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Abstract We develop algorithms computing piece-wise linear, continuous overesti-
mators, underestimators and tubes for univariate functions which minimize the area
between the approximator and the function. We call such approximators area-tight.
Area-tight overestimators, underestimators and tubes areof interest when solving
large-scale mixed-integer non-linear programming problems. The function to be
approximated is typically non-linear and non-convex; it should be univariate and
discontinuous only at a finite number of points. The number ofbreakpoints for the
approximation as well as the absolute allowable deviation of the approximator and
the original function are input for the algorithms. The presented algorithms are fully
automatic and make no assumptions on the shape of the function to be approxi-
mated. We provide computational tests for ten functions.

Key words: Global optimization· piece-wise linear· underestimator· overestima-
tor · tube· are-tight· non-linear optimization· non-convexity

1 Introduction

The motivation for this publication is to follow-up on a previous work by Rebennack
& Kallrath (2012, [11]) to construct over- and underestimators for one-dimensional
functions. These over- and underestimators are used to replace non-linear expres-
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sions by piece-wise linear ones with the idea to approximatea non-linear (and non-
convex) core and to place it into a large mixed-integer linear programming (MILP)
problem. If the approximations of the feasible region and/or the objective function
are constructed carefully, then the resulting MILP problemyields a lower bound
(for minimization problems). In some applications, it is important to detect infeasi-
bility of the original non-convex mixed-integer non-linear programming (MINLP)
problem. Again, careful use of over- and underestimators allows for the safe conclu-
sion of infeasibility of the original MINLP from the infeasibility of the approximate
MILP problem;cf. [11, Section 3.3].

The concept of approximating non-linear functions by piece-wise linear ones has
been around for some time. However,newdevelopments in efficient representation
of the resulting breakpoint systems (Vielma and Nemhauser,2011, [15]) have lead
to more interest in piece-wise linear approximators. Recently, Misener and Floudas
(2012, [8], [9]) utilize such approximators for relaxations (underestimators) when
solving mixed-integer quadratically-constrained quadratic programs.

The automatic computation of optimal breakpoint systems, however, received
very little treatment in the literature. The seminal work byRosen and Pardalos
(1986, [13]) and Pardalos and Rosen (1987, [10, Chapter 8]) uses a system of
equidistant breakpoints to achieve a predefined maximal deviation between a con-
cave quadratic function and the piece-wise linear approximator. Geißler (2011,[1])
and Geißler et al. (2012, [2]) can compute piece-wise linearapproximators (over-
and underestimators) automatically when certain assumptions on the functions are
satisfied. For more than one dimension, Misener and Floudas (2010, [7]) utilize
piecewise-linear formulations via simplices; Rebennack and Kallrath (2012, [12])
use triangulations.

In Rebennack & Kallrath (2012, [11]), we minimize the numberof breakpoints
used to achieve a maximal deviation ofδ between the piece-wise linear approxima-
tor and the original function. Furthermore, we constructedtight approximators by
minimizing the maximal vertical distance between the approximator and the original
function, for a given number of breakpoints. In this paper, we utilize an area-based
tightness definition: allowing a maximal deviation ofδ > 0 andB∈ N ≥ 2 break-
points, we seek a piece-wise linear, continuous approximator which minimizes the
area between the approximator and the original function. Minimizing the error be-
tween the approximator and the original function through anarea-based measure is
expected to produce better results (e.g., tighter bounds) when replacing non-linear
functions by piece-wise linear ones, compared to approaches which ignore any tight-
ness measure.

The idea of minimizing the area between a function is briefly mentioned in Geyer
et al. (2009, [3]). However, their paper does not further follow this idea but rather
prefers a curvature-based approach pointing out that this is of similar quality than
using vertical distances or an area-based approach. Different to our approach, they
cannot guarantee the computation of an optimal breakpoint system.

The contributions of this article are as follows. For univariate functions, we de-
velop methodologies to compute over- and underestimators as well as tubes which
are (1) continuous, (2) do not deviate more than a given toleranceδ > 0 from the
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original function, (3) stay above (for overestimators), below (for underestimators)
or a combination of both (for tubes) and are (4) area-minimizing. Thus, it is the first
paper to describe a framework to automatically compute (optimal) area-minimizing
breakpoint systems for univariate functions.

The remainder of the paper is organized as follows: In Section 2, we provide
various definitions in the context of piece-wise linear approximators. We treat over-
and underestimators in Section 3, tubes in Section 4 and approximators in Section
5. Section 6 contains our computational results. We conclude with Section 7.

2 Definitions

The original (non-linear, non-convex, continuous, and real) function to be approxi-
mated isf (x) over the compactum[X−,X+]⊂R. We denote byℓ(x) : [X−,X+]→R

a function approximatingf (x).
We start with the definition of aδ -approximator for univariate functions.

Definition 1 (δ -approximator, [11]). Let f (x) : [X−,X+]→R be a univariate func-
tion and let scalarδ > 0. A piece-wise linear, continuous functionℓ(x) : [X−,X+]→
R is called aδ -approximatorfor f (x), if the following property holds

max
x∈[X−,X+]

|ℓ(x)− f (x)| ≤ δ . (1)

We require for the piece-wise linearity property of a function that the function is
non-differentiable at a finite number of points.δ -over- andδ -underestimators are
δ -approximators with the additional requirement to stay above or below function
f (x) in the domain[X−,X+]. This is formalized in

Definition 2 (δ -overestimator / δ -underestimator, [11]). We call a piece-wise
linear, continuous functionℓ+(x) : [X−,X+] → R a δ -overestimatorfor function
f (x) : [X−,X+]→ R, if condition (1) is satisfied along with

ℓ+(x)≥ f (x) , ∀ x∈ [X−,X+] . (2)

We call a piece-wise linear, continuous functionℓ−(x) a δ -underestimatorof func-
tion f (x), if −ℓ−(x) is aδ -overestimator of− f (x).

