
5th International Conference on Advances in Global Optimization:
Methods and Applications, June 13 - 17, 2007. Myconos, Greece.
C. A. Floudas and P. M. Pardalos, Editors
Special issue of the Journal of Global Optimization

c©2007 Springer

Cutting Circles and Polygons from Area-Minimizing
Rectangles

Josef Kallrath

BASF-AG & Department of Astronomy
Scientific Computing The University of Florida
GVC/S-B009 Bryan Space Science Building
D-67056 Ludwigshafen, Germany Gainesville, FL 32611
josef.kallrath@web.de kallrath@astro.ufl.edu

Abstract

A set of circles, rectangles, and convex polygons are to be cut from rectangular design
plates to be produced, or from a set of stocked rectangles of known geometric dimensions.
The objective is to minimize the area of the design rectangles. The design plates are
subject to lower and upper bounds of their widths and lengths. The objects are free of
any orientation restrictions.

If all nested objects fit into one design or stocked plate the problem is formulated
and solved as a nonconvex nonlinear programming problem. If the number of objects
cannot be cut from a single plate, additional integer variables are needed to represent
the allocation problem leading to a nonconvex mixed integer nonlinear optimization
problem.

This is the first time that circles and arbitrary convex polygons are treated simultane-
ously in this context. We present exact mathematical programming solutions to both
the design and allocation problem. For small number of objects to be cut we compute
globally optimal solutions.

One key idea in the developed NLP and MINLP models is to use separating hyperplanes
to ensure that rectangles and polygons do not overlap with each other or with the
circles. Another important idea used when dealing with several resource rectangles is
to develop a model formulation which connects the binary variables only to the variables
representing the center of the circles or the vertices of the polytopes but not to the non-
overlap or shape constraints.

We support the solution process by symmetry breaking constraints. In addition we
compute lower bounds, which are constructed by a relaxed model in which each polygon
is replaced by the largest circle fitting into that polygon.

We have successfully applied several solution techniques to solve this problem among
them the Branch&Reduce Optimization Navigator (BARON) and the LindoGlobal solver
called from GAMS, and, as described in Rebennack et al. (2008, [21]), a column enumer-
ation approach in which the columns represent the assignments.

Good feasible solutions are computed within seconds or minutes usually during prepro-
cessing. In most cases they turn out to be globally optimal. For up to 10 circles, we
prove global optimality up to a gap of the order of 10−8 in short time. Cases with a
modest number of objects, for instance, 6 circles and 3 rectangles, are also solved in
short time to global optimality. For test instances involving non-rectangular polygons
it is difficult to obtain small gaps. In such cases we are content to obtain gaps of the
order of 10 percent.

Keywords: Global Optimization, mixed integer programming, cutting stock problem,

packing problem, shape constraints, non-overlap constraints, design problem, assign-

ment

1 Introduction

A set of circles and convex polygons (often rectangles), hereafter called objects, are to be
cut from rectangular plates. The objects are free of orientation restrictions. There are two
cases to be distinguished: a) the plates are to be produced, or b) they are already available
on stock. Both the plates to be produced and the plates available on stock are hereafter
called resource plates. In case a) the plates are considered as design rectangles whose width
and length are to be determined; hereafter called design and production case. The design
plates are subject to lower and upper bounds of their widths and lengths. The number of
design rectangles is not known a priori. The objective is to minimize the area of the design
rectangles; this is equivalent to minimize trimloss. In case b) the objects should be cut
from a set of up to 50 stocked rectangles of known geometric dimensions, i.e., we have to
solve the cutting problem and an additional assignment problem. After a) or b) have been
solved, in a second step, the objects should be arranged in the plates in such a way that
the remaining waste area contains a rectangle of maximum size; this remaining rectangle
becomes a new stocked plate.

Both problems (a) and (b) fall into the class of two-dimensional cutting or packing
problems of regular objects. They come close to the Dyckhoff (1990, [8]) classification
2/V/D/F; i.e., two-dimensional, V=a kind of assignment: a selection of objects and all
items, D=an assortment of large objects: different figures, and F=an assortment of small
items: few items of different figures. There is a vast amount of publications in the framework
of discrete or computational geometry related to congruent circle packing into squares or
densest circle packing; cf. Szabo et al. (2007, [27]). However, the literature reveals that
there exist no publications in which circles of unequal radii and orientation-free rectangles
or polygons are packed simultaneously into rectangles. If subproblems are treated, i.e., only
circles, only rectangles, or only for given resource plates of known size, then no claim of
computing globally optimal solutions is made. Regarding our design problem, there exist
a few publications in Russian language packing circles into one area-minimizing rectangle;

2

they are referenced in Stoyan & Yaskov (2004, [26]). Among them are the papers by
Rvachev & Stoyan (1965a,b; [24], [23]) who compute exactly a series of local optima for
one area-minimizing rectangle hosting a set of given circles. The most recent publication
on packing circles into area-minimizing rectangles (and other geometric forms) is the work
by Birgin & Sobral (2007, [5]). Stoyan & Yaskov (2004, [26]) do not claim to compute
the global optimum. There are a few more publications on packing equal circles into one
area-minimizing rectangle; cf. Ruda (1970, [22]) or Lubachevsky & Graham (2003, [18]).
Although limited to equal circles and not minimizing the area of the rectangle, the work by
Lubachevsky & Graham (2006, [19]) is worth to mention, who computed minimum perimeter
rectangles enclosing congruent non-overlapping circles. An interesting approach is that by
Yu & Zhang (2006, [29]) who formulated the problem of packing a given set of different-sized
circles into the smallest possible square box as a nonlinear programming (NLP) problem
and established the first order optimality conditions. The augmented Lagrangian method
is applied to solve this problem.

We found more publications treating the problem of fitting different-sized circles into
rectangles of given size. Fraser & George (1994, [10]) discuss packing circles of the same size
in a container of fixed dimensions. George et al. (1995, [11]) formulated a mixed integer
nonlinear programming (MINLP) problem for packing different-sized pipes into a rectan-
gular container which is equivalent to packing unequal circles into rectangles. They also
addressed the problem of how to allocate pipes to various containers in a shipment in order
to minimize the number of containers. They developed a number of heuristic procedures
and a genetic algorithm for (approximately) solving this problem. Because of the container-
shipping background of their problem, they also discussed the stability of packing solutions
in their excellent paper. Stoyan & Yaskov (1998, [25]) discussed and developed exact and
approximate algorithms to compute the global optimum of placing either rectangles or cir-
cles into a given rectangle but not rectangles and circles simultaneously. Although, they
did not consider the case with both circles and rectangles to be placed, this paper is very
much recommend to the reader because it contains useful analytical results and also reviews
many results obtained by Russian and Ukrainian researchers among them V. L. Rvachev.
Stoyan & Yaskov (2004, [26]) extended their approach to strip packing of circles into one
rectangle of fixed width and height to be minimized. Huang et al. (2005, [13]) developed a
greedy algorithm for packing unequal circles into given rectangles. The problem of packing
circles into given rectangles has been shown to be NP-hard; cf. Lenstra & Rinnooy (1979,
[15]). Although already 15 years old and mostly on packing into given rectangles, it is still
inspiring to read the invited review article by Dowsland & Dowsland (1992, [7]) on packing
problems.

The publications on packing rectangles into rectangles are mostly concerned with axis-
parallel or orthogonal packings. A recent very interesting work is that by Birgin et al. (2006,
[4]). Packing polygons into given rectangles is a field in which only heuristic methods have
been used. Jakobs (1996, [14]) proposed a genetic algorithm for placing polygons into a
rectangle in which in a pre-step each polygon is embedded into a rectangle of minimum
area. This step is followed by the main step of packing rectangles into one rectangle.

The structure of this article is as follows. In Sect. 2 we develop an NLP model for cutting
objects from one design rectangle. The model is extended in Sect. 3 to allow for a modest
number of design rectangles and also the assignment/selection problem if the objects need

3

to be assigned to a set of given rectangles (cutting from, or packing into several rectangles).
This MINLP problem can be solved to global optimality only for small instances. Numerical
experiments and results are discussed in Sect. 4. At all places in this paper where we use
the term global optimum, or global optimality, we use it in the sense of small gaps of the
order of 10−8, and we are aware that those are also subject to the limits of the numeric
solvers dealing with finite number arithmetic subject to round-off errors.

