one hand, as we now consider
a restricted area in which the spheres can be placed, a given arrangement of spheres may be
infeasible, as one or more spheres violate the bounds of a restricting border. On the other hand,
a feasible arrangement of spheres, i.e., all spheres fit into the rectangular solid, does not necessary
lead to the property that as few as three spheres must touch each other.

In our computational study, we pack the eight non-congruent spheres of instance NC8 into
a rectangular solid of the dimension xR := (10, 10, 8)T, xR := (20, 6, 6)T, and xR := (18, 6, 6)T,
respectively. This is accomplished by the additional inequalities (in coordinate framework 1)

x0
id ≤ xR

d ; ∀{id}.

The solution of the sphere packing is shown in Fig. 12.

Fig. 12 The packing of instance NC8 into a rectangular solid of dimension xR := (10, 10, 8)T, xR := (20, 6, 6)T,
and xR := (18, 6, 6)T.

4.4 Experimental insights

Based on our analytical solutions for two to five spheres, as well as our experimental study, we
summarize the following experimental insights:

1. We cannot close the gap between upper and lower bounds provided by BARON. Thus, in the
sense of deterministic global optimization, we cannot be sure that we obtained the global
minimum. However, for test cases with known analytic solutions, we observe AgP ≤ A ≤ AsH,
where A is the area of according to the analytical solution, i.e., the sum (2.12) is a lower
bound for A. For 29 θ-circles the approximation error is less than 0.1%.

2. In solutions with less than five spheres, all spheres touch each other, i.e., they are in com-

plete contact and the non-overlap inequalities (2.8) are fulfilled as equalities for all sphere
combinations.

3. For five spheres with radii R1 ≥ R2 ≥ . . . ≥ R5, we observe that in the apparently optimal
solutions, the first four spheres are in complete contact, and that spheres 1, 2, 3, and 5 are
in complete contact.
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5 Conclusions

This paper studies the problem of arranging spheres with possibly different radii such that
the surface area of the boundary of the convex hull is minimized. To solve the problem, we have
developed non-convex NLP models and provide interesting theoretical insights. Based on analytic
solutions for up to five spheres, we have tuned the number of grid points as well as the numerical
integration error. This enabled us to validate the NLP model and that it produces, at least for
these cases, the global minimum. Moreover, we provide interesting insights into arrangement
characteristics of minimal surface area convex hulls.

As the general problem is NP-hard to solve, we evaluate five algorithmic setups for solving
the problem. Computationally, we are able to solve problems involving up to 200 spheres. By
means of those experimental setups, we can support the conjecture that minimal surface area
convex hulls of congruent spheres approach a sphere. Our experiments indicate that this also
seems to hold for non-congruent spheres.
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A Notation

We start with the symbols introduced in the derivation of the model; they are not used in the NLP model directly.

A(∂S) surface area of the boundary ∂S of the convex hull S enclosing the spheres.

A4,2x2 total surface of convex hull ∂S for four congruent spheres in the plane.

As
n area of the convex hull for n spheres.

Ac area of a cube with pre-specified volume.

As area of a sphere with pre-specified volume.

AgP approximate value of the area of ∂S derived from the QuickHull algorithm exploiting the variables xθϕ

computed by the NLP model.

AsL approximate value of the area of ∂S derived from the QuickHull algorithm applied to points resulting
from a discretization of the surfaces of all spheres (coarse grid).

AsH approximate value of the area of ∂S derived from the QuickHull algorithm applied to points resulting
from a discretization of the surfaces of all spheres (fine grid).

Ath
n Total surface of ∂S for n spheres.

C2x2
4 planar, square-arrangement of four spheres.

mθϕ direction vectors over the unit sphere in spherical coordinates θ ∈ [0, π] and ϕ ∈ [0, 2π].

n the number of spheres to be placed.

r radius of a volume-equivalent sphere.

S the convex hull hosting all spheres.

∂S the boundary of the convex hull hosting all spheres.

V (S) the volume of the convex hull S enclosing the spheres.

V gP approximate value of the volume of S derived from the QuickHull algorithm exploiting the variables xθϕ

computed by the NLP model.
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V sL approximate value of the volume of S derived from the QuickHull algorithm applied to points resulting
from a discretization of the surfaces of all spheres (coarse grid).

V sH approximate value of the volume of S derived from the QuickHull algorithm applied to points resulting
from a discretization of the surfaces of all spheres (fine grid).

V s
n volume of the sausage configuration with n spheres.

V th
n total volume of n spheres.

β dihedral angle formed by the intersection of two planes of the tetrahedron.

γ inner angle of a spherical triangle used to derive the solid angle contributed by the spheres in a tetrahedron-
arrangement.

∆ value of the distance correction term.

ǫ a small positive number.

ρ the ratio R2/R1.

The symbols used in the NLP model are summarized in the following subsections.

A.1 Indices and Sets
d ∈ {1, 2, 3} index for the dimension; d = 1 represents the x-coordinate, y-coordinate, and d = 3 the z-

coordinate.

i ∈ I := {1, . . . , n} objects (spheres) to be packed or arranged.

µ ∈ 1, . . . , Nθ index to refer to latitude circles θµ on the unit sphere.

ν ∈ 1, . . . , Nϕ(θµ) index to refer to grid points on a latitude circle on the unit sphere.

A.2 Data
Dij distance of the centers of sphere i and sphere j.

Ri radius of sphere i to be placed.

A.3 Decision Variables
nθϕ normal vector at grid point xθϕ of the boundary of the convex hull.

nD distance-to-origin of the tangential plane at grid point xθϕ of the boundary of the convex hull.

rµν radial distance of a grid point of the boundary of the convex hull to the center-of-centers, xc.

xdµν d-coordinate of a grid point of the boundary of the convex hull; this variable is synonym to xθϕ, or xθµϕν
.

x0
id d-coordinate of the center vector of sphere i to be placed

xcd d-coordinate of the average radius-weighted centers of sphere

xθϕ in the NLP model, we denote this variable as xdµν .

xR the size of the rectangular box; only needed in P2, or when fitting the convex hull into the rectangular solid.

xR

d d-coordinate of xR, the size of the rectangular solid.

B Detailed Derivations

In this section we provide various derivations in detail.

B.1 Analytic Solutions – Detailed Derivations

B.1.1 Two Spheres

Let us now consider two spheres with radii R1 and R2, R1 ≥ R2 arranged such that the distance of their centers
is d ≥ R1 +R2; note that in this section d does not refer to the dimension. From Fig. 3 we derive

m =
√

d2 − (R1 −R2)2 = R1

√

(1 + δ + ε)2 − (1− δ)2 = R1

√

4δ + 2ε+ 2δε+ ε2.

Cosine law plus diagonal in Fig. 3 yields

m2 +R2
2 = R2

1 + d2 − 2R1d cosα1
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d2 − (R1 −R2)
2 +R2

2 = R2
1 + d2 − 2R1d cosα1

−(R1 −R2)
2 +R2

2 = R2
1 − 2R1d cosα1 = (R1 − 2d cosα1)R1

cosα1 =
R2

1 + (R1 −R2)2 −R2
2

2R1d
=

2R2
1 − 2R1R2

2R1d
=

R1 −R2

d
=

1− δ

1 + δ + ε

with the abbreviations

δ :=
R2

R1

, ε :=
d− (R1 +R2)

R1

.

This enables us to derive the relations

sin2 α1 = 1− cos2 α1 = 1−
(

1− δ

1 + δ + ε

)2

=
(1 + δ + ε)2 − (1− δ)2

(1 + δ + ε)2
=

4δ + 2ε+ 2δε+ ε2

(1 + δ + ε)2

sinα1 =

√
4δ + 2ε+ 2δε+ ε2

1 + δ + ε
−→ 2

√
δ

1 + δ

and

1 + cosα1 = 1 +
R1 −R2

d
= 1 +

1− δ

1 + δ + ε
=

2 + ε

1 + δ + ε
−→ 2

1 + δ

1− cosα1 = 1− R1 −R2

d
= 1− 1− δ

1 + δ + ε
=

2δ + ε

1 + δ + ε
−→ 2δ

1 + δ
.

From the segment angles
α1, α2 = π − α1

we derive the radii ri of the truncated cone on the side of sphere i

ri = Ri sinαi,

the height h of the truncated cone

h =
√

m2 − (r1 − r2)2,

its area M
M = π (r1 + r2)m,

the heights hi of the segments of the spheres

hi = Ri [1− cosα1] = Ri

[

1− 1− δ

1 + δ + ε

]

,

and finally the surface areas Ai of the segments of the spheres

Ai = 2πRihi = 2πR2
i [1− cosα1] .

Note that for both spheres the relevant angle for computing the segment areas is α1. Finally, we obtain as the
surface area, A, of the boundary of the convex hull

A =
[

4πR2
1 −A1

]

+M +A2

= π
[

4R2
1 + 2(R2h2 −R1h1) + (r1 + r2)m

]

= 2π
[

2R2
1 +R2

2(1− cosα1)−R2
1(1− cosα1) + (R1 sinα1 +R2 sinα2)

m

2

]

= 2π
[

2R2
1 +R2

2(1− cosα1)−R2
1(1− cosα1) + (R1 sinα1 +R2 sinα1)

m

2

]

= 2π
[

2R2
1 +R2

2(1− cosα1)−R2
1(1− cosα1) + (R1 +R2)

m

2
sinα1

]

= 2πR2
1

[

2 + δ2
2δ + ε

1 + δ + ε
− 2δ + ε

1 + δ + ε
+ (1 + δ)

4δ + 2ε+ 2δε+ ε2

2 (1 + δ + ε)

]

= πR2
1

[

4(1 + δ + ε) + 2δ2 (2δ + ε)− 2(2δ + ε) + (1 + δ)
(

4δ + 2ε+ 2δε+ ε2
)

1 + δ + ε

]

= 4πR2
1

1

1 + δ + ε

[

1 + δ + δ2 + δ3 + ε+ δε+
1

4
ε2 +

1

4
δε2 + δ2ε

]

= 4πR2
1

[

1 + δ2 + ε+
1

4
ε2 +

1

1 + δ + ε

(

ε+
1

4
ε2 + (ε+ 1)

(

−ε− 1

4
ε2 − 1

)

+ 1

)]

= 4πR2
1

[

1 + δ2 +
ε

4

4δ + ε+ δε

1 + δ + ε

]

.
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For small values of ε, the non-negative detached-correction term

∆ :=
ε

4

4δ + ε+ δε

1 + δ + ε

approaches zero, while for ε → +∞ the term diverges to +∞. As ∆ ≥ 0, for ε = 0, A(∂S) takes its minimal value

A2c = 4πR2
1

[

1 + δ2
]

= 4πR2
1 + 4πR2

2.

This proves our intuitive view that we get minimal area ∂S when the two spheres touch each other, i.e., they are
in contact. Note that for two equal spheres, the area contributed by each sphere is half of the surface area of each
sphere. To complete the picture, we provide the solid angles α̃1 and α̃2 the spheres contribute to ∂S

α̃1 = 2 · (2π − 2α1)

α̃2 = 2 · 2α1,

and thus for the sum of the solid angles
α̃1 + α̃2 = 4π.

Note that this is true for any two non-overlapping spheres with arbitrary radii and we have not assumed that the
spheres touch each other.

B.1.2 Three Spheres

Here, we derive the center coordinates of three spheres with radii R1 ≥ R2 ≥ R3. We exploit from the result of
two spheres that minimal A(∂S) is obtained when the three spheres are in contact, i.e., the center coordinates
are subject to the simultaneous conditions

(

x0
i1

− x0
i2

)2
= (Ri1 +Ri2 )

2 , ∀{(i1i2) = (1, 2), (1, 3), (2, 3)}.

Without loss of generality, we fix the z-coordinate x13, x23, x33 = 0 for all spheres, and the y-coordinate x12, x22 =
0 for sphere 1 and 2. We further fix x11 = 0, i.e., spheres 1 is placed at (0, 0, 0). This leaves us with three unknown
variables (x21, x31, x22) to be obtained from

(x21 − x11)
2 = (R1 +R2)

2

x21 = R1 +R2 = R1 (1 + δ) , δ := R2/R1

and

(x31 − x11)
2 + (x32 − x12)

2 = (R1 +R3)
2

x2
31 + x2

32 = (R1 +R3)
2 = R2

1

(

1 + ν2
)

, ν := R3/R1

and

(x31 − x21)
2 + (x32 − x22)

2 = (R2 +R3)
2

(x31 −R1 −R2)
2 + x2

32 = (R2 +R3)
2 = R2

1

(

δ2 + ν2
)

.

From

x2
31 + x2

32 = (R1 +R3)
2

(x31 −R1 −R2)
2 + x2

32 = (R2 +R3)
2

or
x2
31 − (x31 −R1 −R2)

2 = (R1 +R3)
2 − (R2 +R3)

2

or

u2 − (u−R1 −R2)
2 = (R1 +R3)

2 − (R2 +R3)
2

2uR1 + 2uR2 − 2R1R2 −R2
1 −R2

2 = 2R1R3 − 2R2R3 +R2
1 −R2

2

and thus

x31 = u =
R1R2 +R1R3 −R2R3 +R2

1

R1 +R2

,
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from which we get

x2
32 = (R1 +R3)

2 −
(

R1R2 +R1R3 −R2R3 +R2
1

R1 +R2

)2

= 4 (R1 +R2)
−2 (R1 +R2 +R3)R1R2R3

or

x32 =
2

R1 +R2

√

(R1 +R2 +R3)R1R2R3.

If we want to place all spheres in the first octant, we just transform all coordinates to (R1, R1, R1) and obtain
the center coordinates of the spheres as

(x11, x12, x13) = R1(1, 1, 1),

(x21, x22, x23) = R1(2 + δ, 1, 1),

(x31, x32, x33) =

(

R1 +
R1R2 +R1R3 −R2R3 +R2

1

R1 +R2

, R1 +
2

R1 +R2

√

(R1 +R2 +R3)R1R2R3, R1

)

.

B.2 Proofs

B.2.1 The sum of the sector angles

We show that a) for n spheres with arbitrary radius R, the solid angles contributed by the spheres to ∂S add up
to 4π, and b) that for n congruent spheres with radius R, the surface areas of all partial sphere facets contributed
to ∂S add up to the surface of the full sphere, i.e., 4πR2. For n = 1, the result is obvious as the convex hull
is identical to the sphere itself. For n = 2, both statements a) and b) have been proven in Appendix B.1.1. For
n > 2, the proof for a) is a generalization of the proof developed in [16] to prove the analogue property in the 2D
case. As we consider here the 3D case, we basically replace angles by solid angles.

Consider any set of spheres with arbitrary radii Ri enclosed by their convex hull S. Note, we do not require
that either V (S) nor A(∂S) is minimal. The sum of the solid angles α̃i of the spherical facets contributing to ∂S
equals to 4π steradians. Before we conduct the general proof 3), we prove the statement for planar (1) and special
symmetric configurations (2).

Proof : 1) Planar configurations: We prove the statement for planar configurations by projecting the spheres
onto the x − y−plane, which enables us to exploit the theorem in the 2D case of [16], yielding the angles αi in
2D adding up to 2π, i.e.,

∑

i

αi = 2π.

Therefore, we obtain for the solid angles α̃i

α̃i =

∫ π

0

∫ αi

0

sin θdϕdθ = 2αi.

Thus, the sum of all solid angles α̃i adds up to

∑

i

α̃i =
∑

i

(2αi) = 4π,

which implies that for spheres with equal radius R, we obtain a surface area of 4πR2, i.e., the area of a full sphere
which proves the statement for planar configurations (q.e.d.).

2) Symmetric configurations: For symmetric configurations in which all spheres have the same radius R, for
instance, Cp

3 , C2x2
4 , or Ct

4, we prove the statement by exploiting the shadow property briefly described in Section
2.1. Due to this restrictions (symmetry and equal radius), each sphere contributes the same area to ∂S. Let us
consider n spheres with equal radius R, surface area As touching and contributing to ∂S, and denote the area
contributed by Ai. Due to the symmetry we have

Ai =
1

n
A∗, ∀i

with some reference area A∗. If we can show A∗ = As, we have shown that the area contributions of the n spheres
to ∂S are As. As shown in detail in Appendix B.1.1, the statement is true for n = 2.
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Now consider configuration Cp
3 and sphere 1 to begin with. Due to the shadow property, we can first eliminate

half of the surface points of sphere 1 due the presence and shining of sphere 2 onto sphere 1. Sphere 3 also
eliminates half the surface points of sphere 1, but there is an overlap with the eliminated points from sphere 2.
This is illustrated in Fig. 13. Projected on the x − y−plane, we obtain an angle α of 120◦, leading to a third of
the surface area As of sphere 1. Symmetry implies the same for spheres 2 and 3. Note that the conversion from
angles to solid angles for these planar configurations follows along the lines of the proof in part 1) above (q.e.d.).
For configuration C2x2

4 the same chain of arguments leads for sphere 1 with shining from sphere 2 and 4 to an

Fig. 13 The shadow property. Spheres 2 (lower right) and sphere 3 (upper level) shine onto sphere 1. That surface
part of sphere 1 which receives shining light from both is brighter than those parts receiving only light from one
sphere, and that part which does not receive light from either sphere remains dark and establishes a part of ∂S.

angle of α = 90. Thus, following along the lines of part 1) above, a quarter of the surface area of sphere 1 (q.e.d.).

