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Abstract A set of ellipses, with given semi-major and semi-minor axes, is to
be cut from a rectangular design plate, while minimizing the area of the design
rectangle. The design plate is subject to lower and upper bounds of its widths
and lengths; the ellipses are free of any orientation restrictions. We present new
mathematical programming formulations for this ellipse cutting problem. The
key idea in the developed non-convex nonlinear programming models is to use
separating hyperlines to ensure the ellipses do not overlap with each other. For
small number of ellipses we compute feasible points which are globally optimal
subject to the finite arithmetic of the global solvers at hand. However, for more
than 14 ellipses none of the local or global NLP solvers available in GAMS can
even compute a feasible point. Therefore, we develop polylithic approaches,
in which the ellipses are added sequentially in a strip-packing fashion to the
rectangle restricted in width, but unrestricted in length. The rectangle’s area
is minimized in each step in a greedy fashion. The sequence in which we add
the ellipses is random; this adds some GRASP flavor to our approach. The
polylithic algorithms allow us to compute good, near optimal solutions for up
to 100 ellipses.
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1 Introduction

In an extension of the work by Kallrath (2009, [11]), we cut a set of ellipses
with given semi-major and semi-minor axes from a rectangular plate. The
ellipses are to be placed, free of any orientation restrictions, on a rectangular
plate such that the area of the rectangle is minimized. The ellipses are not
allowed to overlap; which poses the major challenge of this cutting problem
together with the free rotation of the ellipses. Minimizing the area of the design
rectangle is equivalent to minimizing trimloss.

Part of the motivation of this work is pure mathematical curiosity – ellipse
cutting problems have a variety of real world applications. Color to be painted
on walls is usually stored in paint buckets, which have an elliptical shape.
This shape allows the painting rolls to be larger in length compared to a
circular bucket having the same volume. The best area utilization is desired
when transporting such buckets (differently or equally sized) on palettes. As
described by Miller (2012, [20]), ellipses can be used to approximate (irregular
or non-convex) geometric objects via a cover. The obtained ellipse placements
can then help to compute solutions to the original problem and provide safe
bounds on optimal solutions, e.g., on the minimal area of the design rectangle.

The ellipse cutting problem falls into the class of two-dimensional cutting
or packing problems of regular objects. This cutting problem comes close to
the 2/V/D/F classification of Dyckhoff (1990, [4]); i.e., two-dimensional, V =
a kind of assignment: a selection of objects and all items, D = an assortment
of large objects: different figures, and F = an assortment of small items: few
items of different figures. Packing and cutting problems differ in the following
two aspects: (1) In cutting problems one tries to minimize trimloss or area,
while in packing an area is given and one wants to fit as many objects as
possible, and (2) while free objects are allowed in cutting problems, this might
lead to stability problems in packing problems. Our ellipse problem falls into
the category of a cutting problem.

The separation of ellipses by hyperplanes has been treated in a senior
thesis by Miller (2012, [20]). His formulation starts from elementary geometry
of ellipses from which he derives the hyperplane conditions. Confinement of
the ellipses to the rectangle is modeled as a special hyperplane representing
the boundaries of the rectangle. Our approach starts from a generic vector
representation (to allow for its extension to the 3-D case in future work). At
first, we compute the minimal and maximal extension of shifted and rotated
ellipses. Second, we derive the hyperplane conditions from rotated coordinate
systems. Miller reports in his thesis only on small examples with two ellipses.
This is confirmed by his advisor Floudas (2012, [6]).

Other than the unpublished work by Miller, it is hard to find published
work on numerical approaches towards ellipse cutting and packing. However,
the related problems of circle packing/cutting or orientation-free rectangle
packing/cutting into one or multiple (design) rectangles have a rich body of
literature, see Kallrath (2009, [11]) and Rebennack et al. (2009, [24]) and the
references therein.
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The technical report by Gensane and Honvault (2012, [8]) establishes op-
timal packings for the case of two congruent ellipses in a square. Based on
theoretical developments for sphere packings, the authors are able to derive
the position for two congruent ellipses along with the minimal side length of
a square hosting those two ellipses. Thus, their work is theoretical and not
algorithmic, like ours.

The contributions of this paper are twofold: We develop
1. novel mathematical programming models for the ellipse cutting problems

which allow us to solve larger instances to global optimality than previously
reported in the literature.

2. two polylithic1 approaches to compute good and near optimal cuttings for
instances which cannot be handled by the current nonlinear and global
solvers for the exact mathematical programming formulation developed.
Both approaches sequentially solves ellipse cutting problems with fewer
number of ellipses.
The remainder of this article is organized as follows. In Sect. 2, we develop

(MI)NLP models for cutting ellipses from the design rectangle. We construct
our polylithic approaches to compute good feasible, near optimal cuttings
for instances which cannot be handled in the monolith formulation with the
currently available solvers in Sect. 3. We present numerical experiments and
results in Sect. 4. Sect. 5 concludes the paper.

At all places in this paper we use the term global optimum, or global
optimality, in the sense of small relative gaps (difference between upper and
lower bound divided by the lower bound) of the order of 10−5. We are aware
that the numeric solvers dealing with finite number arithmetic are subject to
round-off errors. As such, all the presented results are only approximations,
and although the small gaps hint on good/optimal results, due to the rounding
errors, we do not obtain reliable results in the sense of interval analysis. For
packing circles in a unit square, we find high precision guaranteed enclosures
for both the global optimizer and the global optimum value and details of the
interval arithmetic-based core elimination method in a series of publications
by Markót and Csendes (2005,[19]) and Markót (2007,[18]).

2 Monolithic: Non-convex (MI)NLP Models

We describe ellipses by the coordinates of their center and an orientation angle
to allow for their rotation. We need to model two types of constraints: (1) non-
overlap of ellipses and (2) bounds placing the ellipses inside the rectangle.

While non-overlap of two circles can be enforced by one non-convex con-
straint, ensuring that their centers are apart no less than the sum of their
radii, the case for ellipses is more involved (one reason is the possibility for ro-
tation). We use the following key idea to ensure non-overlap: Because ellipses
are convex objects, there must exist a hyperplane (i.e., a line) between any
two pairs of ellipses, separating them from each other.

1 The expression polylithic has been introduced by Kallrath (2009, [10]; 2011, [12]) to refer
to modeling and solution approaches in which optimization problems are solved by tailor-
made methods involving several models or solve statements or algorithmic components.
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When the context allows, then we utilize a vector notation using the Eu-
clidean norm scalar products to avoid the additional dimension index d. The
vector notation is indicated by bold symbols. We use lower case symbols for
variables, and upper case symbols for input or derived data. The only excep-
tions are the semi-major and semi-minor axes ai and bi, respectively, of the
ellipses and the model indices.

Note that we provide lower and upper bounds in the model wherever possi-
ble and as tight as possible as these bounds help to solve the NLP and MINLP
problems to global optimality.

We start with the modeling of the non-overlap and boundary constraints
for ellipses in Sect. 2.1. This leads us to two equivalent NLP models, as summa-
rized in Sect. 2.2. To enhance computational efficiency, we then present sym-
metry breaking constraints (Sect. 2.3), mixed-integer extensions (Sect. 2.4),
and lower/upper bounding problems (Sect. 2.5).

2.1 Towards the NLP Model Formulations

The objective function minimizes the area, a, of the design rectangle

min a, a = xR
1 x

R
2 , (1)

where decision variable xR
d represents the extension of the design rectangle in

dimension d; xR
1 denotes the length and xR

2 is the with of the rectangle.
Equivalently to (1), we could minimize waste, i.e.,

min z, z = a−
∑

i∈I
Ai , (2)

where Ai denotes the area of ellipse i; set I is the collection of ellipses to be
packed.

The extensions xR
d of the rectangle are subject to pre-given bounds, S−

d

and S+
d

S−
d ≤ xR

d ≤ S+
d , ∀d . (3)

The upper bound, S+
d , could be motivated by technical limitations; a lower

bound, S+
d , is given by the maximum of all the minor ellipse axis lengths (max-

imum of 2bi over all i). Refinements of these bounds are described in Sect. 2.5,
where we exploit circle cuttings.

2.1.1 Cutting Circles

We start with the modeling of the circle cutting problem for two reasons: first,
it was the starting point for our analysis of the ellipses cutting problem, and
second, we use it to compute valid lower and upper bounds on the ellipse
cutting problem (cf. Sect. 2.5).

The non-overlap constraints for circles i and j read

∥

∥x0
i − x0

j

∥

∥

2

2
:=

∑2

d=1

(

x0
id − x0

jd

)2 ≥ (Ri +Rj)
2

, ∀{ij : i < j} , (4)

with radius Ri and (decision variable) x0
id modeling the center of circle i in

dimension d. Constraints (4) are non-convex constraints (the left hand side
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x1

x2

x0
i

ai
bi

θi

x+
i2
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i2

x−

i1 x+
i1

Fig. 1 Representation of ellipses i: center x0
i , semi-major axis ai, semi-minor axis bi, rota-

tion angle θi and extrema x−

i1, x
−

i2, x
+
i1, and x+

i2.

constitutes a convex function). Note that for n circles we have n(n − 1)/2
inequalities of type (4).

Fitting the circles inside the enclosing rectangles requires

x0
id ≥ Ri , ∀{id} and x0

id +Ri ≤ xR
d , ∀{id} .

2.1.2 Cutting Ellipses

One might be tempted to follow the idea of the non-overlapping conditions
(4) when treating ellipses. Unfortunately, the known radii Ri and Rj for the
cases of circles become orientation-dependent variables. It turns out that this
approach is not ideal, from the perspective of mathematical programming
modeling. Thus, we follow a different idea.

Ellipse i is characterized by its semi-major and semi-minor axis ai and bi,
respectively. The ellipses i will be implicitly described by their centers, and
their orientations; see Fig. 1. The ellipses can be placed at a free “center”
represented by the vector x0

i (with components x0
id) with the semi-major axis

ai inclined by the angle θi. For θi = 0, the ellipse is characterized by the
equation

(x1 − x0
i1)

2

a2i
+

(x2 − x0
i2)

2

b2i
= 1 , (5)

i.e., all points (x1, x2) ∈ R
2 satisfying constraint (5) lie on the perimeter of

ellipse i. For the rotated ellipse i, we exploit the coordinate transformation
(

x′
1

x′
2

)

= Rθi

(

x1 − x0
i1

x2 − x0
i2

)

with Rθi :=

(

cos θi − sin θi
sin θi cos θi

)

(6)

or equivalently

x′
1 = (cos θi)(x1 − x0

i1)− (sin θi)(x2 − x0
i2)

x′
2 = (sin θi)(x1 − x0

i1) + (cos θi)(x2 − x0
i2) .

Now we can insert x′
1 and x′

2 into the ellipse equation (5).
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More generally, an arbitrarily oriented ellipse i, centered at x0
i ∈ R

2, is
defined by the equation (quadratic form)

(x− x0
i )

⊤
Ai(x − x0

i ) = 1 , (7)

where Ai is a positive definite matrix and x ∈ R
2.

The eigenvectors of Ai define the principal directions of the ellipse (or, ellip-
soid in 3-D) and the eigenvalues of Ai are the inverse squares of the semi-axes:
a−2
i and b−2

i . An invertible linear transformation applied to a circle (sphere)
produces an ellipse (ellipsoid), which can be brought into the above standard
form by a suitable rotation, a consequence of the polar decomposition (cf.
Spectral Theorem). If the linear transformation is represented by a symmet-
ric 2-by-2 (3-by-3) matrix, then the eigenvectors of the matrix are orthogonal
(due to the Spectral Theorem) and represent the directions of the axes of the
ellipse (ellipsoid): the lengths of the semi-axes are given by the eigenvalues.
For ellipse i with semi-axes ai and bi rotated by Rθi as defined in (6), we have

Aθi := RθiDiR
⊤
θi with Di :=

(

λi1 0
0 λi2

)

=

(

a−2
i 0
0 b−2

i

)

.

To avoid the occurrence of trigonometric terms in the optimization model,
we use the following transformation into an equivalent (non-convex) quadratic
model. We replace the decision variable θi by the two decision variables

vi := cos θi and wi := sin θi .

The new variables are subject to the bounds −1 ≤ vi ≤ +1 and −1 ≤ wi ≤ +1
and they are coupled by the Pythagorean Theorem

v2i + w2
i = 1 . (8)

Note that for ellipses, due to their symmetry, it suffices to consider rotation
angles, θi, in the range of 0◦ to 180◦, i.e., 0 ≤ wi ≤ 1.

With this notation, we obtain

Aθi =

(

vi −wi

wi vi

)(

λi1 0
0 λi2

)(

vi wi

−wi vi

)

=

(

v2i λi1 + w2
i λi2 viwiλi1 − viwiλi2

viwiλi1 − viwiλi2 v2i λi2 + w2
i λi1

)

.

Fitting the ellipses inside the enclosing design rectangle requires that

0 ≤ x−
id ≤ x+

id ≤ xR
d , ∀{id} , (9)

where x−
id and x+

id are the extreme extensions of ellipse i in dimension d.
In Sect. 2.1.3, we show that

x±
i1 = x0

i1 ±
√

a2i cos
2 θi + b2i sin

2 θi and x±
i2 = x0

i2 ±
√

b2i cos
2 θi + a2i sin

2 θi .

For instance, θi = 0 implies x±
i1 = x0

i1 ± ai and x±
i2 = x0

i2 ± bi. Similarly,
if the ellipses are circles (ai = bi = ri), then for any angle θi we obtain
x±
i1 = x±

i2 = x0
i1 ± ri.

We continue with the derivation of these quantities in the following section;
if you believe in the formulae above, then you can skip this section. The non-
overlap conditions (discussed in Sect. 2.1.4) are then based on the ideas of
extremal extensions of the ellipses.
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2.1.3 Minimum and Maximum Extensions of Ellipses

Let us compute x−
id and x+

id for ellipse i with center x0
id by solving the following

optimization problems

x−
id = min c⊤x = min xid , ∀d and x+

id = max c⊤x = max xid , ∀d ,

respectively, subject to the ellipse condition (7); for d = 1 we select c⊤ :=
(1, 0), while for d = 2 we have c⊤ := (0, 1). Instead of using (7), we can solve
the simpler optimization problem

x−
id = min c⊤(x+ x0

i ) = x0
id +min xid , ∀d and (10)

x+
id = max c⊤(x+ x0

i ) = x0
id +max xid , ∀d , (11)

respectively, subject to
x⊤

Aθix = 1 , (12)

which describes an ellipse centered at the origin. Note, however, that ellipse i
cannot be centered at the origin, as the origin is identical to the left-bottom
corner of the design rectangle.

The Lagrangian function of both optimization problems (10) and (11) reads

L(x, λ̄) = c⊤(x+ x0
i ) + λ̄

(

x⊤
Aθix− 1

)

(13)

for an (unrestricted) Lagrangian multiplier λ̄ ∈ R. The first order Karush-
Kuhn-Tucker (KKT) conditions are derived as

c+ 2λ̄A⊤
θix = 0 (14)

together with (12). We multiply (14) by x⊤ from the left side, (this operation
is safe, as the center of ellipse i cannot be an extremum) and exploit (12)
to obtain xd + 2λ̄ = 0 for all d. This allows us to eliminate the Lagrangian
multiplier λ̄ from (14) yielding

c− xdA
⊤
θix = 0 , ∀d . (15)

For the first dimension (d = 1) the two equations in (15) read

1− x1 (A11x1 +A21x2) = 0 and − x1 (A12x1 +A22x2) = 0

with
Aθi =

(

A11 A12

A21 A22

)

.

As x1 6= 0 (the center cannot be a stationary point of these KKTs), we derive

x2 = −A12

A22
x1 (16)

from which we further derive

x2
1 =

(

A11 −A21
A12

A22

)−1

=
A22

λi1λi2
= A22a

2
i b

2
i , (17)
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where we exploit the fact that detAθi = A11A22 − A12A21 = λi1λi2 > 0 (cf.
Eigenvector Decomposition). From the geometry of the optimization problems
(10) and (11), we know that each problem has a unique, global extremum. We
further know that the global extrema satisfy the KKT conditions (12) and (14)
(i.e., they are necessary). Because we have not excluded any global optima in
our deviation to derive at (16) and (17) and they lead to exactly two points,
we know that x1 and x2 in (16) and (17) define the global optimum for (11)
and (10); one just needs to pick the correct one.

The minimum and maximum extensions of ellipse i in the first dimension,
(d = 1), then reduce to

x−
i1 = min c⊤(x+ x0

i ) = x0
i1 −

√

x2
1 = x0

i1 − aibi
√

A22

= x0
i1 −

√

a2i cos
2 θi + b2i sin

2 θi (18)

and x+
i1 = x0

i1 +

√

a2i cos
2 θi + b2i sin

2 θi , (19)

respectively.
Similarly, for d = 2 we derive

−x2 (A11x1 +A21x2) = 0 and 1− x2 (A12x1 +A22x2) = 0

to obtain x2
2 =

(

A22 − A12
A21

A11

)−1

=
A11

λi1λi2
= A11a

2
i b

2
i .

This leads to

x−
i2 = x0

i2 −
√

b2i cos
2 θi + a2i sin

2 θi and (20)

x+
i2 = x0

i2 +

√

b2i cos
2 θi + a2i sin

2 θi . (21)

2.1.4 Non-Overlap Condition for Ellipses

One might have the following idea to model the non-overlap constraints for
pairs of ellipses: We could enter a few points xj on the circumference of ellipse
j into the equation defining ellipse i. We would then ask that

(xj−x0
i )

⊤
Aθi(xj−x0

i ) ≥ 1 ; (22)

the “≥” forces the circumferences of ellipse j not to enter ellipse i. However,
to ensure non-overlap of the two ellipses i and j in this way, we would need to
ensure that the (non-convex) constraints (22) hold for a continuum of points
(not just a few), leading to a semi-infinite programming problem. One could
resort to similar ideas of Rebennack and Kallrath (2013, [22], [23]) or consult
one of the various surveys about semi-infinite programming, for instance, by
Hettich and Kortanek (1993, [9]) or Lopez and Still (2007, [16]). We take a
different route.

In Sect. 2.1.3, we derive the formulae to compute x−
id, the minimum value

the ellipse extends to in coordinate axis direction d. This computation can be
extended by the following idea. Assume we are given a rotated ellipse i whose
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semi-major axis ai has an angle θi with the x-axis (the length of the rectangle).
Furthermore, we have a separating line (or, hyperplane) parameterized by

G(t) := g0 + g · t , t ∈ R (23)

with footpoint g0, and direction g normalized to |g| = 1. The footpoint g0 is
not uniquely defined, because it can lie anywhere on the separating hyperplane.
As such, g0 has two degrees of freedom. We eliminate one degree of freedom by
requesting that that the footpoint lies on the intersection of the hyperplane and
the line segment between the centers x0

i and x0
j of ellipses i and j. Therefore,

we introduce the non-negative variable λ, 0 ≤ λij ≤ 1, and represent the
footpoint as the linear combination

g0 = λijx
0
i + (1− λij)x

0
j (24)

of the ellipse centers x0
i and x0

i . With three decision variables (two for g0 and
one for λij) and two constraints, we are left with one degree of freedom.

Can we provide a necessary condition for the ellipse being completely above
G(t), or just touching it? We can: G(t) has an inclination angle ω as derived
from a scalar product of the unit vector (1, 0)⊤ and g as

cosω := (1, 0) · g = g1 (25)

with the x1-axis, and intersects with the x1-axis at xh. Note that this intersec-
tion point only exists and necessary in our considerations, if g is not parallel
to the x1-axis. The special parallel case does not depend on the coordinate
transformation described below and allows us to compute the distance of the
ellipse to the hyperplane directly. Note that for the moment we consider a
generic hyperplane G(t). Later, for separating two ellipses i and j, G(t), and
also ω, will become dependent on i and j.

For ellipse i and hyperplane G(t), we resort again to a coordinate trans-
formation: We transform the coordinate system in such a way that (1) (xh, 0)
becomes the origin of the new coordinate system and (2) G(t) becomes iden-
tical to the new x-axis. If we then represent the ellipse in the new coordinate
system (translation and rotation), we can apply the formulae of Sec. 2.1.3 to
compute the minimum extension of ellipse i in dimension d = 2 in the new
coordinate system: x−′

i2 . Now, if x
−′
i2 ≥ 0, ellipse i lies above the hyperplane;

x−′
i2 ≥ 0 is also the necessary and sufficient condition for ellipse i to be above

the hyperplane (or, just touching it).
Before we algebraically derive the coordinate transformation and the non-

overlap conditions for each pair of ellipses, we built some intuition with Fig. 2.
Using geometry, dabij is the length of the projection of the vector (x0

i − g0
ij) on

the vector (−gij2, gij1). Since (−gij2, gij1) has unit length, the length of the
projection is simply the inner product

dabij = −gij2(x0
i1 − g0ij1) + gij1(x

0
i2 − g0ij2) .

On the other hand, the length δabij is the maximum vertical extension of ellipse
i if we consider the hyperplane as the horizontal axis. Now – relative to the
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x1

x2

δabij

x0
i

aibi

θi

θi − ωij

δbeij

x0
j

aj

bj

θj

g0
ij

ωij

(gij1, gij2)

(−gij2, gij1)

dabij
dbeij

Fig. 2 Non-overlap of ellipses i and j via separating line.

Notation ellipses:
ai, aj semi-major axis bi, bj semi-minor axis
θi, θj orientation angle x0

i ,x
0
j center

δabij maximal vertical extension of ellipse i to the hyperplane

δbeij maximal vertical extension of ellipse j to the hyperplane

Notation separating line:
g0
ij footpoint ωij inclination angle

(gij1, gij2) direction vector dabij , d
be
ij distance to line

hyperplane – the angle of the ellipse is θi − ωij . So using equation (20), we
obtain

δabij =
√

b2i cos
2(θi − ωij) + a2i sin

2(θi − ωij) .

For ellipse i to be “above” the hyperplane, we require (dabij )
2 ≥ (δabij )

2.

Similarly, dbeij is the projection of the vector (x0
j − g0

ij) on the vector

(−gij2, gij1); because x0
j is on the opposite side of the hyperplane – in the

minus (−gij2, gij1) direction – the inner product is negative. Moreover, from
Fig. 2, it is clear that the absolute value of dabij and dbeij must be at least bi.

Using the trigonometric identities for the cosine of the differences of angles,
we can further derive

cos(θi − ωij) = cos(θi) cos(ωij) + sin(θi) sin(ωij) = gij1 cos(θi) + gij2 sin(θi) ,

which establishes the connection of the rotation angle θi of ellipse i and the
inclination angle ωij of the hyperplane.

Now, let us derive the above equations algebraically. To establish the co-
ordinate transformation for ellipse i and hyperplane G(t), let t0 denote the
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value of t, for which we obtain G2(t) = 0, i.e., the separating line intersects
with the original x-axis. In the new, shifted and rotated coordinate system the
center of the ellipse i is given by

v0
i :=

(

x0
i1 −G1(t

0)
d0i

)

,

where di is the distance of the ellipse center to G(t), i.e.,

di :=
(−g2, g1) · (x0

i − g0)

|g| = (−g2, g1) · (x0
i − g0) , (26)

where we constructed the vector (−g2, g1)⊤ orthogonal to g. The ellipse, in
the new coordinate system, can be generated by

vi(ϕi) = v0
i + Rθ−ω,i

(

ai cosϕi

bi sinϕi

)

, 0 ≤ ϕi ≤ 2π .

It fulfills the constraint

(v − v0
i )

⊤
Eθ−ω,i(v − v0

i ) = 1 with Eθ−ω,i := Aθ−ω,i = Rθ−ω,iDiR
⊤
θ−ω,i .

The angle θi − ω for ellipse i satisfies the relation

cos(θi − ω) = (cos θi, sin θi) · g , (27)

and is the angle between the semi-major axis and the separating line.

With formula (20), we obtain

v−i2 = v0i2−
√

v22 with v22 =

(

E22 − E12
E21

E11

)−1

=
E11

λi1λi2
= E11a

2
i b

2
i ,

or v−i2 = v0i2− aibi
√

E11 = v0i2− aibi

√

cos2(θi − ω)λi1 + sin2(θi − ω)λi2 .

The transformation (translation and rotation) leads, eventually, to the final
constraint that ellipse i is “above” the hyperplane

v0i2 − aibi

√

cos2(θi − ω)λi1 + sin2(θi − ω)λi2 ≥ 0 ,

or equivalently

(

v0i2
)2 −

[

b2i cos
2(θi − ω) + a2i sin

2(θi − ω)
]

≥ 0 ∧ v0i2 ≥ 0 . (28)

Similarly, v0i2 + aibi

√

cos2(θi − ω)λi1 + sin2(θi − ω)λi2 ≤ 0 ,

or
(

v0i2
)2−

[

b2i cos
2(θi − ω) + a2i sin

2(θi − ω)
]

≥ 0 ∧ v0i2 ≤ 0 . (29)

enforce ellipse i to stay “below” the separating line.
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Finally, we are able to put everything together to state the non-overlap
conditions for a pair of ellipses i and j. For each such pair, we require one sep-
arating line of type (23) and force ellipse i to stay above (recall, that touching
is fine) that line via (28) and force ellipse j to stay below that line via (29).
Recall that the decision variables (i.e., di, ω, g and g0) related to the separat-
ing line carry now the double index ij. Especially, di becomes dabij , measuring

the distance of ellipse i above the separating line, and −dbeij , measuring the
distance of ellipse j below the separating line. We generate only hyperplanes
for i < j. This is illustrated in Fig. 2.

The case that ellipse j lies above ellipse i is covered by the reflected di-
rection vector −g. As we do not restrict g, or its components, in sign, the
direction is selected automatically when solving the problem. Thus, it is also
automatically decided which ellipse lies above and which under the hyperplane.

The distances dabij and −dbeij of the centers of ellipse i and j to the hyper-
plane, indexed by ij, separating the ellipses i and j are bounded by

bi ≤ dabij ≤ Dij , −Dij ≤ dbeij ≤ −bi , ∀{ij : i < j} (30)

as follows from the geometry, for instance, Dij =

√
(S+

1
)2+(S+

2
)2−bi−bj

2 , for all
{ij : i < j}.

The model is completed by

0 ≤ v0i2 = dabij and 0 ≥ v0j2 = dbeij , ∀{ij : i < j} (31)

for each ellipse i and j, and the computation of ωij according to (25).
Let us conclude this section with a structural comment which illuminates

the non-overlap constraints from a geometrical point of view and connects the
non-overlap constraints to the non-convex character of the problem. The non-
overlap constraints lead to a geometrical situation with a non-convex domain:
Imagine the rectangle, from which to cut the n ellipses, and assume that ellipse
i is fixed. The feasible area of the center coordinate of another ellipse j 6= i is
a subset of the rectangle without the region covered by ellipse i.

Similar to the case for circles, for n ellipses we have n(n− 1)/2 inequalities
of type (28) and (29), each. However, there are the additional constraints to
model the separating lines. We analyze the number of variables and constraints
involved in the non-overlap constraints for ellipses in the following section.

2.2 The NLP Formulations

Finally, we are able to state the resulting non-convex NLP formulations. How-
ever, before we start with the mathematical programming problem involving
trigonometric terms, we define, for notational ease,

Sid1 :=

{

a2i , d = 1
b2i , d = 2

and Sid2 :=

{

b2i , d = 1
a2i , d = 2

, ∀{id} . (32)

The ellipse cutting problem (EP) is then summarized as follows

(EPθ): a∗ = min
∏2

d=1
xR
d (33)(34)
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subject to

(fit ellipses i into rectangle)

Sid1 cos
2 θi + Sid2 sin

2 θi ≤
(

x0
id

)2 ∀{id} (35)

Sid1 cos
2 θi + Sid2 sin

2 θi ≤
(

xR
d − x0

id

)2 ∀{id} (36)

x0
id ≤ xR

d − bi ∀{id} (37)

(non-overlap of ellipses i and j)
∑2

d=1

(

gijd
)2

= 1 ∀{ij : i < j} (38)

g0ijd = λijx
0
id + (1 − λij)x

0
jd ∀{ijd : i < j} (39)

dabij = −gij2
(

x0
i1 − g0ij1

)

+ gij1
(

x0
i2 − g0ij2

)

∀{ij : i < j} (40)

dbeij = −gij2
(

x0
j1 − g0ij1

)

+ gij1
(

x0
j2 − g0ij2

)

∀{ij : i < j} (41)

cos(θi − ωij) = gij1 cos θi + gij2 sin θi ∀{ij : i < j} (42)

cos(θj − ωij) = gij1 cos θj + gij2 sin θj ∀{ij : i < j} (43)
(

dabij
)2 ≥ b2i cos

2(θi − ωij) + a2i sin
2(θi − ωij) ∀{ij : i < j} (44)

(

dbeij
)2 ≥ b2j cos

2(θj − ωij) + a2j sin
2(θj − ωij) ∀{ij : i < j} (45)

(variable domain)

S−
d ≤ xR

d ≤ S+
d ∀d (46)

bi ≤ x0
id ≤ S+

d − bi ∀{id} (47)

0 ≤ θi ≤ π ∀i (48)

0 ≤ λij ≤ 1 ∀{ij : i < j} (49)

0 ≤ g0ijd ≤ S+
d ∀{ijd : i < j} (50)

− 1 ≤ gijd ≤ 1 ∀{ijd : i < j} (51)

0 ≤ ωij ≤ 2π ∀{ij : i < j} (52)

bi ≤ dabij ≤ Dij ∀{ij : i < j} (53)

−Dij ≤ dbeij ≤ −bi ∀{ij : i < j} . (54)

We start with the description of the decision variables involved in (EPθ).
We have two variables for the design rectangle: its length and with, xR

d . Each
ellipse is modeled by three decision variables: the two center coordinates, x0

id,
and the rotation angle, θi. For each pair of ellipses i and j with i < j, we
have one hyperplane ij, modeled by five decision variables: the two footpoint
coordinates, g0ijd, the linear combination variable λij and the two dimensional
slope, gijd. The coordinate transformation for ellipse i with respect to hyper-
plane ij requires the angles ωij . Finally, the distance of the two ellipses i and
j, in the new coordinate transform, involve the two decision variables dabij and

dbeij . Thus, for each pair of ellipses there are eight decision variables involved
with the modeling of the non-overlap condition for ellipses.

We minimize with (33) the area of the design rectangle, i.e., objective
function (1).

The first group of constraints, (35)-(37), enforces that all ellipses stay inside
the design rectangle. Constraints (35) ensure that the minimum extension of
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each ellipse is non-negative; using constraints (9), (18), and (20). Similarly,
constraints (36) and (37) ensure that the maximum extension of each ellipse
is inside the rectangle; using constraints (9), (19), and (21).

The second group, (38)-(45), models the non-overlap of each pair of ellipses
i and j. Constraints (38) normalize the slope of the hyperplane ij; constraints
(39) place the footpoint of the hyperplane on the line segment of the two center
coordinates of the corresponding ellipses; i.e., (24). The distance of the two
ellipses i and j to their corresponding hyperplane ij is computed via (40) and
(41); i.e., (26). The angle for the coordinate transformation with respect to
the hyperplanes is given by (42) and (43); i.e., (27). Finally, the non-overlap
of the two ellipses is given via (44) and (45); i.e., (28) and (29), respectively.

With the discussion above, for n ≥ 2 ellipses, (EPθ) involves 2− 1
2n+ 7

2n
2

continuous decision variables and 3
2n+

9
2n

2 functional constraints, not counting
the box constraints (46)-(54).

We formulated the ellipse cutting problem as the NLP problem (EPθ), with
the non-convex objective function (33) and the non-convex constraints (35),
(36), (38), (40)-(45), leading to a non-convex feasible region.

In Sect. 2.1.3, we indicate how to transform (EPθ) into an equivalent (and,
thus, non-convex) quadratic model. Here it is:

(EPQP): a∗ = min
∏2

d=1
xR
d

s.t. (37), (38)− (41)

v2i + w2
i = 1 ∀i

Sid1v
2
i + Sid2

(

1− v2i
)

≤
(

x0
id

)2 ∀{id}
Sid1v

2
i + Sid2

(

1− v2i
)

≤
(

xR
d − x0

id

)2 ∀{id}
pabij = gij1vi + gij2wi ∀{ij : i < j}
pbeij = gij1vj + gij2wj ∀{ij : i < j}
(

dabij
)2 ≥ b2i

(

pabij
)2

+ a2i

(

1−
(

pabij
)2

)

∀{ij : i < j}
(

dbeij
)2 ≤ b2j

(

pbeij
)2

+ a2j

(

1−
(

pbeij
)2

)

∀{ij : i < j}
(46), (47), (50), (51), (53), (54)

− 1 ≤ vi ≤ 1 ∀i
0 ≤ wi ≤ 1 ∀i
− 1 ≤ pabij , p

be
ij ≤ 1 ∀{ij : i < j}

We have re-formulated (EPθ) as a quadratic optimization problem in form of
(EPQP) in order to utilize algorithms, specializing in bilinear and quadratic
terms, which might be superior to general purpose algorithms and software
packages.

The review by Floudas et al. (2005, [7]) and the paper by Misener & Floudas
(2012, [21]) are good resources for further references and a description of var-
ious approaches to solve problems of the type of (EPQP); we avoid repeating
the material here but list a few of the relevant references among them An-
droulakis et al. (1995, [3]), Maranas & Floudas (1995, [17]), Adjiman et al.
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(1996, [2]), and Adjiman et al. (2000, [1]). Algebraic reformulations and con-
vex relaxation techniques as described in Liberti (2004, [13]), and Liberti &
Pantelides (2006, [14]) are part of the global mixed-integer quadratic optimizer
GloMIQO by Misener & Floudas (2012, [21]).

In the remainder of the paper, we refer to the ellipse cutting problem as
(EP) and mean either formulation (EPθ) or (EPQP); any discussion on (EP)
applies for both formulations equally.

Next, we enhance (EP) by symmetry breaking constraints (Sect. 2.3) and
extensions using binary decision variables (Sect. 2.4).

2.3 Symmetry Breaking

The occurrence of symmetry in (any) mathematical programming problem can
pose major challenges for global solvers for closing the optimality gap (this is
also true for MILP solvers). Often, two symmetric solutions are “physically”
identical (e.g., when cutting identical objects) or can be mapped to each other
via a point or axis reflection. Thus, breaking symmetry does not exclude inter-
esting optimal solutions but may help to solve the problem instance at hand
faster (or even at all). In the following, we address three such symmetries for
our ellipse cutting problem and how to break them.

Given any optimal (ellipse) cutting and the corresponding rectangle, we
can obtain several alternative optimal solutions by horizontal and vertical re-
flections; the solver views them as different solutions. We break this symmetry
by requesting that the center of one of the ellipses is placed into the first
quadrant of the design rectangle. Let ι be the index of that ellipse. Then, the
symmetry breaking inequalities readx0

ιd ≤ 1
2x

R
d for all d.

If congruent (i.e., identical) ellipses are to be packed, then we break the
resulting symmetry by sorting their center points with respect to the lower left
corner of the rectangle. We collect all pairs (i, j) of congruent ellipses in the
set Ico (we assume ordered pairs i < j) and apply the ordering inequalities

x0
i1 + 5x0

i2 ≤ x0
j1 + 5x0

j2 , ∀(i, j) ∈ Ico . (55)

Constraints (55) can be strengthened via lexicographic sorting involving mixed-
integer programming techniques (cf. Sect. 2.4).

Rather a matter of degeneracy than of symmetry are free ellipses, i.e.,
ellipses which can be moved locally without changing the objective function
value (the area of the rectangle). In a cutting problem, free objects cause
mainly degeneracy, however, in a packing problem, this poses major difficul-
ties as they can freely “flow” around. We avoid free ellipses by adding a soft
penalty term which moves the center coordinate towards the lower left corner
of the rectangle.

2.4 MINLP Extensions

The NLP models presented in Sect. 2.2 contain a combinatorial component:
The ellipses can be placed in any order to each other. Actually, for n ellipses,
there are n! many such orderings. This combinatorial nature is one of the
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reasons why the ellipse cutting problem turns out to be so computationally
challenging to solve. We enhance the visibility of this combinatorial structure
to the solvers via the following extension of the NLP models developed so far.

We partition the rectangle into a uniform grid of small rectangles. The size
of the small rectangles depends on the problem instance and is governed by
the “smallest” ellipses. It is chosen such that the center of each ellipse i can
be uniquely assigned to one of these small rectangles. We denote by (cx, cy)
one such small rectangle (“cell”) and collect all cells in the set Ice. We control
the assignment of ellipses to cells by the binary variables δicxcy . The following
set of constraints assigns each ellipse to exactly one cell

∑

(cx,cy)∈Ice

δicxcy = 1 , ∀i . (56)

The centers of the ellipses are then subject to the constraints

x0
id ≥ C−

cxcyd
− S+

d (1− δicxcy ) , ∀{ i, d, (cx, cy) ∈ Ice } , (57)

x0
id ≤ C+

cxcyd
+ S+

d (1− δicxcy ) , ∀{ i, d, (cx, cy) ∈ Ice } , (58)

where C−
cxcyd

and C+
cxcyd

are the lower and upper boundary coordinate of cell

(cx, cy), respectively. If δicxcy = 0, then both constraints (57) and (58) (for each
dimension) are dominated by the boundary conditions (9). However, δicxcy = 1
forces the center of ellipse i not to be outside of cell (cx, cy).

The ellipse cutting problem is now formulated via a MINLP problem. On
paper, this MINLP looks even more difficult to solve than the NLP formula-
tions. We might be surprised in Sect. 4.

The MINLP framework, and the presence of binary variables δicxcy , allows
us to develop an enhancement for the symmetry breaking constraints (55) for
identical ellipses (cf. Sect. 2.3).

Let i and j be the indices of two identical ellipses with the indices ordered
as i < j, i.e., (i, j) ∈ Ico. We use a lexicographic ordering in the following
sense: j is placed in a cell right of ellipse i, or it is in the same column of cells
and above ellipse i (or the same). This condition is modeled as

δicxcy ≤
∑

c′x: Cc′xcy1>Ccxcy1

∑

c′y: (c
′

x,c
′

y)∈Ice

δjc′xc′y

+
∑

c′y: Ccxc′y2>Ccxcy2

δjcxc′y , ∀{ (i, j) ∈ Ico, (cx, cy) ∈ Ice } .(59)

The first term models the “right” condition and the second term the “same
column but higher” property.

2.5 Deriving Lower and Upper Bounds via Circle Cuttings

(Tight) lower and upper bounds on the minimal area of the design rectangle
translate directly to lower and upper bounds on the length and width of the
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design rectangle; because of (3). Good bounds are crucial for the performance
of global solvers.

To compute a lower bound on the minimal area of the design rectangle,
we replace all ellipses by their inner circles, i.e., Ri = bi. We then compute
the area-minimizing rectangle hosting all these inner circles with the formu-
lation described in Sect. 2.1.1. Solving the resulting circle cutting problem is
computationally relative easy compared to the corresponding ellipsoid cutting
problem (note that both problems are in fact NP-hard). The solution of the
circle cutting problem provides only a tight bound on the minimal area, when
the semi-minor axes are not significantly smaller than the semi-major axes of
all ellipses to be packed.

We obtain an upper bound on the minimal area of the design rectangle
by replacing all ellipses by their outer circles, i.e., Ri = ai. We then compute
the optimal design rectangle by solving the resulting circle cutting problem.
By placing the centers of the ellipses at the locations of the center of the
corresponding circles in an optimal circle cutting yields in a feasible cutting.

Generally, we denote a lower bound (upper bound) on the minimal area of
the design rectangle by A− (A+) and the lower bound (upper bound) obtained
by the inner circle (outer circle) cutting by Aci,− (Aci,+).

We can now refine the lower and upper bounds on the rectangle length,
L, and width, W , based on the cuttings we obtained for the inner and outer
circle approximations. It is L · W ≤ Aci,+ and L ≤ Aci,+/W ≤ Aci,+/S−

2 .
The minimum width, S−

2 , of the rectangle, could be the maximum of all the
minor ellipse axis lengths, yielding an upper bound on the rectangles length.
Similarly, by using Aci,−, we obtain a lower bound on the rectangles length.

3 Polylithic: Constructive Heuristics

If the number of ellipses increases, it becomes more and more difficult to com-
pute a feasible point. Therefore, we have developed two polylithic approaches.

Both heuristics share the same idea: We sequentially add ellipses in a strip-
packing fashion to the rectangle plate; we restrict the width of the rectangle,
but leave its length unrestricted. We start with the placement of n1 ellipses
in the initial phase. Next, we use a greedy idea and add n2 ellipses. In each
step, we minimize the rectangle’s area. The sequence, s ∈ S, in which we add
the ellipses is random. This adds some GRASP flavor to our approach (cf. Feo
and Resende, 1995, [5]).

Some aspects of our heuristic may look similar to the tiling method intro-
duced by Markót and Csendes (2005, [19]), but these similarities are accidental
– one of the referees pointed us to this method during the review process.

The pseudo-code of the first algorithm, H1, looks as follows:

Input: Random sequence of ellipses, S, parameters n1 and n2, time limits
for solver (may be different for steps H1 1.1, H1 1.2.4, H1 1.2.5)

Output: Set of ellipse cuttings, lower bounds, and gaps
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H1 1: For all sequences of ellipses s ∈ S, do
H1 1.1: Solve (EP) for the first n1 ellipses from s (usually, not solved to

global optimality)

H1 1.2: While there are ellipses in the sequence s which have not been
assigned, do

H1 1.2.1: For the best solution found (in steps H1 1.1 or H1 1.2.4 and
H1 1.2.5) store obtained length of rectangle as x̄R

1 ; fix the cen-
ters, x0

i , as well as the angles, θi, for all ellipses considered so far

H1 1.2.2: Choose the next (up to) n2 ellipses – indexed by ι – in the
sequence s

H1 1.2.3: Sequentially initialize the center(s), x0
ι , and angle(s), θι, of

the new ellipse(s) according to the following formulae: x0
ι1 =

x̄R
1 + bι, x

0
ι2 = aι, and θι = 0, i.e., the additional ellipse(s) are

added to the right of the existing ones; update x̄R
1 ← x̄R

1 +2bι;
repeat for all n2 ellipses ι

H1 1.2.4: Solve the resulting (EP)

H1 1.2.5: Unfix all center coordinates and angles; solve (EP) with the
global solver selected; theoretically, that should exploit the cur-
rent feasible point and improve on it

H1 1.3: Store feasible point (ellipse cutting) and lower bound computed in
the latest solve of step H1 1.2.5; compute and store optimality gap

H1 1.4: Clear the model by removing all ellipses and their corresponding
decision variables from (EP)

H1 2: Return set of feasible points, (safe) lower bounds and gaps.

The time limits for the (MI)NLP solves in steps H1 1.1, H1 1.2.4, and
H1 1.2.5 make the algorithm a heuristic; typically the optimization problems
are not solved to (proven) global optimality before the time limit is reached.
We need to be careful to allow for enough CPU time (especially for steps
H1 1.1 and H1 1.2.4) in order to find a feasible point for the given number of
ellipses. If the ellipse cutting problem in step H1 1.2.5 can be solved to global
optimality when all ellipses are present, then the ellipse cutting problem has
been solved to global optimality as well. In most cases, however, the problem
is not solved to global optimality in step H1 1.2.5 – after all, this is why we
use a polylithic approach. Rather, the idea is that the global solver is now
getting the benefit of a good initial point and, like most solvers, it might start
by doing local search from that point to improve upon the current point.

The idea of algorithm H1 is to aid the global solver by providing initial val-
ues for many of the decision variables, however, a few decision variables (e.g.,
related to the separating lines) need to be determined by the solver. It turns
out that, as the problems grow in size, feasible point(s) cannot be computed
anymore – we have developed a second approach. H2 reads in pseudo-code as
follows:
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Input: Random sequence of ellipses, S, parameters n1, n2, and n3, time
limits for solver (may be different for steps H2 1.2 and H2 1.2.4)

Output: Set of ellipse cuttings

H2 1: For all sequences of ellipses s ∈ S, do
H2 1.1: Solve (EP) for the first n1 ellipses from s (usually, not solved to

global optimality)

H2 1.2: While there are ellipses in the sequence s which have not been
assigned, do

H2 1.2.1: In the solution computed (in steps H2 1.2 or H2 1.2.4), identify
the n3 most right ellipses; we index them by r; fix their centers,
x0
r , and cos(θr); save the solution (x0

i , θi, gij1) for all ellipses
considered in the last (EP); eliminate all ellipses already placed
except for the n3 most right ellipses (i.e., the ellipses with in-
dex r remain in (EP))

H2 1.2.2: Choose the next (up to) n2 ellipses – indexed by ι – in the
sequence s

H2 1.2.3: The centers x0
ι of the n2 ellipses are subject to the lower bound

X− := min x0
r1 (the smallest center coordinate among the n3

ellipses in coordinate direction d = 1)

H2 1.2.4: Solve the resulting (EP), for the n2 + n3 ellipses

H2 1.3: Store feasible point (ellipse cutting) by restoring all previously
computed values x0

i , θi, and gij1
H2 1.4: Clear the model by removing all ellipses and their corresponding

decision variables from (EP)

H2 2: Return set of feasible points.

Heuristics H1 and H2 differ mainly in steps 1.2.1 and 1.2.3; step H1 1.2.5
is entirely missing in H2. The idea (and advantage in the computational speed
compared to H1) of H2 is to sequentially solve (EP) of the same size; they
contain n2 + n3 ellipses. However, a critical tuning parameter is X− used to
prevent new ellipses from being placed left of the front. Note that H2 does not
deliver a lower bound on the ellipse cutting problem, because the ellipses fixed
in step H2 1.2.1 never get unfixed (within the same sequence s) but are not
further considered when a new front is determined.

4 Numerical Experiments

We solve our non-convex MINLPs with the following global solvers available
in GAMS: BARON [25], LindoGlobal [15] and GloMIQO [21]. All the instances
used for the computations are summarized in Table 1. We used the following
platforms for the computations.
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Fig. 3 Feasible circle cuttings computed via (EPQP), including the separating lines.

Platform 1: Dual-six core machine with CPUs @ 2.93 GHz, 48GB RAM and
1TB HDD running Ubuntu 10.04.4.

Platform 2: Dual core machine with CPUs @ 2.5 GHz (Intel booth technol-
ogy) 48GB RAM and 250 GB HDD running Windows 7.

Platform 3: Dual-six core machine with CPUs @ 3.3 GHz, 48GB RAM and
1TB HDD running Win2008 Server.

All computations utilize only a single core of the platforms specified above.

4.1 Proof-of-Concept: Treating Circles as Ellipses

We use the ellipse cutting formulation (EPQP) to demonstrate the correctness
of the approach by solving (published) circle cutting instances; circles are
special cases of ellipses. We use test instances by Kallrath (2009, [11]). Note
that there are some typos regarding the instances 5a and 5b as reported in
Table 3 in [11]; we provide the correct radii of the circles here.

Consider now Table 2. In the first two columns, we report on the problem
instance; a∗ is the globally minimal area of the design rectangle as computed
via a circle cutting formulation, cf. Sect. 2.1.1. In the other columns, we sum-
marize the lower bound, A−, and the upper bound, A+, on the minimal area of
the design rectangle as well as the computational time for (EPQP) with three
different global solvers available in GAMS. For these computations, for obvious
reasons, we do not use the lower/upper bounds derived by the inner/outer cir-
cle cutting problems as described in Sect. 2.5. We observe that (1) the results
computed with (EPQP) are consistent with the global optima computed with
the circle cutting formulation, (2) global optimality can only be proven for the
instances with 5 circles within the time limit, (3) the globally optimal cuttings
are only found for the cases of 5 circles, and (4) the global solvers perform
very differently in terms of lower bounds and the quality of computed feasible
solutions.

Two optimal circle cuttings are plotted in Fig. 3.

4.2 Monolith

Table 3 summarizes the computational results for the monolith formulation
(EPQP). We observe that (1) all three current state-of-the-art global opti-
mization solvers have difficulties closing the gap for the tested instances with
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Table 1 Ellipse cutting instances.

test (ai, bi) S−

d S+
d

∑
i Ai

case

Ellipse cutting instances “regular”:

TC02a (2, 1.5), (1.5, 1) (0,0) (8,4) 14.13717

TC02b (2, 1.5), (1.8, 1.4) (0,0) (8,4) 17.34159

TC03a “TC02a” + (1, 0.8) (0,0) (8,4) 16.65044

TC03b “TC02b” + (0.8, 0.7) (0,0) (8,4) 19.10088

TC04a “TC03a” + (0.9, 0.75) (0,0) (8,4) 18.77102

TC04b “TC03b” + (1.1, 1) (0,0) (14,4) 22.55664

TC05a “TC04a” + (0.8, 0.6) (0,0) (8,4) 20.27898

TC05b “TC04b” + (0.9, 0.8) (0,0) (14,4) 24.81858

TC06 “TC05a” + (0.7, 0.3) (0,0) (10,5) 20.93872

TC11 (2, 1.5), (1.8, 1.5), (1.6, 1.5), (1.5, 1.2), (0,0) (15,5) 47.31239
(1.3, 1.0), (1.2, 0.9), (1.1, 0.8), (1, 0.75),
(0.9, 0.6), (0.8, 0.5), (0.7, 0.3)

TC14 7× (1, 0.75), 7× (0.5, 0.375) (0,0) (8,4) 20.61670

TC20 “TC06” + 14× (1, 0.8) (0,0) (30,5) 56.12455

TC30 “TC06” + 24× (1, 0.8) (0,0) (30,5) 81.25729

TC50 “TC06” + 44× (1, 0.8) (0,0) (60,5) 131.52278

TC100 “TC06” + 94× (1, 0.8) (0,0) (120,5) 257.18648

Identical ellipses; total area of these n identical ellipses is 2πn:

TS02 2× (2, 1) (0,0) (8,4) 12.56637

TS03 3× (2, 1) (0,0) (8,4) 18.84956

TS04 4× (2, 1) (0,0) (8,4) 25.13274

TS05 5× (2, 1) (0,0) (12,5) 31.41593

TS06 6× (2, 1) (0,0) (12,5) 37.69911

TS07 7× (2, 1) (0,0) (15,5) 43.98230

TS08 8× (2, 1) (0,0) (20,5) 50.26548

TS09 9× (2, 1) (0,0) (20,5) 56.54867

TS10 10× (2, 1) (0,0) (20,5) 62.83185

TS11 11× (2, 1) (0,0) (22,5) 69.11504

TS12 12× (2, 1) (0,0) (24,5) 75.39822

TS13 13× (2, 1) (0,0) (26,5) 81.68141

TS14 14× (2, 1) (0,0) (28,5) 87.96459

TS15 15× (2, 1) (0,0) (30,5) 94.24778

Different eccentricities; ρ ∈ [0, 1]:

TEρ (1.7, ρ1.7), (1.2, ρ1.2), (0.8, ρ0.8) (0,0) (8,4) ρ15.61372

Circle cutting; [11, Table 3]:

5a (1.7,1.7), (1.3,1.3), (1.2,1.2), (0,0) (8,5) 21.70841
(0.5,0.5), (0.8,0.8)

5b “5a” (0,0) (18,5) 21.70841

6 “5a” + (0.6,0.6) (0,0) (8,4) 22.83948

7 “6” + (0.6,0.6) (0,0) (8,4) 23.97035

8 “5a” + (2.0,2.0), (1.3,1.3), (0.6,0.6) (0,0) (18,4) 40.71504

9 “8” + (0.6,0.6) (0,0) (18,4) 41.84601

10 “9” + (0.7,0.7) (0,0) (15,4) 43.38539
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Table 2 Cutting circles with (EPQP). We fix the rotation angles θi ≡ 0. Test cases are
taken from Table 3 in [11]. CPU time limit is 12 hours; GAMS 24.0.2; platform 1.

test a∗ BARON LindoGlobal GloMIQO

case A− A+ h:mm A− A+ h:mm A− A+ h:mm

5a 30.62727 26.8025 – † *** *** 1:46 30.62697 30.68817 †
5b 28.41130 28.4110 29.01239 † *** *** 8:40 *** *** 0:07
6 30.62727 26.9677 – † 30.62727 30.70490 † 22.83938 31.10945 †
7 31.12348 23.9704 – † 23.97035 31.42927 † 23.97035 – †
8 55.19630 40.7150 – † 40.71504 56.53235 † 40.71504 58.14951 †
9 55.19630 41.8460 – † 41.84601 57.14757 † 41.84601 63.44832 †

10 55.32089 43.3854 – † ‡ ‡ ‡ 43.38539 – †

*** solved to proven global optimality (within 10−5)
† time limit reached
‡ solver error
– no feasible solution found

Table 3 Monolith: Cutting ellipses with (EPQP). CPU time limit was 12 hours; GAMS 24.0.2;
platform 1.

test BARON LindoGlobal GloMIQO

case A− A+ h:mm A− A+ h:mm A− A+ h:mm

TC02a *** 18.00000 0:02 *** 18.00000 0:01 *** 18.00000 0:04
TC02b *** 22.23152 0:10 *** 22.23152 0:08 *** 22.23152 0:06
TC03a 17.04840 21.38576 † 17.32575 21.38577 † 17.04840 21.38577 †
TC03b 20.54006 25.22467 † 22.17848 25.22467 † 22.73854 25.22467 †
TC04a 19.26952 23.32845 † 19.26971 23.18708 † 19.26952 23.18774 †
TC04b 25.02665 29.22110 † 25.02690 28.54159 † 25.02665 28.54074 †
TC05a 20.27898 28.82368 † 20.27898 25.29557 † 20.27878 25.50112 †
TC05b 26.74996 33.84456 † 26.75023 31.28873 † 26.74996 31.28873 †
TC06 20.9387 – † 20.93872 25.59380 † 20.93851 25.51043 †
TC11 47.3124 – † 47.31238 64.59177 † 47.31239 74.95189 †
TC14 20.6165 – † 20.61670 – † 20.61650 29.65886 †

*** solved to proven global optimality (within 10−5)
† time limit reached
– no feasible solution found

three or more ellipses (with the given computational framework) and (2) good
cuttings are computed, cf. Fig. 4.

For case TC03, the smallest relative gaps, ∆, are obtained on platform
3 using LindoGlobal with GAMS 24.0.2 (A+ = 21.38577, A− = 21.17972, ∆ =
0.00973, 30 hours) and using GloMIQOwith GAMS 23.8.2 (A+ = 21.38577, A− =
20.58535, ∆ = 0.0388, 63 hours).

Fig. 4(a) illustrates the difference between a packing and a cutting. The
top right ellipse is not touching the ellipse centered at (4.07, 1.27), which is
allowed for cuttings but not for packings.

4.2.1 Inner and Outer Circles

Table 4 shows the lower bounds obtained by the area of ellipses (
∑

i Ai), the
lower bounds obtained by the cutting computed for the inner circles (Aci,−)
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Fig. 4 Ellipse cuttings computed via (EPQP).

Table 4 Comparing area of ellipses, inner circles, outer circles and best solution found
(taken from Table 3 or Table 9).

test
∑

i Ai Aci,− Aci,+ A+

case

TC02a 14.13716 14.84832 27.85641 18.00000♭

TC02b 17.34159 17.39465 30.37893 22.23152♭

TC03a 16.65044 17.04857 33.31371 21.38577
TC03b 19.10088 20.54006 34.08285 25.22467
TC04a 18.77102 19.26952 33.80990 23.18708
TC04b 22.55664 25.02665 37.79904 28.54159
TC05a 20.27898 19.82259 37.21122 25.29557
TC05b 24.81858 26.74996 41.48491 31.28873
TC06 20.93872 19.62543 37.36912 25.27463
TC11 47.31239 37.39281 83.04046 57.24034
TC14 20.61670 15.46253 35.48528 24.67185

♭ proven global optimality (within 10−5)

and an upper bound derived from a cutting using outer circles (Aci,+). The
lower bounds obtained from the inner circle cuttings are slightly better than
the sum of all areas of the ellipses when the majority of the ellipses has
semi-minor axes not significantly smaller than their semi-major axes; other-
wise, the sum of all areas of the ellipses exceeds Aci,−. As the initial lower
bounds obtained by the solvers for (EP) are significantly smaller, we use
max{∑iAi, A

ci,−} as the lower bound for (EP).

4.2.2 Tracking the Gap as a Function of the Eccentricity Ellipses

The more the ellipses deviate from circles, the more difficult it becomes to
close the gap when solving (EP) to global optimality. To demonstrate this, we
consider three ellipses with semi-major axes a1 = 1.7, a2 = 1.2, and a3 = 0.8
and semi-minor axes bi = ρai with 0 ≤ ρ ≤ 1, these are the test cases TEρ of
Table 1. The numerical eccentricity ε, as a measure for the deviation of the
ellipses from circles, is connected to ρ by

ε =

√
a2 − b2

a
=

√

1− ρ2 ∈ [0, 1] .
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Table 5 Cutting ellipses with different eccentricity with (EPQP). CPU time limit is 5 hours;
GAMS 24.0.2; platform 1.

test ε
∑

i Ai BARON LindoGlobal GloMIQO

∑
i Ai

A+

case A− A+ 103∆ A− A+ 103∆ A− A+ 103∆

TE1.00 0.0000 15.61372 *** 22.17171 0.01 *** 22.17171 0.0001 *** 22.17171 0.01 70.42181%
TE0.99 0.1411 15.45758 21.73027 21.84219 5.15 21.73049 21.84169 5.12 21.73027 21.84169 5.13 70.77099%
TE0.98 0.1990 15.30144 21.29350 21.50833 10.09 21.29371 21.50937 10.13 21.29350 21.50833 10.09 71.14193%
TE0.97 0.2431 15.14530 20.86115 21.17669 15.13 20.86136 21.17669 15.12 20.86115 21.17669 15.13 70.41597%
TE0.96 0.2800 14.98917 20.43324 20.85335 20.56 20.43345 20.84672 20.23 20.43324 20.84672 20.24 71.90182%
TE0.95 0.3122 14.83303 20.00977 20.51837 25.42 20.00997 20.51837 25.41 20.00977 20.51837 25.42 72.29146%
TE0.90 0.4359 14.05234 17.95890 18.89960 52.38 17.95908 18.90025 52.41 17.95890 18.89960 52.38 74.35258%
TE0.80 0.6000 12.49097 14.18974 16.09992 134.62 14.18989 16.09992 134.60 14.18975 16.09992 134.62 77.58405%
TE0.70 0.7141 10.92960 10.92949 13.79909 262.56 11.63246 13.79909 186.26 10.92949 13.79909 262.56 79.20522%
TE0.60 0.8000 9.36823 9.36814 11.65005 243.58 9.36823 11.65005 243.57 9.36814 11.65005 243.58 80.41365%
TE0.50 0.8660 7.80686 7.80678 9.74384 248.13 7.80686 9.74384 248.11 7.80678 9.74384 248.13 80.12098%
TE0.40 0.9165 6.24549 6.24542 7.91654 267.57 6.24549 7.91654 267.56 6.24542 7.91654 267.58 78.89166%
TE0.30 0.9539 4.68411 4.68407 6.16566 316.30 4.68412 6.16566 316.29 4.68407 6.16566 316.30 75.97094%
TE0.20 0.9798 3.12274 3.12271 4.15789 331.50 3.12274 4.15807 331.55 3.12271 4.15789 331.50 75.10396%
TE0.10 0.9950 1.56137 1.56136 2.08193 333.41 1.56137 2.08193 334.40 1.56136 2.08193 333.41 74.99628%

*** solved to proven global optimality (within 10−5)
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Fig. 5 Gap for TEρ instances for GloMIQO; see Table 5.

Computational results for some values of ρ are summarized in Table 5 dis-
playing the computed lower bound, A−, best solution found, A+, and relative
gap ∆ = (A+ − A−)/A− versus ρ for the three global solvers BARON, Lin-
doGlobal, GloMIQO. The last column computes the fraction of area of the
design rectangle covered by the ellipses, which is the utilization of the cutting.

Consider now Table 5. Even for a mild eccentricity of ε = 0.199, or ρ = 0.98,
respectively, the gap is already very difficult to close. For ρ ≥ 0.7, we observe
that the lower bound, A−, remains close to the sum of the area of the three
ellipses. We can see that the gap increases first linearly, then exponentially
and then remains approximately stable, as ρ decreases from 1.0 to 0.1; cf. Fig.
5. Three ellipse cuttings for ρ = 0.80, ρ = 0.50, and ρ = 0.10 are plotted in
Fig. 6. Though we realize that the gaps are not closed (for ρ < 1), the ratio
of the area of the rectangle to the areas of the ellipses appears to stay above
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Fig. 6 Feasible ellipse cuttings computed via (EPQP) for three ellipses with different ec-
centricities.

70% and peaks at approximately 80.5% for ρ ≈ 0.60.

4.2.3 Identical Ellipses

Before we report on our numerical results using our mathematical program-
ming formulations to cut sets of identical ellipses, we derive quasi-analytic
cutting configurations which we will call symmetric for simplicity. This allows
us to test our formulations, benchmark the global solvers and compare the
solution to unsymmetrical cuttings.

For identical ellipses, we can place the ellipses symmetrically, enabling us
to compute feasible cuttings as follows. For the case of three ellipses, we place
them as shown in Fig. 7(a). The three ellipses are then centered and orientated
at (2, 1; 0◦), (2, 3; 0◦) and (x0

31, 2; 90
◦) with nomenclature (x0

i1, x
0
i2; θi). Let us

refer to this configuration as 2−θi which means: two ellipses with θi = 0◦, and
one ellipse with rotation angle θi = 90◦. The results we derive provide upper
bounds as long the width of the rectangle is xR

2 ≥ 4. They are expected to be
exact for xR

2 = 4.
Ellipse 1 and 3 touch each other at point (xs, ys) which can be obtained

by solving the following optimization problem:

max x0
31

s.t.
(xs − 2)

2

4
+

(ys − 1)
2

1
= 1 (60)

(

xs − x0
31

)2

1
+

(ys − 2)
2

4
= 1 (61)

x0
31 > xs

0.5 ≤ ys ≤ 1.5
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Table 6 Cuttings obtained for “symmetric” placing of ellipses.

n configuration Cn recursion xR
1,n ãn = 4xR

1,n

3 2 + θ = 1× [2 + θ] x3 + 1 23.53419
4 θ + C3 = θ + 1× [2 + θ] θ + C3 2(x3 − 2 + 1) 31.06838
5 2 + θ + 2 = 1× [2 + θ] + 2 C3 + 2 2x3 39.06838
6 θ + 1× [2 + θ] + 2 θ + C5 xR

1,4 − 1 + x3 46.60257

7 θ + 2× [2 + θ] C6 + θ 2(xR
1,4 − 1) 54.13676

8 2× [2 + θ] + 2 2 + C6 2(xR
1,5 − 2) 62.13676

9 θ + 2× [2 + θ] + 2 C7 + 2 = θ + C6 xR
1,7 − 1 + x3 69.67096

10 θ + 3× [2 + θ] C9 + θ 2(xR
1,6 − 2) 77.20515

11 3× [2 + θ] + 2 2 + C9 2(xR
1,6 − 1) 85.20515

12 θ + 3× [2 + θ] + 2 C10 + 2 = θ + C11 xR
1,10 − 1 + x3 92.73934

13 θ + 4× [2 + θ] C12 + θ 2(xR
1,7 − 1) 100.27353

14 4× [2 + θ] + 2 2 + C12 2(xR
1,8 − 2) 108.27353

15 θ + 4× [2 + θ] + 2 θ + C14 xR
1,13 − 1 + x3 115.80772

Resolving (60) and (61) leads to equation

xs = 2
√

2ys − y2s + 2 = x0
31 −

√

1− 1
4 (ys − 2)

2
,

which allows us to write x0
31 as a function of ys

x0
31 = x0

31(ys) = 2
√

2ys − y2s + 2+

√

1− 1
4 (ys − 2)2 .

Its maximum is obtained by equating the first derivative to zero

2− 2ys
√

2ys − y2s
+

2− ys

4
√

1− 1
4 (ys − 2)

2
= 0 , (62)

and yields the numerical values (ys, x
0
31) ≈ (1.121357, 4.88355); (62) does not

possess an analytical solution. For completeness, we also report xs ≈ 3.98521
and the area,

ã3 := 4xR
1,3 := 4

(

x0
31 + 1

)

≈ 23.53419 .

The values of x0
31 and xR

1,3 can also be used to derive good upper bounds,

ãn = 4xR
1,n, on the area of rectangles for n identical ellipses.

For n ≥ 7, a general formula is

xR
1,n =

(

xR
1,n−2 − 1

)

+ x3 ,

with x3 ≡ x0
31 ≈ 4.88355 as derived for the three ellipse case. If the configura-

tion is symmetric, we have

xR
1,n = 2



















xR
1,1+⌊n/2⌋ − 1, for n = 2k + (k − 1) = 3k − 1 ∧ k = 2m

xR
1,1+⌊n/2⌋ − 2, for n = 2k + (k − 1) = 3k − 1 ∧ k = 2m+ 1

xR
1,1+⌊n/2⌋ − 2, for n = 2k + (k + 1) = 3k + 1 ∧ k = 2m+ 1

xR
1,1+⌊n/2⌋ − 1, for n = 2k + (k + 1) = 3k + 1 ∧ k = 2m
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Fig. 7 Ellipse cuttings for identical ellipses.

We summarize the resulting symmetric cuttings in Table 6. Fig. 7(a), (b)
and (d) illustrate the notation in Table 6 for 3, 8 and 9 ellipses, respectively.

We start with a series of computations for identical ellipses using the mono-
lith formulation (EPQP), as summarized in Table 7. With only 20 minutes of
CPU time, the lower bounds do not increases above the sum of the area of all
ellipses. This picture does not change when allowing 45 minutes. However, the



28 Josef Kallrath, Steffen Rebennack

Table 7 Identical ellipses with (EPQP) (no MINLP extensions). For 16 and more identical
ellipses, no feasible points were found by any of the three solvers used. GAMS 24.1; platform
2.

test ãn BARON LindoGlobal GloMIQO

case A− A+ A− A+ A− A+

CPU time limit: 20 minutes

TS02 16.00000 *** 16.00000 15.99262 16.00000 *** 16.00000
TS03 23.53419 18.84937 23.53383 18.84956 23.53419 18.84937 23.53418
TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13249 31.06838
TS05 39.06838 31.41561 44.27202 31.41593 39.03709 31.41561 39.03440
TS06 46.60257 37.69873 46.59140 37.69911 46.87235 37.69873 46.59298
TS07 54.13676 43.98186 54.13676 43.98230 63.32598 43.98186 54.13676
TS08 62.13676 50.26498 61.26671 50.26548 61.26671 50.26498 61.26671
TS09 69.67096 56.54810 69.58410 56.54867 69.58592 56.54810 69.58410
TS10 77.20515 62.83122 76.49471 62.83185 78.23977 62.83122 76.49471
TS11 85.20515 69.11435 85.73779 69.11504 – 69.11435 84.61446
TS12 92.73934 75.39747 91.67122 75.39822 94.22207 75.39747 91.67122
TS13 100.27353 81.68059 99.85158 81.68141 – 81.68059 99.85158
TS14 108.27353 87.96371 106.78443 87.96459 – 87.96371 110.6829
TS15 115.80773 94.24684 115.13250 94.24778 – 94.24684 –

CPU time limit: 45 minutes

TS02 16.00000 *** 16.00000 *** 16.00000 *** 16.00000
TS03 23.53419 18.84942 23.53383 18.84956 23.53351 18.84956 23.53418
TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13274 31.06838
TS05 39.06838 31.41561 39.01646 31.41593 39.03709 31.41561 39.01646
TS06 46.60257 37.69873 46.59133 37.69911 46.87236 37.69873 46.59133
TS07 54.13676 43.98186 54.13676 43.98230 63.32598 43.98186 54.13676
TS08 62.13676 50.26498 61.26671 56.00000 68.00000 50.26498 61.26671
TS09 69.67096 56.54810 69.58409 56.54867 69.58410 56.54810 69.58410
TS10 77.20515 62.83122 76.49471 62.83185 76.49544 62.83122 76.49471
TS11 85.20515 69.11435 85.64764 69.11504 87.87180 69.11435 84.61819
TS12 92.73934 75.39747 91.67122 75.39822 94.22207 75.39747 91.67122
TS13 100.27353 81.68059 99.85158 81.68141 108.91049 81.68059 99.85158
TS14 108.27353 87.96371 106.78443 87.96459 – 87.96371 106.9077
TS15 115.80772 94.24684 115.13250 94.24778 – 94.24684 –

*** solved to proven global optimality (within 10−5)
– no feasible solution found

runs terminated after 45 minutes tend to reveal improved solutions compared
to the shorter runs of 20 minutes. Note that the lower bounds obtained by
LindoGlobal are slightly larger when compared to those obtained by the other
two solvers.

As long as the upper bound on xP
2 equals 4 (test cases TS02, TS03, TS04),

ãn yields the optimal area of the design rectangle. They are obtained by the
three solvers (cf. Table 7). For xR

2 > 4 (all other test cases), the solutions ob-
tained are often slightly better than the analytic bounds ã because additional
topological placements to the symmetric ones become possible. We observe
this the first time for TC08. Fig. 7(b) and (c) contrast the “symmetrical” to
the better “asymmetrical” placement.
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Table 8 Identical ellipses with (EPQP) exploiting lexicographic ordering. CPU time limit
is 45 minutes; GAMS 24.1; platform 2.

test ã BARON LindoGlobal GloMIQO

case A− A+ A− A+ A− A+

TS02 16.00000 *** 16.00000 *** 16.00000 *** 16.00000
TS03 23.53419 18.84937 23.53383 18.84992 23.53305 18.84937 23.53418
TS04 31.06838 25.13249 31.06838 25.13274 31.06838 25.13249 31.06838
TS05 39.06838 31.41561 44.27205 31.41593 39.03709 31.41561 39.01646
TS06 46.60257 37.69873 – 37.69911 46.87236 37.69873 47.26726
TS07 54.13676 43.98186 – 43.98230 63.32598 43.98186 64.31777
TS08 62.13676 50.26498 – 50.26548 68.00000 56.12506 67.47646
TS09 69.67096 56.54810 – 56.54867 – 56.54810 78.41787
TS10 77.20515 62.83122 – 62.83185 – 62.83122 84.86555

*** solved to proven global optimality (within 10−5)
– no feasible solution found

Computations exploiting the lexicographic ordering – the MINLP extension
as discussed in Sect. 2.4 – are summarized in Table 8. For eight ellipses, the
lower bounds are improved compared to the monolith formulation without the
lexicographic ordering; cf. Table 7. Because the MINLP is more difficult to
solve than the pure NLP formulation, we are not surprised to see the upper
bound weaker. However, the advantage of the lexicographic ordering becomes
obvious when we try to close the gap; at least for three ellipses.

On platform 3, GAMS 23.8, GloMIQO, and the lexicographic MINLP ap-
proach, the gap is closed after 128,329 seconds (35h 38m 49s) within a tolerance
of ∆ = 10−5. The global solution has objective function value a = 23.53347.
The gap could neither be closed using GloMIQO embedded in GAMS 23.9 to
GAMS 24.1, nor by the other two global solvers, with 48 hours of computational
time. Baron computed a cutting with area 23.53383; cf. Table 7. It turns out
that this is smaller than the lower bound obtained by GloMIQO. The expla-
nation lies in the different feasibility tolerances of the two global solvers.

4.3 Polylithic

For the larger test instances (TC20, TC30, TC50 and TC100), none of the
global or local NLP solvers available in GAMS can compute a feasible point.
Therefore, we analyze these cases using our polylithic approaches.

We choose value 10 for parameter n1 for both heuristics, because we can
obtain reasonable solutions within approximately 5 to 15 minutes. The second
parameter is n2, the number of ellipses placed during the sequential phase. We
experienced with n2=1 and n2=2. While, from the underlying mathematical
idea, we expect that the solutions are better for n2=2, the computing effort is
higher. This in turn, can lead – and sometimes does – to worse solutions if the
time limit is reached before the gap is closed. Thus, considering this trade-off,
we recommend and prefer n2 = 1.

We benchmark the polylithic approach by comparing it to the best results
obtained by the monolith one (Table 3) for TC11 and TC14. For TC11, the
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Table 9 Heuristic methods H1 (n1 = 10) and H2 (n1 = 10, n3 = 5) for cutting el-
lipses; |S| = 8. CPU time limit is 5 hours (for steps H1 1.1, H1 1.2.4, H1 1.2.5, H2 1.2 and
H2 1.2.4); GAMS 24.0.2; platform 1.

test BARON LindoGlobal GloMIQO

case A− seq. A+ seq. A− seq. A+ seq. A− seq. A+ seq.

