
Grid-enhanced Polylithic Modeling
and Solution Approaches for Hard
Optimization Problems

Josef Kallrath and Robert Blackburn and Julius Näumann

Abstract We present a grid enhancement approach (GEA) for hard mixed
integer or nonlinear non-convex problems to improve and stabilize the qual-
ity of the solution if only short time is available to compute it, e.g., in op-
erative planning or scheduling problems. Branch-and-bound algorithms and
polylithic modeling & solution approaches (PMSA) – tailor-made techniques
to compute primal feasible points – usually involve problem-specific control
parameters p. Depending on data instances, different choices of p may lead
to variations in run time or solution quality. It is not possible to determine
optimal settings of p a priori. The key idea of the GEA is to exploit paral-
lelism on the application level and to run the polylithic approach on several
cores of the CPU, or on a cluster of computers in parallel for different set-
tings of p. Especially scheduling problems benefit strongly from the GEA,
but it is also useful for computing Pareto fronts of multi-criteria problems
or computing minimal convex hulls of circles and spheres. In addition to im-
proving the quality of the solution, the GEA helps us maintain a test suite of
data instances for the real world optimization problem, to improve the best
solution found so far, and to calibrate the tailor-made polylithic approach.

Josef Kallrath
Department of Astronomy, University of Florida, Gainesville, FL 32611, USA, e-mail:
jkallrath@ufl.edu and e-mail: josef.kallrath@web.de

Robert Blackburn
Discrete Optimization and Logistics, Karlsruhe Institute of Technology, 76133 Karlsruhe,
Germany, e-mail: robert.blackburn@alumni.uni-heidelberg.de

Julius Näumann
Discrete Optimization and Logistics, Technical University of Darmstadt, 76133 Darmstadt,
Germany e-mail: julius.naumann@stud.tu-darmstadt.de

1

2 J. Kallrath, R. Blackburn, J. Näumann

1 Introduction

The term polylithic modeling and solution approaches (PMSA, for short) has
been coined by [21] and refers to a framework or tailor-made techniques for
solving hard mixed integer optimization (MIP) or non-convex nonlinear pro-
gramming (ncNLP) problems exploiting several models and their solutions
to establish primal feasible points, and sometimes even dual bounds. These
models can be relaxations of the original MIP problem, or auxiliary mod-
els to obtain, for instance, better lower bounds on the original problem, or
bounds on integer variables. The key idea of PMSA is that exact optimization
algorithms and heuristics are both used to solve a MIP or ncNLP problem.
Related or similar are matheuristics connecting mathematical programming
and meta-heuristics; cf. [27]. Note that PMSA go beyond meta-heuristics,
i.e., master strategies such as evolutionary algorithms (in this group we find
genetic algorithms), or local search techniques simulated annealing, or tabu
search. Especially, when it comes to constrained optimization PMSA become
superior.

PMSA can also establish algorithms in their own right, e.g., variants of
Fix-and-Relax; cf. Sect. 3.6.1 in [30]. Usually, such techniques involve tuning
parameters p controlling the selection of auxiliary models or conditions under
which to operate them. Depending on data instances, different choices of p
may lead to different running times or quality of the solution. It is not possible
to determine a priori optimal settings of p.

To weaken the dependence of the running time and quality of the solution
on p and to improve the quality of the solution, in this paper we propose to
enhance PMSA by a multi-grid or multi-start parameter approach called grid

enhanced approach (GEA) or parallel PMSA (pPMSA). The essence of this
approach is to run the whole PMSA on several cores of the CPU or on a cluster
of computers in parallel for a full or partial list of parameter combinations p ∈

P. We can either let each job for a certain parameter combination run for a
certain time and extract the best solution. Alternatively, if we have a problem
with a single objective function or if we are able to qualify the goodness of the
solution in the multi-criteria case, we can terminate jobs if they are dominated
by the current best solution. Note the difference between the multi-start
parameter approach and multi-start techniques. While the latter uses multi-
starts to find initial feasible points when solving ncNLP problems or when
applying local search techniques by using different initial variables x inherent
to the optimization problem, the former uses different parameters selecting
algorithms, sub-models or solvers, or parameters inherent to algorithms or
solvers.