2 Modeling: Cutting from One Rectangle

If all objects fit into one design or given plate the problem can be described as a nonconvex
NLP problem. For circles, the only variables are the coordinates of the center. Rectangles
and polygons are described by the coordinates of their vertices. Shape constraints ensure
that the variables representing the vertices reproduce the original geometrical objects. The
model consists of non-overlap constraints and the constraints ensuring that all objects do
not exceed the bounds of the enclosing rectangle. Non-overlap of circles by enforcing that
their centers are apart not less than the sum of their radii. Polygons are ensured not to
overlap with other objects by separating lines (in general hyperplanes) exploiting the fact
that we are dealing with convex objects. In the model formulation below we put all relations
into numbered equations which are either referred to in the text, or which appear in the
model and have been coded in GAMS [cf. Brooke et al. (1992, [6])]. Where possible we try
to use a vector notation using the Euclidean norm scalar products avoiding the additional
dimension index d. We use lower case symbols for variables, and upper case symbols for
input or derived data.

2.1 Indices

used in this model:

d ∈ D := {1, . . . , |D|} dimension of the space.
If we consider only circles, the model is generic for an arbitrary number, |D|, of
dimensions. For the current case we work in a two dimensional space with width
(d = 1) and length (d = 2).

i ∈ I := {i1, . . . , i|I|} circles to be packed.
Circles are characterized by their radii Ri.

j ∈ J := {r1, . . . , r|J |} rectangles to be packed.
Rectangles are characterized by width Wj and length Lj . Rectangles are treated
different from non-rectangular polygons in that different shape constraints are used.

k ∈ K := {k1, . . . , k|K|} index counting the vertices of the rectangles (|K| = 4) or polygons.
We identify vertex Vj,|K|+1 with Vj1.

p ∈ P := {p1, . . . , p|P|} polygons to be packed.
Polygons are characterized by the number of vertices, Kp, and the coordinates of
their vertices Vpk, k = 1, . . . ,Kp. The orientation of placed polygons w.r.t. their

4

reference orientation is described by the angle αp measuring the anti-clockwise rotation
of polygon p. Using only one orientation angle limits us to the two-dimensional case.

r ∈ R := {r1, . . . , r|R|} resource rectangles to be produced or available on stock.
The number of resource rectangles, |R| varies between 1 and 50. They are assumed to
be ordered in a given sequence. The set R∗ denotes the set of all resource rectangles
except the last one.

2.2 Input Data

The input data consists of the following geometric data:

Ai [L2] the areas of all circles i; quantity derived as Ai = πR2
i . [L2] specifies that Ai has

the physical dimension area.

Aj [L2] the areas of all rectangles j; quantity derived as Aj = Sj1Sj2.

Ap [L2] the areas of all polygons p; quantity derived by formula (2.30).

D [L] the maximum possible length of the diagonal of the design rectangle.

Kp [-] the number of vertices of polygon p, ; [-] specifies that Kp is a dimensionless
quantity.

L [L] maximum size (upper bound) of the length of the design rectangle; [L] specifies
that L has the physical dimension length.

L0
r [L] the accumulated length of stocked rectangles up to resource rectangle r.

Ri [L] the radius of circle i.

Sjd [L] the extension of rectangle j, i.e., width Sj1 and length Sj2.

S+
d [L] maximum size (upper bound) of the extension of the design rectangles in dimen-

sion d.

S−
d [L] minimum size (lower bound) of the extension of the design rectangles in dimension

d.

W [L] maximum size (upper bound) of the width of the design rectangle.

Xpkd [L] the coordinates of vertex Vpk of polygon p; in vector notation Xpk. The ordering
is such that k and k + 1 refer to adjacent vertices.
The coordinates Xpkd define the reference orientation of polygon p.

X0
pd [L] the center coordinates of polygon p; in vector notation X0

p.

XSR
rd [L] the extension of resource rectangle r in dimension d. In the case of design

rectangles this is the maximum extension in the sense of an upper bound; for stocked
rectangles it is the given size.

5

2.3 Variables

used in the different models:

a ∈ [S−
1 S−

2 , S+
1 S+

2] [L2] the area of the design rectangle. a− and a+ are lower and upper
bounds on a obtained during the computation.

In more than two dimensions, S−
1 S−

2 and S+
1 S+

2 are replaced by
∏|D|

d=1
S−

d and
∏|D|

d=1
S+

d ,

respectively. The minimal and maximal extensions, S−
1 , S−

2 , and S+
1 , S+

2 , are machine
dependent production constraints.

αp ∈ [0◦, 360◦] [deg] the orientation angle of polygon p.
For rectangles, the range of αp is reduced to [0◦, 180◦].

∆pp′k ∈ [0,D] [L] the distances of the vertices to the separating line separating the
polygons p and p′.
These variables are bounded by the diagonal, D, of the design rectangle.

δir ∈ {0, 1} [−] the binary variables δir decide on the allocation of object i to design
rectangle or stocked rectangle r.
These binary variables are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

gpp′ ∈ [0, S+
1]× [0, S+

2] [L×L] the footing point vector of the separating line between the
polygons p and p′.
The vector variable gpp′ leads to the scalar variables gpp′d.

`0
r ∈ [0, L0

r] [L] the starting length of resource rectangle or segment r.
These auxiliary variables are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

`δ
ir ∈ [0, L0

r] [L] the product `δ
ir := `0

rδir.
These auxiliary variables are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

λpp′k ∈ [−D,D] [L] auxiliary variables needed to compute the vectors ppp′k connecting
vertex Vpk with the line separating polygon p and polygon p′.
These auxiliary variables are free variables and can take positive and negative values.

mpp′ ∈ [−1,+1] × [−1,+1] [−]2 the direction vector of the separating line between the
polygons p and p′.
The vector variable mpp′ leads to the scalar variables mpp′d.

npp′ ∈ [−1,+1] × [−1,+1] [−]2 the normal vector of the separating line between the
polygons p and p′.
The vector variable npp′ leads to the scalar variables npp′d.

ppp′k ∈ [0,D]×[0,D] [L] connection from the separating line Gpp′ to vertex Vpk of polygon
p and p′.
The vector variable ppp′k leads to the scalar variables ppp′kd.

6

rp [L] radius of the smallest circle enclosing polygons p.
The variable is only used in the auxiliary model computing the smallest circle enclosing
polygons p.

σr ∈ {0, 1} [−] binary variables indicating the usage of rectangle r.
The binary variables σr are only needed in Sect. 3 to model cutting from and object
allocation to several rectangles available on stock.

vjkd ∈ [−Sjd, Sjd] [L] components of the vector vjk pointing from vertex k to vertex k+1
of rectangle j.
The vectors vjk support the representation of the rectangular objects by exploiting the
fact that a rectangle has two parallel sides with |vj1| = Sj1 and |vj2| = Sj2, and that
adjacent sides are orthogonal to each other, i.e., vjkvjk+1 = 0; here |·| denotes the
Euclidean norm, and the orthogonality is expressed by the vanishing scalar product.

xid ∈ [0, S+
d] [L] the coordinates of the center vector, xi, of circle i.

For circles i with radius 2Ri ≤ mind{S
+
d } the bounds can be refined to [Ri, S

+
d −Ri].

xpkd ∈ [0, S+
d] [L] the coordinates of the vertex k of polygon p; in vectorial notation xpk.

The vector xpk is obtained by rotation and translation of the original vertex vector
Xpk.

xpd ∈ [0, S+
d] [L] the center coordinates of polygon p; in vectorial notation x0

p.
The vector x0

p serves as the basis to re-construct polygon p.

xDR
rd [L] the extension of design rectangle r.

These variables are only needed in Sect. 3 to model cutting from and object allocation
to several rectangles available on stock.

xP
d ∈ [0, S+

d] [L] the extension of the design rectangle in dimension d.
There are pre-given upper bounds on these extensions.

xR
jkd ∈ [0, S+

d] [L] the coordinates of the vertex vector xR
jk of rectangle j.

The variables are only bounded by the size of the design rectangle.

z ∈ [0, S+
1 S+

2] [L2] the objective function, trimloss or waste, associated to the optimal
solution.
This variable is defined as z = a −

∑

i Ai −
∑

j Aj −
∑

p Ap.

Note that we provide lower and upper bounds in the model wherever possible and as tight as
possible as these bounds help to solve the NLP and MINLP problems to global optimality.

2.4 Model

The objective function to be minimized is the area, a, of the design rectangle

min a, a =

|D|
∏

d=1

xP
d , (2.1)

7

where xP
d represents the extension of the design rectangle in dimension d. Equivalent to

this is to minimize waste, i.e.,

min z, z = a −
∑

i

Ai −
∑

j

Aj −
∑

p

Ap , (2.2)

where Ai, Aj, and Ap denote the known areas of circles, rectangles, and polygons.
The extensions are subject to the bounds

S−
d ≤ xP

d ≤ S+
d , ∀d . (2.3)

In the two-dimensional cases considered in this publication xP
1 is width w, and xP

2 is length
`.

2.4.1 Cutting Circles

For all objects we have to guarantee that they do not overlap with other objects. For circles
the non-overlap constraints simply read

(xi − xi′)
2 ≥ (Ri + Ri′)

2 , ∀{ (i, i′) | i < i′} . (2.4)

Note that for n circles we have n(n − 1)/2 inequalities of type (2.4).
Fitting the circles inside the enclosing rectangles requires

xid ≥ Ri ; ∀{i, d} . (2.5)

and
xid + Ri ≤ xP

d ≤ S+
d ; ∀{i, d} . (2.6)

2.4.2 Cutting Rectangles

The rectangles are described by the vertices xR
jkd and the shape constraints (2.8)-(2.11).

The rectangle fits into the enclosing rectangles if all corner points are inside the design
rectangle, i.e.,

0 ≤ xR
jkd ≤ xP

d ≤ S+
d ; ∀{j, k, d} . (2.7)

To describe rectangle j and establish its proper shape we introduce the vectors vjk pointing
from corner k to corner k + 1

vjk = xR
jk+1 − xR

jk ; ∀{j, k} , (2.8)

where k5 is identified with k1; see Fig. 1. Note that (2.8) only connects the corner points.
However, it could happen that for instance vj1 and vj3 cross each other. In order to avoid
such situations we add the following constraints to ensure that we obtain the appropriate
shape, i.e., a rectangle with four 90◦ angles. At first we establish orthogonality between
vj1 and vj2, i.e.,

vj1vj2 =
∑

d

vj1dvj2d = 0 ; ∀{j} , (2.9)

8

and then we require that vj3 and vj1, or vj4 and vj2, resp., are anti-parallel, i.e.,

vjkd = −vj,k−2,d ; ∀{jkd|k > 2} . (2.10)

This representation takes care of the orientation automatically. Finally, we ensure that the
size of the rectangle is established by

∥

∥

∥v2
jk

∥

∥

∥

2
= v2

jk =
∑

d

vjkdvjkd = S2
jk ; ∀{j, k|k < 3} . (2.11)

Note that if we to arrange the objects in the design rectangle in such a was to leave a
maximum rectangular area free, we just need to replace the known size S2

jk in (2.11) by

variables sFR
jd denoting the unknown size of that inner free rectangle; the objective function

to be maximized is sFR
j1 sFR

j2 .

2.4.3 Cutting Polygons

A polygon p is characterized by its Kp vertices Vp1, . . . , VpKp
, i.e., by their coordinates

Xpk, k = 1, . . . ,Kp, where the index p counts the available polygons, and Kp specifies the
number of vertices of polygon p. While our application is two-dimensional, the formulation
presented below is in most parts generic to can be extended to higher dimensions. Some
care is needed with the neighborhood relationship of vertices, and also with the angular
representation (2.14), e.g., in three dimensions we would need two angles.

The polygons will be implicitly described by their centers, the distances of the vertices
to the center, and the orientations; see Fig. 1. The center, X0

p, of the original polygon is
defined by

X0
p =

1

Kp

Kp
∑

k=1

Xpk ; ∀{p} . (2.12)

The polygons can now be placed at a free center represented by the vector x0
q

x0
p =

1

Kp

Kp
∑

k=1

xpk ; ∀{p} (2.13)

subject to the shape and orientation constraint

xpk = x0
p +

(

cos αp sin αp

− sinαp cos αp

)

(

Xpk − X0
p

)

; ∀{p, k} . (2.14)

Instead of α as the free variable, we take −1 ≤ cos α ≤ +1 and −1 ≤ sin α ≤ +1 as the free
variables coupled by

sin2 αp + cos2 αp = 1 ; ∀{p} . (2.15)

Note that for polygons with a symmetry axis we need to consider only rotation angles in
the range of 0◦ to 180◦, i.e., 0 ≤ sin α ≤ 1. Further symmetry might be exploited in special
cases, e.g., regular polygons with n equal sides.

Fitting the polygons inside the enclosing rectangles requires that

Xpkd ≤ xP
d ≤ Smax,d ; ∀{p, k, d} . (2.16)

9

vj1

vj4

vj3

vj2
xR

j1

xR
j4

xR
j3

xR
j2

(a) rectangle j

xp2

xp1

xp6

xp5

xp4

xp3

x0
p

(b) polygon p

Figure 1: Representation of rectangles and polygons.

2.4.4 Non-overlap Constraints for Polygons

Non-overlap of polygon p and any other polygon q′ is enforced by the condition that all
vertices of q and q′ are on different sides of, or on a separating line or hyperplane in higher
dimensions; see Fig. 2. Let polygon p and p′ have Kp and Kp′ vertices, respectively; note
that Kp and Kp′ may be different. The line, Gpp′ , separating the vertices of polygon p and
p′ involves the variables gpp′ , mpp′, and λpp′ per polygon combination pp′ and is given by

Gpp′ := Gpp′(λ) = gpp′ + mpp′λpp′ ; ∀{p, p′|p′ > p} , (2.17)

where λ ∈ IR parametrizes the line, and the direction vector mqq′ is normalized to unity,
i.e.,

m2
pp′ = 1 ; ∀{p, p′|p′ > p} . (2.18)

The normal direction, npp, to Gpp′ is given by

(

npp′1, npp′2

)T
=
(

mpp′2,−mpp′1

)T
; ∀{p, p′|p′ > p} . (2.19)

The Kp connection vectors ppp′k from Gpp′ to vertex Vpk of polygon p are given by

ppp′k = xpk −
(

gpp′ + mpp′dλpp′k

)

; ∀{p, p′, k|p′ > p ∧ k ≤ Kp} , (2.20)

while for the Kp′ vertices Vp′k of polygon p′ the connection vectors read

pp′pk = xp′k −
(

gpp′ + mpp′dλp′pk

)

; ∀{p, p′, k|p′ > p ∧ k ≤ Kp′} . (2.21)

Note that the auxiliary variables λpp′k and λp′pk are needed to compute the connection
points ppp′k and pp′pk. The two polygons are separated by the conditions of parallelism

ppp′k = ∆pp′knpp′ ; ∀{p, p′, k|p′ > p ∧ k ≤ Kp} , (2.22)

and anti-parallelism

pp′pk = −∆p′pknpp′ ; ∀{p, p′, k|p′ > p ∧ k ≤ Kp′} , (2.23)

10

where the scalar variables ∆pp′k and ∆p′pk measure the distances of the vertices to the
separating line.

To enforce that polygons do not overlap with circles, in (2.18) to (2.23) we replace
polygon p′ by circle i and make the following changes. Variables ∆p′pk in (2.23) are fixed
to radius Ri, i.e., the separation line is a tangent to the circle. ∆c

pik is the replacement of
∆pp′k in (2.22) which now takes the form

pc
pik = ∆c

piknpi ; ∀{p, i, k|k ≤ Kp} , (2.24)

while (2.23) reads
pc

ip = −R(i)nip ; ∀{i, p} . (2.25)

Let us conclude this section by two remarks. The idea of the separating lines could be
generalized and exploited by a dynamic cutting plane approach, in which the separating lines
are added dynamically to ensure that objects do not overlap. The treatment of polygons
presented also works for nonconvex polygons. However, in that case it is too restrictive and
we may miss the global optimum.

xi

Gpi

pc

ip

pc

pi3

pc

pi4

xp2

xp3

xp4

xp5

(a) circle-polygon

Gpp′

pp′p4

ppp′1

xp′2

xp′3xp′4

xp1 xp2

(b) polygon-polygon

Figure 2: Non-overlap for polygons and circles.

2.5 Symmetry Breaking

Symmetry degeneracy for cutting several objects from one design or stocked rectangle can
be broken or at least reduced by requesting that the center of one of the objects is placed
into the first quadrant of the design or stocked rectangle. If we select a specific circle i∗ this
reads

xi∗d ≤
1

2
xP

d ; ∀{d} . (2.26)

If we select a polygon, the inequality

x0
p∗d ≤

1

2
xP

d ; ∀{d} (2.27)

has a great effect.
Symmetry degeneracy due to the presence of congruent objects has been broken by

sorting their center points with respect to the lower left corner of the design or stocked

11

rectangle. Objects in the same congruence class are given the same congruence value Ico.
For instance, for circles i and i′ in the same congruence class we apply the ordering inequal-
ities

xi1 + 5xi2 ≤ xi′1 + 5xi′2 ; ∀{(i, i′)|i < i′ ∧ Ico
i = Ico

i′ } . (2.28)

Rather a matter of degeneracy than that of symmetry we briefly address the problem of free
objects. Free objects are objects which can be moved locally without changing the objective
function, i.e., the area of the design rectangle at all. Examples are shown in Fig. 4; the
circle in the middle of Fig. 4(c) does not touch any other object. In a cutting problem free
objects are not a problem except for degeneracy; in a packing problem this would cause
severe problems as they would flow around freely. One avoid free objects by adding a soft
penalty term which moves the center coordinate always towards the lower left corner of the
design rectangle.

2.6 Structural Analysis

The cutting problem has been formulated as an NLP problem with the following nonconvex
aspects:

1. In the two-dimensional case their is the bilinear objective function (2.1). If either the
length or the width of the design rectangles are fixed, it reduces to a linear objective
function.

2. The overlap constraints lead to a geometrical situation with an obviously nonconvex
domain. Imagine the rectangle from which to cut the objects and assume that we have
one fixed object if . The feasible area for a set {i1, i2, . . . , in} of n objects with respect
to if is a rectangle without the region covered by if . If all objects are circles the critical
inequality is (2.4) with quadratic and bilinear terms. The relevant center-coordinate
variables are only weakly bounded by the size of the design rectangle itself.

3. Cutting rectangles involves the following nonconvex features: the orthogonality equal-
ity (2.9) with bilinear terms, and the normalization equality (2.11) with a sum of
quadratic terms. The variables vjk involved in the critical terms are bounded by
−max(Sj1, Sj2) and + max(Sj1, Sj2); these bounds grow with with the larger side of
the rectangles to be cut.

4. Cutting polygons involves the following nonconvex features: the normalization equal-
ity (2.18) with a sum of quadratic terms, and the inequalities (2.20) and (2.21) with
bilinear terms. The variables mpp′ involved in the critical terms are bounded by −1
and +1. The auxiliary variables λ are only weakly bounded by the size of the diagonal
of the design rectangle.

As all nonconvex terms present in the model are bilinear or quadratic terms, algorithms
specialized on such nonconvexities might be superior to the general purpose algorithms and
software packages we used. The review by Floudas et al. (2005, [9]) is a good resource for
further references and a description of various approaches; we avoid repeating the material

12

here but list a few of the relevant references among them Androulakis et al. (1995, [3]),
Maranas & Floudas (1995, [20]), Adjiman et al. (1996, [2]), and Adjiman et al. (2000, [1]).

Especially, as we will see in Sect. 4.4, for cutting more than one polygon the gap is not
closed. Thus, one might want to resort to relaxations to derive better lower bounds. Our
approach in Sect. 2.7 is to replace the polygons by simpler objects (in our case) circles.
Another approach is to use algebraic reformulations and convex relaxation techniques as
described in Liberti (2004, [16]), and Liberti & Pantelides (2006, [17]).

2.7 Deriving Lower and Upper Bounds

To reduce the range of variables we compute an upper bound on the area size of the design
rectangle by replacing each polygon by its outer circles, i.e., by the smallest circles enclosing
the polygons; see Appendix A.1. We then compute the optimal design rectangle and its
area, a+, which gives an upper bound to the optimal area, a, of the original problem.
However, it is usually not difficult to find a solution to the original polygon cutting problem
during the presolving phase. Therefore, this upper bound, a+, is only used to reduce the
range of the variable a.

However, it is very important to compute a tight lower bound. One might be attempted
to compute the lower bound, a−, by maximizing the radius rp subject to

(

xpk − x0
p

)2
≥ r2

p ; ∀{p, k|k ≤ Kp} . (2.29)

This gives us the largest circle with all vertices outside of, or on the circumference of the
circle. However, as this circle partially exceeds the polygons, solving the auxiliary problem
in which the polygons are replaced by those circles, would only lead an estimation of the
area, a, but it does not provide a lower bound. Another estimation of a could be derived
from the area, Ap, of the polygon computed by the Gaussian trapezian formula

Ap =
1

2

∣

∣

∣

∣

∣

∣

Kp
∑

k=1

(Xpk1 + Xp,k+1,1) (Xpk2 − Xp,k+1,2)

∣

∣

∣

∣

∣

∣

, (2.30)

where Xp,Kp+1,1 is replaced by Xp,1,1. This would enable us to replace the polygon by its
equivalent-area circle with radius R = 1

π

√

Ap.
A strict way to compute a− is to derive the maximal inner circle with radius Rp of each

polygon p as described in Appendix A.2, replace the polygons by those inner circles, and
to compute the area-minimizing plate hosting all inner circles and original circles.

For all polygons replaced with their maximal inner circles plus all original circles, we
then compute the optimal design rectangle and its area, a−0 , which gives a lower bound
a−1 := a−0 −∆a to the optimal area, a, of the original problem; ∆a is the absolute gap when
solving the auxiliary problem. We can further improve the lower bound if we compute the
following auxiliary quantities: the area access ∆A,

∆A :=
∑

p

(

Ap − πR2
p

)

(2.31)

and the trimloss, z−0 , associated with a−0

z−0 := a−0 −
∑

i

πR2
i −

∑

p

πR2
p , (2.32)

13

where we have reduced a−0 by the area of all original circles i and all inner circles corre-
sponding to the polygons. The lower bound, a−1 , is replaced by

a−2 = a−1 + max(0,∆A − z−0) . (2.33)

Unfortunately, this bound is only effective if the inner circles are poor approximations to the
polygons. If the inner circles are good approximations to the polygons, ∆A is usually smaller
than the circular trimloss z−0 . In that case, however, we would expect that the minimal
design rectangular is very similar to that one obtained when replacing the polygons by the
circles.

Let us briefly illustrate this approach by example c1p6a in Table 5. The original area of
the design rectangle is a = 20.372, and the gap is ∆z = z = 3.849, i.e., the lower bound on
waste or area, 16.523, has not moved at all. The next computational step is to replace all
polygons by their maximal inner circles (object relaxation); the area of all circles is 14.428,
the area access is ∆A = 2.096. The object-relaxed problem gives a design rectangle of
area size a−0 = 18.748; as the circular problem was solved up to a gap of 1.88 · 10−8 the
lower bound on the area is reduced to a−1 = 18.748. The trimloss of the object-relaxed
solution is z−0 = 4.319. As ∆A < z−0 the lower bound on a−1 cannot be further reduced;
thus a−2 = a−1 = 18.748. Therefore, we can summarize the results as

original relaxed improved

quantity

area
waste

(a; z) LB gap

20.372 16.523 3.849
3.849 0.000 3.849

(a−1 ; z−1)

18.748
2.225

(a−2 ; z−2) gap

18.748 1.624
2.225 1.624

relative gap

8.66%
72.99%

where LB stands for lower bound obtained for the original problem; the quantities z denote
waste and corresponds to the area quantities a. Note that the original absolute gap has
been reduced from 3.849 to 1.624, i.e., by about 58% leading to a relative area gap of 8.66%.

3 Modeling: Cutting and Object Allocation to Several Rect-

angles

If the objects do not fit into one rectangle, several rectangles need to be designed and
produced. However, cutting from several rectangles leads to a nonconvex MINLP problem
because in addition to all variables and constraints described in Sect. 2 we need binary
variables δir to decide on the allocation of object i to design rectangle or stocked rectangle
r. Note that in this section we cover both cases: defining new design rectangles subject
to specified lower and upper bounds as well as assigning the objects to a set of stocked
rectangles with given dimensions. We expect this formulation to work efficiently only for a
small number of rectangles r. Problems with a large number of stocked rectangles can be
solved by the column enumeration approach described in Rebennack et al. (2008, [21]).

The assignment constraints are given by the requirement that each objects has to be
allocated, i.e.,

∑

r

δir = 1 ; ∀{i} . (3.34)

14

Assignment to rectangle r is only possible if this rectangle is used at all. We indicate the
usage of rectangle r by the binary variable σr which is coupled to the assignment variables
by

∑

i

δir ≥ σr ; ∀{r} , (3.35)

and
δir ≤ σr ; ∀{i, r} . (3.36)

The inequality (3.36) ensures that objects i can only be allocated to resource rectangle r if
r is used, while (3.35) enforces that at least one object i is assigned to r if r is used. For
design rectangles we add the symmetry breaking constraints

σr ≤ σr−1 ; ∀{r|r > 1} . (3.37)

To avoid the complicating issues to incorporate δir in the non-overlap constraints we use
the following equivalent approach. We arrange all resource rectangles (design, or stocked)
in a chain of rectangles in which each rectangle r is a segment with width wr = xDR

r1 and
length `r = xDR

r2 subject to lower and upper bounds 0 and XSR
rd . Note that this approach

is independent of the sequence. We use this chain of rectangle only to illustrate the ideas
and to construct the following constraints. The variables xDR

rd are coupled to σr by

xDR
rd ≤ XSR

rd σr ; ∀{r, d} . (3.38)

If we consider stocked rectangles the variables xDR
rd are fixed to the given dimensions XSR

rd

of resource plate r, if r is used at all, i.e.,

xDR
rd = XSR

rd σr ; ∀{r, d} . (3.39)

In absolute coordinates, rectangle or segment r starts at length `0
r and occupies the length

coordinate up to `0
r + xDR

r2 . This segment approach guarantees that objects allocated to
different rectangles automatically do not overlap. The only constraints we have to modify
are those constraints or bounds related to the lower and upper bounds of the center of
circles, i.e., (2.5) and (2.6), or vertices of the rectangles (2.7) and polygons (2.16). We
illustrate this approach and the necessary modifications for circles only as the application
to the other objects is obvious. Note that our formulation addresses the full assignment
problem while George et al. (1995, [11]) allocated circles to rectangles by inspecting the
rectangles separately ; they were well aware of the limitation of their approach.