H1: n2 = 1
TC11 37.11006 2 57.24034 3 37.11006 2 58.34738 5 37.11006 2 58.30057 5
TC14 13.69538 2 24.67185 1 13.69538 3 24.86237 4 13.69538 2 25.12648 2
TC20 24.92068 2 69.17487 3 mtol mtol 24.92068 4 67.95753 2
H1: n2 = 2
TC11 37.11006 2 57.24034 3 37.11006 2 58.30057 5 37.11006 2 58.34738 5
TC14 11.04466 2 24.97945 6 13.69538 2 25.93243 1 11.04466 2 25.12648 5
TC20 24.92068 2 69.51981 4 mtol mtol 19.86272 4 69.82890 7

H2: n2 = 1
TC11 n/a 57.73518 7 n/a 58.34738 5 n/a 58.30057 5
TC14 n/a 25.67342 1 n/a 25.72716 4 n/a 24.84634 8
TC20 n/a 68.47550 4 n/a 68.23159 2 n/a 67.83459♮ 1
TC30 n/a 103.45212 2 n/a 113.05175 6 n/a 109.43025♮ 1
TC50 n/a 167.10549 4 n/a 176.89313 7 n/a 174.43153♮ 1
TC100 n/a 326.64228 1 n/a – n/a 331.77321♮ 1
H2: n2 = 2
TC11 n/a 57.73518 7 n/a 58.34738 5 n/a 58.30057 5
TC14 n/a 25.72871 2 n/a 26.75323 2 n/a 25.73702 5
TC20 n/a 71.14951 7 n/a – n/a 78.31584♮ 1
TC30 n/a 104.31177 7 n/a – n/a 105.57857♮ 1
TC50 n/a 167.71486 8 n/a – n/a 166.91505♮ 1
TC100 n/a 325.23287 3 n/a – n/a 322.64663♮ 1

– no feasible solution found in any of the sequences
♮ CPU time limit is 1 hour; GAMS 24.0; platform 2
n/a H2 does not provide a lower bound on the area of the design rectangle
mtol model too large for the available licence

monolith yields A− = 47.31238 and A+ = 64.59177 (LindoGlobal) whereas
H1 provides A− = 37.11006 and A+ = 57.24034 (BARON) and H2 provides
A+ = 57.73518 (BARON) and for TC14, the monolith yields A− = 20.61650
and A+ = 29.65886 (GloMIQO) whereas H1 provides A− = 13.69538 and
A+ = 24.67185 (BARON) and H2 provides A+ = 24.84634 (GloMIQO). Thus,
for TC11 and TC14 both heuristics find better cuttings than the monolith
formulation.

We reach the limits of H1 when we approach 30 and more ellipses (the
solvers cannot compute a feasible cutting for the resulting (EP) in step H1 1.2.4).
The front heuristics, H2, works fine for all cases TC11, TC14, TC20, TC30,
TC50 and TC100. For both H1 and H2, results with n2 = 2 are superior to
n2 = 1 but are somewhat more computational expensive. Computations for
n2 = 3 are even more challenging and do not provide a clear direction.

Fig. 8(a) shows a feasible cutting computed by BARON with H1 (n2 = 1)
and Fig. 8(b) the cutting computed by GloMIQO with H2 (n2 = 1).
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Fig. 8 Feasible cuttings computed by the heuristics.

5 Conclusions

We developed non-convex (MI)NLP models describing the problem of cutting
ellipses from a design rectangular plate. Small problem instances can be solved
with the current state-of-the art global solvers available in GAMS. The more
the ellipses deviate from circles, the more difficult it is to close the gap. As
it is expected from the NP-hard nature of the ellipse cutting problem, global
solvers reach their limitations fast and it becomes a very challenging task for
the solvers just to compute a feasible point. For these cases, we have developed
two polylithic methods, generating good ellipse cuttings.

The developed (MI)NLP formulations lean themselves naturally to higher
dimensional extensions. The 3-D case is of particular practical interest. Who
was never curious on how to pack smarties, a German chocolate sweet, opti-
mally?

Acknowledgements Thanks are directed to Prof. Dr. Siegfried Jetzke (Ostfalia Hochschule,
Salzgitter, Germany) for his interest in this work, comments on the manuscript and discus-
sion about the usefulness of ellipses and ellipsoids in real world problems.

A Notation
We start with the notation used in the derivation of the model; they are not used in the
mathematical programming formulations directly.

Aθi positive definite matrix defining ellipses; entries are A11, A12, A21, and A22

c objective function coefficient vector of auxiliary problems; c⊤ = (1, 0) or c⊤ = (0, 1)

di distance of ellipse i to line G(t)

Di diagonal matrix for ellipse i with eigenvalues of Aθi in the diagonal

δabij maximum vertical extension of ellipse i to the hyperplane in the new coordinate
system
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δbeij maximum vertical extension of ellipse j to the hyperplane in the new coordinate
system

Eθ−ω,i positive definite matrix defining rotated ellipses; Eθ−ω,i := Aθ−ω,i; entries are E11,
E12, E21, and E22

G(t) separating line, i.e., hyperplane

L(x, λ̄) Lagrangian function

λid eigenvalue of matrix Aθi; λi1 = a−2
i and λi2 = b−2

i

λ̄ Lagrangian multiplier associated with ellipse equation

ϕi rotation angle to generate ellipse i in new coordinate system

Rθi rotation matrix for ellipse i at angle θi

vi(ϕi) equation for ellipse i in new coordinate system

v0id center coordinate (in dimension d) of ellipse i in the new coordinate system

v−i2 minimal extension (in dimension d = 2) of ellipse i in the new coordinate system

x−

id minimum extension of ellipse i in dimension d

x+
id maximum extension of ellipse i in dimension d

The notation used in the mathematical programming models and heuristics is summa-
rized in the following sections.

A.1 Indices and Sets
d ∈ {1, 2} index for the dimension; d = 1 represents the length and d = 2 the width

i ∈ I := {1, . . . , n} objects (ellipses or circles) to be cut

(cx, cy) ∈ Ice small rectangles, cells, dividing the design rectangle

(i, j) ∈ Ico pairs of congruent ellipses; we assume i < j

A.2 Data
ai semi-major axis of ellipse i; ai ≥ bi

ãn area of the design rectangle for the “symmetric” cutting for n identical ellipses

Ai area of ellipse i; Ai = πaibi

A−, A+ lower and upper bound on the area, a, of the design rectangle obtained during
the computation

Aci,− minimal area of the design rectangle to host the inner circles associated with the
ellipses. Aci,− provides a lower bound on the associated ellipse cutting problem

Aci,+ area of the design rectangle to host the outer circles associated with the ellipses.
Aci,− provides an upper bound on the associated ellipse cutting problem

bi semi-minor axis of ellipse i; ai ≥ bi

C−

cxcyd
, C+

cxcyd
lower and upper boundary coordinate of cell (cx, cy)

Dij bound on the distance variables dabij and dbeij
∆ relative gap

ε eccentricity measuring the deviation of an ellipses from a circle

n1, n2, n3 parameters in the heuristics: number of ellipses selected

Ri radius of circle i to be cut

ρ factor (parameter) for semi-minor axis for test instances TEρ

Sid1, Sid2 auxiliary data derived from semi-major and semi-minor axis, as defined in (32)

S−

d , S+
d minimum (lower bound) and maximum size (upper bound) of the extension of

the design rectangles in dimension d

xR
1,n length of the design rectangle for the “symmetric” cutting of n identical ellipses

X− smallest center coordinate among the n3 ellipses in coordinate direction d = 1
– only used for heuristic H2
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A.3 Decision Variables
a (continuous) area of the design rectangle; a∗ defines (globally) optimal area

dabij (continuous) distance of the center of ellipse i to the separating line between the
ellipses i and j; ellipse i is above the separating line

dbeij (continuous) distance of the center of ellipse j to the separating line between the
ellipses i and j; ellipse j is below the separating line

δicxcy (binary) assign ellipse i to cell (cx, cy)

g0ijd (continuous) footpoint coordinate (in dimension d) of separating line between el-

lipses i and j; we place the footpoint inside the design rectangle; index ij is dropped
in Sect. 2.1.4

gijd (continuous) slope (in dimension d) of the separating line between ellipses i and j;
index ij is dropped in Sect. 2.1.4

λij (continuous) linear combination variable for hyperplane and ellipses i and j

ωij (continuous) inclination angle of the separating line between the ellipses i and j;
ωij ∈ [0, 2π]; index ij is dropped in Sect. 2.1.4

pabij (continuous) auxiliary variable modeling cos(θi − ωij); pabij ∈ [−1, 1]

pbeij (continuous) auxiliary variable modeling cos(θj − ωij); p
be
ij ∈ [−1, 1]

θi (continuous) orientation angle of ellipse i; θi ∈ [0, 2π]

vi (continuous) auxiliary variable representing trigonometric term cos θi; vi ∈ [−1, 1]

wi (continuous) auxiliary variable representing trigonometric term sin θi; wi ∈ [0, 1]

xR
d (continuous) extension of the design rectangle in dimension d

x0
id (continuous) coordinates of the center vector of object i to be cut

z (continuous) waste of the design rectangle; z = a−
∑

i∈I
Ai
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19. Markót, M.C., Csendes, T.: A New Verified Optimization Technique for the “Packing
Circles in a Unit Square” Problems. SIAM J. Optimization 16, 193–219 (2005)

20. Miller, P.: Globally Optimal Packing of Nonconvex Two-Dimensional Shapes by Ap-
proximation with Ellipses. Senior Thesis, Princeton University, Princeton, NJ (2012)

21. Misener, R., Floudas, C.: GloMIQO: Global Mixed-integer Quadratic Optimizer. Jour-
nal of Global Optimization pp. 1–48 (2012). 10.1007/s10898-012-9874-7

22. Rebennack, S., Kallrath, J.: Continuous Piecewise Linear δ-Approximations for MINLP
Problems. I. Minimal Breakpoint Systems for Univariate Functions. Journal of Opti-
mization Theory and Applications, submitted (2013)

23. Rebennack, S., Kallrath, J.: Continuous Piecewise Linear δ-Approximations for MINLP
Problems. II. Bivariate and Multivariate Functions. Journal of Optimization Theory
and Applications submitted (2013)

24. Rebennack, S., Kallrath, J., Pardalos, P.M.: Column Enumeration based Decomposition
Techniques for a Class of Non-convex MINLP Problems. Journal of Global Optimization
43, 277–297 (2009)

25. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Nonconvex Optimization And Its Applications Series. Kluwer Academic
Publishers, Dordrecht, The Netherlands (2002)