Optimization is struggling with making use of today’s and tomorrow’s
multi-core computing architecture as many of the optimization community’s
algorithms run inherently sequential and even for algorithms that are suit-
able for parallel processing (e.g., branch-and-bound) the actual speed-up is
limited. While usually one finds parallelization techniques deep on the level of

Grid-enhanced Polylithic Modeling and Solution Approaches 3

the solver technology, cf. [25], [37], [34], [7], [36] or [38], or exploiting multiple
threads (cf. [16] or [35]) when implementing branch-and-bound based meth-
ods, our parallelization attacks at a higher level of the application itself – and
is thus very problem-specific. Running the same problem with different algo-
rithms, parameters, etc. and choosing the fastest one, also known as concur-
rent optimization is one way – actually the easiest one called embarrassingly
parallel or perfectly parallel by [17] – to utilize the parallel computing power.
GEA takes this one step further by a) applying the multi-grid approach on
the level of the application itself by exploiting the control parameters of the
PMSA, and b) allowing communication among the parallel runs as illustrated
in the scheduling example in Section 6.2. To give a brief overview in the table
below we present a few meanings of the parameters referred to by p:

1. choice of algorithm within a solver or PMSA,
2. control and tuning parameters of algorithms of PMSA,
3. choice of a solver,
4. control and tuning parameters of solvers.

where solver refers to commercial MILP solvers CPLEX [18], GUROBI [15] or
XPRESS [16], or NLP/MINLP solvers such as BARON [13], ANTIGONE [28], or
LINDO [26] to name a few. Algorithm could be, for instance, primal simplex,
dual simplex or barrier in the MILP solvers. It could also be MILP or genetic
algorithm for solving large traveling salesman problems. Inner parameters
of solvers could be upper limits on CPU time, or numeric tolerances for
satisfying constraints.

Highlights of this contribution:

1. With PMSA we present a generic framework for extending the set of hard
MILP, non-convex NLP, or MINLP problems which can be solved in rea-
sonable time.

2. The GEA on multicore platforms and clusters is generic and timeless and
allows us to implement PMSA with reduced dependence on tuning and
control parameters and increasing the quality of solutions if only limited
time is available. Implementation issues are explained using the algebraic
modeling language GAMS.

3. In addition to improving the quality of the solution, the GEA helps us
maintain a test suite of data instances for the real world optimization
problem at hand, to improve the best solution found so far, and last but
not least, to calibrate the tailor-made polylithic approach.

We try not to get lost in the details of the various application examples and
rather focus on the generic principles.

4 J. Kallrath, R. Blackburn, J. Näumann

2 Literature Review

There are ideas and frameworks in the literature which are similar to the
GEA or pPMSA but often with a different focus or motivation. Therefore,
we try to cover books and articles and outline the ideas without claiming
that this is complete. We identify three major areas where similar ideas or
approaches are used:

1. Parallel algorithmic techniques (concurrent, concurrent-distributed- con-

current, distributed) within the MILP solvers CPLEX, GUROBI and XPRESS,
2. Parallel meta-heuristics, and
3. Machine learning and hyper-parameter optimization.

Prior to going in more depth for these three fields, we point the reader to
a very useful taxonomy of parallel architectures provided by [39], pp. 522.
The advantages of using multi-core platforms versus clusters of computer are
discussed by [3], pp. 13.

All commercial MILP solvers allow concurrent runs with various flavors:
Concurrent, concurrent-distributed-concurrent, distributed. Concurrent opti-
mization for MILP can be understood as the simplest realization of the GEA
and is available in CPLEX, GUROBI or XPRESS. The next level is concurrent-

distributed-concurrent which allows communication and interaction between
parallel runs on cores or threads. Distributed MILP means: Each B&B
search is started with different parameter settings, a permutation of the
columns/rows, or just another random seed. The best one wins, or one even
allows restarts and only continues with those settings that perform best so
far. CPLEX, for instance, offers distributed with the following tasks: (i) work
on lower bound on one thread; (ii) work on primal bound (heuristics!) on the
other, and (iii) have a third thread to manage the search tree. Impressive
results are provided by [34] using a parallel enhanced version of the solver
SCIP (cf. [33] or [14]) and 80,000 cores in parallel on the Titan supercomputer
to solve 12 previously unsolved MILP problem from the MIPLIB benchmark
set.

Although PMSA go beyond meta-heuristics, it is worthwhile to be aware
of what is going on in field of parallel meta-heuristics; cf. [1], [4], [2], various
chapters in [1] about parallel versions of genetic algorithms, simulated an-
nealing, and tabu search, the early work by [29], [12], or [10]. If we follow [1]
in his book Parallel Metaheuristics on p. 112, in many cases, pPMSA would
fall into the class of independent run models.

As in Section 6.1 we provide an example in which we have used pPMSA to
compute the Pareto front, we point out that there exists a vast body of liter-
ature related to parallel techniques for solving multi-objective optimization
problems. This requires to construct a set of solutions called the Pareto front.
[11] favor evolutionary algorithms for this. [20] construct a specially defined
parallel tabu search applied to the Pareto front reached by an evolutionary
algorithm.

Grid-enhanced Polylithic Modeling and Solution Approaches 5

A different community and field where parallel solution approaches have an
impact is machine learning and hyper-parameter optimization in the context
of Bayesian optimization. In machine learning, hyper-parameter optimiza-
tion or tuning is the goal to select a set of optimal hyper-parameters for a
learning algorithm. Hyper-parameters are parameters whose values are used
to control the learning process, while the values of other parameters (usually
node weights) are learned. Grid search and random search (cf. [6]) allow easy
implementation to parallel approaches. [5] let a Gaussian process algorithm
and a tree-structured parzen estimator run asynchronously in order to make
use of multiple compute nodes and to avoid wasting time waiting for trial
evaluations to complete.

What comes closest to the ideas of our paper are the possibilities pre-
sented by [9] and [16] for problem decomposition and concurrent solving
from a modeling point of view with example implementations in Mosel that
show handling of multiple models, multiple problems within a model, and
as a new feature, distributed computation using a heterogeneous network of
computers. In 2004 and 2012, the XPRESS module mmjobs probably focussed
on solving to MILP problems or solving NLP problems with multi-start tech-
niques. This module allows one on the modeling level to determine what to
parallelize and how to distribute jobs (whole model or submodels).

3 Mathematical Structure of the Grid Approach

We want to solve a MILP, NLP, or MINLP problem P (x) in a vector x of
variables (continuous or integer) defined in the most general case as

min f(x) s.t. g(x) = 0 ∧ h(x) ≥ 0 .

Let us discuss first why we want to use a grid approach for solving P (x).
Reason 1: One relevant practical requirement is that we have a limit on the
time available for returning a solution back to the user, i.e., we usually cannot
solve the problem to optimality. In this situation, we want to get the best
solution within the available time. Reason 2: Problem P (x) is a multi-criteria
optimization problem, but it is hard to qualify what a good solution means
for the owner of the problem. Therefore, we want to offer various solutions
enabling the user to select by inspection the best solution. Note that both
reasons can also show up in combination.

For both reasons, we can distinguish two cases. Case 1 (P (x) is not too
hard): We may want to solve P (x) using different solvers, or use a specific
solver with different settings of some of its tuning parameters. Case 2: If P (x)
is very hard to solve, we may want to resort to PMSA. In both case, it is
not possible to determine a priori optimal settings of the tuning or control
parameters.

6 J. Kallrath, R. Blackburn, J. Näumann

Therefore, we consider variations of P (x) named Pp(x) defined as

min fp(x) s.t. gp(x) = 0 ∧ gp(x) = 0 ,

where p ∈ P is a set of string-valued parameters specifying an instance of
P (x) or providing instructions on which solution approach or MINLP solver
to use for solving Pp(x). Typical examples for such instructions could be
related to whether to use the primal or dual Simplex algorithm when solving
the MILP subproblems of P (x), use BARON or LINDO as a deterministic global
solver, problem-specific input parameters, and controlling parameters of the
tailor-made polylithic modeling and solution approach.

Let n denote the number of instances to be evaluated, i.e., n = #P. Each
instance Pp(x) is solved on a core of the CPU or on a machine within a cluster
of computers. Instances may have different run times. By k we denote the
number of cores or machines. If n ≤ k, we can solve all instances in parallel.
In case n > k, we have up to k instances running in parallel. If instance Pp(x)
has finished, we submit the next instance Pp+1(x) to be solved. The result
of Pp(x) may enable us to terminate an actively running instance Pp̃(x).

4 Optimization Problems and Optimization Algorithms

Suitable for the Grid Approach

Structurally, there are two categories of optimization problems which benefit
from GEA: Problems where it is difficult to find a good feasible point in
short time, or multi-criteria optimization problems. An example for a multi-
criteria optimization problem is the simultaneous minimization of trimloss
and the number of patterns in 1D cutting stock problems as described and
solved in [24], hereafter referred to as PCSP. Scheduling problems in the
process industry (cf. [19], [32], or [8]) or lock scheduling problems (cf. [40])
are solved exploiting polylithic techniques – they are also multi-criteria in
nature. Lock scheduling problems (cf. [40]) are also very suitable for this.
The convex hull minimization problems treated in [23] and [22] have also been
solved by polylithic approaches using various homotopy techniques in which
a preliminary model is exploited to generate a feasible starting point which is
then improved. The stronger the sensitivity of a problem w.r.t. some tuning
parameters, the more suitable and efficient the GEA becomes to enhance the
PMSA.

In addition to the inherent structure of an optimization problem regarding
the suitability of GEA, the algorithms themselves used to solve a difficult
optimization problem can also make the usage of a GEA attractive. Very
suitable are meta-heuristics, e.g., genetic algorithms. Hyper-parameter grid
search in machine learning had already been mentioned in Section 2. Parallel

Grid-enhanced Polylithic Modeling and Solution Approaches 7

search in constraint programming is also a suitable technique for GEA; cf.
[31].

5 IT-Aspects and Implementation

5.1 Generic Structure

As in Figure 1, the grid approach can be structured into the following modules
(larger pieces or collections of several pieces of programming code):

1. Model M0 corresponding to P (x).
2. Module Mv creating variations Vn of model M0, e.g., relaxations of P (x),

or related, auxiliary models of P (x), combined with variations of solver
configuration.

3. Module Mg defining and generating the instances
4. Module Mc submitting, controlling, evaluating and possibly terminating

optimization runs of the instances
5. Module Mr collecting the results

5.2 Implementation in GAMS

We have implemented the GEA in GAMS, but in principle, it could be imple-
mented in any algebraic modeling or programming language. Here we provide
an explanation involving some GAMS flavor. The GAMS program application.gms

is the main GAMS file to be executed. It contains the monolithic model and
the PMSA controlled by cntrl.txt or compile.par containing various scalars
and compile-time parameters. It calls multi-start.gms, which triggers Mv to
generate variations. Regarding our GAMS implementation, the varied instance
parameters can be either string-valued compile-time parameters or numeri-
cal scalars. Multi-start.gms in turn calls application.gms asynchronously for
each variation to create an instance and run it (module Mg). The maximum
number of cores to be used can be configured through a parameter in cntrl.txt

or compile.par read by application.gms. All runs are administered (module
Mc) in multi-start.gms, which also collects the final results (module Mr).

5.2.1 Module Mv

There are two ways to generate and handle the variations, either automat-
ically or manually: Each generated variation will be assigned a number and
is stored in a .gmi file named accordingly if generated a priori by a Python

8 J. Kallrath, R. Blackburn, J. Näumann

script. This approach is preferred if we want to generate all combinations of
tuning and control parameters. The Python script creates variations based
on input from a file. The following is an example of such a file, containing
instructions to vary the solver to be used and a scalar parameter:

SOLVER , C, L {\QTR{tt}{GUROBI},CBC}

Param_A, S, L {0.250,0.500}

Alternatively, variations can also be supplied directly as stored or pro-
grammed, respectively, in application ParSet.gms. This approach has advan-
tages when it is not possible to generate all combinations of parameters, e.g.,
when dealing with solver parameters not available in all solvers.

5.3 Module Mg

Module Mg will prepare each variation for being run with GAMS by creating
subdirectories containing the according .gmi files.

5.3.1 Modules Mc and Mr

Modules Mc and Mr are both implemented in multi-start.gms. Mc asyn-
chronously submits each run and constantly watches for results. If a sufficient
solution has been returned by a run, it will terminate the others. Module Mr

has the function of specifying the best solution. For single-objective function
problems, the best solution is obvious. For multi-criteria problems we need to
proceed differently. We define and construct a solution metric which allows
us to decide automatically which solution is the best.

6 Real World Examples

6.1 Cutting Stock Pareto Front

This problem consists of the simultaneous minimization of trim loss and pat-
terns in cutting stock problems (CSPs). The problem is solved by a PMSA
described in [24] which is essentially an exhaustion approach combining a
greedy approach (maximize pattern multiplicity) with a MILP formulation
of the CSP containing various tuning parameters among them wmax, the max-
imal permissible waste per pattern as the most important control parameter.
Based on the GEA, the Pareto front is computed as a function of wmax. In
this simple case, the GEA only exploits parallelism by computing the Pareto
front simultaneously for six different values of wmax: 20, 15, 10, 8, 6 and 4%,

Grid-enhanced Polylithic Modeling and Solution Approaches 9

Mc

Mv

Mg

Mr

Problem

P(x)

Model M₀

corresponding to P(x)

Variation Vn...Variation V1

Instance of Vn...Instance of V1

Submit, control, evaluate & terminate

Collect results

Fig. 1 The modules of the grid approach. Module Mc is the master module with over-all
control. Variations Vn are generated by Mv , possibly a priori by a Python script, and run
by Mg . Results are collected by Mr reading from the directories generated by Mg .

which results in a computational speedup of approximately a factor 6 as the
jobs are independent. If the Pareto front of any multi-criteria optimization
problem can be generated as a function of one or several parameters, it can
be generated exploiting the GEA.

10 J. Kallrath, R. Blackburn, J. Näumann

6.2 Scheduling Problem in the Process Industry

Consider the plant system with many reactors, tanks, continuous units etc.

leading to a multi-criteria scheduling problem solved by [19]. The core of the
problem is a MILP model exploiting a continuous time formulation involving
event points. It is solved polylithically by a Moving time window approach, in
which the tunable parameters are maximum delay, maximum underproduc-
tion, and the maximum number of event points, as well as penalty coefficients
on time and production target deviations.

In the GEA we combine the tuning parameters of the approach and dis-
tinguish solution metrics for

1. make-to-order (bulk articles, mtoB),
2. make-to-order (packed articles, mtoP),
3. make-to-stock articles (mts), and
4. all products.

Within the GEA we trace the following criteria c:

c description

01-04 relative underproduction (mtoB, mtoP, mts, all)
05-08 relative overproduction in %

09-12 delays

13-16 earliness

17 number of changeovers
18-21 ratio of priority 0/1/2/3 over all tasks

22 elapsed time (more for just knowing it)

Jobs run for 30 minutes at most. If the deviations from time and production
targets, or a combined metric of them, become sufficiently small for a job, the
solution is considered good and all other jobs not yet finished are terminated.

An explorative test performed on a cluster ran with up to 1,000 jobs pro-
viding good schedules. In practical operative situations with running time
constraints, one should not create more parameter combinations than cores
or computing units available.

6.3 2D Minimal Perimeter Convex Hulls

Given a set of n circles with radii Ri and a rectangle with length L and
width W . Find a configuration of non-overlapping circles (specified by their
center coordinates) which fit into the rectangle and do not overlap and lead
to a convex hull whose perimeter has minimal length. The monolithic model
M has been developed by [22]; it is a MINLP problem with bilinear, 4th-
order polynomial, and trigonometric terms. The PMSA consists of different

Grid-enhanced Polylithic Modeling and Solution Approaches 11

approaches to solve the MINLP problem with simplified models providing
initial starting values for M:

1. P1: Minimize area or perimeter of a rectangle hosting the circles to produce
initial values for M.

2. P2: Minimize the weighted distances of circles to center of circles to pro-
duce initial values for M.

3. T: Tour-specified approach.

The GEA consists of parallel runs over M, P1, P2, and T. In this example,
the GEA is helpful in developing efficient numeric schemes and in exploiting
the current hardware as well as possible.

6.4 3D Minimal Surface Area Convex Hulls

Given a set of n spheres with radii Ri. Find a configuration of non-overlapping
spheres (specified by their center coordinates) which lead to a convex hull
whose boundary has minimal area. The monolith model M, dominated by
bilinear terms, has been developed by [22]. The PMSA consists of various
approaches to solve the NLP problem with simplified models providing initial
starting values for M:

1. P1: Minimize the volume of a sphere or a rectangular box hosting the
spheres to produce initial values for M.

2. P2: Minimize the weighted distances of spheres to the center of spheres to
produce initial values for M.

The GEA consists of parallel runs over M, P1, P2. As above, the GEA is
helpful in developing efficient numeric schemes and in exploiting the current
hardware as well as possible.

7 Test Suite of Data Instances

In our development work, the GEA helps us to maintain a test suite of data
instances for the real world optimization problem at hand, to improve the
best solution found so far, and last but not least, to calibrate the tailor-made
polylithic approach. The test suite is populated by real word data instances.
Accumulated over several month and years, the collected data instances rep-
resent real world situations more and more appropriately. Test runs over
this test suite take longer and longer. Thus, the GEA is of great help in
covering as many parameter combinations as possible. Eventually, we learn
that certain parameter combinations are dominated by others. Especially for
scheduling problems, it is usually computationally prohibitive to compute the

12 J. Kallrath, R. Blackburn, J. Näumann

strict global optimum. Therefore, at best, we find a good feasible solution.
Script files automatically evaluate the results of the individual data instances
involved in the test runs, detect whether we have obtained a solution better
than the previous best solution, and thus improve our test suite.

8 Conclusions and Discussions

We have constructed a generic grid enhancement approach (GEA) in connect-
ing with polylithic modeling and solution approaches (PMSA) to solve a hard
mixed integer or non-convex nonlinear optimization problem when a solution
has to be returned within a given time limit, or when the user wants to in-
spect various solutions, for instance, in a multi-criteria optimization problem.
The GEA works on one computer with several cores or on a cluster of com-
puters. On each core or cluster computer we solve the problem at hand with
possibly different solvers, different solver parameters, different algorithms in
the sense of PMSA or different tuning parameters of the algorithms at hand.
The approach is very useful for operative planning or scheduling problems.

Although the idea of the GEA is simple in nature, great care has to be paid
to implementation in whatever programming language regarding robustness
and maintainability of the code. A valid point of discussion is the notice that
PMSA increases the complexity of implemented decisions systems, and thus,
also the maintenance effort. The crucial question to be answered is: Should
everything which is possible also be done in mathematical optimization? The
answer depends on the importance and the value of the decision problem.
We have just tried to keep the approach as generic and clean as possible.
Implementing the PMSA may take weeks or a month. The implementation
for enhancing PMSA using the grid approach requires rather days, weeks, or
possibly a month, including testing.

However, the GEA provides another important advantage. For real word
optimization problems, testing is very important for robustness. Therefore,
we usually develop a test suite in which various problem instances with their
optimal or best found solutions are stored. Grid enhanced PMSA allow us
to improve a test suite, and, if dominant parameter combinations can be
identified, to calibrate the tailor-made PMSA.

For the future, there is room for improvement: If it is possible to specify a

priori what is a good solution acceptable for the user, we have a weak interac-
tion between parallel jobs in the sense of jobs already being dominated by the
one just yielding an acceptable solution. The interaction could be deepened
by evaluation pre-processing models in parallel, extracting and considering
the information obtained from them, and exploiting this in follow-up compu-
tations – also in parallel.

Grid-enhanced Polylithic Modeling and Solution Approaches 13

Acknowledgement

The authors are indebted to the anonymous referees whose comments helped
to improve this paper. We thank Dr. Michael Bussieck (GAMS GmbH,
Frechen, Germany) for discussion on parallelism used in optimization, Dr.
Jens Schulz & Dr. Susanne Heipcke (FICO, Berlin, Germany & Marseille,
France) for hints and details on parallelization in XPRESS, and Prof. Dr.
Michael Torsten Koch (ZIB Berlin, Berlin, Germany), Dr. Jens Schulz and
Dr. Steffen Klosterhalfen (Mannheim, Germany) for their careful reading of
and feedback on the manuscript.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, New

York, NY, USA (2005)
2. Alba, E., Luque, G.: In: E. Alba (ed.) Parallel Metaheuristics: A New Class of Algo-

rithms, Wiley Series on Parallel and Distributed Computing, chap. 2. Measuring the
Performance of Parallel Metaheuristics, pp. 43–62. Wiley (2005)

3. