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Abstract A set of tri-axial ellipsoids, with given semi-axes, is to be packed into a rectangular
box; its widths, lengths and height are subject to lower and upper bounds. We want to minimize
the volume of this box and seek an overlap-free placement of the ellipsoids which can take any
orientation. We present closed non-convex NLP formulations for this ellipsoid packing problem
based on purely algebraic approaches to represent rotated and shifted ellipsoids. We consider the
elements of the rotation matrix as variables. Separating hyperplanes are constructed to ensure
that the ellipsoids do not overlap with each other. For up to 100 ellipsoids we compute feasible
points with the global solvers available in GAMS. Only for special cases of two ellipsoids we are
able to reach gaps smaller than 10−4.

Keywords Global optimization · non-convex nonlinear programming · packing problem ·
ellipsoid representation · non-overlap constraints · computational geometry

1 Introduction

Following up on the work by Kallrath (2009, [9]) and Kallrath & Rebennack (2014, [11]; hereafter
KR14) we want to pack a set of tri-axial ellipsoids with given semi-axes into one rectangular box
limited in size. The ellipsoids can be rotated and be placed freely within that box whose volume
should be minimized; from now on, we refer to this problem as the EPP to avoid the longer
expression the ellipsoid packing problem. Ensuring that the ellipsoids do not overlap together
with the free rotation of the ellipsoids make this packing problem very difficult. Minimizing the
volume of the rectangular box is equivalent to maximizing the packing density ρ.

As in KR14, curiosity partially motivated this work, but then we found also a variety of real
world applications, cf. Donev et al. (2004a, [5]), Man et al. (2005, [14]) or Uhler & Wright (2013,
[19]). Similarly, as in the 2D case for ellipses, ellipsoids can be used a) as an outer approximation
or cover, or b) as an inner approximation to approximate irregular or non-convex geometric
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bodies. From the ellipsoid configurations of a) and b) we can construct feasible points to the
original problem and derive bounds on the minimal volume of the rectangular box.

From the point of computational geometry, the problem is also very interesting. For congruent
objects, the packing density ρ in ellipsoid packing can exceed that of sphere packing which is
bounded by the Kepler conjecture with a value of ρ = π/

√
18 ≈ 0.74048. For congruent ellipsoids

we can expect at best densities of the order of 0.75 to 0.78. Densest-known packings of congruent
ellipsoids have been found by Donev (2004, [6]). Their family of new ellipsoid configurations
consists of crystal arrangements of spheroids with a wide range of aspect ratios (ratio of largest
to the smallest semi-axis), and with density ρ always exceeding that of the densest Bravais
lattice configurations ρ = 0.74048. A remarkable maximum density of ρ = 0.7707 is achieved for
maximal aspect ratios larger than

√
3, when each ellipsoid has 14 touching neighbors.

A similar problem, packing arbitrary ellipsoids into a master ellipsoid, has been treated by
Uhler & Wright (2013, [19]). They minimize the overlap between ellipsoids and use a bi-level
optimization formulation, with one algorithm for the general case and another simpler algorithm
when all ellipsoids are spheres. Other than this, ellipsoid packing is addressed in physics, where
simulation algorithms are used to attack this problem; cf. Lubachevsky & Stillinger (1990, [13])
or Donev et al. (2004, [6]).

Our approach starts from a purely algebraic representation of arbitrary tri-axial, rotated
ellipsoids to derive a closed NLP formulation. At first, we derive the extreme extensions of
shifted and rotated tri-axial ellipsoids. Second, we use the Kuhn-Tucker conditions to derive
expressions for the separating hyperplanes to ensure that ellipsoids do not overlap.

This paper contains two contributions. We develop

1. novel mathematical programming models, i.e., closed NLP formulations for the ellipsoid pack-
ing problems providing two different approaches to construct the hyperplanes and fitting the
ellipsoids into the box,

2. polylithic1 approaches to construct good and, hopefully, near optimal configurations for larger
set of ellipsoids for which the current nonlinear and global solvers do not find feasible points
in several hours.

In Sect. 2, we develop NLP models for packing ellipsoids into a rectangular box. We describe
polylithic approaches in Sect. 3.3 and present numerical experiments and results in Sect. 3. Sect.
4 concludes the paper.

2 Monolith: non-convex NLP models

We represent ellipsoids by their center coordinates and a rotation matrix to trace their orien-
tation. The two basic blocks of constraints to consider are related (1) to placing the ellipsoids
inside the box, and (2) to ensure that ellipsoids do not overlap.

What in KR14 has been said for ellipses in the 2D case, holds also for ellipsoids in the 3D
case. Ellipsoids, as they are convex, can be kept apart by separating hyperplanes. We utilize a
vector notation in bold symbols using the Euclidean norm scalar products saving the additional
dimension index d. Lower case symbols refer to variables, and upper case symbols represent input
or derived data. The only exceptions are the semi-axes ai, bi, and ci of the ellipsoids and the
model indices. We provide lower and upper bounds on variables as tight as possible to support
the global solvers.

We begin with deriving non-overlap and boundary constraints for ellipsoids in Sect. 2.1.

1 The term polylithic has been coined by Kallrath (2009, [8]; 2011, [10]) to refer to tailor-made modeling and
solution approaches to solve optimization problems exploiting several models, solve statements in an algebraic
modeling language such as GAMS, or algorithms.
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To increase computational efficiency, we add symmetry breaking constraints (Sect. 2.5), and
lower/upper bounding problems (Sect. 2.6).

2.1 Deriving the NLP model

The objective function minimizes the volume, v, of the rectangular box (prism)

min v, v = xR
1 x

R
2 x

R
3 , (2.1)

where xR
d represents the extension of box in dimension d; xR

1 denotes the length, xR
2 is the width,

and xR
3 the height of the box.

Equivalently to (2.1), we could minimize waste, i.e.,

min z, z = v −
∑

i∈I

Vi , (2.2)

where Vi denotes the volume of ellipsoid i; set I is the collection of ellipsoids to be packed.
The extensions xR

d of the box are bounded by S−
d and S+

d

S−
d ≤ xR

d ≤ S+
d , ∀d . (2.3)

The upper bound, S+
d , may represent a logistic or technical limitation; a lower bound, S−

d , is
given by the maximum of all the smallest ellipsoidal axes lengths (maximum of 2ci over all i).
Improvements S−

d and S+
d are derived in Sect. 2.6 from sphere packings.

2.1.1 Packing spheres

We begin with solving the sphere packing problem for two reasons: first, to compute valid lower
and upper bounds on the ellipsoid packing problem (cf. Sect. 2.6), and second, to use sphere
packing solutions in our polylithic approach (Sect. 3.3).

A necessary and sufficient condition for spheres i and j not to overlap is

∣

∣x0
i − x0

j

∣

∣

2

2
:=

∑3

d=1

(

x0
id − x0

jd

)2 ≥ (Ri +Rj)
2

, ∀{ij|i < j} , (2.4)

with radius Ri and the (decision variable) x0
id representing the center of sphere i in dimension d.

Constraints (2.4) are non-convex constraints, as the left hand sides are convex functions. Note
that for n spheres lead to m = n(n− 1)/2 inequalities of type (2.4).

Enclosing the spheres into the box is enforced by

x0
id ≥ Ri , ∀{id} and x0

id +Ri ≤ xR
d , ∀{id} . (2.5)

2.1.2 Packing ellipsoids

Each ellipsoid is characterized by its axes a, b, and c, defining its shape. The ellipsoids can be
positioned at the free “center” vector x0 (with components x0

d) with semi-axes a, b, and c. Each
ellipsoid can be rotated around the three coordinate axes by an angle θd. For θd = 0, the surface
of an ellipsoid is characterized by the equation

(x1 − x0
1)

2

a2
+

(x2 − x0
2)

2

b2
+

(x3 − x0
3)

2

c2
= 1 , (2.6)
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i.e., all points (x1, x2, x3) ∈ R
3 satisfying constraint (2.6) are on the surface of the ellipsoid. The

rotated ellipsoid is represented by the coordinate transformation




x′
1

x′
2

x′
3



 = R





x1 − x0
1

x2 − x0
2

x3 − x0
3



 , R := R3R2R1

with

R1 : =





1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1



 , R2 :=





cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2



 ,

R3 : =





cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1



 . (2.7)

Rd, d ∈ D, describes a rotation around the x1-axis, x2-axis and x3-axis by the Eulerian angles
θd displayed in Fig. 1; cf. Waldron & Schmiedeler (2008, [20]).

Fig. 1 Ellipsoid rotation: θ1 represents a rotation of (x2 and x3) axis around the x1- axis, θ2 represents a rotation
of (x1 and x3) axis around the x2- axis and θ3 represents a rotation of (x1 and x2) axis around the x3- axis.

As some global solver do not support trigonometric terms, we avoid them by using the
following transformation leading to an equivalent non-convex, quadratic model. We substitute
the decision variable θd by the two decision variables

vd := cos θd and wd := sin θd , d ∈ D .
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subject to the bounds −1 ≤ vd ≤ +1 and −1 ≤ wd ≤ +1 and the Pythagorean theorem

v2d + w2
d = 1 , d ∈ D . (2.8)

For ellipsoids, due to their symmetry, it suffices to consider rotation angles, θd, in the range of
0◦ to 180◦, i.e., 0 ≤ wd ≤ 1. With this nomenclature, we obtain the rotation matrices

R1 :=





1 0 0
0 v1 −w1

0 w1 v1



 , R2 :=





v2 0 w2

0 1 0
−w2 0 v2



 , R3 :=





v3 −w3 0
w3 v3 0
0 0 1



 ,

and thus

R = R3R2R1 =





v2v3 −v1w3 + w1v3w2 w1w3 + v1v3w2

v2w3 v1v3 + w1w2w3 −w1v3 + v1w2w3

−w2 v2w1 v1v2



 (2.9)

Let us now represent the surface of an arbitrarily oriented ellipsoid, centered at x0 ∈ R
3 by the

quadratic form
(x− x0)⊤A(x− x0) = 1 ,x ∈ R

3 , (2.10)

where A is a positive definite matrix.
The eigenvectors of A are the principal directions of the ellipsoid axes in 3-D and the eigen-

values of A are the reciprocal squares of the lengths of semi-axes a−2, b−2 and c−2. An invertible
linear transformation applied to a sphere produces an ellipsoid, which can be transformed to the
standard form (2.10) by a suitable rotation R. For an ellipsoid with semi-axes a, b and c rotated
by R as defined in (2.9), we obtain

A := RDR
⊤ = R3R2R1DR

⊤
1 R

⊤
2 R

⊤
3 , D :=





λ1 0 0
0 λ2 0
0 0 λ3



 =





a 0 0
0 b 0
0 0 c





−2

,

and the matrices Rd as defined in (2.7). The transposed matrices R⊤
d are

R
⊤
1 :=





1 0 0
0 v1 w1

0 −w1 v1



 , R
⊤
2 :=





v2 0 −w2

0 1 0
w2 0 v2



 , R
⊤
3 :=





v3 w3 0
−w3 v3 0
0 0 1



 .

Thus we obtain for A polynomial expressions up to degree six

A11 = −2v1w1v3w2w3λ2 + 2v1w1v3w2w3λ3

+v22v
2
3λ1 + v21w

2
3λ2 + w2

1w
2
3λ3 + v21v

2
3w

2
2λ3 + w2

1v
2
3w

2
2λ2

A12 = −v21v3w3λ2 + v22v3w3λ1 − w2
1v3w3λ3 + v1w1v

2
3w2λ2 − v1w1w2w

2
3λ2

−v1w1v
2
3w2λ3 + v1w1w2w

2
3λ3 + v21v3w

2
2w3λ3 + w2

1v3w
2
2w3λ2

A13 = −v2v3w2λ1 − v1v2w1w3λ2 + v1v2w1w3λ3 + v2w
2
1v3w2λ2 + v21v2v3w2λ3

A22 = 2v1w1v3w2w3λ2 − 2v1w1v3w2w3λ3 + v21v
2
3λ2 + v22w

2
3λ1 + w2

1v
2
3λ3

+v21w
2
2w

2
3λ3 + w2

1w
2
2w

2
3λ2

A23 = −v2w2w3λ1 + v1v2w1v3λ2 − v1v2w1v3λ3 + v2w
2
1w2w3λ2 + v21v2w2w3λ3

A33 = w2
2λ1 + v21v

2
2λ3 + v22w

2
1λ2 .

Due to the symmetry of A, i.e., A⊤ = A, we can add

A21 = A12 , A31 = A13 , A32 = A23 . (2.11)
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Given all the multi-linear terms, we suggest a different route and approach: Take

R =





R11 R12 R13

R21 R22 R23

R31 R32 R33





as the fundamental variables instead of the 3 Eulerian angles; we drop the index i referring to
a specific ellipsoid. R is an rotation matrix, if and only if R−1 =R

⊤ and detR= 1. This we need
to guarantee by 6+1 equations: the orthonormality established by the scalar products of row m
(rm) and column n (rn) of R

r⊤mrn = δmn , ∀{mn|m ≥ n} , (2.12)

and to exclude reflections by

1 = detR = R11R22R33 −R11R23R32 −R12R21R33 (2.13)

+R12R31R23 +R21R13R32 −R13R22R31 .

We could also look at R as a unitary matrix, the most general form of rotation in a vector space
over complex numbers of any dimensions, and widely used in Quantum Mechanics; cf. Dirac
(1974, [4]). In a metric space the unitary transformations preserve the scalar product (hence the
length of all vectors and their angles) and the parity (number of inverted base vectors cannot be
odd) which is the essence of rotation, cf. Halmos (1974, [7]).

Fig. 2 Ellipsoid rotation: θi represents a rotation around the nR
i -axis. The axes xa, xb and xc are parallel to the

semi-axes of the ellipsoids, while x1, x2 and x3 are the coordinate axes of the un-rotated coordinate system.

We also implemented a third approach to deal with R, which starts from one rotation axis,
nR
i , and one rotation angle θi for each ellipsoid as displayed in Fig. 2, and compute R as a

function of the unit vector nR
i and θi according to

Ri = Bi





cos θi − sin θi 0
sin θi cos θi 0
0 0 1



B
T
i ,
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where the third column, Bi3, of Bi is n
R
i . The first and the second column, Bi1 and Bi2, of Bi need

to be computed in such a way that they three columns of Bi form a right-handed orthonormal
system, i.e., BiB

T
i = 1l. This is established by the cross product

Bi3 = Bi1 × Bi2 (2.14)

and the determinant condition

detBi = 1 , ∀{i} . (2.15)

The nine elements of Bi are treated as variables.
Thus, in total, we have three approaches how to treat R (we neglect the index i for each

ellipsoid):

– R1: The nine elements of R are declared as variables subject to detR = 1 and the orthonor-
mality condition BiB

T
i = 1l. This approach works best to find feasible solutions quickly.

– R2: The nine elements of R are declared as variables subject to expression which relate them
to the Eulerian angles. The problem is that the Eulerian angles are not unique.

– R3: The nine elements of R are declared as variables subject to (2.14) and (2.15). This
approach does not suffer from uniqueness problems related to the Eulerian angles, but the
increased number of variables is not helpful.

Note that the approaches R2 and R3 are just special cases of R1 where the coefficients are
expressed as functions of angles, be it the Eulerian angles or just one angle around one axis.
Independent of which approach we use to treat R, we take

A = RDR
⊤

which leads to

A =





R11 R12 R13

R21 R22 R23

R31 R32 R33









λ1 0 0
0 λ2 0
0 0 λ3









R11 R21 R31

R12 R22 R32

R13 R23 R33





which results in

A11 = R2
11λ1 +R2

12λ2 +R2
13λ3 (2.16)

= −2v1w1v3w2w3λ2 + 2v1w1v3w2w3λ3

+v22v
2
3λ1 + v21w

2
3λ2 + w2

1w
2
3λ3 + v21v

2
3w

2
2λ3 + w2

1v
2
3w

2
2λ2

A12 = R11R21λ1 +R12R22λ2 +R13R23λ3

= −v21v3w3λ2 + v22v3w3λ1 − w2
1v3w3λ3 + v1w1v

2
3w2λ2 − v1w1w2w

2
3λ2

−v1w1v
2
3w2λ3 + v1w1w2w

2
3λ3 + v21v3w

2
2w3λ3 + w2

1v3w
2
2w3λ2

A13 = R11R31λ1 +R12R32λ2 +R13R33λ3

= −v2v3w2λ1 − v1v2w1w3λ2 + v1v2w1w3λ3 + v2w
2
1v3w2λ2 + v21v2v3w2λ3

A22 = R2
21λ1 +R2

22λ2 +R2
23λ3

= 2v1w1v3w2w3λ2 − 2v1w1v3w2w3λ3 + v21v
2
3λ2 + v22w

2
3λ1 + w2

1v
2
3λ3

+v21w
2
2w

2
3λ3 + w2

1w
2
2w

2
3λ2

A23 = R21R31λ1 +R22R32λ2 +R23R33λ3

= −v2w2w3λ1 + v1v2w1v3λ2 − v1v2w1v3λ3 + v2w
2
1w2w3λ2 + v21v2w2w3λ3

A33 = R2
31λ1 +R2

32λ2 +R2
33λ3 = w2

2λ1 + v21v
2
2λ3 + v22w

2
1λ2 .
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or, in short

Amn =
∑

d∈D

RmdRndλd , ∀{(mn)|m ∈ D, n ∈ D} ,

and thus, again the symmetry

A
⊤ = A .

To support the global solver with bounds on the variables, it is also useful to note that

|Amn| ≤
∑

d∈D

|RmdRndλd| ≤
∑

d∈D

λd , ∀{(mn)|m ∈ D, n ∈ D} . (2.17)

All bilinear terms RjkRmn are already used in (2.12). Therefore, we introduce auxiliary variables
ujkmn exploiting that ujkmn = umnjk, i.e., we consider only those tuples with j ≤ m and

k ≤ n, which leads to 3 + 34−3
2 = 42 variables for each ellipsoid. Note that A is linear in ujkmn.

Unfortunately, the computation of detR does not benefit from ujkmn as those terms do not show
up before.

Knowing Ai and the origin x0
i of ellipsoid i, we plot the ellipsoids as described in Appendix

B.4.

2.2 Exploiting A to fit overlap-free ellipsoids into the box

We start with explicit approaches, exploiting A to fit the ellipsoids into the box and to ensure
that they do not overlap. Later, we develop an alternative approach not resorting to A.

2.2.1 Minimum and maximum extensions of ellipsoids

To fit the ellipsoids inside the enclosing box, we proceed exactly as in KR14 and require that

0 ≤ x−
id ≤ x+

id ≤ xR
d , ∀{id} , (2.18)

where the extreme extensions, x−
id and x+

id, of ellipsoid i in dimension d with center x0
id follow

from the optimization problems

x−
id = min c⊤x = min xid , ∀d and

x+
id = max c⊤x = max xid , ∀d ,

respectively, subject to the ellipsoid condition (2.10). As shown in Appendix B.2, the minimal
and maximal extensions of the ellipsoid in the first dimension, (d = 1), are given by

x−
1 = min c⊤(x+ x0) = x0

1 − abc
√

A22A33 −A23A32 (2.19)

and x+
1 = max c⊤(x+ x0) = x0

1 + abc
√

A22A33 −A23A32 , (2.20)

respectively. Note that these formulae are similar to (18) and (19) KR14 obtained for the maximal
extensions of ellipsoids (2D case). If the ellipsoids were spheres (a = b = c = r), for θ1 = θ2 =
θ3 = 0, we obtain x+

1 = x0
1 + abc

√
b−2c−2 − 0 = x0

1 + r.
Similarly, for d = 2 we obtain in Appendix B.2

x−
2 = x0

2 − abc
√

A11A33 −A13A31 (2.21)

x+
2 = x0

2 + abc
√

A11A33 −A13A31 . (2.22)
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Finally, the minimum and maximum extensions of ellipsoid i in the third dimension, (d = 3), are
given by

x−
3 = x0

3 − abc
√

A11A22 −A12A21 (2.23)

x+
3 = x0

3 + abc
√

A11A22 −A12A21 . (2.24)

These constraints are complemented by

x0
id ≥ ci , ∀{id} and x0

id + ci ≤ xR
d , ∀{id} . (2.25)

2.2.2 Non-overlap conditions for ellipsoids

One could separate ellipsoids based on the Eigenvalue approach by Choi et al. (2009,[3]), which
exploits the roots of

f(λ) = det(λAi − Aj)

and the following theorems: Ellipsoids i and j are detached if and only if f(λ) = 0 has two
different negative roots. Ellipsoids i and j touch each other in one point if and only if f(λ) = 0
has a negative double root. We do not follow this approach, as it seems to us to be too complicated
to implement the eigenvalue computation and the two-different-root condition in an NLP model.

Another techniques to deal with non-overlap conditions in cutting or packing problems is
the phi-function approach; cf Chernov et al. (2012,[2] for 2D cutting and packing problems,
Stoyan &Chugay (2008, [17]) for solving 3D packing problems, or Romanova et al. (2011, [16])
for covering problems. However, in this approach, only local optimality can be proven and it is
not clear how this approach could be translated into a declarative NLP model.

Instead of these two approach mentioned above, we use the following explicit separating
hyperplanes approach illustrated in Fig. 3. The column vector c in (B.72), (B.73) or, (B.76)
will be selected as the normal vector nH

ij of the separating plane Hij . Then c⊤x measures the
maximal extension of the ellipsoid in the direction to the separating plane. Therefore, for the
moment, we consider c as a general vector. Although, we cannot solve the resulting Karush-
Kuhn-Tucker (KKT) conditions analytically, we safe ourselves the trouble of going through all
the geometry. Our idea is: Let dCi

ij denote the distance of the origin x0
i of ellipsoid i from Hij

defined by nH
ijx = dHij , i.e., we assume that Hij is given. In this context, we also assume that x0

i

is known. Note that as we assume a ≥ b ≥ c, the smallest semi-axis, c, of ellipsoid i provides a
lower bound on dCi

ij .

We want to minimize the distance, d0iij , of ellipsoid i to Hij , i.e.,

d0iij = min
{

c⊤(x+ x0
i )− dHij

}

= nH
ij(x

i
ij + x0

i )− dHij = nH
ijx

i
ij + nH

ijx
0
i − dHij = nH

ijx
i
ij + dCi

ij (2.26)

with c⊤ = nH
ij subject to (B.74) and

dCi
ij = nH

ijx
0
i − dHij . (2.27)

Note that distance d0iij can be positive or negative, or zero if the ellipsoid touches Hij . If ellipsoid

i is located on that side or half-space of Hij into which the normal vector nH
ij points, we have

d0iij ≥ 0. Therefore, we label the ellipsoids consistently with the request

dCi
ij > d0iij ≥ 0 ∧ dCj

ij < d0jij ≤ 0 . (2.28)
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Fig. 3 Ellipsoids and the separating plane Hij .

The chain (2.28) of inequalities is useful to separate the points of minimal and maximal distance
of ellipsoid to Hij .

Let us now compute the minimal distances by exploiting the Lagrangian function

L(x, λ̄) = c⊤(x+ x0
i )− dHij + λ̄

i
ij

(

x⊤
Aix− 1

)

.

The first-order KKT conditions are derived as

c+ 2λ̄
i
ijA

⊤
i x = 0 (2.29)

together with the point-on-ellipsoid condition (2.10)

x⊤
Aix = 1 .

Let us denote the extreme points satisfying (2.29) and (2.10) by xi or xi
ij , respectively. Similarly,

we need to establish the KKT conditions for ellipsoid j leading to λ̄
i
ij , x

j, and x
j
ij .

To solve the trilinear equations (2.29) and (2.10) and to reduce them to bilinear terms, we

introduce the auxiliary vector yj
ij

yi
ij = Aix

i
ij , (2.30)

and insert it in x⊤
Aix = 1

xi⊤
ij y

i
ij = 1 ,

and in (2.29)

c+ 2λ̄
i
ijy

i
ij = nH

ij + 2λ̄
i
ijy

i
ij = 0 , (2.31)

where we have exploited that A is symmetric. Thus, the problem is reduced to three bilinear
equations. Alternatively, if we were interested in fewer constraints, we could proceed as follows.
We left-multiply (2.29) by x⊤ 6= 0, (this multiplication does not cause problems, because 0

cannot be an extreme point of the problem at hand) and exploit (B.74) to obtain x⊤c+2λ̄ = 0,
which enables us to eliminate the Lagrangian multiplier λ̄ from (2.29) yielding

c− (x⊤c)A⊤
i x = nH

ij − (x⊤nH
ij)A

⊤
i x = 0 . (2.32)

or, to be precise
nH
ij − (xi⊤

ij n
H
ij)A

⊤
i x

i
ij = 0 . (2.33)
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As there exist two extreme points x̃i
ij with a maximal and a minimal distance to the separating

plane Hij , we need to separate them, or to work with a sufficient condition of our minimization
problem. Fortunately, the minimal extreme points are selected by applying (2.28). The maximal
distance points is further away from Hij than the center of the ellipsoid, which in turn is further
away than the minimal point. Thus, we need just to add the computation of the center-of-ellipsoid
distance (2.27) and the distance of the ellipsoid according to (2.26).

Let n denote the number of ellipsoids, D = 3 the number of dimensions, and m = n(n−1)/2,
then we obtain Table 1 for the number of constraints and variables.

Table 1 Number, Nvar, of variables and number, Ncon, constraints for non-overlap conditions for ellipsoids

Equations variables Nvar Ncon

1) minimum distance of ellipsoid i to Hij , (2.26) d0iij , d
Ci
ij , n

H
ij D × (m+ 2× n) D × n

2) center-of-ellipsoid distance to Hij , (2.27) dHij , (n
H
ij , d

Ci
ij ) D ×m D × n

3) minimal & maximal distance of ellipsoid i to Hij , (2.28) (d0iij , d
Ci
ij , d

0j
ij , d

Cj
ij ) - D ×m

4) auxiliary vector yiij for ellipsoid i, (2.30) yiij D × n D × n

5) bilinear form of (2.29) for ellipsoid i, (2.31) (nH
ij , y

i
ij) - D × n

2.3 Half-space approach

As the number of the variables and constraints increases quadratically in n, we construct an
additional, rather implicit approach to ensure that two ellipsoids i and j, i < j, do not overlap.
If we describe each ellipsoid with center x0 as an affine transformation of the unit sphere

E :=
{

x0 + Lu | ‖u‖ 2 ≤ 1
}

, L =RΛ , Λ := diag (a, b, c) (2.34)

with a 3 x 3 matrix L and a vector u ∈ IR, non overlap is ensured by

nH
ij

(

x0
j − x0

i

)

≥
∥

∥Lin
H
ij

∥

∥

2
+

∥

∥Ljn
H
ij

∥

∥

2
. (2.35)

Proof: The separating hyperplane

Hij : n
H
ijx = dHij

with normal vector, nH
ij 6= 0, and distance, dHij , to the origin of the coordinate system defines a

half-space

H+
ij :=

{

x|nH
ijx ≤ dHij

}

.

For simplicity, let us start with a unit sphere centered at the origin of the coordinate system and
derive a condition for Hij such that the unit sphere

S := {x |‖x‖2 ≤ 1}

is fully contained in half-space H+
ij . The half-space condition nH

ijx ≤ dHij is equivalent to

dHij ≥ max
x∈S

nH
ijx .
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Geometrically, the maximal value of nH
ijx is obtained when nH

ij and x are parallel. Formally, we
could compute the maximum by applying the Cauchy-Schwartz inequality, i.e.,

nH
ijx ≤

∥

∥nH
ij

∥

∥

2
‖x‖2 ≤

∥

∥nH
ij

∥

∥

2
.

Therefore, the condition is

dHij ≥
∥

∥nH
ij

∥

∥

2
.

If the plane’s normal vector is normalized to unity,
∥

∥nH
ij

∥

∥

2
= 1, we get

dHij ≥ 1 ,

i.e., independent on the orientation of the plane Hij , it just needs to have a distance of at least
one to have S in the half-space specified.

If we now consider an ellipsoid centered at an arbitrary origin x0 using its representation

E :=
{

x0 + Lu | ‖u‖ 2 ≤ 1
}

, L =RΛ

with a combined rotation-shape matrix L, we can derive a similar condition for the parameters
(nH

ij , d
H
ij) describing hyperplaneHij so that E is fully contained inH+

ij . The containment condition

H+
ij ⊇ E now becomes

dHij ≥ max
u∈S

nH
ij

(

x0 + Lu
)

= nH
ijx

0 +max
u∈S

Lu = nH
ijx

0 +
∥

∥LnH
ij

∥

∥

2
,

where we have used the same argument and the Cauchy-Schwartz inequality as for the unit
sphere case. If we want to confine E to the other half-space H−

ij

H−
ij :=

{

x|nH
ijx ≥ dHij

}

of hyperplane Hij , we just replace (nH
ij , d

H
ij) by −(nH

ij , d
H
ij), and obtain

dHij ≤ nH
ijx

0 −
∥

∥L
TnH

ij

∥

∥

2
.

If we now consider two ellipsoids Ei and Ej , we conclude that hyperplane Hij separates Ei and
Ej , i.e., keeps them on different sides, if

nH
ijx

0
i +

∥

∥L
T
i n

H
ij

∥

∥

2
≤ dHij ≤ nH

ijx
0
j −

∥

∥L
T
j n

H
ij

∥

∥

2
,

which is equivalent to

nH
ij

(

x0
j − x0

i

)

≥
∥

∥Lin
H
ij

∥

∥

2
+
∥

∥Ljn
H
ij

∥

∥

2
. (2.36)

Note that using (2.35) non-overlap is ensured by only m inequalities involving two square root
functions and quadrilinear terms, and additionally m equalities to ensure that the normal vector
nH
ij is a unit vector, i.e.,

∥

∥nH
ij

∥

∥

2
= 1 ⇔

∑

d

(

nH
ijd

)2
= 1 , ∀{ij|i < j} . (2.37)

The normalization (2.37) is not necessary as such, but somehow we need to ensure that nH
ij 6= 0,

as (2.36) would be trivially fulfilled by nH
ij = 0. Let us give some interpretation of (2.36) by

considering two ellipsoids with Ri = ai = bi = ci and Rj = aj = bj = cj , i.e., two spheres. For
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spheres, we have nH
ij = ±

(

x0
j − x0

i

)

. In the special case that both spheres touch each other, we
obtain

∥

∥x0
j − x0

i

∥

∥

2

2
=

(

x0
j − x0

i

)2

=
∥

∥Ri

(

x0
j − x0

i

)∥

∥

2
+
∥

∥Rj

(

x0
j − x0

i

)∥

∥

2
= (Ri +Rj)

∥

∥x0
j − x0

i

∥

∥

2
,

and thus,

∥

∥x0
j − x0

i

∥

∥

2
= Ri +Rj ,

i.e., the distance between the centers of the ellipsoids is the sum of the radii as in (2.4). In
general, the left-hand side of (2.36), is the distance of the centers of both centers projected onto
nH
ij , while the right-hand side is the sum of the distances from each center to the point where

each ellipsoid touches the hyperplane.
We can also use the half-space approach to fit the ellipsoids into the box. For d = 1 we have

dR1 = 0 ≤ nR
1 x

0 −
∥

∥LnR
1

∥

∥

2
,nR

1 := (+1, 0, 0) (2.38)

for placing the ellipsoid to the right of the left plane or wall, resp., of the box, and

dL1 = xR
1 ≥ −nL

1x
0 +

∥

∥LnL
1

∥

∥

2
,nL

1 := (−1, 0, 0) . (2.39)

for placing the ellipsoid to the left of the right plane of the box. Similarly, for d = 2 and d = 3
we derive

dR2 = 0 ≤ nR
2 x

0 −
∥

∥LnR
2

∥

∥

2
,nR

2 := (0,+1, 0) (2.40)

dL2 = xR
2 ≥ −nL

2x
0 +

∥

∥LnL
2

∥

∥

2
,nL

2 := (0,−1, 0) , (2.41)

and, for the upper side of the rectangular box, as displayed in Fig. 4, we obtain

dR3 = 0 ≤ nR
3 x

0 −
∥

∥LnR
3

∥

∥

2
,nR

3 := (0, 0,+1) (2.42)

dL3 = xR
3 ≥ −nL

3x
0 +

∥

∥LnL
3

∥

∥

2
,nL

3 := (0, 0,−1) . (2.43)

If we use the half-space approach for both, separating ellipsoids and fitting ellipsoids into the box,
we do not resort to matrix A at all, except for plotting the ellipsoids. This results in significantly
fewer variables and constraints.

2.4 Comments on the structure of the problem

Before we enhance the model formulation by symmetry breaking constraints (Sect. 2.5), let us
summarize the models and make some structural comments: All model consists of the trilinear
objective function (2.1) and the linear constraints (2.25). Depending on which formulation we
select to represent R

1. R1: [(2.12) and (2.13)],
2. R2: [(2.9), (2.8), and the bounds −1 ≤ vd ≤ +1 and −1 ≤ wd ≤ +1],
3. R3: [(2.14) and (2.15)],

and which formulation we select to separate ellipsoids and ensure non-overlap,

1. S1: separating hyperplanes using the KKT conditions with bilinear terms only [(2.11) and
(2.16), (2.19)-(2.24), (2.30), (2.31)],
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Fig. 4 Ellipsoid placed under the upper side, or plane, respectively, of the rectangular box for d = 3 and
nL
3 := (0, 0,−1). This illustrates formula (2.43).

2. S2: separating hyperplanes using the KKT conditions with bilinear and quadrilinear terms
[(2.11) and (2.16), (2.19)-(2.24), (2.30), (2.31)], or

3. S3: the half-space approach [(2.34), (2.35), and (2.38)-(2.43)]

the model involves bilinear, a few trilinear or a significant number of quadrilinear terms caused
by (2.33). Cafieri et al. (2009, [1]) show how to deal with quadrilinear terms. Alternatively, we
could just use the trilinear terms caused by (B.74), 1 equation with 27 trilinear terms for each i,
and (2.29), 3 equations with 3 trilinear terms for each ellipsoid and separation plane.

Considering all combinations of R1 to R3, and S1 to S3, we obtain a total of 9 different
formulations for the ellipsoid packing problem are derived. In Subsection 2.7 we summarize the
concise and best model formulation, EPP, which is basically the combination R1 and S3. Only
in a very few cases, R2 coupled with S1 is superior to EPP. From the underlying structure,
one might expect that S1 and S2 should have a positive effect on improving the lower bounds.
Unfortunately, this is only the case for a few special cases with two ellipsoids.

The EPP is suitable to be solved by general purpose algorithms and software packages, but
it is not obvious, which formulation is more suitable to a global solver at hand.

2.5 Symmetry breaking

Already in the 2D case of cutting ellipses, see Sect. 2.3 in KR14, symmetry was discussed as a
problem. In the 3D case of ellipsoid, symmetry is even more a problem due to the third semi-
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major axis of ellipsoids. Additionally, the box has a third dimension and, therefore, more planes
of symmetry at which we can reflect the solution. Although, we cannot completely reduces all
symmetries, it is worthwhile to break at least a few.

A first symmetry to break is the size of the rectangular box. We enforce that length is greater
or equal width, and width is greater or equal height, i.e.,

xR
1 ≤ xR

2 , xR
2 ≤ xR

3 . (2.44)

Given any feasible ellipsoid configuration in an rectangular box, we can construct alternative
configurations fitting into the same box by reflections at axes in the box in the three coordinate
axes. We destroy this symmetry partly, by enforcing that the center of one of the ellipsoids,
for instance, the one with the largest volume, is positioned in the first octant of the box. If ι
is the index of that ellipsoid. Then, the inequalities x0

ιd ≤ 1
2x

R
d for all d break this symmetry.

Unfortunately, many symmetries remain for the other ellipsoids.

If identical ellipsoids should be packed, we destroy the resulting symmetry by sorting them
from left to right. We collect all pairs (i, j) of identical ellipsoids in the set Ico (we assume
ordered pairs i < j) and apply the ordering inequalities

x0
i1 ≤ x0

j1 , ∀(i, j) ∈ Ico . (2.45)

While so far, we have only considered the symmetry regarding the center of the ellipsoids, there
is, unfortunately, rotational symmetry. We consider rotation angles in the interval [0◦, 180◦].
Independent on whether we use the Eulerian angles, or one axis and one angle to represent
rotated ellipsoids, we are facing the problem that a rotation of 180◦ degrees reproduces the
original unrotated ellipsoid in shape – and thus the same size of the box.

2.6 Deriving lower and upper bounds via sphere packings and inner boxes.

To derive a lower and upper bound on the minimal volume of the box by V − (V +) via sphere
packings, we proceed as in the 2D case for ellipses (Sect. 2.5 in KR14) and denote the lower and
upper bound obtained by the inner sphere (outer sphere) packing by V ci,− and V ci,+.

We can now tighten the bounds on the length, L, width, W , and height, H, of the box by solv-
ing the inner and outer sphere problems. It is L ·W ·H ≤ V ci,+ and LW ≤ V ci,+/H ≤ V ci,+/S−

3 .
The minimum width, S−

3 , of the box, could be the maximum of all axis ci, providing an upper
bound on the product of length and height. Similarly, by using V ci,−, we get a lower bound on
LW .

For a given volume v, we can derive a corresponding upper bound of the height of the ellipsoid.
This follows from the symmetry breaking constraint (2.44) and results in

xR
3 ≤ 3

√
v . (2.46)

Inner rectangular boxes can be computed by maximizing the volume of that box subject to
contained in the ellipsoid. In Appendix B.3 we show that box has only half the volume of the
ellipsoid. Thus, for ellipsoids with a ≫ b > c it might be better to work with an outer box of size
(2a, 2b, 2c). This will not give a lower bound but a denser packing, if we find a way to pack such
small boxes.
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2.7 The complete and concise model formulation

Based on numerical test runs during the test phase, many of them summarized in Section 3, we
obtain the following complete and concise model formulation EPP, which, in its core, is based
on the constraints blocks R1 and S3 described in Subsection 2.4.

The minimum volume, trilinear objective function

z = v = xR
1 x

R
2 x

R
3 . (2.47)

The determinant condition

1 = detR = R11R22R33 −R11R23R32 −R12R21R33 (2.48)

+R12R31R23 +R21R13R32 −R13R22R31 .

on the free rotation matrix R involving 6 trilinear terms for each ellipsoid i.
The orthonormality conditions established by six scalar products of row m (rm) and column

n (rn) of R
r⊤mrn = δmn , ∀{mn|m ≥ n} ; (2.49)

again, for each ellipsoid i.
Fit the ellipsoids into the rectangular box (upper limit)

x0
id ≥ ci , ∀{id} and x0

id + ci ≤ xR
d , ∀{id} . (2.50)

Fit the ellipsoids into the box. For d = 1 we have for each ellipsoid

dR1 = 0 ≤ nR
1 x

0 −
∥

∥LnR
1

∥

∥

2
,nR

1 := (+1, 0, 0) (2.51)

for placing the ellipsoid to the right of the left plane or wall, resp., of the box, and

dL1 = xR
1 ≥ −nL

1x
0 +

∥

∥LnL
1

∥

∥

2
,nL

1 := (−1, 0, 0) . (2.52)

for placing the ellipsoid to the left of the right plane of the box. Similarly, for d = 2 and d = 3
we derive for each ellipsoid

dR2 = 0 ≤ nR
2 x

0 −
∥

∥LnR
2

∥

∥

2
,nR

2 := (0,+1, 0) (2.53)

dL2 = xR
2 ≥ −nL

2x
0 +

∥

∥LnL
2

∥

∥

2
,nL

2 := (0,−1, 0) , (2.54)

and
dR3 = 0 ≤ nR

3 x
0 −

∥

∥LnR
3

∥

∥

2
,nR

3 := (0, 0,+1) (2.55)

dL3 = xR
3 ≥ −nL

3x
0 +

∥

∥LnL
3

∥

∥

2
,nL

3 := (0, 0,−1) . (2.56)

The difference of the centers of ellipsoid i and j in axis direction d

dcijd = x0
id − x0

jd , ∀{ijd|i > j} . (2.57)

Affine transformation of the unit sphere

L =RΛ , Λ := diag (a, b, c) , Limn = RimnΛinn , ∀{imn} . (2.58)

Non-overlap of ellipsoids is ensured by

nH
ij

(

x0
j − x0

i

)

≥
∥

∥Lin
H
ij

∥

∥

2
+
∥

∥Ljn
H
ij

∥

∥

2
,
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which in components reads

∑

d

nH
ijdd

c
ijd ≥

√

∑

d

∑

m

(

LimdnH
ijm

)2
+

√

∑

d

∑

m

(

LjmdnH
ijm

)2
, ∀{ij|i > j} . (2.59)

The upper limit on the smallest dimension of the rectangular box

xR
3 ≤ 3

√
v . (2.60)

A necessary condition for ellipsoid i and j not to overlap and useful cut improving the lower
bound on volume is the inner sphere approximation exploiting the smallest semi-axes

∣

∣x0
i − x0

j

∣

∣

2

2
:=

∑3

d=1

(

x0
id − x0

jd

)2 ≥ (ci + cj)
2

, ∀{ij|i < j} . (2.61)

Normalization of the normal vector nH
ij to a unit vector, i.e.,

∥

∥nH
ij

∥

∥

2
= 1 ⇔

∑

d

(

nH
ijd

)2
= 1 , ∀{ij|i < j} . (2.62)

Symmetry breaking : The length of the box is greater or equal width, and width is greater or
equal height, i.e.,

xR
1 ≤ xR

2 , xR
2 ≤ xR

3 . (2.63)

A selected ellipsoid ι is located in the first octant of the rectangular box

x0
ιd ≤ 1

2
xR
d , ∀d . (2.64)

Table 2 shows the number of variables and constraints according to each equation.

Table 2 Summary of all related equations, Number, Nvar, of variables and number, Ncon, constraints

Equations variables Nvar Ncon

1) objective function z=v, (2.47) v, xR
1 , xR

2 , xR
3 1+3 -

2) det R = 1 , (2.48) Rij 9× n 1× n

3) orthonormality conditions, (2.49) (Rij) - 6× n

4) rectangular box upper limit, (2.50) x0
id

3× n 2× 3× n

5) planes of the box, (2.51) to (2.56) (x0
id
, Limn) - 6× n

6) difference of the centers of ellipsoid, (2.57) (dC
ijd

, x0
id
) 3×m 3×m

7) Affine transformation, (2.58) Limn, (Rij) 3× 3× n 3× 3× n

8) Non-overlap of ellipsoids , (2.59) nH
ijd

, (Limn, d
C
ijd

) 3×m m

9) upper limit on xR
3 , (2.60) (v, xR

3 ) - 1

10) condition for ellipsoid i and j not to overlap, (2.61) (x0
id
) - m

11) Normalization of nH
ij , (2.62) (nH

ijd
) - m

12) Symmetry breaking, (2.63) (xR
1 , xR

2 , xR
3 ) - 2

13) ellipsoid in the first octant of the box, (2.64) (xR
1 , xR

2 , xR
3 , x0

id
) - 3

This model, for n ellipsoids, D = 3 and m = n(n− 1)/2 has a total of

1 + 3 + 9n+ 3n+ 3m+ 9n+ 3m = 4 + 21n+ 6m (2.65)
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variables and

1n+ 6n+ 2× 3n+ 6n+ 3m+ 9n+m+ 1 +m+m+ 2 + 3 = 6 + 28n+ 6m (2.66)

constraints.

3 Numerical experiments

Using some of the global solvers available in GAMS, i.e., Antigone [15], Baron [18], and LindoGlobal
[12], and the model formulation EPP summarized in Subsection 2.7, we perform the following
numerical experiments:

1. Packing one ellipsoid – gap closed, i.e., |zub − zlb| ≤ 10−4

2. Treating Spheres as ellipsoids (2 & 3 ellipsoids) – gap closed
3. One ellipsoid plus one ellipsoid close to a sphere – gap closed for some experiments
4. Monolithic experiments with 2 to 50 ellipsoids.
5. Monolithic experiments with 6 to 50 congruent ellipsoids
6. Polylithic experiments with seven to 7 to 50 arbitrary ellipsoids.

All test cases used for the computations are listed in Table 3. We used the following computers
for the numerical experiments.

Platform 1: Dual core machine with CPUs @ 2.5 GHz (Intel booth technology) 48GB RAM
and 250 GB HDD running Windows 7.

Platform 2: Dual-six core machine with CPUs @ 3.3 GHz, 48GB RAM and 1TB HDD running
Win2008 Server.

All computations utilize only a single core of the machines specified above.

3.1 Proof-of-Concept: Treating spheres as ellipsoids

We use the ellipsoid packing formulation (EPP) to show the correctness of the approach by solving
two sphere packing instances, S1 and S2, with two and three spheres and radii Ri specified in
Table 4:

The spherical problem is solved with a relative gap smaller than 10−8 in 2 seconds using one
of the solvers above.
In the first two columns of Table 5, we refer to the problem instance; v∗ is the globally minimal
volume of the box as calculated via a sphere packing formulation, cf. Sect. 2.1.1. In the other
columns, we display the lower bound, V −, the upper bound, V +, on the minimal volume of the
rectangular box, and the computational time for (EPP) with three global solvers embedded in
GAMS. We observe that (1) the results computed with EPP are consistent with the global optima
computed with the sphere packing formulation, (2) global optimality can only be proven for S1
within the time limit, and (2) the global solvers perform very differently in terms of lower bounds
and the quality of computed feasible solutions.

3.2 Monolith

Table 6 summarizes the computational results for the monolith formulation (EPP). Unfortu-
nately, all three current state-of-the-art global solvers have difficulties closing the gap for the
tested instances.
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Table 3 Ellipsoid packing instances with the semi-axes of the ellipsoids and lower and upper bounds on the size
of the rectangular box. The last column gives the sum of all ellipsoid volumes V =

∑

i Vi.

test (ai, bi, ci) S−

d
S+

d
V

case

Ellipsoid packing instances “regular”:

TC01a (3, 2, 1) (0,0,0) (10,10,10) 25.13274

TC01b “TC01a” (0,0,0) (6,4,2) 25.13274

TC02a (2, 1.5, 1), (1.5, 1, 0.7) (0,0,0) (6,3.1,2) 16.96460

TC02b “TC02a” (0,0,0) (10,4,4) 16.96460

TC02c (2, 1.9, 1.8), (1, 0.95, 0.9) (4.5,2.5,1.5) (6,4,4) 32.23274

TC02d (2, 1.95, 1.9), (1, 0.98, 0.95) (4.5,2.5,1.5) (6,4,4) 34.93870

TC02e (2, 2, 2), (1, 0.55, 0.40) (4,4,4) (4.15,4,4) 34.43186

TC02f (2, 2, 2), (2, 1.98, 1.95) (4,4,4) (8,4,4) 65.85616

TC02g (2, 2, 2), (2, 1.94, 1.90) (4,4,4) (10,10,10) 64.39008

TC03a “TC02b” + (1, 0.8, 0.6) (0,0,0) (5,4,4) 18.97522

TC03c “TC03a” (0,0,0) (20,10,10) 18.97522

TC04a “TC03a” + (0.9, 0.7, 0.5) (0,0,0) (99,99,99) 20.29469

TC04b “TC04b” (0,0,0) (6,6,6) 20.29469

TC05a “TC03a” + (0.9, 0.75, 0.5) + (0.8, 0.6, 0.3) (0,0,0) (20,20,20) 20.99212

TC07a “TC05a” + (1.2, 0.9, 0.4), (1.1, 0.9, 0.4) (0,0,0) (99,99,99) 24.46044

TC08a “TC07a” + (1.8, 1.4, 1.2) (0,0,0) (99,99,99) 37.12734

TC09a (2, 1.5, 1.0), (1.8, 1.4, 1.2), (1.5, 1.0, 0.8), (0,0,0) (99,99,99) 37.36191
(1.2, 0.9, 0.7), (1.1, 0.9, 0.4), (1.0, 0.8, 0.4),

(0.9, 0.75, 0.50), (0.8, 0.6, 0.3), (0.7, 0.4, 0.2)

TC10a (2, 1.5, 1.0), (1.5, 1.0, 0.7), (1.0, 0.8, 0.6), (0,0,0) (7,6,4) 43.24298
(0.9, 0.75, 0.7), (0.8, 0.6, 0.4), (1.2, 0.9, 0.4),
(1.1, 0.9, 0.4), (1.8, 1.4, 1.2), (0.7, 0.4, 0.2)

(1.3, 1.2, 0.9)

Identical ellipsoids; total volume of these n identical ellipsoids is 4
3
πabcn ≈ 5n/3:

TS06s01 6 × (1, 0.8, 0.5) (0,0,0) (5,2.5,2) 10.05310

TS06s03 6 × (1, 0.8, 0.5) (0,0,0) (99,99,99) 10.05310

TS08 8 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 13.40413

TS09 9 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 15.07964

TS10 10 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 16.75516

TS11 11 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 18.43068

TS12 12 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 20.10619

TS13 13 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 21.78171

TS14 14 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 23.45723

TS15 15 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 25.13274

TS16 16 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 26.80826

TS17 17 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 28.48377

TS18 18 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 30.15929

TS19 19 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 31.83481

TS20 20 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 33.51032

TS30 30 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 50.26548

TS50 30 × (1, 0.8, 0.5) (0,0,0) (999,999,999) 83.77580

TS60 60 × (1, 0.8, 0.5) (0,0,0) (120,120,120) 100.53096

TS70 70 × (1, 0.8, 0.5) (0,0,0) (140,140,140) 117.28613

TS80 80 × (1, 0.8, 0.5) (0,0,0) (160,160,160) 134.04129

TS90 90 × (1, 0.8, 0.5) (0,0,0) (180,180,180) 167.55161

TS100 100 × (1, 0.8, 0.5) (0,0,0) (200,200,200) 167.55161

TS100b 100 × (1, 0.8, 0.5) (0,0,0) (10,10,10) 167.55161

Table 4 Setup of the numerical experiment treating spheres as ellipsoids.

R1 R2 R3 v xR
1 xR

2 xR
3

S1 1 1 16 4 2 2
S2 2 1.5 1 118.675265 6.9278 4.2826 4
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Table 5 Packing spheres as ellipsoids with fixed rotation angles θi ≡ 0, or R = diag(1, 1, 1), respectively. Test
cases are S1 and S2 defined in Table 4. Problem S1 was solved instantaneously by all solver, i.e., in less than a
second. For problem S2, the CPU time limit of 12,000 seconds was reached. GAMS 24.4 with platform 1.

test v∗ Antigone Baron LindoGlobal
case V − V + V − V + V − V +

S1 16.00000 15.9900 16.0000 15.9900 16.0000 16.0031 16.0126
S2 118.675265 112.1000 118.6753 110.8071 118.6753 83.3175 120.9696

Table 6 Monolith: Packing ellipsoids with (EPP) using the half-space approach. CPU time limit was 4 hours for
experiments TC02a to TC02f, and 15, 30, or 45 minutes, resp., for all others; GAMS 24.4; platform 1. Experiments
TC02a to TC02f were performed with the restriction of the Eulerian angles to the interval [0,90] degrees. With
this restriction the lower bound increased steadily, while the best upper bound obtained is identical to that one
resulting from Eulerian angles restricted to [0,90]. Note, how slowly the lower bound increases when we allow 48
hours to solve TC02a. Case TC10a is displayed in Fig. 5.

test Antigone Baron LindoGlobal

case V − V + mm:ss V − V + m:ss V − V + m:ss

TC02a V 32.40000 30:00 29.85799 32.40000 4h 27.71865 32.40000 10:00
TC02a . . . 30.84000 32.40000 48h . . .
TC02b 22.50000 32.40000 30:00 30.75311 32.40000 4h 27.41398 32.40000 10:00
TC02c 58.32000 75.33625 30:00 70.07250 75.33625 4h 61.56000 75.33625 10:00
TC02d 64.98000 82.68374 30:00 76.93540 82.68374 4h 70.25929 82.68374 10:00
TC02e 64.00000 67.67309 30:00 64.00000 67.67309 4h 64.00000 67.67309 10:00
TC02f 72.00000 126.39920 30:00 117.75470 126.39920 4h 119.90176 126.39920 10:00
TC02g 72.00000 124.79276 30:00 111.03900 124.79276 4h 118.64514 124.79276 10:00
TC03a V 35.64096† 03:20 V 35.64096† 02:35 V 37.50108 04:30
TC03b V 35.64096† 03:20 V 35.64096† 02:35 V 37.50108 04:30
TC04a V – 30:00 V 38.90865 07:59 V 39.60000 10:49
TC04b V – 30:00 V 39.66012 00:02 V 39.66012 00:37
TC05a V – 30:00 V 39.50374 00:05 V 39.67963 13:23
TC07a V – 30:00 V 46.25267 00:09 V 50.67277 13:28
TC08a V – 30:00 V 71.01258 00:19 V 70.90260 14:08
TC09a V – 30:00 V 75.22376 00:15 V 78.96324 21:45
TC10a V – 30:00 V 83.63259 02:26 V 84.79978 11:48
TS11 V – 30:00 V 34.14894 06:53 V 37.08669 17:38
TS12 V – 30:00 V 38.40137 00:27 V – 30:00
TS13 V – 30:00 V 41.53936 01:08 V 43.94060 08:34
TS14 V – 30:00 V 43.72803 01:16 V 48.78287 10:07
TS15 V – 30:00 V 51.00793 01:31 V – 30:00
TS16 V – 30:00 V 53.85946 06:33 V – 30:00
TS17 V – 30:00 V 53.76414 01:41 V 55.61720 02:03
TS18 V – 30:00 V 58.91550 01:41 V 57.57058 30:00
TS19 V – 30:00 V 60.52080 14:25 V 2052.743616 30:01
TS20 V – 30:00 V 62.12678 01:57 V 111.09076 30:02
TS30 V – 30:00 V 103.40513 16:40 V 177.68667 30:04
TS50 V – 30:00 V 215.00144 30:02 V – 30:04
TS60 V – 30:00 V 215.00144 30:02 V – 30:04
TS70 V – 180:00 V 340.65796 116:32 V – 180:00
TS80 V – 180:00 V 446.71011 136:53 V – 180:00
TS90 V – 360:00 V – 360:00 V – 360:00
TS100 V – 360:00 V – 360:00 V – 360:00
TS100b V – 1440:00 V 477.29091 732:21 V – 1440:00

† obtained when using the KKT approach with bilinear terms only
– no feasible solution found

Separating hyperplanes exploiting the half-space approach lead to problems with the fewest
numbers of variables. Sometimes, however, we obtain better solutions when we use the somewhat
more complicated approach using the KKT conditions with bilinear terms only.
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Fig. 5 Packing 10 ellipsoids –case TC10a– using the monolithic version of the EPP.

