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Abstract We develop algorithms computing piece-wise linear, cartirs overesti-

mators, underestimators and tubes for univariate funstigmich minimize the area
between the approximator and the function. We call suchaapiators area-tight.
Area-tight overestimators, underestimators and tubesfigerest when solving
large-scale mixed-integer non-linear programming pnoisleThe function to be
approximated is typically non-linear and non-convex; ibwd be univariate and
discontinuous only at a finite number of points. The numbesrefikpoints for the
approximation as well as the absolute allowable deviatfath@® approximator and
the original function are input for the algorithms. The gneted algorithms are fully
automatic and make no assumptions on the shape of the fartctibe approxi-

mated. We provide computational tests for ten functions.

Key words: Global optimization piece-wise linear underestimator overestima-
tor - tube- are-tight- non-linear optimization non-convexity

1 Introduction

The motivation for this publication is to follow-up on a preus work by Rebennack
& Kallrath (2012, [11]) to construct over- and underestiaratfor one-dimensional
functions. These over- and underestimators are used taceplon-linear expres-
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sions by piece-wise linear ones with the idea to approxiraaten-linear (and non-
convex) core and to place it into a large mixed-integer lirragramming (MILP)

problem. If the approximations of the feasible region antle objective function
are constructed carefully, then the resulting MILP problgeids a lower bound
(for minimization problems). In some applications, it isgantant to detect infeasi-
bility of the original non-convex mixed-integer non-lingarogramming (MINLP)

problem. Again, careful use of over- and underestimatdesvalfor the safe conclu-
sion of infeasibility of the original MINLP from the infedsility of the approximate
MILP problem;cf.[11, Section 3.3].

The concept of approximating non-linear functions by piedse linear ones has
been around for some time. Howeveew developments in efficient representation
of the resulting breakpoint systems (Vielma and Nemha@§dr], [15]) have lead
to more interest in piece-wise linear approximators. Reégedisener and Floudas
(2012, [8], [9]) utilize such approximators for relaxatiofunderestimators) when
solving mixed-integer quadratically-constrained quédarograms.

The automatic computation of optimal breakpoint systenasydver, received
very little treatment in the literature. The seminal work Bgsen and Pardalos
(1986, [13]) and Pardalos and Rosen (1987, [10, Chapter % & system of
equidistant breakpoints to achieve a predefined maximaatien between a con-
cave quadratic function and the piece-wise linear appratom Geif3ler (2011,[1])
and Geiller et al. (2012, [2]) can compute piece-wise lirggaroximators (over-
and underestimators) automatically when certain assomgptn the functions are
satisfied. For more than one dimension, Misener and Flouas0( [7]) utilize
piecewise-linear formulations via simplices; Rebennautt Kallrath (2012, [12])
use triangulations.

In Rebennack & Kallrath (2012, [11]), we minimize the numbébreakpoints
used to achieve a maximal deviation®between the piece-wise linear approxima-
tor and the original function. Furthermore, we construdight approximators by
minimizing the maximal vertical distance between the aginator and the original
function, for a given number of breakpoints. In this papes,wilize an area-based
tightness definition: allowing a maximal deviation ®f> 0 andB € N > 2 break-
points, we seek a piece-wise linear, continuous approximaltiich minimizes the
area between the approximator and the original functiomifiizing the error be-
tween the approximator and the original function througlaga-based measure is
expected to produce better resuktsy, tighter bounds) when replacing non-linear
functions by piece-wise linear ones, compared to appra&aeshih ignore any tight-
ness measure.

The idea of minimizing the area between a function is briefiyntioned in Geyer
et al. (2009, [3]). However, their paper does not furthelofelthis idea but rather
prefers a curvature-based approach pointing out thatghi$ similar quality than
using vertical distances or an area-based approach. &ifféo our approach, they
cannot guarantee the computation of an optimal breakpgatem.

The contributions of this article are as follows. For uniage functions, we de-
velop methodologies to compute over- and underestimasovgetl as tubes which
are (1) continuous, (2) do not deviate more than a givenaols¥d > 0 from the
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original function, (3) stay above (for overestimators)iole(for underestimators)
or a combination of both (for tubes) and are (4) area-minimyizThus, it is the first
paper to describe a framework to automatically computarf@d} area-minimizing
breakpoint systems for univariate functions.

The remainder of the paper is organized as follows: In Seciowe provide
various definitions in the context of piece-wise linear apgmators. We treat over-
and underestimators in Section 3, tubes in Section 4 andzippators in Section
5. Section 6 contains our computational results. We comchith Section 7.

2 Definitions

The original (non-linear, non-convex, continuous, and)reection to be approxi-
mated isf (x) over the compacturfX—,X*] C R. We denote by(x) : [X~,XT] = R
a function approximating (x).

We start with the definition of &-approximator for univariate functions.

Definition 1 (d-approximator, [11]). Let f (x) : [X~,X*] — R be a univariate func-
tion and let scalad > 0. A piece-wise linear, continuous functiéfx) : [X~,X*] —
R is called ad-approximatorfor f(x), if the following property holds

mex., L) —f(x)[ <o . 1

We require for the piece-wise linearity property of a fuantithat the function is
non-differentiable at a finite number of points.over- andd-underestimators are
d-approximators with the additional requirement to stayvabor below function

f(x) in the domainX~,X*]. This is formalized in

Definition 2 (d-overestimator / d-underestimator, [11]). We call a piece-wise
linear, continuous functiod (x) : [X~,X*] — R a d-overestimatorfor function
f(x): [X7,X*] — R, if condition (1) is satisfied along with

> f(x), Vxe XX . @)

We call a piece-wise linear, continuous functionx) a d-underestimatoof func-
tion f(x), if —¢~(x) is ad-overestimator of- f(x).

We continue with the definition of a-tube.

Definition 3 (d-tube). We call any combination of a piece-wise linear, continu-
ous d-overestimator* (x) for function f(x) and a piece-wise linear, continuous
o-underestimatof~ (x) for f(x) a d-tubefor f(x).

The definitions ofd-approximatorsd-overestimatorsg-underestimators, and-
tubes require piece-wise linearity and continuity. Thus,will no longer mention
these function properties explicitly in the remainder & gaper, except if we want
to emphasis these two properties.
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Given univariate functionf(x) over a compactum and thé&-tolerance, we
have two desires on an automatic procedure: (1) it compHagproximatorsg-
overestimators and/@-underestimators and (2) the number of required breakpoint
(i.e., discontinuities) is minimal. This has been achieved alye@Rebennack &
Kallrath, 2012, [11]). Their approach can easily be extehecomputed-tubes
which require the minimal number of breakpoints; in mostesasuch optimad-
tubes exhibit the property that the breakpoint systems @btoverestimator and
d-underestimator are identicale., both thed-overestimator and-underestimator
share the same discontinuities.

Vice-versa, one can provide the number of breakpoints akébashe “tightest”
possibled-approximator,d-overestimatorg-underestimator, and-tube. In [11],
the authors use an absolute function deviation error toéerariterion as a tightness
definition:

Definition 4 (absolute-error-tolerance-tightness (AETT) [11]). A d-approxima-
tor, d-overestimatorg-underestimator, od-tube with B breakpoints for function
f(x) is calledtighter (in the absolute-error-tolerance sense) thahapproximator,
J-overestimator 7 -underestimator, of -tube, respectively, witB breakpoints for
function f(x), if & <J. A d-approximator,d-overestimatord-underestimator or
O-tube withB breakpoints is calletight (in the absolute-error-tolerance sense) for
f(x), if there is notighter 3 -approximator;3 -overestimators -underestimator, or

9 -tube for f (x).

In this paper, we utilize an area-based tightness definition

Definition 5 (area-tightness (AT)).Let /(x) be ad-approximatorp-overestimator,
o-underestimator, 0d-tube with B breakpoints for functiorf (x). Further, letA;

be the area betweef(x) and f(x) over the compactuniX—,X*]. Another 3-

approximatorg-overestimatordg-underestimator, od-tube withB breakpoints for
function f(x) and ared&; is calledtighter (in the area sense) thd(x) for function

f(x), if Ax < Aq. £(x) is calledtight (in the area sense) fdr(x), if there is natighter

d-approximator,0-overestimatorg-underestimator, od-tube with B breakpoints
for function f (x).

To compute an area-tighi-approximator,d-overestimator,d-underestimator, or
O-tube, we treat the error-toleranc®, and the number of breakpointB, as in-
put parameters. Thus, we more precisely call thefyB)-approximator,(J,B)-
overestimator(d, B)-underestimator, ofd, B)-tube.

Interestingly, AETT is preserved when shifting an absoekit®r-tolerance-tight
(6, B)-approximator to obtain &, B)-overestimator ofd, B)-underestimator.

Corollary 1 ([11]). Let £(x) : [X~,X*] — R be an absolute-error-tolerance-tight
(9, B)-approximator for {x) and lete = 25. Thenft(x) 1= £(x) + & and{~ (X) :=
£(x) — o define an absolute-error-tolerance-tigt, B)-underestimator and an ab-
solute-error-tolerance-tighte, B)-overestimator, respectively, fofX) with the same
number of breakpoints B.
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For AETT, it therefore suffice to develop one single algaritto compute optimal
(9, B)-approximators(d, B)-overestimators and/@d, B)-underestimators; a differ-
ent procedure is required for absolute-error-toleraigig-{ 4, B)-tubes. Unfortu-
nately, AT is not preserved through (careful) shifting.

We present algorithms to compute area-tighiB)-overestimators andd, B)-
underestimators in Section 3, area-tigidt B)-tubes in Section 4 and area-tight
(8, B)-approximators in Section 5. However, before we proceet thi methodol-
ogy, we discuss how to choose the two parameters: the absaidr tolerance),
and the number of breakpoin®, Dependent on the application, we might want to
follow one of the following two paths.

If we desire to compute an approximate solution to the oalgiWINLP problem
with a specific tolerance guarantee in miedy, a safe gap of > 0) via piece-wise
linear approximations, one needs to compditapproximatorsg-overestimators,
d-underestimators od-tubes with a certain absolute tolerantend apply them
appropriatelycf. [11, Section 3.3]. In this case, we might want to proceed &s fo
lows:

1. first, compute the minimum number of breakpoils,needed to obtain a given
d-approximation (as discussed in [11]),

2. second, compute an absolute-error-tolerance-tightoappator — ¢ ,B*)-appro-
ximator, & ,B*)-overestimator,§,B*)-underestimator, ori{,B*)-tube — usind3*
breakpoints§ < §; as discussed in [11]), and

3. third, compute an area-tight approximator3-g§*)-approximator, # ,B*)-over-
estimator, ¢ ,B*)-underestimator, or{,B*)-tube.

Instead of pre-defining the toleranadependent om) to achieve a good lower
bound for minimization problems, we might provide the numiiiebreakpointsB,
to be spend on the piece-wise linear approximators. The aumbbreakpoints
directly affect the model size in the MILP framework. Thuss wight want to
choose the number of breakpoints in such a way that the imgWILP problem
remains efficiently solvable with (standard) solvers. Amotreason for pre-defining
the number of breakpoints are the use of logarithmic reptasens in the number
of breakpoints (both in the number of binary variables amtstaints involved) of
the resulting breakpoint system; it is efficient to choBs&s a power of 2. GiveB,
we would skip the first step above and compute an absolute-ererance-tight ap-
proximator yielding the tolerana® This allows for the computation of an area-tight
approximator usin@ andB.

3 Computing Area-Tight (J, B)-Overestimators and
(6,B)-Underestimators

We are given the absolute-error tolerarcé.e., maximal vertical absolute differ-
ence between the functidifx) and the approximatdi(x)) and the number of break-
points, B, for the univariate functiorf (x) along with the closed intervgk—, X*].
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We seek to automatically compute area-tightB)-overestimators. The case of
area-tight(d, B)-underestimators follows the same logic; we discuss it iaftat
the end of the section a well.

For the following discussions, we require:

e f(x)—0 >0forallxe [X,X*], and
e X~ >0.

Both requirements can be achieved through a shift in eitteefunction value direc-
tion (f (x) attains a minimum ifX ~, X*], cf. Extreme Value Theorem) or theaxis
direction.

For our derivations, we assume that the primitivef gf) exists and we denote
it by F(x), for x € [X~,X*]. We do not require its existence for our computations,
though. We are interested in minimizing the area betweentiom f(x) and the
piece-wise linear functiofi* (x); let L™ (x) denote the primitive of* (x). Therefore,
we need to compute the area between the two functionsglefX ~, X*] denote
thex-value (.e., footpoint) of thebth breakpoint and let" (x,) be its corresponding
function value. Then, the area betwelx) and¢™ (x) can be calculated as

/x+ (¢~ f(x))dx

} Xor1

il
=R
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Bi (W Xp+1) + 07 (% )) (Xb+1 _Xb) +F(x1) — F(xa)

Note that the first identity is true because the approximétdi), never crosses the
function f (x), cf. requirement (2).

We definex; := X~ andxg := X" implying that bothF (x;) andF (xg) are fix,i.e,,
they are constants. Thus, we are interested in minimiziagtm-linear expression

B-1

S (¢ 00i0) £ 00)) (012 %)

b=1
Notice that we do not require the primitive (or its existena&function f(x) any-
more; the numerical valuecff,(>< f (x)dxsuffices.

Next, we need to model the deC|S|ons on the placement @ threakpoints, via
decision variables, (X, € [X7,XT], Xp11 > X, b=2,...,B—1), and the func-
tion values of¢*(x) at the breakpoints, via the shit variablgs (s, € [-9, 9],
b=1,...,B) with respect tof (x). In this context, we define

o) =f(x)+s , Vb=1,...,B (3)
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which equalg™ (x,). The approximatof™(x) is then the corresponding interpolator
between the values @f(xy).

Further, we need to ensure conditions (1) and (2). Both rements lead to
semi-infinite programming problems because an infinite remob(non-linear, non-
convex) constraints need to holef; Hettich and Kortanek (1993, [4]) or Lopez and
Still (2007, [5]). We follow the idea of formulation OBSD asestribed in [11] and
discretize each intervdk,_1,xp) into | equidistant grid points. Conditions (1) and
(2) need then to hold on this finite grid; we increase the nundbegrid points
dynamically until a pre-defined tolerance has been reached.

This leads us to the following (non-convex) non-linear pesgming (NLP) prob-
lem, computing an area-tigkd, B)-overestimator for the continuous functidix)
on the interva[X~, X*]:

AT(5,B,1,M) :=
5 ) (102 -)

min P(Xp11) + (%) ) [ Xo11 —Xo (4)
&

s.t. xb—xb,12$ , Vb=2...,B (5)

i .
Xbi:bel""m(Xb_Xb*l) , Vb=2...,B, i=1...,1 (6)
i = @(Xp-1) + QLX) — P0-1) (Xoi —Xo-1)
Xp — Xp—1
vb=2...,B, i=1,...1 @)

lhi—f(%) <0 , Vb=2...B, i=1...l (8)
lhi > f(xi) , Vb=2,...,B, i=1...1 (9)
X1 =X", XB:X+ (10)
Xo€[X,XT] , Vb=2...,.B-1 (11)
xbie[X*,XJr] , Vb=2...,B, i=1,....1l (12)
lpi free , Vvb=2....B, i=1...lI (13)
$%€1[0,0] , Vb=1,...,.B . (14)

The logic of the constraint set (5)-(14) is as follows. Coaistts (5) ensure the sort-
ing of the breakpoints and that no two breakpoints can beticlnThis becomes
numerically important to avoid a division by zero when c#dting the slope of the
approximator/* (x). The value of the constaM needs to be chosen carefully in
order to avoid exclusion of an optimal distribution of the&kpoints. Actually, is it
non-trivial to mathematical (and computational) safelpdade what a sufficiently
large value forM is. Constraints (6) model thegrid points,xy;, for the interval
(Xp—1,%p)- These grid points are the discretization introduced ireotd ensure that
(1) the maximal vertical distance between functifix) and the approximatatt (x)

is at mostd, as required in (1) and modeled via (7) & (8), and that (I1) rapgma-



8 Josef Kallrath and Steffen Rebennack

tor £ (x) stays above functiorfi(x) as required in (2) and modeled via (7) & (9).
Constraints (10)-(14) model the variables’ domain.

The mathematical model (4)-(14) is non-linear, non-coraea continuous: It
consists of B+2(B—1)I — 2 continuous variables afh-4(B— 1)l — 1 constraints;
the objective function (4) as well as constraints (7)-(%) @on-convex.

If the NLP (4)-(14) is infeasible, then there are two pogd#ibs: eitherM is too
small or the combination od andB does not allow for the existence of(a, B)-
overestimator.

The idea of the objective function (4) is intuitive: We minaa the area of the
approximator/* (x) and thex-axis; constraints (9) ensure that(x) always stays
above functionf (x). Given a sufficiently large value fovl denoted byM*, we can
recover a lower bound™ on the area between the approximatdr (x) and the
original functionf (x) via

A*:%A*(é,B,I,M*)—FF(Xl)—F(XB) . (15)

Equation (15) constitutes a lower bound on the akdmecause both conditions (1)
and (2) are relaxed; they hold only on a finite number of (gpioints.
After solving (4)-(14) to (local or global) optimality, weke (to global optimal-

ity)
put() = bgaxBug(l) = max —max (H(x) — f(x)) (16)
in order to compute the maximal vertical deviation betwééx) and the computed
approximator’* (x) in the interval X, X*]. If
pr(h<o (17)
then(C(;ndition (1) holds true and the computédx) defines &, B)-approximator
for f(x).

We further need to check # (x) is below functionf (x) somewhere in the inter-
val (X~,X*). Therefore, we solve (to global optimality)

W)= min gy (1)i= min  min (GESERL) CE)
If
w()>0 | (19)

then condition (2) holds true. If both (17) and (19) are $iais then/™ (x) defines
an area-tightd, B)-overestimator forf (x) with A= A"

If (17) or (19) are violated by more than a pre-defined toleeap > 0, then we
increase the number of grid pointsand re-solve (4)-(14) as well as (16) and (18).
For any desired precisiam > 0, this process, of increasingis finite (granted that
the NLP problems can be solved to global optimality).
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Corollary 2. Let f(x) be a continuous function diX—,X*], d > 0and BE N > 2
be fixed. Then, for eadhp > 0, there exists a finite*| such thatu(1*) < é +n and
Y(l1*) > —n, given that there exists @, B)-overestimator for {x).

The proof of Corollary 2 is based on the continuityfgk) over a compactum and
follows from Rebennack & Kallrath [11, Corollary 6].

Following the same logic as for the area-tigbt B)-overestimator, we compute
an area-tightd, B)-underestimator,~ (x), for f(x) on the interva[X—,X*]:

A=(5,B,I,M) :=
B-1
max 35 (@00:2) +900)) (xo- %) (20)
s.t. (5)—(7),(10)— (13) (21)
fo)—lhi<d , Vb=2..B, i=1,., (22)
o < f(Xi) , Vb=2..B i=1..,1 (23)
$€[-6,00 , Vb=1..B . (24)

Analogously, the condition (1) reads for underestimators

M) = max iy ()= max max (f9—() (25)
and (2) is
Y= b=n2],i.,r.],3wbi(|) = b:@,i..r.],s xe[)rzg,i?,xb] (f(x) B gi(x)) ' (26)

Function{~ (x) defines an area-tigli®, B)-underestimator fof (x) with area
A=1A"(8.B.I,M)+F(x) —F(xg) ,
if both
p()<é and g (1)>0 . (27)
Corollary 2 reads now

Corollary 3. Let f(x) be a continuous function diX—,X*], d >0and Be N > 2
be fixed. Then, for eaal > 0, there exists a finite*| such thau~(1*) < d+n and
Y~ (1*) > —n, given that there exists @, B)-underestimator for €x).
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4 Computing an Area-Tight (8, B)-Tube: (8, B)-Overestimators
and (9, B)-Underestimators Sharing the Same Breakpoint
System

Recall that the purpose of piece-wise linear approximatiohfunctions is to re-
place a non-liner system of constraints or objective fuumctty MILP constructs
to be placed in a MILP framework. Therefore, consider a nomvex, continuous,
univariate functionf (x) which appears as an equation

f(x)=b , xe&[X,X7]

in the constraints of the MINLP problem to be approximatedtHis case, one
would compute an area-tigld, B)-overestimator{*(x), and an area-tightd, B)-
underestimator{~ (x), for f(x). When doing so, there is no guarantee that the
breakpoint systems of*(x) and ¢~ (x) are identical. Most likely, we would re-
quire 2B — 1) breakpoints for the resulting-tube. Notice that the resulting tube
might not be an area-tight, 2B — 2)-tube. For a given number of breakpoins,
an are-tight(d,B)-tube can be calculated when tl&, B)-overestimator and the
(8,B)-underestimator share the same breakpoint system. Nbiétette resulting
(3, B)-overestimator an®, B)-underestimator might not be area-tight, even though
the (9,B)-tube is.

Just like in the previous section, for notational conveog e assume that

e f(x)—d0>0forallxe [X~,X*], and
e X~ >0.

For (8,B)-overestimator/*(x), and (d,B)-underestimator{~ (x), sharing the
sameB breakpoints aky, the area of the resulting, B)-tube is derived through

/X+ (¢ —F(x))dx

I
'\”H |C|7M\ ﬁM\

-L

} Xp41

Lol
( (12) ~ L (06) L (052) L (%))

i (er Xb+1)+€+(xb)) (Xb+1fxb>

ewmray

Similar to (3), we define

0" () = f00) -5 and @ (%)= f(%)+s , Yb=1..,B



Computing Area-Tight Piece-Wise Linear Approximators 11

Following the idea of formulation (4)-(14), we obtain thdléwing continuous,
non-convex NLP problem, computing an area-tightB)-tube for the continuous
function f (x) on the intervalX—, X}

A*(3,B,1,M) :=

min X Bf ((p+ (Xo+1) + @7 (Xo) — @ (Xpi1) — @ (Xb)> (Xb+1 - Xb) (28)
2 b=1

st (5)(6),(10)— (12) (29)
+ +
g = 0" (Xp-1) + ¢ (Xiz:;ii(lxbfl) (Xoi —Xo-1)
Vb=2..B, i=1..,1 (30)
Ii—f(x) <& , Yb=2...B, i=1...1 (31)
5> f(%) , ¥b=2....B i=1...1 (32)
i =@ (Xo-1) + ¢ (Xii_;’;i(lxbil) (Xoi —%o-1)
Vb=2...B, i=1...,1 (33)
i) —lp <8 , Vb=2...B i=1._, (34)
o< f(%) , Vb=2..B i=1..,I (35)
I, 1y free . Vb=2...B, i=1..,I (36)
s €09 , s €[-6,0, Vb=1,....B . (37)

Constraint group (29) models the breakpoint system, caimssr (30)-(32) model
the overestimator and (33)-(35) the underestimator.

The computed., (x) defines &(d, B)-overestimator, if both (17) and (19) hold
true; ¢_(x) is a (9, B)-underestimator, if both conditions in (27) hold. If all fou
conditions are satisfied, theii (x) and ¢~ (x) define an area-tightd, B)-tube for
f(x) on [X~,X*] with areaA*(3,B,1,M); otherwise, if at least one of the four
conditions is violated, then the grid siz@eeds to be increased.

We also have a finite convergence argument for tubes.

Corollary 4. Let f(x) be a continuous function dX—,X*],d > 0and Be N > 2be
fixed. Then, for each > 0, there exists a finite| such thamax{u™* (1*),u=(1*)} <
d+n andmin{y* (1*),y(1")} > —n, given that there exists &,B)-tube for
f(x).

5 Computing Area-Tight (&, B)-Approximators

d-approximators play the central role in the methodologyettgyed by Reben-
nack & Kallrath (2012, [11]), because they allow for the eéfic computation of
(absolute-error-tolerance-tightnesspverestimators and-underestimators via a
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simple function value shift; minimality in the number of bkpoints required is
preserved as well. The case for area-tightB)-approximators is different: AT is
not preserved after a shifting operation.

Over-, underestimators and tubes are important constwias replacing NLP
problems; approximators are not equally important, as tteyot allow for the
computation of safe bounds and do not allow for infeasitdiggection. Thus, we
leave it at a sketch of the idea on how to compute an area{dgB)-approximator.

Approximators can intersect with the functidiix), unlike over- and underesti-
mators. This poses a challenge, when calculating the atesbe the approximator
and the function. We use the following idea: given that wevemeking with a grid
(the | discrete points) on thg-axis, we evaluate the relative position of the ap-
proximator¢(x) to the functionf(x) at these grid points by introducing the binary
decision variableg,; with

—5(1_VD|)§f(Xb|)_|b|§5Vb| ) Vb:27"'7Ba |:177|

If f(x) is above (below) the approximaté(x) at pointxy;, i.e., f(Xpi) > lpi (f (Xpi) <
Ipi), thenysi = 1 (i = 0).

We consider only the case in which the primitive of functidnfoexists. We
distinguish three cases on the relative position of the@pprator to the function
f(x), to calculate an approximation of the area betwéeq and/(x)

I Voi = Wiv1=1
F(Xp,i+1) —F (X0i) — L(Xp,i+1) + L(Xbi)

this formula is precise if (x) > ¢(x) for all X € [Xyi,Xpi+1]
I Yoi = Wit1=0

—F (Xp,i+1) + F (Xoi) + L(Xp,i+1) — L(Xoi)

this formula is precise if (x) < £(x) for all X € [Xpi, Xp,j+1]
I i # Wi+1  the approximatof intersects with the functior at least once in
the intervalx € [xpj,Xpj+1], we assign the area a value of 0.

The three cases above are restricted to the intepagls<, |, b= 2,...,B, and do
neither consider the interv@l,_1,Xp1] Nor [xy, Xp] located around the breakpoints,
b=1,...,B. Therefore, we introduce the binary decision varigllevith

—0(1-w) < <dw , Vb=1..B,

and derive the area of the intervals using the three case® alalogously.

The resulting mathematical programming problem is a mix¢elger non-linear
programming problem, which is non-convex. The number oétyirvariables de-
pends on the number of breakpoinBs,and the grid sizel,. Therefore, we expect
that the computation of area-tighd, B)-approximators is computationally much
harder than the computation of area-tightB)-overestimators or area-tighd, B)-
underestimators.
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After the resulting MINLP has been solved, we check if thettmums-condition
(1) is satisfied, via the solution of the global optimizatfmoblem

+ . .
1) := max 1) := max max
H ( ) b:2,...,Bub( ) b=2,...,.B x€[Xp_1,%)

0(x) — f(x)‘

If u(l) > o, then we increaskand start-over; otherwisé(x) is a(d, B)-approxi-
mator. The area computed as described above defines a lowsd ba the area of
an area-tightd, B)-approximator; an upper bound is obtained by evaluatingibe
between the calculatet{x) and f (x). If the lower and the upper bound on the area
are close enough together, then we stop, otherwise we seiréarther.

6 Computational Results

We execute our computational tests on an Intel(R) i7 @ 2.40@th 8 GB RAM
running 64-bit Windows 7. We use GAMS version 23.8 and sol/a@n-convex
NLP problems with the global solver LindoGLOBAL [14] to ansaitute gapi(e.,
upper bound minus lower bound) of 10

For our computational tests, we made the following seledto the parameters
I,M andn. We start with a grid size df = 2 and update the number of grid points
according to the following formula

max{|1.51],1 + 1}

We chooseM = 10° as well asn = 0.001. We use the 10 univariate functions,
taken from the literature, as summarized in Table 1.

Table 2 summarized the computational results for area-{ig}B)-overestima-
tors. We make the following observations: (I) area-tightB)-overestimators can
only be computed for a few number of breakpoints; (1) the berof discretization
points {.e. I) required to ensure a maximal violation of 0.001 of condit{@) (I1.1)
varies widely among the tested functions: if the functiorasivex €.g, function
01), then any discretization suffices, and (I.2) decreag#ls an increase in the
number of breakpoints; (111) the computational time termigitrease exponentially
in the number of breakpoints.

The computational results for area-tiglét, B)-underestimators are provided in
Table 3. The concavity of function 02 makes it possible to pota area-tightd, B)-
underestimators for up to 15 breakpoints within the timetlifFunctions 08 and 09
are difficult to tightly underestimate: the value Mf needs to be chosen carefully;
local solvers might easily miss a global optimum for (203)2

Results for area-tightd, B)-tubes for the ten test functions are given in Table 4.
The column labeledA" 4+ A~ reports on the sum of the area of the correspond-
ing area-tight(d, B)-overestimator and area-tighd, B)-underestimator, which is a
lower bound on the area of @, B)-tube. Furtheru® := max{u*,u~} provides
the maximal absolute vertical deviation of the tube to thgioal functionf (x). In-
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Table 1: One-dimensional test functions taken from Rebenaad Kallrath (2013,

[11)).

#| f(x) | X_o Xy | Comment

01 X2 -3.5 3.5| convex function; axial symmetric at=0

02 Inx 1 32 | concave function

03 sinx 0  2m | point symmetric ak = 11

04 tanh(x) -5 5 | strictly monotonically increasing; point
symmetric ak = 0

05 S”:EX) 1 12 | for numerical stability reason we avoid the

removable singularity and the oscillation at
0, the two local minima have an absolute
function value difference of 0.126

06 22 +x3 -25 25| in (—e,0), there is one local minimum at
x =0 and one local maximum at= %

07 e *sin(x) -4 4 | one global minimum X, ~ —2.356 with
f (Xm) =~ —7.460)

08 e 100x-2) 0 3 | a normal distribution with a sharp peak at
x=2

09| 1.03e100x-12)? | ¢-100x-2* | 9 3 | the sum of two Gaussians, with two slightly
different maxima (their absolute function
value difference isv 0.030)
10|Maranas & Floudas (1994, [6]) O  2m | three local minima (the absolute function
value difference of the two smallest local
minima isx 0.031)

terestingly, the area of an area-tididt B)-tube is only marginally larger (if at all),
for the tested functions, compared to the area provided batng an area-tight
(3, B)-overestimator with an area-tighd, B)-underestimator, while the number of
breakpoints for the area-tigkd, B)-tubes is almost half compared to the combina-
tion of an area-tightd, B)-overestimator with an area-tighd, B)-underestimator.
Computing area-tightd, B)-tubes is computationally more challenging than com-
puting area-tightd, B)-overestimators and area-tigld, B)-underestimators. How-
ever, it remains computational tractable to compute aga-{d,B)-tubes for a
small number of breakpoints.

Figure 1 shows plots of the ten test functions together witr@a-tight 5, B)-
overestimator(d, B)-underestimator ofd, B)-tube. The presented over-, underesti-
mators and tubes correspond to the results of Tables 2, 3.and 4

7 Conclusions

In this paper, we extend the literature on methodologieslwhutomatically com-
pute optimal piece-wise linear overestimators, underegtrs and tubes for uni-
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Table 2: Area-tigh{d, B)-overestimators for the functions provided in Table 1.

# B & | AT gt ut | sec.
01 3 3.10| 14.2917 0.0000000 3.063 2 0.19
4 150| 6.3519 0.0000000 1.361 2 0.91
5 1.10| 35729 0.0000000 0.766 2 24.35
6 1.10| 2.2867 0.0000000 0.490 2 329.53
7 040| 15880 0.0000000 0.340 2 0.78
8 0.40 - - - 2 3600.07t
02 3 1.00( 2.4186 -0.0005192 0.900 9 4.38
4 0.85| 1.1780 -0.0005961 0.494 9 154.21
5 045 - - - 2 3600.10t
03 3 1.50| 3.4820 -0.0005656 1.365 28 12.37
4 0.40| 0.7448 -0.0002769 0.278 28 50.67
5 040 0.4484 -0.0004956 0.311 28 1348.89
6 0.40| 0.2958 -0.0006979 0.125 13 5965.65
7 040 - - - 3 7081.38t
04 3 1.00( 3.2294 -0.0002624 0.958 13 4.07
4 0.30| 0.4874 -0.0007642 0.192 3 3.42
5 0.20| 0.2660 -0.0002292 0.172 13 136.22
6 0.20| 0.1819t -0.0010273t - 19 7808.39t
05 3 1.00( 1.4856 -0.0007117 0.301 42 30.76
4 040| 0.5659 -0.0004862 0.106 13 28.47
5 0.40| 0.3583 -0.0002181 0.102 13 412.04
6 040 0.1849 -0.0007009 0.049 9 1650.26
7 0.40]| 0.1395t -0.0041407t - 6 6894.491
06 3 5.00| 8.4034 -0.0004046 3.959 28 11.81
4 450( 4.5613 0.0000000 4.369 63 1035.67
5 450| 3.1492t -0.0027268t — 42 9040.39t
07 3 30.00( 17.0289 -0.0005812 7.490 94 87.63
4 10.00| 11.9770 -0.0002707 9.569 42 846.74
5 4.00| 4.8733 -0.0003621 3.603 28 5184.76
6 4.00| 2.7909t -0.0053520t - 3 5223.90t
08 3 1.00| 1.3130%f -0.0110870% — 141 562.27%
4 1.00| 0.4476 0.0000000 0.785 63 6338.37
5 1.00| 0.0626 -0.0006100 0.237 13 622.74
6 1.00| 0.0376t1 -0.0016832t — 28 6845.49t
09 3 1.00| 1.9998% -0.0077818% — 141 1262.31%
4 1.00| 1.3293t -0.0862732t — 42 7569.87t
10 3 4.00( 10.2380% -0.0069331%t — 141 4376.43%
4 400 8.6188t -0.1971054t — 19 9491.13ft

T: out of time (time limit per model is 3600 seconds)
1: model size exceeds license limits
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Table 3: Area-tigh{d, B)-underestimators for the functions provided in Table 1.

# B 6 | A~ Y- u- | sec.
01 3 3.10| 7.1458 -0.0001151 3.100 3 0.73
4 1.50 3.1759 -0.0000429 1.376 9 41.06
5 1.10 1.7801t1 -0.0009104t — 28 4542.38t
02 3 1.00( 5.9903 0.0000000 0.564 2 0.33
4 0.85 2.6130 0.0000000 0.319 2 2.03
5 045 1.4598 0.0000000 0.205 2 28.95
6 045 0.9312 0.0000000 0.143 2 5.80
7 0.25 0.6455 0.0000000 0.106 2 51.80
8 0.25 0.4738 0.0000000 0.081 2 61.68
9 0.25 0.3625 0.0000000 0.064 2 44.42
10 0.25 0.2863 0.0000000 0.052 2 67.59
11 0.25 0.2318 0.0000000 0.043 2 8.77
12 0.25 0.1915 0.0000000 0.036 2 299.95
13 0.25 0.1609 0.0000000 0.031 2 380.18
14 0.25 0.1371  0.0000000 0.027 2 858.85
15 0.25 0.1182 0.0000000 0.023 2 526.15
16 0.25 - - - 2 3601.02t
03 3 1.50( 3.4820 -0.0005656 1.365 28 13.46
4 0.40 0.7448 -0.0002769 0.278 28 62.06
5 040 0.4484 -0.0004956 0.311 28 1118.99
6 0.40 0.2958t1 -0.0027497t — 13 7059.87t
04 3 1.00( 3.2294 -0.0002941 0.958 13 3.03
4 0.30 0.4874 -0.0007642 0.192 3 3.06
5 0.20 0.2661 -0.0000696 0.180 19 202.68
6 0.20 0.18191 -0.0010272t - 19 6774.00t
05 3 1.00( 1.0176 -0.0006447 0.285 9 2.71
4 0.40 0.3514 -0.0008220 0.157 13 56.77
5 0.40 0.2615 -0.0002037 0.150 19 1854.52
6 0.40 - - - 3 6561.11ft
06 3 5.00| 7.1298 -0.0005952 3.779 3 1.39
4 450 4.0965 -0.0007573 4.351 63 1319.01
5 450 2.0713t -0.0048858t — 28 7504.65t
07 3 30.00| 20.1332% -0.0085689% — 141 196.96%
4 10.00 6.36941 -0.0016387t - 94 6880.37t
08 3 1.00| 0.1772 0.0000000 1.000 3 0.86
4 1.00 0.1764 -0.0009344 0.997 4 67.11
5 1.00 0.0205 0.0000000 0.108 6 425.71
6 1.00 0.0142 -0.0000999 0.106 4 354.25
7 1.00 0.0142 -0.0000999 0.106 4 731.74
8 1.00 0.0109t -0.0066468t - 9 6050.35t
09 3 1.00| 0.3598 0.0000000 1.030 6 4.81
4 1.00 0.3597 -0.0001966 1.030 9 646.77
5 1.00 0.1984 0.0000000 1.000 6 1832.71
6 1.00 0.1966 -0.0004934 1.030 4 2752.09
7 1.00 - - - 2 3601.98t
10 3 4.00| 7.9921% -0.0017494% — 141 5844.36%
4 4.00 6.2181 -0.29829531 — 13 5864.30t

T: out of time (time limit per model is 3600 seconds)
1: model size exceeds license limits
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Fig. 1: Continued.



18 Josef Kallrath and Steffen Rebennack
Table 4: Area-tightd, B)-tubes for the functions provided in Table 1.
# B O A++A’| At gt g u* I sec.
01 3 3.10 21.437521.4375 0.0000000 -0.0001148 3.100 3 1.40
4 150 95278 9.5278 0.0000000 -0.0000105 1.369 9 178.39
5 1.10 #| 5.3594t 0.00000001 -0.01562507% - 9 3707.36%
02 3 100 8.4089 8.4292 -0.0008616 0.0000000 0.788 13 19.56
4 0.85 3.791Q 3.7946 -0.0004650 0.0000000 0.449 9 257.74
5 045 £| 2.1479 -0.0003956  0.0000000 0.282 9 437.53
6 0.45 #| 1.3279t -0.0016468t 0.0000000% - 4 3833.89%
03 3 150 6.9639 7.3622 -0.0000396 -0.0004090 1500 42  91.53
4 040 14894 15018 -0.0006088 -0.0006088  0.257 19 141.01
5 040 0.89671 1.06161 -0.0020084t -0.0088723tf - 9 4516.01%
04 3 1.00 6.4588 7.9908 -0.0006473 -0.0002773  1.000 42  85.96
4 030 0.9748 0.9967 -0.0006409 -0.0006409 0.154 6  42.62
5 0.20 0.532] 0.7070 -0.0002143 -0.0006732  0.174 13 1858.18
6 0.20 i - - - - 2 3600.11%
05 3 1.00 25032 2.6914 -0.0006133 -0.0003608 0.453 42  70.57
4 040 0.9173 0.9235 -0.0006387 0.0000000 0.157 13 115.89
5 040 0.6198 0.6192t -0.00280521 -0.0007355t - 13 5500.06t
06 3 5.00 15.533115.6470 -0.0007989 -0.0008506  4.466 63 131.09
4 450 8.6578 10.2935t 0.0000000t -0.0039028% - 63 5896.67t
07 3 30.00 8| 37.492% -0.0006538% -0.0073744% - 141 494.11%
4 10.00 #| 19.2815 -0.0003845 -0.0009017 10.000 42 3810.09
5 4.00 #| 8.518t -0.0241269t -0.0248196t - 13 9022.88t
08 3 1.00 #| 1.4903t -0.0110513%f 0.0000000% - 141 3660.14%
4 100 0.6249 0.6221t -0.1077110f 0.0000000t - 42 3889.13t
09 3 1.00 £ 2.3596t -0.0152941tf 0.0000000% - 94 5729.48t
4 1.00 #| 1.7519t -0.0862732tf 0.0000000% - 42 7235.23t
10 3 4.00 #| 18.64571 -0.0125147t -0.0071669t - 94 8319.97t
4 400 #| 13.1937t -1.0792070t -0.0033989t - 9 4397.01%

T: out of time (time limit per model is 3600 seconds)
F: model size exceeds license limits
#: over- and/or underestimator problem was not solved to glab@nality

variate functions. The computed approximators are optamabng all piece-wise
linear, continuous functions in the sense that they mirgntie area between the
function and the approximator. Our methodology for commtrea-tight 6, B)-
overestimators,d, B)-underestimators an@d, B)-tubes require the solution of a se-
ries of continuous, non-linear, and non-convex mathembaficogramming prob-

lems.

The computational tests reveal that it is worth-while to poile area-tight
(9,B)-tubes which share the same breakpoint system, rather timaputing(d, B)-
overestimators an®, B)-underestimators individually, if tubes are desired.
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Fig. 1: The ten univariate functions together with computédB)-overestimator,
(8, B)-underestimator, ofd, B)-tube.

— original functionf (x)

— approximator functiorf* (x), £~ (x), or £*(x)
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