The width coordinate, xi1, of the center of circle i, is now restricted by

xi1 ≤ xDR
r1 + XSR

r1 (1 − δir) − Riδir ; ∀{i, r} . (3.40)

Note that for δir = 0 (3.40) becomes redundant, i.e.,

xi1 ≤ xDR
r1 + XSR

r1 ; ∀{i} , (3.41)

while for δir = 1 (3.40) leads to

xi1 ≤ xDR
r1 − Ri ; ∀{i} , (3.42)

15

as wanted. Note that δir = 1 is only possible if xDR
r1 ≥ 2Ri as otherwise the circle does not

fit into assignment rectangle r at all.
The length coordinate, xi2, is subject to a lower and upper limit in order to fit into a

specific segment. The lower limit is established by

xi2 ≥ `δ
ir − L+(1 − δir) + Ri ; ∀{i} , L+ =

∑

r∈R∗

XSR
r2 (3.43)

where `δ
ir := `0

rδir and L+ is the sum of the lengths of the design or assignment rectangles
(except for the last one) and serves to make (3.43) redundant. An upper limit on xi2 is
given by

xi2 ≤ `δ
ir + xDR

r2 − L+(1 − δir) − Riδir ; ∀{i} , (3.44)

which is similar to (3.40) except for the absence of the bilinear term `δ
r := `0

rδir term
established by

`δ
ir ≤ `0

r ; ∀{i, r} , (3.45)

`δ
ir ≤ L0

rδir ; ∀{i, r} , (3.46)

with upper bound L0
r =

∑r−1
m=1 XSR

r2 on `0
r with L0

1 = 0, and

`δ
ir ≥ `δ

ir − L0
rδir ; ∀{i, r} . (3.47)

Note that Riδir in (3.44) avoids that object i is assigned to a rectangle r if it does not fit
into it.

For design rectangles we add the symmetry breaking constraints

xDR
r1 ≤ xDR

r−1,1 ; ∀{r|r > 1} , (3.48)

i.e., the design rectangles are constructed according to decreasing width. Another symmetry
breaking constraint is the requirement that the width of the design rectangles does not
exceed its length, i.e.,

xDR
r1 ≤ xDR

r2 ; ∀{r} . (3.49)

Finally, if we consider design rectangles, we assign the object with the largest area to the
first design rectangle.

Note that the formulation presented has the following advantage. The binary variables
never show up in the non-overlap or shape constraints. They only connect to the variables
representing the center of the circles or the vertices of the polygons.

4 Numerical Experiments and Results

We present a case study in which we apply the solution approach to solve problems of
a modest number of objects. We consider up to 10 objects to be nested into one design
rectangle. We consider examples with only circles in Sections 4.1 and 4.2; with circles
and rectangles in Sect. 4.3; and with circles and polygons in Sect. 4.4. We also distinguish
experiments with differently shaped objects to be cut and those which have mostly congruent
figures. All experiments have been performed using the Branch&Reduce Optimization
Navigator (BARON) exploiting global optimization techniques; cf. Ghildyal & Sahinidis (2001,

16

[12]) or Tawarmalani & Sahinidis (2002, [28]). For some of them we also tried LindoGlobal

which is part of the GAMS 22.5 distribution. In the tables displayed in the next sections we
use the following symbols:

a optimal area of the design rectangle
Acirc the area occupied by the circles to be cut
Arect the area occupied by the rectangles to be cut
CPU the CPU time in seconds
∆ the absolute gap; sometimes we display a multiple of the gap
L; ` upper bound and optimal length of the design rectangle
n the number of circles
Nrow the number of constraints
Ncol the number of variables
Nnz the number of non-zero coefficients in the problem matrix
Nnlin GAMS code length providing a measure for the complexity of the

nonlinear terms, e.g., exy is, loosely speaking, more nonlinear than xy
Nnlz the number of nonlinear matrix entries in the model
Niter the number of BARON iteration
Nbest the node at which BARON found the optimal solution
Nmem the maximum number of nodes hold in memory
W ;w upper bound and optimal width of the design rectangle
z minimal waste of the design rectangle

4.1 Sets of Mostly Congruent Circles

In this numerical experiments summarized in Table 1 we used n circles of radius R = 0.5,
the cases indicated by a, b, and c contain a few larger circles (a: one circle with radius
R = 0.7, b: one circle with R = 0.9, and c: one circle with R = 0.7 and another one with
R = 0.9), e.g., case c6-b involves 6 circles of radius R = 0.5 and one circle of radius R = 0.9.
Case c6a-x involves 6 circles of radius R = 0.725 and one circle of radius R = 1.2; it was
solved to provide a lower bound on the polygon case c1p6.

17

n case 3 “c3-1” 3 “c3-2” 4 “c4-1” 4 ”c4-2” 5 “c5-1” 5 “c5-2” 6 “c6-1” 6 “c6-2” 6 “c6-3” 7 “c7-1” 7 “c7-2”

Nrow 15 15 23 23 39 34 46 55 46 60 60

Ncol 10 10 12 12 14 14 16 16 16 18 18

Nnz 42 42 70 70 130 108 152 190 152 204 204

Nnlin 138 138 264 264 582 472 702 892 702 453 453

Nnlz 26 26 50 50 106 82 122 162 122 86 86

W ;w 4 ; 1.00 2 ; 1.87 1 ; 1.00 2 ; 2.00 4 ; 1.00 2 ; 2.00 4 ; 2.00 2 ; 2.00 1.9 ; 1.00 4.0 ; 1.00 2.0 ; 2.00

L; ` 8 ; 3.00 2.5 ; 2.00 4 ; 4.00 4 ; 2.00 8 ; 5.00 4 ; 2.73 8 ; 3.00 4 ; 3.00 8.0 ; 6.00 8.0 ; 7.00 6.0 ; 3.73

a 3.0000 3.7320 4.0000 4.0000 5.0000 5.4641 6.0000 6.0000 6.0000 7.00 7.4641014

z 0.6438 1.3758 0.8584 0.8584 1.0730 1.5371 1.2876 1.2876 1.2876 1.5022084 1.9663143

CPU 1 3 4 40 459 82 477 1107 82 1325 442

Niter 21 455 141 6335 26407 6561 27733 41841 5927 46403 18348

Nbest 21 424 141 228 774 6338 1488 38224 2830 23952 17754

Nmem 4 33 6 105 468 299 563 724 135 887 356

109∆ 1.00 1.38 1.00 1.00 1.07 1.54 1.28 1.54 1.28 1.50 1.97

Table 1: Congruent circles. The first line of the column gives the number, n, of circles and the name assigned to that case. For
an explanation of the other symbols see the table at the beginning of Sect. 4.

n case 7 “c6a-x” 7 “c6-a” 7 “c6-b” 7 “c6-c” 7 “c7-a” 8 “c8-a”

Nrow 56 54 54 65 71 88

Ncol 18 18 18 20 20 22

Nnz 184 180 180 216 240 304

Nnlin 453 453 453 600 600 768

Nnlz 86 86 86 114 114 146

W ;w 4 ; 2.90 2.9 ; 2.00 2.9 ; 2.00 4.0 ; 3.00 1.9 ; 1.86602540 2.1 ; 2.00

L; ` 8 ; 6.47 8.0 ; 4.18 8.0 ; 4.62 8.0 ; 6.87 8.0 ; 5.19820347 8.0 ; 5.18174243

a 18.7529 8.363485 9.2306787 20.62142 9.69997972 10.36348470

z 4.32118 2.111715 1.9735997 4.097526 2.6628121754 2.5409189963

CPU 832 2113 3077 44926 112 34324

Niter 27020 70431 107635 959291 1691 640509

Nbest 26679 59632 67278 925960 1645 639313

Nmem 880 2956 2960 30344 170 19800

109∆ 4.32 2.11 1.97 2.97 2.66 2.55

Table 2: One or two larger circles added to a set of congruent circles.