Configuration Ct
4 is an extension of Cp

3 , but sphere 4 above the three spheres of Cp
3 leaves only 3/4 of this

third of surface of the spheres on the bottom level, i.e., a quarter of the surface. To illustrate this, we have plotted
the contributions of the spheres to ∂S in blue (Figure 14) (a). Each sphere contributes an equilateral spherical
triangle of side length s = 180 − β and inner angle γ of 120◦, or 2/3π, in radian. Thus, according to spherical
trigonometry, the area A∆ of this equilateral spherical triangle is

A∆ = 3γ − π = π,

which is a quarter of the area of a unit sphere (q.e.d.).

3) Non-planar configurations (n spheres with arbitrary radii): To begin with the proof, let us inspect Figure
14 (b) and (c) displaying highlighting the parts of the spheres contributing to ∂S in the solution for instance NC5
and NC6.

The spheres contribute spherical polygons with k vertices to ∂S formed by k arcs of great circles. Spherical
equilateral triangles as for Ct

4 mean a special case. If sphere i does not contribute to ∂S, we set α̃i = 0. Now,
we talk only about spheres contributing to ∂S. The spheres contributing to ∂S define a direction of ∂S to the
next adjacent sphere contributing to ∂S. The number of ki of a particular sphere i indicates the number of
spheres adjacent to sphere i contributing to ∂S. Adjacent, contributing spheres i and j are connected by a partial
truncated cone with limiting arc Ai on sphere i and arc Aj on sphere j. Note that the arcs Ai and Aj have the
same shape and orientation, i.e., they are parallel in the following sense: If we re-scale both spheres to the same
target radius R, for instance, to the larger of both radii, cut off the truncated cone, discard the triangles, and
perform a parallel, orientation-conserving shift of Aj along the center-line of the connecting partial truncated cone
towards Ai, both arcs match precisely, i.e., they fit in both a) shape and curvature as they belong to the same
great circle of radius R, and b) in the size or length as re-scaling transforms the truncated cone into a cylinder.
If this was not the case then there must be another sphere between i and j due to the convexity property of ∂S.
Therefore, we can add the solid angles α̃i and α̃j , and obtain, for the composite (non-convex) spherical polygon,
the composite solid angle α̃i + α̃j .

Note that neither the parallel shifts nor the scaling change the individual solid angles. Note further that now
the spheres may overlap. However, this is not relevant as we are only interested in edge-matching the spherical
polygons. If we apply this procedure now to all ki arcs of sphere i, and similarly to all other spheres and their
arcs, we cover the sphere of target radius R completely by spherical polygons having matching arcs, and thus

∑

i

α̃i = 4π (q.e.d).
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(a) The blue partial spheres
contribute to ∂S an equilateral
spherical triangle of side length
s = 180 − β and inner angle γ
of 120◦, or 2/3π, in radian.

(b) The computed configuration
of NC5, and its convex hull.
We can recognize that spheres
contribute spherical polygons (in
blue) with up to four arcs to ∂S.
Note that the limiting arcs of the
truncated cones connecting adja-
cent spheres have the same orien-
tation.

(c) The computed config-
uration of NC6 (n = 6
spheres), and its convex
hull. We can recognize that
spheres contribute spherical
polygons (in blue) with up
to five arcs to ∂S. Note that
the limiting arcs of the trun-
cated cones connecting adja-
cent spheres have the same
orientation.

Fig. 14 The blue parts (spherical polygons) of the spheres contribute to ∂S. For arrangements with n spheres,
the spherical polygons can have k ≤ n− 1 vertices or arcs, respectively. The arcs are parts of great circles.

In other words, we reduce ∂S to its scaled contributions from spherical facets with the connecting cones or
triangles eliminated, and thus finally obtain a complete sphere. If, in the beginning, we had n spheres with equal
radius R, the area of the all spherical polygons adds up to 4πR2 (q.e.d).

Remark : We could also consider the reverse procedure, i.e., take a sphere, break its surface into spherical
polygons, re-scale and move them apart performing parallel shifts until spheres do not overlap anymore, and
construct the convex hull of these sphere arrangement.