3.2.1 Inner and outer spheres

Table 7 displays the lower bounds based on the volumes of the ellipsoids (
∑

i Vi), the lower
bounds, V ci,−, resulting from the inner sphere problem, and an upper bound, V ci,+, derived
from the outer sphere problem. The lower bounds obtained from the inner sphere packings
are significantly better than the sum of all volumes of the ellipsoids when the majority of the
ellipsoids has aspect ratio close to 1; otherwise, the sum of all volumes of the ellipsoids exceeds
V ci,−. As the initial lower bounds obtained by the solvers for the EPP are significantly smaller,
we use max{∑i Vi, V

ci,−} as the lower bound for the EPP. The upper bounds obtained by the
outer-spheres are, unfortunately, usually only very weak bounds.

3.2.2 Identical ellipsoids

Identical ellipsoid packing problems are easier to solve than the general EPP as we can apply
the symmetry breaking inequalities (2.45), or the simpler inequality xi ≤ xj for i < j. Similar
as in the 2D case for ellipses, we can also construct analytic, symmetric ellipsoid configurations.
This allows us to double-check our models, benchmark the solvers and compare the solution to
unsymmetrical configurations.

Table 6 contains computations for identical ellipsoids using the monolith formulation (EPP).
With only 15 minutes of CPU time, the lower bounds do not increases above the sum of the
volume of all ellipsoids. This behavior does not change when allowing 30 or 60 minutes, or even
12 hours.
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Table 7 Comparing volume of ellipsoids, inner spheres, outer spheres and best monolithic and polylithic solution
found (taken from Table 6 or Table 8). For TC02a to TC04b the relative gap, after 30 minutes or less, for solving
the inner and outer spheres problem was less than 10−8, for TC05a 2 × 10−5. For TC07a and higher we have,
after 30 minutes, relative gaps of 30, 40, and up to 90 %, i.e., the solution of the outer sphere problem is only of
limited use. In addition to the time efficiency of the polylithic approach, in various cases displayed in bold face,
it produces better solutions as the monolith.

test
∑

i Vi V ci,− V ci,+ V m V p

case

TC02a 16.96460 13.38482 110.84521 32.40000 32.40000
TC02b 16.96460 22.50000 110.84523 32.40000 32.40000
TC02c 32.23274 65.85202 90.33199 75.33625 75.33625
TC02d 34.93870 77.44839 90.33202 82.68374 82.68374
TC02e 34.43186 64.00000 90.33200 67.67309 67.67309
TC02f 65.85616 126.38987 128.00000 126.39920 126.39959
TC02g 64.39008 124.75896 128.00000 124.79276 124.79276
TC03a 18.97522 15.41652 118.67534 35.64096 37.31679
TC03b 18.97522 15.41652 118.67534 35.64096 37.31679
TC04a 20.29469 15.97308 120.59568 38.55590 38.55589
TC04b 20.29469 15.97309 120.59568 39.66012 39.66012
TC05a 20.99212 15.97304 120.59560 39.50374 39.28794
TC07a 24.46044 16.04026 145.99118 46.25267 45.43634
TC08a 37.12734 30.79035 194.95129 70.90260 70.24573
TC09a 38.67719 34.45173 199.49578 74.24859 74.39517
TC10a 43.24298 36.70484 218.59640 84.79978 80.67366
TS11 18.43068 10.92820 87.42563 34.14894 34.00782
TS12 20.10619 12.00000 96.00000 38.40137 36.19232
TS13 21.78171 13.06218 104.49742 41.53936 39.93079
TS14 23.45723 13.66025 109.28203 43.72803 42.40982
TS15 25.13274 14.92820 119.42563 51.00793 47.51635
TS16 26.80826 15.66923 128.00000 53.85946 51.12193
TS17 28.48377 17.19616 137.56922 53.76414 52.56416
TS18 30.15929 17.41025 139.28203 57.57058 56.36222
TS19 31.83481 18.66025 149.28203 60.52080 60.60758
TS20 33.51032 19.12436 152.99485 62.12678 64.46473
TS30 50.26548 28.03942 222.85125 103.40513 94.63151
TS50 83.77580 48.07488 391.93313 215.00144 152.38815
TS60 100.53096 — — 218.17868 257.05663

— no feasible point found within the time limit

The larger the number of ellipsoids, the more “symmetrical” solutions we obtain, i.e., the
higher the degree of order in the packing, while for smaller number of ellipsoids the solutions are
rather “asymmetrical” placements.

3.2.3 Summary of the monolithic experiments

Let us comment on the various approaches how we treat the separating hyperplanes and the
rotation matrix R. The half-space approach, S3, based on affine transformations of spheres has
the smallest number of variables and constraints and works fastest. We can even find feasible
points for 100 ellipsoids although that took about 12 hours using Baron. However, if we use the
KKT-approach using only bilinear terms (S1), we can, in some instances, find better solutions. If
we see an increase of the lower bound, then only with this approach. The KKT-approach using
quadrilinear terms (S2) is not efficient.

The rotation matrix is best represented by R1 regarding the numerical performance. The
many terms involved in R3 seem to be too complicated and increase the computing time. R2 is
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only superior when compared to R1 or R3, if we can restrict the angles to range [0,90] degrees
as we did in a few experiments for two ellipsoids.

3.3 Polylithic

If the number of ellipsoids increases, the global solver have more and more difficulties to find a
feasible point using the monolith. For the larger test instances (TS20, TS30, TS50, and TS60
to TS100b), only Baron can find a feasible points. Therefore, we have developed three polylithic
approaches to compute feasible points:

1. P1: Unrotated ellipsoids i are placed at

x0
i1 = ai + 2ai(i− 1), x0

i2 = bi, x0
i3 = ci .

This approach works only, if the size of the box in x-direction is not smaller than x0
n1 = an.

With the normal vector nH
ij = (−1, 0, 0) of the separating hyperplane Hij we get a feasible

point easily. However, the global solver experience difficulties to improve on this starting point.
Therefore, after some initial numerical experiments, we did not follow up on this approach.

2. P2: To begin with, we solve the outer-sphere approximation to all ellipsoids individually, from
which we obtain the centers of the spheres and the size of the box. We place and fix the un-
rotated ellipsoids precisely at the centers computed. As we had an outer approximation, they
fit into this box. Next, we compute separating hyperplanes consistent with this placements.
Then, we relax all variables, and compute feasible points to the original problem. That way,
we obtain feasible points up to 50 ellipsoids; see Table 8. This approach is expected to work
the better the less the ellipsoids deviates from spheres. However, P2 is also limited by the
size of the spheres problem which can be solved reasonably in time and quality.

Table 8 Polylithic: Packing ellipsoids using polylithic approach 2 based on outer spheres. CPU time limit was
15, 30, or 45 minutes, respectively; GAMS 24.4; platform 1. The problems have been solved with Baron and various
time limits.

test Baron1 Baron2 size of the box

case V − V + mm:ss V − V + m:ss xR

1 xR

2 xR

3

TC05a V 39.92219 15:08 V 39.92219 15:08 6.654 3.000 2.000
TC07a V 46.06638 25:05 V 46.00333 45:35 4.000 3.839 3.000
TC08a V 71.43821 30:05 V 69.37830 50:19 4.412 4.412 3.670
TC09a V 75.82589 30:05 V 75.50322 50:20 6.319 4.000 3.000
TC10a V 88.03426 20:13 V 84.48749 50:34 6.824 3.872 3.332

TS08 V 24.24369 30:04 V 24.63693 65:48 3.487 3.476 2.000
TS09 V 28.34020 30:04 V 27.91272 65:38 3.764 3.764 2.000
TS10 V 30.67300 30:04 V 29.52895 65:04 3.916 3.916 2.000
TS11 V 35.99302 30:07 V 34.85208 65:07 4.483 4.015 2.000
TS12 V 36.19232 30:07 V 37.10278 65:06 7.116 2.543 2.000
TS13 V 39.93079 30:05 V 40.13174 65:05 4.828 4.135 2.000
TS14 V 42.40982 30:13 V 44.32968 65:05 5.796 3.658 2.000
TS15 V 47.51635 30:06 V 49.03190 65:07 4.874 4.874 2.000
TS16 V 51.12193 30:08 V 50.90590 65:05 4.309 3.970 2.988
TS17 V 53.55365 30:06 V 55.05772 65:07 4.982 3.796 2.832
TS18 V 57.28836 45:07 V 55.35534 95:14 4.563 3.562 3.525
TS19 V 60.60758 45:07 V 60.87294 95:10 4.553 4.393 3.030
TS20 V 64.46473 45:05 V 63.76019 95:07 4.799 4.504 2.982
TS30 V 94.63151 45:17 V 89.14050 95:12 7.369 6.421 2.000
TS50 V 152.38815 47:20 V 52.38815 96:30 34.861 4.371 1.000
TS60 V – – V 192.90897 102:40 34.861 4.371 1.000
— no feasible solution found within the time limit
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3. P3: This polylithic approach works similarly as H1 and H2 in KR14. Ellipsoids are filled into
the box by a pre-given sequence along the positive x-axis. This approach, and the packing
density ρ depends strongly on the sequence of ellipsoids selected to be placed. Therefore, it
has its limits for large numbers of differently sized ellipsoids, while for identical ellipsoids it
can work for very large numbers of ellipsoids.

We only report on the results of P2 as this approach can produce high quality solutions as long as
we can solve the sphere packing problem reasonably, and because it is new while P3 has already
been used earlier in the 2D cases of ellipse cutting. Although we find feasible packing solutions
for up to 50, even 60 ellipsoids, we reach the limits of spheres problems which we can solve. The
CPU limits in Tables 8 and 9 are only so large because we wanted to have a homogeneous set
of computations. As the left part of Table 8 shows, it can be done in less time; actually, except
for the larger cases with more than 30 ellipsoids, we find feasible points in 5 to 10 minutes. The
need to resort to this polylithic approach is necessary when we use S1 to separate ellipsoids. If we
use the half-space approach, S3, the monolithic approach can find feasible solution even for large
problems although it may take many hours. In addition to the time efficiency of the polylithic
approach, in various cases displayed in bold face in Table 7, it produces better solutions as the
monolith.

Table 9 Polylithic: Packing ellipsoids using polylithic approach 2 based on outer spheres. CPU time limit was
15, 30, or 45 minutes, respectively; GAMS 24.4; platform 1. The problems have been solved with Antigone and
Baron. The Baron results are the same as in Table 8.

test Antigone Baron size of the box

case V − V + mm:ss V − V + m:ss xR

1 xR

2 xR

3

TC05a V 39.28794 15:45 V 39.92219 15:08 6.654 3.000 2.000
TC07a V 45.43634 75:09 V 46.00333 45:35 4.000 3.839 3.000
TC08a V 70.24573 80:11 V 69.37830 50:19 4.412 4.412 3.670
TC09a V 74.39517 80:11 V 75.50322 50:20 6.319 4.000 3.000
TC10a V 80.67366 80:17 V 84.48749 50:34 6.824 3.872 3.332

TS08 V 24.69427 95:16 V 24.63693 65:48 3.487 3.476 2.000
TS09 V 26.25337 95:16 V 27.91272 65:38 3.764 3.764 2.000
TS10 V 30.91687 95:17 V 29.52895 65:04 3.916 3.916 2.000
TS11 V 34.00782 95:17 V 34.85208 65:07 4.483 4.015 2.000
TS12 V 37.83346 95:12 V 37.10278 65:06 7.116 2.543 2.000
TS13 V 40.27221 95:10 V 40.13174 65:05 4.828 4.135 2.000
TS14 V 45.73893 95:14 V 44.32968 65:05 5.796 3.658 2.000
TS15 V 48.93781 95:14 V 49.03190 65:07 4.874 4.874 2.000
TS16 V 52.48874 95:14 V 50.90590 65:05 4.309 3.970 2.988
TS17 V 52.56416 95:14 V 55.05772 65:07 4.982 3.796 2.832
TS18 V 56.36222 125:22 V 55.35534 95:14 4.563 3.562 3.525
TS19 V – – V 60.87294 95:10 4.553 4.393 3.030
TS20 V – – V 63.76019 95:07 4.799 4.504 2.982
TS30 V – – V 89.14050 95:12 7.369 6.421 2.000
TS50 V – – V 52.38815 96:30 34.861 4.371 1.000
TS60 V – – V 192.90897 102:40 34.861 4.371 1.000
— no feasible solution found within the time limit
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4 Conclusions

We developed non-convex NLP approaches and models for packing ellipsoids into one rectangular
box. Feasible ellipsoid packings can be solved with the current state-of-the art deterministic global
solvers Antigone, Baron, LindoGlobal provided in GAMS. The more the ellipsoids deviate from
spheres, the more difficult it is to improve the lower bound or to close the gap. As it is expected
from the NP-hard nature of the ellipsoid packing problem, global solvers reach their limitations
fast and it becomes a very challenging task for the solvers even to compute just a feasible point.

We obtain feasible points within minutes for small instances up to 20 objects. For the largest
instance, 100 identical ellipsoids, we found a feasible solution after 12 hours. Alternatively,
polylithic approaches allow us to obtain solution for up to 20 to 60. Solutions for more than
15-60 congruent ellipsoids can be obtained by P3, i.e., sequential filling of boxes by adding 5 to
10 ellipsoids each time.

We experience that symmetry, degeneracy and to some extent also the bounds on the size of
the rectangular box limit the size of the problems we are able to solve using this NLP approaches.
Future work will target on packing 100 to 1000 ellipsoids using deterministic global solvers,
improving the lower bounds and to tackle the ellipsoid design problem. In the design problem,
the semi-axes would be unknown design variables. Using two or three different sets of congruent
ellipsoids, we would improve the packing density.
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A Notation

We begin with a summary of the notation used in the derivation of the model.

A positive definite and symmetric matrix defining ellipsoids; we call this also the shape-rotation matrix.

c objective function coefficient vector of auxiliary problems; c⊤ = (1, 0, 0) or c⊤ = (0, 1, 0) or c⊤ = (0, 0, 1)

Di diagonal matrix for ellipsoid i with eigenvalues of Ai on the diagonal

δmn Kronecker delta function takes value 1 if the indices m and n are equal, otherwise it takes the value zero
0

L(x, λ̄) Lagrangian function

λid eigenvalue of matrix Ai; λi1 = a−2
i , λi2 = b−2

i , and λi3 = c−2
i

λ̄ Lagrangian multiplier associated with ellipsoid equation

ρ density of ellipsoids; 0 ≤ ρ ≤ 1

Rθi rotation matrix for ellipsoid i at angle θi
x−

id
minimal extension of ellipsoid i in dimension d

x+
id

maximal extension of ellipsoid i in dimension d
ι selected ellipsoid ι is to be located in the first octant of the rectangular box
Λ affine transformation matrix of the unit sphere Λ := (a, b, c)

The notation used in the mathematical programming models is summarized in the following sections.

A.1 Indices and Sets

d ∈ {1, 2, 3} index for the dimension; d = 1 represents the length and d = 2 the width, and d = 3 the
height of the box

i ∈ I := {1, . . . , n} objects (ellipsoids or spheres) to be packed

(i, j) ∈ Ico pairs of congruent ellipsoids; we assume i < j
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A.2 Data

ai the largest semi-axis of ellipsoid i; ai ≥ bi ≥ ci
bi 2nd largest semi-axis of ellipsoid i; ai ≥ bi ≥ ci
ci smallest semi-axis of ellipsoid i; ai ≥ bi ≥ ci
Dij bound on the distance variables dabij and dbeij
∆ relative gap

Ri radius of sphere i to be packed

S−

d
, S+

d
minimum (lower bound) and maximum size (upper bound) of the extension of the rectangular box
in dimension d

Vi volume of ellipsoid i; Vi =
4
3
πaibici

V −, V + lower and upper bounds on volume, v, of the rectangular box obtained during the computation

V ci,− minimal volume of the design rectangle to host the inner spheres associated with the ellipsoids. V ci,−

provides a lower bound on the associated ellipsoid packing problem

V ci,+ volume of the rectangular box to host the outer spheres associated with the ellipsoids. Aci,− provides
an upper bound on the associated EPP

Λinn elements of affine transformation matrix

A.3 Decision Variables

dc
ijd

difference of the center coordinates of ellipsoid i and j

nH
ij normal vector of the hyperplane Hij separating ellipsoid i and j; in the GAMS implementation we use

nH
ijd

for each coordinate direction d subject to −1 ≤ nH
ijd

≤ +1

Lij elements of the rotation matrix L in the half-space approach; the elements are subject to the bounds
−1 ≤ Rij ≤ +1

Rij elements of the rotation matrix R; the elements are subject to the bounds −1 ≤ Rij ≤ +1

ujkmn auxiliary variables considered only for tuples with j ≤ m and k ≤ n
v volume of the rectangular box; v∗ defines (globally) optimal volume

vi auxiliary variable representing the trigonometric term cos θi; vi ∈ [−1, 1] for ellipsoid i when using the
one-axis -one angle-approach

wi auxiliary variable representing the trigonometric term sin θi; wi ∈ [0, 1] for ellipsoid i when using the one

axis-one angle approach

xR
d

extension of the rectangular box in dimension d

x0
id

coordinates of the center vector of ellipsoid i

z waste of the rectangular box; z = v −∑

i∈I
Vi

θi orientation angle of ellipsoid i; θi ∈ [0, 2π]

The model contains only continuous variables.

B Detailed Derivations

B.1 Bounds on Rotation Matrices

A rotation matrix R in real space IR is a n× n matrix with the following properties:

RR
T = R

T
R = 1l , detR = +1 , (B.67)

i.e., the inverse matrix R
−1 of R is just the transposed matrix R

T. From (B.67) we follow and proof that for all
elements Rij the following bound inequalities

|Rij | ≤ 1 , ∀{ij} (B.68)

are true. These bounds are useful to provide them to the global solvers. The proof only exploits R
T
R = 1l and

works as follows:
R
T
R = 1l
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is equivalent to
(

R
T
R

)

ik
=

∑

j

RT
ijRjk = δik =

{

1, if i = k
0, if i 6= k

, ∀{ik} .

Therefore, using the transposed form, we also have

∑

j

RjiRjk = δik , ∀{ik} . (B.69)

As (B.69) must be fulfilled for all {ik}, it is especially true for k = i, which implies

∑

j

RjiRji =
∑

j

R2
ji = δii = 1 , ∀{i} . (B.70)

As in (B.70) we have
∑

j R
2
ji =

∑

j R
2
ij = 1 for all i, it follows |Rij | ≤ 1 for all ∀{ij}. Thus, as we work in real

space IR, we can add the bounds
−1 ≤ Rij ≤ +1 , ∀{ij} . (B.71)

B.2 Minimal and maximal extensions of rotated ellipsoids

We compute the extreme extensions, x−

id
and x+

id
, of ellipsoid i in dimension d with center x0

id
from the optimization

problems

x−

id
= min c⊤x = min xid , ∀d and

x+
id

= max c⊤x = max xid , ∀d ,

subject to the ellipsoid equation (2.10); for d = 1 we use c⊤ := (1, 0, 0), for d = 2 we select c⊤ := (0, 1, 0), and
for d = 3 we use c⊤ := (0, 0, 1). Instead of using (2.10), we solve the modified and easier optimization problem

x−

id
= min c⊤(x+ x0

i ) = x0
id +min xid , ∀d and (B.72)

x+
id

= max c⊤(x+ x0
i ) = x0

id +max xid , ∀d , (B.73)

respectively, subject to ellipsoid equation
x⊤

Ax = 1 , (B.74)

for an origin-centered ellipsoid. Note, however, that ellipsoid i cannot be placed at the origin, the left-bottom
corner of the rectangular box. Actually, a lower bound on the center coordinate, xid, in all coordinate directions
d is given by

x0
id ≥ c , (B.75)

if we assume that the semi-axis of ellipsoid i are sorted according to a ≥ b ≥ c.
The Lagrangian function of both optimization problems (B.72) and (B.73) reads

L(x, λ̄) = c⊤(x+ x0
i ) + λ̄

(

x⊤
Aix− 1

)

(B.76)

with the unrestricted Lagrangian multiplier λ̄ ∈ R. The first-order Karush-Kuhn-Tucker (KKT) conditions follow
as

c+ 2λ̄A⊤
i x = 0 (B.77)

together with (B.74).
We left-multiply (B.77) by x⊤, (this operation is safe, as the origin cannot be an extremum) and exploit

(B.74) to obtain xd + 2λ̄ = 0 for all d. This enables us to substitute λ̄ from (B.77) yielding

c− xdA
⊤x = 0 , ∀d . (B.78)

with

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33



 , A
⊤ =





A11 A21 A31

A12 A22 A32

A13 A23 A33



 .

For the first dimension (d = 1, x-axis) the three equations in (2.32) read

1− x1 (A11x1 +A21x2 +A31x3) = 0 (B.79)

− x1 (A12x1 +A22x2 +A32x3) = 0 (B.80)

−x1 (A13x1 +A23x2 +A33x3) = 0 . (B.81)
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As x1 6= 0 (the origin cannot be a stationary point of this problem), we divide the 2nd and 3rd equation by x1

and derive

1− x1 (A11x1 +A21x2 +A31x3) = 0 (B.82)

A12x1 +A22x2 +A32x3 = 0

A13x1 +A23x2 +A33x3 = 0 .

At first, let us express x2 and x3 as functions of x1. This leads to

x2 =
A12A33 −A13A32

A23A32 −A22A33

x1 , x3 =
A13A22 −A12A23

A23A32 −A22A33

x1 . (B.83)

If we enter the expressions (B.83) into (B.79), we obtain

1− x2
1

(

A11 +A21
A12A33x−A13A32

A23A32 −A22A33

+A31
A13A22 −A12A23

A23A32 −A22A33

)

= 0 ,

from which we further derive

x−2
1 =

(

A11 +A21
A12A33x−A13A32

A23A32 −A22A33

+A31
A13A22 −A12A23

A23A32 −A22A33

)

=
A23A32 −A22A33

A11A23A32 −A11A22A33 −A12A31A23 −A21A13A32 +A13A22A31 +A12A21A33

and thus

x2
1 =

A22A33 −A23A32

λi1λi2λi3

= (A22A33 −A23A32) a
2b2c2 (B.84)

where we exploit the fact that

detA = A11A22A33 −A11A23A32 −A12A21A33 +A12A31A23 +A21A13A32 −A13A22A31

= λi1λi2λi3 > 0

(cf. Eigenvector Decomposition). From the geometrical background of the optimization problems (B.72) and
(B.73), we know that each problem has a unique, global extremum. We further know that the global extremal
values necessarily satisfy the KKT conditions (B.74) and (B.77). Because we have not excluded any global optima
in our derivation to obtain (B.84) which leads to exactly two points, we know that x1 in (B.84) gives the global
optimum for (B.73) and (B.72); we just need to select the proper one.

The minimal and maximal extensions of the ellipsoid in the first dimension, (d = 1), then reduce to

x−

1 = min c⊤(x+ x0) = x0
1 −

√

x2
1 = x0

1 − abc
√

A22A33 −A23A32 (B.85)

and x+
1 = x0

1 + abc
√

A22A33 −A23A32 , (B.86)

respectively. Note that these formulae are similar to (18) and (19) in KR14 obtained for the maximal extensions
of ellipses (2D case). If the ellipsoids were spheres (a = b = c = r), for θ1 = θ2 = θ3 = 0, we obtain x+

1 =

x0
1 + abc

√
b−2c−2 − 0 = x0

1 + r.
Similarly, for d = 2 we derive

−x2 (A11x1 +A21x2 +A31x3) = 0 (B.87)

1− x2 (A12x1 +A22x2 +A32x3) = 0 (B.88)

−x2 (A13x1 +A23x2 +A33x3) = 0 . (B.89)

At first, let us express x1 and x3 as functions of x2. This leads to

x1 =
A21A33 −A31A23

A13A31 −A11A33

x2 , x3 =
A11A23 −A21A13

A13A31 −A11A33

x2 . (B.90)

If we enter the expressions (B.83) into (B.79), we obtain

1− x2
2

(

A12
A21A33 −A31A23

A13A31 −A11A33

+A22 +A32
A11A23 −A21A13

A13A31 −A11A33

)

= 0 ,
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from which we further derive

x2
1 =

(

A12
A21A33 −A31A23

A13A31 −A11A33

+A22 +A32
A11A23 −A21A13

A13A31 −A11A33

)−1

= (A13A31 −A11A33) (detA)
−1

and thus

x2
2 =

A11A33 −A13A31

λi1λi2λi3

= a2b2c2 (A11A33 −A13A31) ,

which finally leads to

x−

2 = x0
2 − abc

√

A11A33 −A13A31 (B.91)

x+
2 = x0

2 + abc
√

A11A33 −A13A31 . (B.92)

Similarly, for d = 3 we derive

−x3 (A11x1 +A21x2 +A31x3) = 0 (B.93)

− x3 (A12x1 +A22x2 +A32x3) = 0 (B.94)

1− x3 (A13x1 +A23x2 +A33x3) = 0 . (B.95)

(A11x1 +A21x2 +A31x3) = 0

(A12x1 +A22x2 +A32x3) = 0

At first, let us express x1 and x2 as functions of x3. This leads to

x1 =
A22A31 −A21A32

A12A21 −A11A22

x3 , x2 =
A11A32 −A12A31

A12A21 −A11A22

x3 . (B.96)

If we enter the expressions (B.96) into (B.95), we obtain

A13
A22A31 −A21A32

A12A21 −A11A22

+A23
A11A32 −A12A31

A12A21 −A11A22

+A33x3

1− x2
3

(

A13
A22A31 −A21A32

A12A21 −A11A22

+A23
A11A32 −A12A31

A12A21 −A11A22

+A33

)

= 0 ,

from which we further derive

x2
3 =

(

A13
A22A31 −A21A32

A12A21 −A11A22

+A23
A11A32 −A12A31

A12A21 −A11A22

+A33

)−1

= (A12A21 −A11A22) (detA)
−1

and thus

x2
3 =

A11A22 −A12A21

λi1λi2λi3

= a2b2c2 (A11A22 −A12A21) .

Therefore, the minimal and maximal extensions of ellipsoid i in the third dimension, (d = 3), reduce to

x−

3 = min c⊤(x+ x0) = x0
3 −

√

x2
3 = x0

3 − abc
√

A11A22 −A12A21 (B.97)

and x+
3 = x0

3 + abc
√

A11A22 −A12A21 , (B.98)

respectively.
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B.3 Inner Rectangular Box

Inner rectangular boxes can be computed by maximizing the first octant volume xyz (later we multiply this by
23) subject to the condition that the point (x, y, z) is on the ellipsoid and fulfills the equality

x2

a2
+

y2

b2
+

z2

c2
= 1 .

The Lagrangian function is

xyz − λ

[

x2

a2
+

y2

b2
+

z2

c2
− 1

]

.

The KKT are

yza2 − 2λx = 0

xzb2 − 2λy = 0

xyc2 − 2λz = 0 .

Multiplication by y and x of the first, and z and y of the second and third equation, gives

y2za2 − 2λxy = 0

x2zb2 − 2λxy = 0

and

xz2b2 − 2λyz = 0

xy2c2 − 2λyz = 0

which can be reduced to

y2za2 − x2zb2 = 0 = y2a2 − x2b2

xz2b2 − xy2c2 = 0 = z2b2 − y2c2 ,

where we have exploited that z 6= 0 and x 6= 0. That implies

x2

a2
=

y2

b2
=

z2

c2
.

Together with

x2

a2
+

y2

b2
+

z2

c2
= 1

we thus obtain

x2

a2
=

y2

b2
=

z2

c2
=

1

3

or

x =
1√
3
a ≈ 0.58a , y =

1√
3
b ≈ 0.58b , z =

1√
3
c ≈ 0.58c ,

and the volume maximal volume of the complete rectangular box is

v = 23

(√
3

3
a

)(√
3

3
b

)(√
3

3
c

)

=
√
3
8

9
abc ≈ 1.54abc < πabc

which is approximately half the volume πabc of the ellipsoid.
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B.4 Plotting ellipsoids

Knowing the rotation-shape matrix A and the origin x0, we exploit the ellipsoid equation

x⊤





A11 A21 A31

A12 A22 A32

A13 A23 A33



x = 1

to obtain x⊤ = (x, y, z) and plot the ellipsoid.

(x, y, z)





A11 A21 A31

A21 A22 A32

A31 A32 A33









x
y
z



 = 1

leads to
x2A11 + y2A22 + z2A33 + 2xyA21 + 2xzA31 + 2yzA32 = 1 . (B.99)

If we introduce spherical coordinates (θ,ϕ) with −π/2 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ 2π we get





X
Y
Z



 =





cos θ cosϕ
cos θsinϕ

sin θ





for the coordinates of a point (X,Y, Z) on the unit sphere, resp.,

X = X(θ, ϕ) = cos θ cosϕ

Y = Y (θ, ϕ) = cos θ sinϕ

Z = Z(θ, ϕ) = sin θ .

Finally, with the scaling function ρ = ρ(θ, ϕ) we obtain the ellipsoid points





x′

y′

z′



 = ρ





X
Y
Z





and from (B.99)

ρ2 =
1

X2A11 + Y 2A22 + Z2A33 + 2XY A21 + 2XZA31 + 2Y ZA32

.

Note that ρ is the extension of the ellipsoid measured from the center of the ellipsoid in the direction of (θ, ϕ).
Thus, it is always positive and bounded by c ≤ ρ ≤ a, if we assume that a ≥ b ≥ c.

Considering the origin x0, we obtain the parametric representation of the ellipsoid

x = x(θ, ϕ) =





x
y
z



 =





x0

y0

z0



+ ρ





X
Y
Z



 .

References

1. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms (2009). DOI 10.1007/s10898-009-
9484-1

2. Chernov, N., Stoyan, Y., Romanova, T., Pankratov, A.: Phi-Functions for 2D Objects Formed by Line Seg-
ments and Circular Arcs. Advances in Operations Research (2012). DOI 10.1155/2012/346358

3. Choi, Y.K., Chang, J.W., Wang, W., Kim, M.S., Elber, G.: Continuous Collision Detection for El-
lipsoids. IEEE Transactions on Visualization & Computer Graphics 15(2), 311–325 (2009). DOI
10.1109/TVCG.2008.80

4. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford, UK (1974)
5. Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.:

Improving the Density of Jammed Disordered Packings Using Ellipsoids. Science 303(5660), 990–993 (2004).
DOI 10.1126/science.1093010. URL http://dx.doi.org/10.1126/science.1093010

6. Donev, A., Stillinger, F.H., Chaikin, P.M., , Torquato, S.: Unusually Dense Crystal Packings of Ellipsoids.
Physical Review Letters 92, 255,506 (2004)



32 Josef Kallrath

7. Halmos, P.R.: Finite-Dimensional Vector Spaces. Springer, New York (1974)
8. Kallrath, J.: Combined Strategic Design and Operative Planning in the Process Industry. Computers and

Chemical Engineering 33, 1983–1993 (2009)
9. Kallrath, J.: Cutting Circles and Polygons from Area-Minimizing Rectangles. Journal of Global Optimization

43, 299–328 (2009)
10. Kallrath, J.: Polylithic Modeling and Solution Approaches Using Algebraic Modeling Systems. Optimization

Letters 5, 453–466 (2011). 10.1007/s11590-011-0320-4
11. Kallrath, J., Rebennack, S.: Cutting Ellipses from Area-Minimizing Rectangles. Journal of Global Optimiza-

tion 59(2-3), 405–437 (2014). DOI 10.1007/s10898-013-0125-3
12. Lindo Systems: Lindo API: User’s Manual. Lindo Systems, Inc., Chicago (2004)
13. Lubachevsky, B.D., Stillinger, F.H.: Geometric properties of random disk packings. Journal of Statistical

Physics 60(5-6), 561–583 (1990)
14. Man, W., Donev, A., Stillinger, F.H., Sullivan, M.T., Russel, W.B., Heeger, D., Inati, S., Torquato, S.,

Chaikin, P.M.: Experiments on random packings of ellipsoids. Phys. Rev. Lett. 94, 198,001 (2005). DOI
10.1103/PhysRevLett.94.198001. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.198001

15. Misener, R., Floudas, C.: ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear
Equations. Journal of Global Optimization 59, 503–526 (2014). DOI 10.1007/s10898-014-0166-2

16. Romanova, T., Scheithauer, G., Krivulya, A.: Covering a polygonal region by rectangles. Computational
Optimization and Applications 48(3), 675–695 (2011)

17. Stoyan, Y.G., Chugay, A.: Packing cylinders and rectangular parallelepipeds with distances between them.
European Journal of Operational Research 197(1), 446–455 (2008)

18. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer
Nonlinear Programming: Theory, Algorithms, Software, and Applications. Nonconvex Optimization And Its
Applications Series. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002)

19. Uhler, C., Wright, S.J.: Packing ellipsoids with overlap. SIAM Review 55(4), 671–706 (2013). DOI
10.1137/120872309. URL http://dx.doi.org/10.1137/120872309

20. Waldron, K., Schmiedeler, J.: Kinematics. In: B. Siciliano, O. Khatib (eds.) Handbook of Robotics, pp. 9–33.
Springer, Oxford, UK (2008)