We continue with the definition of aδ -tube.

Definition 3 (δ -tube). We call any combination of a piece-wise linear, continu-
ous δ -overestimatorℓ+(x) for function f (x) and a piece-wise linear, continuous
δ -underestimatorℓ−(x) for f (x) a δ -tubefor f (x).

The definitions ofδ -approximators,δ -overestimators,δ -underestimators, andδ -
tubes require piece-wise linearity and continuity. Thus, we will no longer mention
these function properties explicitly in the remainder of the paper, except if we want
to emphasis these two properties.
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Given univariate functionf (x) over a compactum and theδ -tolerance, we
have two desires on an automatic procedure: (1) it computesδ -approximators,δ -
overestimators and/orδ -underestimators and (2) the number of required breakpoints
(i.e., discontinuities) is minimal. This has been achieved already (Rebennack &
Kallrath, 2012, [11]). Their approach can easily be extended to computeδ -tubes
which require the minimal number of breakpoints; in most cases, such optimalδ -
tubes exhibit the property that the breakpoint systems of the δ -overestimator and
δ -underestimator are identical,i.e., both theδ -overestimator andδ -underestimator
share the same discontinuities.

Vice-versa, one can provide the number of breakpoints and ask for the “tightest”
possibleδ -approximator,δ -overestimator,δ -underestimator, andδ -tube. In [11],
the authors use an absolute function deviation error tolerance criterion as a tightness
definition:

Definition 4 (absolute-error-tolerance-tightness (AETT), [11]). A δ -approxima-
tor, δ -overestimator,δ -underestimator, orδ -tube withB breakpoints for function
f (x) is calledtighter (in the absolute-error-tolerance sense) than aϑ -approximator,
ϑ -overestimator ,ϑ -underestimator, orϑ -tube, respectively, withB breakpoints for
function f (x), if δ ≤ ϑ . A δ -approximator,δ -overestimator,δ -underestimator or
δ -tube withB breakpoints is calledtight (in the absolute-error-tolerance sense) for
f (x), if there is notighter ϑ -approximator,ϑ -overestimator,ϑ -underestimator, or
ϑ -tube for f (x).

In this paper, we utilize an area-based tightness definition:

Definition 5 (area-tightness (AT)).Let ℓ(x) be aδ -approximator,δ -overestimator,
δ -underestimator, orδ -tube withB breakpoints for functionf (x). Further, letA1

be the area betweenℓ(x) and f (x) over the compactum[X−,X+]. Another δ -
approximator,δ -overestimator,δ -underestimator, orδ -tube withB breakpoints for
function f (x) and areaA2 is calledtighter (in the area sense) thanℓ(x) for function
f (x), if A2 ≤ A1. ℓ(x) is calledtight (in the area sense) forf (x), if there is notighter
δ -approximator,δ -overestimator,δ -underestimator, orδ -tube withB breakpoints
for function f (x).

To compute an area-tightδ -approximator,δ -overestimator,δ -underestimator, or
δ -tube, we treat the error-tolerance,δ , and the number of breakpoints,B, as in-
put parameters. Thus, we more precisely call them(δ ,B)-approximator,(δ ,B)-
overestimator,(δ ,B)-underestimator, or(δ ,B)-tube.

Interestingly, AETT is preserved when shifting an absolute-error-tolerance-tight
(δ ,B)-approximator to obtain a(δ ,B)-overestimator or(δ ,B)-underestimator.

Corollary 1 ([11]). Let ℓ(x) : [X−,X+] → R be an absolute-error-tolerance-tight
(δ ,B)-approximator for f(x) and letε = 2δ . Thenℓ+(x) := ℓ(x)+δ andℓ−(x) :=
ℓ(x)− δ define an absolute-error-tolerance-tight(ε ,B)-underestimator and an ab-
solute-error-tolerance-tight(ε ,B)-overestimator, respectively, for f(x)with the same
number of breakpoints B.
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For AETT, it therefore suffice to develop one single algorithm to compute optimal
(δ ,B)-approximators,(δ ,B)-overestimators and/or(δ ,B)-underestimators; a differ-
ent procedure is required for absolute-error-tolerance-tight (δ ,B)-tubes. Unfortu-
nately, AT is not preserved through (careful) shifting.

We present algorithms to compute area-tight(δ ,B)-overestimators and(δ ,B)-
underestimators in Section 3, area-tight(δ ,B)-tubes in Section 4 and area-tight
(δ ,B)-approximators in Section 5. However, before we proceed with the methodol-
ogy, we discuss how to choose the two parameters: the absolute-error tolerance,δ ,
and the number of breakpoints,B. Dependent on the application, we might want to
follow one of the following two paths.

If we desire to compute an approximate solution to the original MINLP problem
with a specific tolerance guarantee in mind (e.g., a safe gap ofε > 0) via piece-wise
linear approximations, one needs to computeδ -approximators,δ -overestimators,
δ -underestimators orδ -tubes with a certain absolute toleranceδ and apply them
appropriately;cf. [11, Section 3.3]. In this case, we might want to proceed as fol-
lows:

1. first, compute the minimum number of breakpoints,B∗, needed to obtain a given
δ -approximation (as discussed in [11]),

2. second, compute an absolute-error-tolerance-tight approximator – (ϑ ,B∗)-appro-
ximator, (ϑ ,B∗)-overestimator, (ϑ ,B∗)-underestimator, or (ϑ ,B∗)-tube – usingB∗

breakpoints (ϑ ≤ δ ; as discussed in [11]), and
3. third, compute an area-tight approximator – (ϑ ,B∗)-approximator, (ϑ ,B∗)-over-

estimator, (ϑ ,B∗)-underestimator, or (ϑ ,B∗)-tube.

Instead of pre-defining the tolerance (δ dependent onε) to achieve a good lower
bound for minimization problems, we might provide the number of breakpoints,B,
to be spend on the piece-wise linear approximators. The number of breakpoints
directly affect the model size in the MILP framework. Thus, we might want to
choose the number of breakpoints in such a way that the resulting MILP problem
remains efficiently solvable with (standard) solvers. Another reason for pre-defining
the number of breakpoints are the use of logarithmic representations in the number
of breakpoints (both in the number of binary variables and constraints involved) of
the resulting breakpoint system; it is efficient to chooseB as a power of 2. GivenB,
we would skip the first step above and compute an absolute-error-tolerance-tight ap-
proximator yielding the toleranceδ . This allows for the computation of an area-tight
approximator usingδ andB.

3 Computing Area-Tight (δ ,B)-Overestimators and
(δ ,B)-Underestimators

We are given the absolute-error toleranceδ (i.e., maximal vertical absolute differ-
ence between the functionf (x) and the approximatorℓ(x)) and the number of break-
points,B, for the univariate functionf (x) along with the closed interval[X−,X+].
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We seek to automatically compute area-tight(δ ,B)-overestimators. The case of
area-tight(δ ,B)-underestimators follows the same logic; we discuss it in brief at
the end of the section a well.

For the following discussions, we require:

• f (x)−δ ≥ 0 for all x∈ [X−,X+], and
• X− ≥ 0.

Both requirements can be achieved through a shift in either the function value direc-
tion ( f (x) attains a minimum in[X−,X+], cf. Extreme Value Theorem) or thex-axis
direction.

For our derivations, we assume that the primitive off (x) exists and we denote
it by F(x), for x∈ [X−,X+]. We do not require its existence for our computations,
though. We are interested in minimizing the area between function f (x) and the
piece-wise linear functionℓ+(x); let L+(x) denote the primitive ofℓ+(x). Therefore,
we need to compute the area between the two functions. Letxb ∈ [X−,X+] denote
thex-value (i.e., footpoint) of thebth breakpoint and letℓ+(xb) be its corresponding
function value. Then, the area betweenf (x) andℓ+(x) can be calculated as

∫ X+

X−

(

ℓ+(x)− f (x)
)

dx

=
B−1

∑
b=1

[

L+(x)−F(x)
]xb+1

xb

=
B−1

∑
b=1

(

L+(xb+1)−L+(xb)
)

+F(x1)−F(xB)

=
1
2

B−1

∑
b=1

(

ℓ+(xb+1)+ ℓ+(xb)
)(

xb+1−xb

)

+F(x1)−F(xB) .

Note that the first identity is true because the approximator, ℓ+(x), never crosses the
function f (x), cf. requirement (2).

We definex1 :=X− andxB :=X+ implying that bothF(x1) andF(xB) are fix,i.e.,
they are constants. Thus, we are interested in minimizing the non-linear expression

B−1

∑
b=1

(

ℓ+(xb+1)+ ℓ+(xb)
)(

xb+1−xb

)

.

Notice that we do not require the primitive (or its existence) of function f (x) any-

more; the numerical value of
∫ X+

X− f (x)dx suffices.
Next, we need to model the decisions on the placement of theB breakpoints, via

decision variablesxb (xb ∈ [X−,X+], xb+1 > xb, b = 2, . . . ,B− 1), and the func-
tion values ofℓ+(x) at the breakpoints, via the shit variablessb (sb ∈ [−δ ,δ ],
b= 1, . . . ,B) with respect tof (x). In this context, we define

φ(xb) := f (xb)+sb , ∀ b= 1, . . . ,B (3)
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which equalsℓ+(xb). The approximatorℓ+(x) is then the corresponding interpolator
between the values ofφ(xb).

Further, we need to ensure conditions (1) and (2). Both requirements lead to
semi-infinite programming problems because an infinite number of (non-linear, non-
convex) constraints need to hold;cf. Hettich and Kortanek (1993, [4]) or Lopez and
Still (2007, [5]). We follow the idea of formulation OBSD as described in [11] and
discretize each interval(xb−1,xb) into I equidistant grid points. Conditions (1) and
(2) need then to hold on this finite grid; we increase the number of grid points
dynamically until a pre-defined tolerance has been reached.

This leads us to the following (non-convex) non-linear programming (NLP) prob-
lem, computing an area-tight(δ ,B)-overestimator for the continuous functionf (x)
on the interval[X−,X+]:

Ã+(δ ,B, I ,M) :=

min
B−1

∑
b=1

(

φ(xb+1)+φ(xb)
)(

xb+1−xb

)

(4)

s.t. xb−xb−1 ≥
1
M

, ∀ b= 2, . . . ,B (5)

xbi = xb−1+
i

I +1
(xb−xb−1) , ∀ b= 2, . . . ,B, i = 1, . . . , I (6)

lbi = φ(xb−1)+
φ(xb)−φ(xb−1)

xb−xb−1
(xbi −xb−1) ,

∀ b= 2, . . . ,B, i = 1, . . . , I (7)

lbi − f (xbi)≤ δ , ∀ b= 2, . . . ,B, i = 1, . . . , I (8)

lbi ≥ f (xbi) , ∀ b= 2, . . . ,B, i = 1, . . . , I (9)

x1 = X−, xB = X+ (10)

xb ∈ [X−,X+] , ∀ b= 2, . . . ,B−1 (11)

xbi ∈ [X−,X+] , ∀ b= 2, . . . ,B, i = 1, . . . , I (12)

lbi free , ∀ b= 2, . . . ,B, i = 1, . . . , I (13)

sb ∈ [0,δ ] , ∀ b= 1, . . . ,B . (14)

The logic of the constraint set (5)-(14) is as follows. Constraints (5) ensure the sort-
ing of the breakpoints and that no two breakpoints can be identical. This becomes
numerically important to avoid a division by zero when calculating the slope of the
approximatorℓ+(x). The value of the constantM needs to be chosen carefully in
order to avoid exclusion of an optimal distribution of the breakpoints. Actually, is it
non-trivial to mathematical (and computational) safely conclude what a sufficiently
large value forM is. Constraints (6) model theI grid points,xbi, for the interval
(xb−1,xb). These grid points are the discretization introduced in order to ensure that
(I) the maximal vertical distance between functionf (x) and the approximatorℓ+(x)
is at mostδ , as required in (1) and modeled via (7) & (8), and that (II) approxima-
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tor ℓ+(x) stays above functionf (x) as required in (2) and modeled via (7) & (9).
Constraints (10)-(14) model the variables’ domain.

The mathematical model (4)-(14) is non-linear, non-convexand continuous: It
consists of 2B+2(B−1)I−2 continuous variables andB+4(B−1)I−1 constraints;
the objective function (4) as well as constraints (7)-(9) are non-convex.

If the NLP (4)-(14) is infeasible, then there are two possibilities: eitherM is too
small or the combination ofδ andB does not allow for the existence of a(δ ,B)-
overestimator.

The idea of the objective function (4) is intuitive: We minimize the area of the
approximatorℓ+(x) and thex-axis; constraints (9) ensure thatℓ+(x) always stays
above functionf (x). Given a sufficiently large value forM denoted byM∗, we can
recover a lower boundA+ on the areaA between the approximatorℓ+(x) and the
original function f (x) via

A+ = 1
2Ã+(δ ,B, I ,M∗)+F(x1)−F(xB) . (15)

Equation (15) constitutes a lower bound on the areaA because both conditions (1)
and (2) are relaxed; they hold only on a finite number of (grid)points.

After solving (4)-(14) to (local or global) optimality, we solve (to global optimal-
ity)

µ+(I) := max
b=2,...,B

µ+
b (I) := max

b=2,...,B
max

x∈[xb−1,xb]

(

ℓ+(x)− f (x)
)

(16)

in order to compute the maximal vertical deviation betweenf (x) and the computed
approximatorℓ+(x) in the interval[X−,X+]. If

µ+(I)≤ δ , (17)

then condition (1) holds true and the computedℓ+(x) defines a(δ ,B)-approximator
for f (x).

We further need to check ifℓ+(x) is below functionf (x) somewhere in the inter-
val (X−,X+). Therefore, we solve (to global optimality)

ψ+(I) := min
b=2,...,B

ψ+
b (I) := min

b=2,...,B
min

x∈[xb−1,xb]

(

ℓ+(x)− f (x)
)

. (18)

If

ψ(I)≥ 0 , (19)

then condition (2) holds true. If both (17) and (19) are satisfied, thenℓ+(x) defines
an area-tight(δ ,B)-overestimator forf (x) with A= A+.

If (17) or (19) are violated by more than a pre-defined toleranceη > 0, then we
increase the number of grid points,I , and re-solve (4)-(14) as well as (16) and (18).
For any desired precisionη > 0, this process, of increasingI , is finite (granted that
the NLP problems can be solved to global optimality).
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Corollary 2. Let f(x) be a continuous function on[X−,X+], δ > 0 and B∈ N ≥ 2
be fixed. Then, for eachη > 0, there exists a finite I∗, such thatµ(I∗)≤ δ +η and
ψ(I∗)≥−η , given that there exists a(δ ,B)-overestimator for f(x).

The proof of Corollary 2 is based on the continuity off (x) over a compactum and
follows from Rebennack & Kallrath [11, Corollary 6].

Following the same logic as for the area-tight(δ ,B)-overestimator, we compute
an area-tight(δ ,B)-underestimator,ℓ−(x), for f (x) on the interval[X−,X+]:

Ã−(δ ,B, I ,M) :=

max
B−1

∑
b=1

(

φ(xb+1)+φ(xb)
)(

xb+1−xb

)

(20)

s.t. (5)− (7), (10)− (13) (21)

f (xbi)− lbi ≤ δ , ∀ b= 2, . . . ,B, i = 1, . . . , I (22)

lbi ≤ f (xbi) , ∀ b= 2, . . . ,B, i = 1, . . . , I (23)

sb ∈ [−δ ,0] , ∀ b= 1, . . . ,B . (24)

Analogously, the condition (1) reads for underestimators

µ−(I) := max
b=2,...,B

µ−
b (I) := max

b=2,...,B
max

x∈[xb−1,xb]

(

f (x)− ℓ−(x)
)

(25)

and (2) is

ψ−(I) := min
b=2,...,B

ψ−
b (I) := min

b=2,...,B
min

x∈[xb−1,xb]

(

f (x)− ℓ−(x)
)

. (26)

Functionℓ−(x) defines an area-tight(δ ,B)-underestimator forf (x) with area

A= 1
2Ã−(δ ,B, I ,M)+F(x1)−F(xB) ,

if both

µ−(I)≤ δ and ψ−(I)≥ 0 . (27)

Corollary 2 reads now

Corollary 3. Let f(x) be a continuous function on[X−,X+], δ > 0 and B∈ N ≥ 2
be fixed. Then, for eachη > 0, there exists a finite I∗, such thatµ−(I∗)≤ δ +η and
ψ−(I∗)≥−η , given that there exists a(δ ,B)-underestimator for f(x).
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4 Computing an Area-Tight (δ ,B)-Tube: (δ ,B)-Overestimators
and (δ ,B)-Underestimators Sharing the Same Breakpoint
System

Recall that the purpose of piece-wise linear approximations of functions is to re-
place a non-liner system of constraints or objective function by MILP constructs
to be placed in a MILP framework. Therefore, consider a non-convex, continuous,
univariate functionf (x) which appears as an equation

f (x) = b , x∈ [X−,X+]

in the constraints of the MINLP problem to be approximated. In this case, one
would compute an area-tight(δ ,B)-overestimator,ℓ+(x), and an area-tight(δ ,B)-
underestimator,ℓ−(x), for f (x). When doing so, there is no guarantee that the
breakpoint systems ofℓ+(x) and ℓ−(x) are identical. Most likely, we would re-
quire 2(B− 1) breakpoints for the resultingδ -tube. Notice that the resulting tube
might not be an area-tight(δ ,2B−2)-tube. For a given number of breakpoints,B,
an are-tight(δ ,B)-tube can be calculated when the(δ ,B)-overestimator and the
(δ ,B)-underestimator share the same breakpoint system. Notice that the resulting
(δ ,B)-overestimator and(δ ,B)-underestimator might not be area-tight, even though
the(δ ,B)-tube is.

Just like in the previous section, for notational convenience, we assume that

• f (x)−δ ≥ 0 for all x∈ [X−,X+], and
• X− ≥ 0.

For (δ ,B)-overestimator,ℓ+(x), and (δ ,B)-underestimator,ℓ−(x), sharing the
sameB breakpoints atxb, the area of the resulting(δ ,B)-tube is derived through

∫ X+

X−

(

ℓ+(x)− ℓ−(x)
)

dx

=
B−1

∑
b=1

[

L+(x)−L−(x)
]xb+1

xb

=
B−1

∑
b=1

(

L+(xb+1)−L+(xb)−L−(xb+1)+L−(xb)
)

=
1
2

B−1

∑
b=1

(

ℓ+(xb+1)+ ℓ+(xb)
)(

xb+1−xb

)

−
1
2

B−1

∑
b=1

(

ℓ−(xb+1)+ ℓ−(xb)
)(

xb+1−xb

)

.

Similar to (3), we define

φ+(xb) := f (xb)+s+b and φ−(xb) := f (xb)+s−b , ∀ b= 1, . . . ,B .
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Following the idea of formulation (4)-(14), we obtain the following continuous,
non-convex NLP problem, computing an area-tight(δ ,B)-tube for the continuous
function f (x) on the interval[X−,X+]:

Ã±(δ ,B, I ,M) :=

min
1
2

B−1

∑
b=1

(

φ+(xb+1)+φ+(xb)−φ−(xb+1)−φ−(xb)
)(

xb+1−xb

)

(28)

s.t. (5), (6), (10)− (12) (29)

l+bi = φ+(xb−1)+
φ+(xb)−φ+(xb−1)

xb−xb−1
(xbi −xb−1) ,

∀ b= 2, . . . ,B, i = 1, . . . , I (30)

l+bi − f (xbi)≤ δ , ∀ b= 2, . . . ,B, i = 1, . . . , I (31)

l+bi ≥ f (xbi) , ∀ b= 2, . . . ,B, i = 1, . . . , I (32)

l−bi = φ−(xb−1)+
φ−(xb)−φ−(xb−1)

xb−xb−1
(xbi −xb−1) ,

∀ b= 2, . . . ,B, i = 1, . . . , I (33)

f (xbi)− l−bi ≤ δ , ∀ b= 2, . . . ,B, i = 1, . . . , I (34)

l−bi ≤ f (xbi) , ∀ b= 2, . . . ,B, i = 1, . . . , I (35)

l+bi , l−bi free , ∀ b= 2, . . . ,B, i = 1, . . . , I (36)

s+b ∈ [0,δ ] , s−b ∈ [−δ ,0], ∀ b= 1, . . . ,B . (37)

Constraint group (29) models the breakpoint system, constraints (30)-(32) model
the overestimator and (33)-(35) the underestimator.

The computedℓ+(x) defines a(δ ,B)-overestimator, if both (17) and (19) hold
true; ℓ−(x) is a (δ ,B)-underestimator, if both conditions in (27) hold. If all four
conditions are satisfied, thenℓ+(x) and ℓ−(x) define an area-tight(δ ,B)-tube for
f (x) on [X−,X+] with areaÃ±(δ ,B, I ,M); otherwise, if at least one of the four
conditions is violated, then the grid sizeI needs to be increased.

We also have a finite convergence argument for tubes.

Corollary 4. Let f(x) be a continuous function on[X−,X+], δ > 0 and B∈N≥ 2 be
fixed. Then, for eachη > 0, there exists a finite I∗, such thatmax{µ+(I∗),µ−(I∗)}≤
δ + η and min{ψ+(I∗),ψ−(I∗)} ≥ −η , given that there exists a(δ ,B)-tube for
f (x).

5 Computing Area-Tight (δ ,B)-Approximators

δ -approximators play the central role in the methodology developed by Reben-
nack & Kallrath (2012, [11]), because they allow for the efficient computation of
(absolute-error-tolerance-tightness)δ -overestimators andδ -underestimators via a
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simple function value shift; minimality in the number of breakpoints required is
preserved as well. The case for area-tight(δ ,B)-approximators is different: AT is
not preserved after a shifting operation.

Over-, underestimators and tubes are important constructswhen replacing NLP
problems; approximators are not equally important, as theydo not allow for the
computation of safe bounds and do not allow for infeasiblitydetection. Thus, we
leave it at a sketch of the idea on how to compute an area-tight(δ ,B)-approximator.

Approximators can intersect with the functionf (x), unlike over- and underesti-
mators. This poses a challenge, when calculating the area between the approximator
and the function. We use the following idea: given that we areworking with a grid
(the I discrete points) on thex-axis, we evaluate the relative position of the ap-
proximatorℓ(x) to the functionf (x) at these grid points by introducing the binary
decision variablesγbi with

−δ
(

1− γbi)≤ f (xbi)− lbi ≤ δγbi , ∀ b= 2, . . . ,B, i = 1, . . . , I .

If f (x) is above (below) the approximatorℓ(x) at pointxbi, i.e., f (xbi)> lbi ( f (xbi)<
lbi), thenγbi = 1 (γbi = 0).

We consider only the case in which the primitive of function of f exists. We
distinguish three cases on the relative position of the approximator to the function
f (x), to calculate an approximation of the area betweenf (x) andℓ(x)

I: γbi = γb,i+1 = 1

F(xb,i+1)−F(xbi)−L(xb,i+1)+L(xbi)

this formula is precise iff (x)≥ ℓ(x) for all x∈ [xbi,xb,i+1]
II: γbi = γb,i+1 = 0

−F(xb,i+1)+F(xbi)+L(xb,i+1)−L(xbi)

this formula is precise iff (x)≤ ℓ(x) for all x∈ [xbi,xb,i+1]
III: γbi 6= γb,i+1 the approximatorℓ intersects with the functionf at least once in

the intervalx∈ [xbi,xb,i+1], we assign the area a value of 0.

The three cases above are restricted to the intervals[xb1,xbI ], b = 2, . . . ,B, and do
neither consider the interval[xb−1,xb1] nor [xbI ,xb] located around the breakpoints,
b= 1, . . . ,B. Therefore, we introduce the binary decision variableγb with

−δ
(

1− γb)≤ sb ≤ δγb , ∀ b= 1, . . . ,B, .

and derive the area of the intervals using the three cases above analogously.
The resulting mathematical programming problem is a mixed-integer non-linear

programming problem, which is non-convex. The number of binary variables de-
pends on the number of breakpoints,B, and the grid size,I . Therefore, we expect
that the computation of area-tight(δ ,B)-approximators is computationally much
harder than the computation of area-tight(δ ,B)-overestimators or area-tight(δ ,B)-
underestimators.
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After the resulting MINLP has been solved, we check if the continuums-condition
(1) is satisfied, via the solution of the global optimizationproblem

µ±(I) := max
b=2,...,B

µb(I) := max
b=2,...,B

max
x∈[xb−1,xb]

∣

∣

∣
ℓ(x)− f (x)

∣

∣

∣
.

If µ(I) > δ , then we increaseI and start-over; otherwise,ℓ(x) is a (δ ,B)-approxi-
mator. The area computed as described above defines a lower bound on the area of
an area-tight(δ ,B)-approximator; an upper bound is obtained by evaluating thearea
between the calculatedℓ(x) and f (x). If the lower and the upper bound on the area
are close enough together, then we stop, otherwise we increaseI further.

6 Computational Results

We execute our computational tests on an Intel(R) i7 @ 2.40Ghz with 8 GB RAM
running 64-bit Windows 7. We use GAMS version 23.8 and solve all non-convex
NLP problems with the global solver LindoGLOBAL [14] to an absolute gap (i.e.,
upper bound minus lower bound) of 10−5.

For our computational tests, we made the following selection for the parameters
I ,M andη . We start with a grid size ofI = 2 and update the number of grid points
according to the following formula

max{⌊1.5I⌋, I +1} .

We chooseM = 10−5 as well asη = 0.001. We use the 10 univariate functions,
taken from the literature, as summarized in Table 1.

Table 2 summarized the computational results for area-tight (δ ,B)-overestima-
tors. We make the following observations: (I) area-tight(δ ,B)-overestimators can
only be computed for a few number of breakpoints; (II) the number of discretization
points (i.e., I ) required to ensure a maximal violation of 0.001 of condition (2) (II.1)
varies widely among the tested functions: if the function isconvex (e.g., function
01), then any discretization suffices, and (II.2) decreaseswith an increase in the
number of breakpoints; (III) the computational time tends to increase exponentially
in the number of breakpoints.

The computational results for area-tight(δ ,B)-underestimators are provided in
Table 3. The concavity of function 02 makes it possible to compute area-tight(δ ,B)-
underestimators for up to 15 breakpoints within the time limit. Functions 08 and 09
are difficult to tightly underestimate: the value ofM needs to be chosen carefully;
local solvers might easily miss a global optimum for (20)-(24).

Results for area-tight(δ ,B)-tubes for the ten test functions are given in Table 4.
The column labeled “A++A−” reports on the sum of the area of the correspond-
ing area-tight(δ ,B)-overestimator and area-tight(δ ,B)-underestimator, which is a
lower bound on the area of a(δ ,B)-tube. Further,µ± := max{µ+,µ−} provides
the maximal absolute vertical deviation of the tube to the original function f (x). In-
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Table 1: One-dimensional test functions taken from Rebennack and Kallrath (2013,
[11]).

# f(x) X− X+ Comment

01 x2 -3.5 3.5 convex function; axial symmetric atx= 0
02 lnx 1 32 concave function
03 sinx 0 2π point symmetric atx= π
04 tanh(x) -5 5 strictly monotonically increasing; point

symmetric atx= 0

05 sin(x)
x 1 12 for numerical stability reason we avoid the

removable singularity and the oscillation at
0, the two local minima have an absolute
function value difference of≈ 0.126

06 2x2+x3 -2.5 2.5 in (−∞,∞), there is one local minimum at
x= 0 and one local maximum atx= 4

3
07 e−x sin(x) -4 4 one global minimum (xm ≈ −2.356 with

f (xm)≈−7.460)

08 e−100(x−2)2 0 3 a normal distribution with a sharp peak at
x=2

09 1.03e−100(x−1.2)2 +e−100(x−2)2 0 3 the sum of two Gaussians, with two slightly
different maxima (their absolute function
value difference is≈ 0.030)

10 Maranas & Floudas (1994, [6]) 0 2π three local minima (the absolute function
value difference of the two smallest local
minima is≈ 0.031)

terestingly, the area of an area-tight(δ ,B)-tube is only marginally larger (if at all),
for the tested functions, compared to the area provided by combining an area-tight
(δ ,B)-overestimator with an area-tight(δ ,B)-underestimator, while the number of
breakpoints for the area-tight(δ ,B)-tubes is almost half compared to the combina-
tion of an area-tight(δ ,B)-overestimator with an area-tight(δ ,B)-underestimator.
Computing area-tight(δ ,B)-tubes is computationally more challenging than com-
puting area-tight(δ ,B)-overestimators and area-tight(δ ,B)-underestimators. How-
ever, it remains computational tractable to compute area-tight (δ ,B)-tubes for a
small number of breakpoints.

Figure 1 shows plots of the ten test functions together with an area-tight(δ ,B)-
overestimator,(δ ,B)-underestimator or(δ ,B)-tube. The presented over-, underesti-
mators and tubes correspond to the results of Tables 2, 3 and 4.

7 Conclusions

In this paper, we extend the literature on methodologies which automatically com-
pute optimal piece-wise linear overestimators, underestimators and tubes for uni-
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Table 2: Area-tight(δ ,B)-overestimators for the functions provided in Table 1.

# B δ A+ ψ+ µ+ I sec.

01 3 3.10 14.2917 0.0000000 3.063 2 0.19
4 1.50 6.3519 0.0000000 1.361 2 0.91
5 1.10 3.5729 0.0000000 0.766 2 24.35
6 1.10 2.2867 0.0000000 0.490 2 329.53
7 0.40 1.5880 0.0000000 0.340 2 0.78
8 0.40 – – – 2 3600.07†

02 3 1.00 2.4186 -0.0005192 0.900 9 4.38
4 0.85 1.1780 -0.0005961 0.494 9 154.21
5 0.45 – – – 2 3600.10†

03 3 1.50 3.4820 -0.0005656 1.365 28 12.37
4 0.40 0.7448 -0.0002769 0.278 28 50.67
5 0.40 0.4484 -0.0004956 0.311 28 1348.89
6 0.40 0.2958 -0.0006979 0.125 13 5965.65
7 0.40 – – – 3 7081.38†

04 3 1.00 3.2294 -0.0002624 0.958 13 4.07
4 0.30 0.4874 -0.0007642 0.192 3 3.42
5 0.20 0.2660 -0.0002292 0.172 13 136.22
6 0.20 0.1819† -0.0010273† – 19 7808.39†

05 3 1.00 1.4856 -0.0007117 0.301 42 30.76
4 0.40 0.5659 -0.0004862 0.106 13 28.47
5 0.40 0.3583 -0.0002181 0.102 13 412.04
6 0.40 0.1849 -0.0007009 0.049 9 1650.26
7 0.40 0.1395† -0.0041407† – 6 6894.49†

06 3 5.00 8.4034 -0.0004046 3.959 28 11.81
4 4.50 4.5613 0.0000000 4.369 63 1035.67
5 4.50 3.1492† -0.0027268† – 42 9040.39†

07 3 30.00 17.0289 -0.0005812 7.490 94 87.63
4 10.00 11.9770 -0.0002707 9.569 42 846.74
5 4.00 4.8733 -0.0003621 3.603 28 5184.76
6 4.00 2.7909† -0.0053520† – 3 5223.90†

08 3 1.00 1.3130‡ -0.0110870‡ – 141 562.27‡
4 1.00 0.4476 0.0000000 0.785 63 6338.37
5 1.00 0.0626 -0.0006100 0.237 13 622.74
6 1.00 0.0376† -0.0016832† – 28 6845.49†

09 3 1.00 1.9998‡ -0.0077818‡ – 141 1262.31‡
4 1.00 1.3293† -0.0862732† – 42 7569.87†

10 3 4.00 10.2380‡ -0.0069331‡ – 141 4376.43‡
4 4.00 8.6188† -0.1971054† – 19 9491.13†

†: out of time (time limit per model is 3600 seconds)
‡: model size exceeds license limits
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Table 3: Area-tight(δ ,B)-underestimators for the functions provided in Table 1.

# B δ A− ψ− µ− I sec.

01 3 3.10 7.1458 -0.0001151 3.100 3 0.73
4 1.50 3.1759 -0.0000429 1.376 9 41.06
5 1.10 1.7801† -0.0009104† – 28 4542.38†

02 3 1.00 5.9903 0.0000000 0.564 2 0.33
4 0.85 2.6130 0.0000000 0.319 2 2.03
5 0.45 1.4598 0.0000000 0.205 2 28.95
6 0.45 0.9312 0.0000000 0.143 2 5.80
7 0.25 0.6455 0.0000000 0.106 2 51.80
8 0.25 0.4738 0.0000000 0.081 2 61.68
9 0.25 0.3625 0.0000000 0.064 2 44.42

10 0.25 0.2863 0.0000000 0.052 2 67.59
11 0.25 0.2318 0.0000000 0.043 2 8.77
12 0.25 0.1915 0.0000000 0.036 2 299.95
13 0.25 0.1609 0.0000000 0.031 2 380.18
14 0.25 0.1371 0.0000000 0.027 2 858.85
15 0.25 0.1182 0.0000000 0.023 2 526.15
16 0.25 – – – 2 3601.02†

03 3 1.50 3.4820 -0.0005656 1.365 28 13.46
4 0.40 0.7448 -0.0002769 0.278 28 62.06
5 0.40 0.4484 -0.0004956 0.311 28 1118.99
6 0.40 0.2958† -0.0027497† – 13 7059.87†

04 3 1.00 3.2294 -0.0002941 0.958 13 3.03
4 0.30 0.4874 -0.0007642 0.192 3 3.06
5 0.20 0.2661 -0.0000696 0.180 19 202.68
6 0.20 0.1819† -0.0010272† – 19 6774.00†

05 3 1.00 1.0176 -0.0006447 0.285 9 2.71
4 0.40 0.3514 -0.0008220 0.157 13 56.77
5 0.40 0.2615 -0.0002037 0.150 19 1854.52
6 0.40 – – – 3 6561.11†

06 3 5.00 7.1298 -0.0005952 3.779 3 1.39
4 4.50 4.0965 -0.0007573 4.351 63 1319.01
5 4.50 2.0713† -0.0048858† – 28 7504.65†

07 3 30.00 20.1332‡ -0.0085689‡ – 141 196.96‡
4 10.00 6.3694† -0.0016387† – 94 6880.37†

08 3 1.00 0.1772 0.0000000 1.000 3 0.86
4 1.00 0.1764 -0.0009344 0.997 4 67.11
5 1.00 0.0205 0.0000000 0.108 6 425.71
6 1.00 0.0142 -0.0000999 0.106 4 354.25
7 1.00 0.0142 -0.0000999 0.106 4 731.74
8 1.00 0.0109† -0.0066468† – 9 6050.35†

09 3 1.00 0.3598 0.0000000 1.030 6 4.81
4 1.00 0.3597 -0.0001966 1.030 9 646.77
5 1.00 0.1984 0.0000000 1.000 6 1832.71
6 1.00 0.1966 -0.0004934 1.030 4 2752.09
7 1.00 – – – 2 3601.98†

10 3 4.00 7.9921‡ -0.0017494‡ – 141 5844.36‡
4 4.00 6.218† -0.2982953† – 13 5864.30†

†: out of time (time limit per model is 3600 seconds)
‡: model size exceeds license limits
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Fig. 1: Continued.



18 Josef Kallrath and Steffen Rebennack

Table 4: Area-tight(δ ,B)-tubes for the functions provided in Table 1.

# B δ A++A− A± ψ+ ψ− µ± I sec.

01 3 3.10 21.4375 21.4375 0.0000000 -0.0001148 3.100 3 1.40
4 1.50 9.5278 9.5278 0.0000000 -0.0000105 1.369 9 178.39
5 1.10 ♯ 5.3594† 0.0000000† -0.0156250† – 9 3707.36†

02 3 1.00 8.4089 8.4292 -0.0008616 0.0000000 0.788 13 19.56
4 0.85 3.7910 3.7946 -0.0004650 0.0000000 0.449 9 257.74
5 0.45 ♯ 2.1479 -0.0003956 0.0000000 0.282 9 437.53
6 0.45 ♯ 1.3279† -0.0016468† 0.0000000† – 4 3833.89†

03 3 1.50 6.9639 7.3622 -0.0000396 -0.0004090 1.500 42 91.53
4 0.40 1.4896 1.5018 -0.0006088 -0.0006088 0.257 19 141.01
5 0.40 0.8967 1.0616† -0.0020084† -0.0088723† – 9 4516.01†

04 3 1.00 6.4588 7.9908 -0.0006473 -0.0002773 1.000 42 85.96
4 0.30 0.9748 0.9967 -0.0006409 -0.0006409 0.154 6 42.62
5 0.20 0.5321 0.7070 -0.0002143 -0.0006732 0.174 13 1858.18
6 0.20 ♯ – – – – 2 3600.11†

05 3 1.00 2.5032 2.6914 -0.0006133 -0.0003608 0.453 42 70.57
4 0.40 0.9173 0.9235 -0.0006387 0.0000000 0.157 13 115.89
5 0.40 0.6198 0.6192† -0.0028052† -0.0007355† – 13 5500.06†

06 3 5.00 15.5331 15.6470 -0.0007989 -0.0008506 4.466 63 131.09
4 4.50 8.6578 10.2935† 0.0000000† -0.0039028† – 63 5896.67†

07 3 30.00 ♯ 37.492‡ -0.0006538‡ -0.0073744‡ – 141 494.11‡
4 10.00 ♯ 19.2815 -0.0003845 -0.0009017 10.000 42 3810.09
5 4.00 ♯ 8.518† -0.0241269† -0.0248196† – 13 9022.88†

08 3 1.00 ♯ 1.4903‡ -0.0110513‡ 0.0000000‡ – 141 3660.14‡
4 1.00 0.6249 0.6221† -0.1077110† 0.0000000† – 42 3889.13†

09 3 1.00 ♯ 2.3596† -0.0152941† 0.0000000† – 94 5729.48†
4 1.00 ♯ 1.7519† -0.0862732† 0.0000000† – 42 7235.23†

10 3 4.00 ♯ 18.6457† -0.0125147† -0.0071669† – 94 8319.97†
4 4.00 ♯ 13.1937† -1.0792070† -0.0033989† – 9 4397.01†

†: out of time (time limit per model is 3600 seconds)
‡: model size exceeds license limits
♯: over- and/or underestimator problem was not solved to global optimality

variate functions. The computed approximators are optimalamong all piece-wise
linear, continuous functions in the sense that they minimize the area between the
function and the approximator. Our methodology for computing area-tight(δ ,B)-
overestimators,(δ ,B)-underestimators and(δ ,B)-tubes require the solution of a se-
ries of continuous, non-linear, and non-convex mathematical programming prob-
lems.

The computational tests reveal that it is worth-while to compute area-tight
(δ ,B)-tubes which share the same breakpoint system, rather than computing(δ ,B)-
overestimators and(δ ,B)-underestimators individually, if tubes are desired.
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Fig. 1: The ten univariate functions together with computed(δ ,B)-overestimator,
(δ ,B)-underestimator, or(δ ,B)-tube.

— original function f (x)
— approximator functionℓ+(x), ℓ−(x), or ℓ±(x)

References

1. B. Geißler. Towards Globally Optimal Solutions for MINLPs by Discretization Tech-
niques with Applications in Gas Network Optimization. Dissertation, Friedrich-Alexander-
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