18

n 5a 5b 6 7 8 9 10

Nrow 24 24 45 39 48 58 77

Ncol 14 14 16 18 20 22 24

Nnz 68 68 150 120 152 188 256

Nnlin 222 222 642 453 600 768 957

Nnlz 42 42 122 86 114 146 182

10Ri 12,6,8,17,5 12,6,8,17,5 “5a” + 13 “6” + 6 “6” + 20,13 “8” + 6 “9” + 7

W ;w 4 ; 3.97 5 ; 4.93 4 ; 3.97 4 ; 3.98 4 ; 4.00 4 ; 4.00 4 ; 4.00

L; ` 8 ; 7.72 18; 5.76 8 ; 7.72 8 ; 7.82 18 ; 13.79 18 ; 13.80 15 ; 13.83

a 30.6272727 28.41130160 30.6273 31.12348131 55.19629959 55.19629958 55.32088961

z 8.57329222 6.35732118 7.78790 7.15312936 14.48125881 13.35028544 11.93549508

CPU 11 116 41 211 548 5288 1577

Niter 163 11469 688 7221 18455 250286 13305

Nbest 88 11408 674 7221 13912 87298 13208

Nmem 16 308 47 316 897 11611 720

108∆ 0.858 0.635 0.778 0.716 1.45 1.34 1.19

Table 3: Several Circles of Different Size. For an explanation of the symbols see the table at the beginning of Sect. 4.

19

0 1 2 3 4 5
0

1

(a) c5-1

0 1 2 3 4 5 6
0

1

2

(b) c6a-x

0 1 2
0

1

2

(c) c5-2

0 1 2 3 4 5
0

1

2

(d) c8a

Figure 3: Mostly Congruent Circles. The circles in (a), and (c) have unit diameter. The
length of the design rectangle is visible in the horizontal, its width in the vertical extension.

In this tables and others which contains only circles to be cut, the waste is given by
z = a −

∑

i πR2
i , and ∆ is the absolute gap between the upper and lower bound of the

objective function z. If the upper limits, W and L, on the size of the design rectangle are
not active, and the x coordinate measures the width, a linear chain of congruent circles
with radii Ri = R and center coordinates (xi, yi) = R(1, 2i − 1) as displayed in Fig. 3(a) is
globally optimal. If a linear chain cannot be established because 2nR > L, solutions with
w = W and ` < L are obtained; see Fig. 3(c).

4.2 Several Circles of Mostly Different Size

In this test series summarized in Table 2 and displayed in Fig. 4 we consider up to 10 circles
of different size for a typical 4 × 8 design plate, and a larger one with L = 18. The cases
with more than 5 circles contain one pair of congruent circles of radius 0.6.

These cases can be solved relatively easily by BARON. However, as cases 5a and 5b
illustrate, the maximum width, W , of the design rectangle has a strong influence on the
solution time. The smaller W , the easier to solve a case. Case 10 has been solved exploiting
the symmetry breaking constraint (2.26).

4.3 Circles and Rectangles

For small cases, the rectangles are modeled as polygons with center x0
q rotated by α with

0◦ ≤ α ≤ 180◦. Even for these small cases, it became important and necessary to specify
priorities on the branching variables; high priority (5000 as BARON option) for x0

q and the
variable cos α is prioritized with the BARON value 1000. Case c1r1-3 has two rows more than
c1r1-1 and c1r1-2 because we included the symmetry breaking inequalities (2.26).

20

0 1 2 3 4 5 6 7
0

1

2

3

(a) c6

0 1 2 3 4 5 6 7
0

1

2

3

(b) c7

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

(c) c9

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

(d) c10

Figure 4: Several Circles of Different Size. The four examples displayed in this figure are
taken from Table 3.

21

n c1r1-1 c1r1-2 c1r1-3 c6r1 c6r2-9 c6r3-9

Nrow 54 54 56 150 499 388

Ncol 47 47 47 56 250 136

Nnz 168 168 172 500 1730 1316

Nnlin 218 218 218 3048 9531 8490

Nnlz 42 42 42 358 1148 950

10Ri 5 5 5 12,6,8,17,13,5 12,6,8,17,13,5 12,6,8,17,13,5

10Sj 1,1.5 5,7.5 10,15 8,5 8,5 ; 10,10 8,5 ; 10,10 ; 3,4

Acirc π/4 π/4 π/4 22.84 22.84 22.84

Arect 0.015 0.375 1.50 0.40 1.40 1.52

W ;w 4 ; 1.00 4 ; 1.00 2.5 ; 1.00 4 ; 3.85243696 4 ; 3.85 4 ; 3.60

L; ` 8 ; 1.00 8 ; 1.50 3.0 ; 2.50 9 ; 7.95916840 9 ; 8.18 9 ; 8.80

a 1.0000 1.5000 2.5000 30.66219452 31.4492 31.6813

z 0.19960183675 0.3396 0.214601528206 7.42271593339 7.20982762724 7.32195479793

CPU 1 42 368 15 60 309

Niter -1 6269 68109 209 -1 -1

Nbest -1 6234 27003 -1 -1 -1

Nmem 0 70 233 15 0 0

∆ 0 10−9 10−9 10−4 0 0

Table 4: Circles and Rectangles

22

n c1p1-1 c1p1-2 c1p1-3 c1p5a c1p5b c1p6a c3p1b c3p3 c6p3

10Ri 5 5 5 12 12 12 12,6,8 12,6,8 12,6,8,17,13,5

Nrow 54 54 56 799 838 1161 141 516 661

Ncol 47 47 47 767 791 1110 125 489 628

Nnz 168 168 172 2914 3076 4290 484 1836 2294

Nnlin 218 218 218 6252 6492 9303 907 3829 4863

Nnlz 42 42 42 1214 1262 1808 178 748 950

W ;w 4 ; 1.00 4 ; 1.00 2.50 ; 1.00 4 ; 2.50 4 ; 3.90 4 ; 3.00 4 ; 2.68 1 ; 3.40 4 ; 3.97167407

L; ` 8 ; 1.00 8 ; 1.50 3 ; 2.50 8 ; 6.36 8 ; 4.76 8 ; 6.79 8 ; 4.95 4 ; 4.93 8 ; 4.95

a 1.0000 1.5000 2.50 15.90497802 18.55292041 20.37285414 13.29508724 16.75621374 35.10392485

z 0.19960183675 0.3396 0.214601528206 2.88108459665 4.02902699371 3.84896072355 3.62960116801 3.59072766 10.7445462623

CPU 0.1 42 368 2000 1800 1800 53 2000 33000

Niter -1 6269 68109 -1 241 14 1 472 11755

Nbest -1 6234 27003 -1 -1 -1 1 -1 -1

Nmem 0 70 233 0 123 13 1 195 1415

∆ 0 1.00 · 10−9 1.00 · 10−9 2.88108459665 4.02902699371 3.84896072355 9.05 · 10−6 3.59072766 10.7445462623

CPU 3774

a−

1
18.7477203821

∆a 1.88 · 10−8

Acirc 14.42828163

z−
0

4.3194387521

∆A 2.096

a−

2
18.7477203821

∆2 1.6251337579

Table 5: Circles and Polygons; some cases are displayed in Fig. 6. Note that case c6p3 places the same objects as case c6r3.
However, numerically it is less efficient to treat rectangles as general polygons. Column c1p6a demonstrates the effect of exploiting
the lower bound obtained by solving the auxiliary circle problem described in Sect. 2.7; the original gap of 3.85 is reduced to 1.62,
which corresponds to a reduction of more than 50% and a relative area gap of 8.7 percent. More details are given at the end of
Sect. 2.7. a−1 is the lower bound on the area of the design rectangle obtained by solving the problem with all polygons replaced by
their maximum size inner circle; ∆a is the absolute gap obtained for this relaxed problem. Acirc denotes the area occupied by the
original circles. z−0 is the trimloss associated with the solution of the relaxed problem, ∆A is the area access of polygons minus
their inner circles, a−2 and ∆2 are the lower bound and the absolute gap after evaluating the area access and relaxed trimloss.

23

0 1 2 3 4 5 6 7
0

1

2

3

(a) c6r1

0 1 2 3 4 5 6 7 8
0

1

2

3

(b) c6r2

0 1 2 3 4 5 6 7 8
0

1

2

3

(c) c6r3-9

Figure 5: Cutting Circles and Rectangles. Note that the configuration displayed in Subfigure
(c) is not globally optimal. The smallest rectangle could be moved elsewhere giving more
space for the small circle on the right of it allowing the largest circle to move to the left,
and thus leading to a reduced length of the design plate.

The larger cases displayed in Fig. 5 with 6 circles and 1, 2, or 3, resp., rectangles
have been solved to optimality during the preprocessing phase using the model formulation
presented in Sect. 2.4.2; for rectangles this model is more efficient than the general polygon
case. In this case the area, Acirc, covered by the circles is 22.84 while the rectangles cover
only 1.52, i.e., the rectangles can easily placed in the empty space between the circles.

4.4 Circles and Polygons

The circle-polygon experiments are summarized in Table 5; some of them are displayed in
Fig. 6. In the examples c1p1-1, c1p1-2, and c1p1-3 the polygons were rectangles of size
0.1× 0.15, 0.5× 0.75, and 0.5× 0.75, respectively. In the other cases, the coordinates of the
polygon vertices were

case polygons and their vertices
c1p1-1 1 × 0.05(0, 0; 0, 2; 3, 2; 3, 0)
c1p1-2 1 × 0.25(0, 0; 0, 2; 3, 2; 3, 0)
c1p1-3 1 × 0.25(0, 0; 0, 2; 3, 2; 3, 0)
c1p5a 2 × 1

2
(0, 0; 0, 2; 1, 3; 2, 3; 3, 2; 3, 0)

c1p5b 5 × 1
2
(0, 0, 0, 2, 1, 3, 2, 3, 3, 2; 3, 0)

c1p6a 6 × 1
2
(0, 0; 0, 2; 1, 3; 2, 3; 3, 2; 3, 0)

c3p3 2 × 1
2
(0, 0, 0, 2, 1, 3, 2, 3, 3, 3, 0) + 1 × 1

2
(0, 0, 0, 2, 3, 2, 3, 0)

c6p3 1 × 0.1(0, 0; 0, 8; 5, 8; 5, 0) + 1 × (0, 0; 0, 1; 1, 1; 1, 0) + 1 × 0.1(0, 0; 0, 3; 4, 3; 4, 0)

24

Let us illustrate the interpretation of this table by case c1p5a with 6 vertices (0,0), (0,1),
(0.5,1.5), (1,1.5), (1.5,1), and (1.5,0). The small gap of 9.05 · 10−6 in case c3p1b could only
be reached when we used the symmetry breaking inequality (2.27). Case c6p3 contains the
same rectangles as c6r3-9, but represents them as general polygons. Table 5 shows that
only small and moderate cases with less than 200 nonlinear non-zero coefficients can be
solved to small gaps. For all other experiments the solutions listed have been solved during
preprocessing. However, during the Branch&Reduce phase, no further solutions were found
nor the lower bound was increased. In case c1p6a we applied the bound improving approach
described in Sect. 2.7. The two-polygon problem displayed in Fig. 6(c) was solved to global
optimality using LindoGlobal within 2 minutes.

0 1 2 3 4 5 6
0

1

2

3

(a) c1p6a

0 1 2 3 4
0

1

2

3

(b) c1p4M1

0 1 2
0

1

(c) p2

0 1 2 3 4
0

1

2

3

(d) c3p3

0 1 2 3 4 5 6 7 8
0

1

2

3

(e) c6p3

Figure 6: Circles and Convex Polygons. Although all solutions have been produced in short
time, in most cases we were not able to find solutions with gaps smaller than 10−7. The
configurations displayed in Subfigures (a) and (e) are obviously not the global optimum. In
(a) one could move the two right polygons left to the circle; in case (e) the small circle at
the lower left of the big circle could be placed at the position of the small rectangle at the
upper left corner of the sheet; the big circle could be moved towards left possibly adjacent
to the other two circles, and the small rectangle previously at the upper left corner of the
sheet could be placed at the lower right corner of the sheet below the displaced great circle
– this would decrease the length of the sheet while keeping the width the same. Only the
two-polygon configuration displayed in Subfigure (c) was proven to be the global optimum.

4.5 Cutting and Allocating Objects to Several Rectangles

Here we consider numerical experiments for constructing simultaneously several design rect-
angles (Fig. 8) and assigning objects to stocked rectangles (Fig. 7). Using the formulation
described in Sect. 3 we produced feasible solutions with in one or two minutes. But in none
of these cases were we able to find solutions with gaps smaller than 10−7.

25

0 1 2
0

1

2

3

4

5

6

(a) Resource: 2

0 1 2 3 4
0

1

2

3

4

5

6

7

8

(b) Resource: 4

Figure 7: 5 circles are allocated to 2 of 5 stocked plates. Note that the circles are placed
within the stocked plates but are not yet arranged optimally. This could be accomplished
by solving an additional strip or bin packing problem.

4.6 Summarizing the Experiments

In all circular experiments we found good feasible solutions within seconds or the latest in
minutes. Cutting only circles is easiest which is not a surprise as the numbers of variables
and constraints are small. Solution with gaps between the upper and lower bound of the
objective function of the order of 10−8 are within seconds and minutes; these seem to be
good approximations to the global optimum. Cutting congruent circles requires to use
the symmetry breaking constraints (2.28). Achieving small gaps is difficult when several
polygons are involved, especially, when several larger ones need to be cut. Addressing
the community of reliable computing and interval arithmetic, we point out that all our
statements about small gaps and global optima are subject to the limits related to the fact
that BARON deals with finite number arithmetic subject to round-off errors. Shortly before
submitting this paper, LindoGlobal became available in the most recent GAMS 22.5 release.
On problems with a small number of circles, it produced quickly solutions with gaps of the
order of 10−11. BARON produced smaller for cases with more circles.

In the polygon experiments with more than one polygon we found feasible solutions
within seconds or the latest in minutes but the relative gaps were 100% with the lower bound
not moving away from zero. An interesting case is the two-polygon problem displayed in
Fig. 6(c); here LindoGlobal proved global optimality within 40 minutes, a case on which
BARON did not increase the lower bound at all. For larger polygon cases we experienced
similar problems as with BARON. Nevertheless, the overall experience with both commercial
solvers is encouraging.

5 Conclusions

We have developed NLP and MINLP models describing the problem of cutting circles, rect-
angles and polygons from rectangular design or stocked plates, and applied several solution

26

0 1 2 3 4
0

1

2

3

4

5

6

7

8

(a) c4c1a: 1

0 1 2 3 4
0

1

2

3

4

5

(b) c4c1a: 2

0 1 2 3 4
0

1

2

3

4

(c) c4c1a: 3

0 1 2 3
0

1

2

3

4

5

6

7

(d) c4c1b: 1

0 1 2 3
0

1

2

3

4

5

6

(e) c4c1b: 2

0 1 2 3 4
0

1

2

3

4

5

6

7

(f) c9: Plate 1

0 1 2 3
0

1

2

3

4

5

6

7

8

(g) c9: Plate 2

Figure 8: Subfigures (a,b,c) show three design plates to be produced to cut four circles of
radius R = 2, and one smaller circle with R = 1. Subfigures (d,e) show a similar case with
four circles of radius R = 1.5. In the third case (f,g), two plates are generated to cut 9
circles.

27

techniques to solve this problem among them the Branch&Reduce Optimization Navigator
(BARON) called from GAMS, and, for solving the allocation problem, a column enumeration ap-
proach [Rebennack et al. (2008, [21])] in which the columns represent feasible assignments.
It is the first time when circles and arbitrary convex polygons are cut simultaneously. Good,
often near globally optimal solutions with gaps of the order of 10−8, are computed within
seconds or minutes usually during preprocessing. As it is expected from the NP-hard na-
ture of the problem, we can derive such small gaps within seconds or minutes only for small
cases. Symmetry degeneration is tackled by appropriate symmetry breaking constraints.
Cases with small rectangles and polygons, which fit in the free space between the circles,
are relatively easy to solve. Cases with large polygons and significant trimloss are much
more difficult, and at best we have derived reasonable lower bounds by exploiting an aux-
iliary model using the maximum inner circle fitting into a polygon. The upper bound, W ,
on the width of the design rectangle plays an important role. The smaller W , the faster
near globally optimal solutions with gaps smaller than 10−7 are reached.

The approach developed here serves real world applications in which one has to cut
valuable material. In such cases, solutions proven to be globally optimal can be superior
to solutions produced by heuristics. For cases with small number of objects to be cut,
the computational effort meets the practical requirements. The reformulation–linearization
technique (RLT) approach by Liberti (2004, [16]), and more recently, Liberti & Pantelides
(2006, [17]) can extend the limit of problem sizes which can be solved with reasonable gaps.
If cases with significantly more objects need to be solved, or a certain time limit must not
be exceeded in a real world application one might resort to metaheuristics.

Acknowledgements: Thanks is directed to Steffen Rebennack (University of Florida)
for proof reading and supporting the production of the graphics. Christodoulos A. Floudas
(Princeton University) improved this publication by pointing me to a set of publications of
E. G. Birgin and co-workers. Comments by and discussions with Leo Liberti (LIX Ecole
Polytechnique, F-91128 Palaiseau, France), Tapio Westerlund (Abo Adademi University,
Turku, Finland), and Tibor Csendes (University of Szeged, Szeged, Hungary) are greatly
acknowledged. Two unknowns referees made constructive and valuable suggestions and
thus helped to improve this paper.

28

References

[1] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global Optimization of Mixed
Integer Nonlinear Problems. AIChE Journal, 46:1769–1797, 2000.

[2] C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas. A Global
Optimization Method aBB for Process Design. Computers & Chemical Engineering
Suppl., 20:S419–424, 1996.

[3] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. aBB: A Global Optimization
Method for General Constrained Nonconvex Problems. Journal of Global Optimization,
7:337–363, 1995.

[4] E. G. Birgin, J. M. Mart́ınez, F. H. Nishihara, and D. P. Ronconi. Orthogonal Packing
of Rectangular Items within Arbitrary Convex Regions by Nonlinear Optimization.
Computers & Operations Research, 33:3535–3548, 2006.

[5] E. G. Birgin and F. N. C. Sobral. Minimizing the Object Dimensions in Circle and
Sphere Packing Problems. Computers & Operations Research, 34:online 16. Jan 2007,
2007.

[6] A. Brooke, D. Kendrick, and A. Meeraus. GAMS – A User’s Guide (Release 2.25).
Boyd & Fraser Publishing Company, Danvers, Massachusetts, 1992.

[7] K. A. Dowsland and W. B. Dowsland. Packing Problems. European Journal of Oper-
ational Research, 56:2–14, 1992.

[8] H. Dyckhoff. A Typology of Cutting and Packing Problems. European Journal of
Operational Research, 44:145–159, 1990.

[9] C. A. Floudas, I. G. Akrotiriankis, S. Caratzoulas, C. A. Meyer, and J. Kallrath.
Global Optimization in the 21st Century: Advances and Challenges for Problems with
Nonlinear Dynamics. Computers and Chemical Engineering, 29:1185–1202, 2005.

[10] H. J. Fraser and J. A. George. Integrated Container Loading Software for Pulp and
Paper Industry. European Journal of Operational Research, 77:466–474, 1994.

[11] J. A. George, J. M. George, and B. W. Lamar. Packing Different-sized Circles into a
Rectangular Container. European Journal of Operational Research, 84:693–712, 1995.

[12] V. Ghildyal and N. V. Sahinidis. Solving Global Optimization Problems with BARON.
In A. Migdalas, P. Pardalos, and P. Varbrand, editors, From Local to Global Opti-
mization. A Workshop on the Occasion of the 70th Birthday of Professor Hoang Tuy,
chapter 10, pages 205–230. Kluwer Academic Publishers, Boston, MA, 2001.

[13] W. Q. Huang, Y. Li, H. Akeb, and C. M. Li. Greedy Algorithms for Packing Unequal
Circles into a Rectangular Container. Journal of the Operational Research Society,
56:539–548, 2005.

29

[14] S. Jakobs. On Genetic Algorithms for the Packing of Polygons. European Journal of
Operational Research, 88:165–181, 1996.

[15] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of Packing, Covering, and
Partitioning Problems. In A. Schrijver, editor, Packing and Covering in Combinatorics,
pages 275–291. Mathematisch Centrum, Amsterdam, The Netherlands, 1979.

[16] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization.
Ph.d. thesis, Imperial College London, London, UK, 2004.

[17] L. Liberti and C. Pantelides. An Exact Reformulation Algorithm for Large Nonconvex
NLPs involving Bilinear Terms. Journal of Global Optimization, 36:161–189, 2006.

[18] B. D. Lubachevsky and R. Graham. Dense Packings of Congruent Circles in Rectangles
with a Variable Aspect Ratio. In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors,
Discrete and Computational Geometry – The Goodman-Pollack Festschrift, volume 25
of Algorithms and Combinatorics, pages 633–650. Springer, Heidelberg, 2003.

[19] B. D. Lubachevsky and R. Graham. Minimum Perimeter Rectangles That Enclose
Congruent Non-Overlapping Circles. ArXiv Mathematics e-prints, Dec. 2004.

[20] C. D. Maranas and C. A. Floudas. Finding All Solutions of Nonlinearly Constrained
Systems of Equations. Journal of Global Optimization, 7:143–182, 1995.

[21] S. Rebennack, J. Kallrath, and P. M. Pardalos. Column Enumeration based Decom-
position Techniques for a Class of Non-Convex MINLP Problems. Journal of Global
Optimization, ***:***–***, 2008.

[22] M. Ruda. The Packing of Circles in Rectangles (in Hungarian). Magyar Tud. Akad.
Mat. Fiz. Tud. Oszt. Közl., 19:73–87, 1970.

[23] V. L. Rvachev and Y. G. Stoyan. At the Problem on Optimal Placement of Circles.
Cybernetics, 4:70–75. Kiev, Ukraine (in Russian), 1965.

[24] V. L. Rvachev and Y. G. Stoyan. Solution Algorithms of Optimal Cutting Problems
by Circles when Ristances between a Pair of Circles are given. Cybernetics, 3:73–83.
Kiev, Ukraine (in Russian), 1965.

[25] Y. G. Stoyan and G. N. Yaskov. Mathematical Model and Solution Method of Opti-
mization Problem of Placement of Rectangles and Circles Taking into Account Special
Constraints. International Transactions in Operational Research, 5(1):45–57, 1998.

[26] Y. G. Stoyan and G. N. Yaskov. A Mathematical Model and a Solution Method for the
Problem of Placing Various-Sized Circles into a Strip. European Journal of Operational
Research, 156:590–600, 2004.

[27] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. Garćıa. New
Approaches to Circle Packing in a Square. Springer, Heidelberg, Germany, 2007.

30

[28] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Nonconvex Optimization And Its Applications Series. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2002.

[29] H.-X. Yu and L.-W. Zhang. A Nonlinear Programming Model for the Packing of
Unequal Circles into a Square Box. In Proceedings of the 6th World Congress on
Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China, pages 1044–
1047, 2006.

31

A Auxiliary Models

In this appendix we provide two auxiliary models used to derived upper and lower bounds
on the area of the design rectangle. The basic idea is to replace the polygons by there
smallest outer and largest inner circle.

A.1 Smallest Circles Enclosing the Polygon

The model to compute the smallest circle enclosing polygon p is to minimize the radius r
subject to the constraints that all vertices of the polygon are inside the circle defined by rp

and the center x0, i.e.,
(

xpk − x0
p

)2
≤ r2

p ; ∀{p, k|k ≤ Kp} . (A.50)

The global optimum of this problem is computed within seconds.

A.2 Largest Circle Fitting in the Polygon

For a given polygon p, the radius of the maximal size circle is the maximal smallest height
hpk of all onto the edge Dpk of the triangles given by the sides dpk, dp,k+1 and Dpk, where
Dpk is the distance between vertex Vpk and vertex Vp,k+1,

D2
pk = (Xp,k+1 − Xpk)

2 , (A.51)

and dpk and dp,k+1 are the distance of the vertices Vpk and vertex Vp,k+1 to the center x0
p

of the inner circle

d2
pk =

(

Xpk − x0
p

)2
, d2

p,k+1 =
(

Xp,k+1 − x0
p

)2
; ∀{k|k ≤ Kp} . (A.52)

The objective function of the problem is to maximize hp subject to

hp ≤ htri
pk ; ∀{p, k|k ≤ Kp} . (A.53)

The heights htri
pk depend on the center, x0

p, and the distances dpk, dp,k+1, and Dpk. They
follow from Heron’s area formula with a, b, and c being the lengths of the sides of the
triangle

Fabc =
√

s(s − a)(s − b)(s − c) ; s =
a + b + c

2
(A.54)

and

Fabc =
aha

2
=

bhb

2
=

chc

2
. (A.55)

With a = dpk, b = dp,k+1, and c = Dpk we obtain

htri
pk = 2

F

Dpk
= 2

√

s(s − dpk)(s − dp,k+1)(s − Dpk)

Dpk
, sp =

dpk + dp,k+1 + Dpk

2
.

(A.56)
Let h∗

p be the optimal solution to (A.53). The circle placed at x0
p with radius Rp = h∗

p is
the inner circle of maximal size completely inside the polygon p; see Fig. 9. Under certain
assumptions this circle touches all edges but we cannot count on this. For instance, if the
polygon is a rectangle with different length and width, the inner circle touches only the two
longer edges.

32

h6

h∗

p

x0
p

Vp1

Vp6

Vp5
Vp4

Vp3

Vp2

Dp2

dp3

dp2

Figure 9: Polygon p and its maximal inner circle with radius h∗
p and center x0

p. Note that
the circle has three touching points with the polygon.

33

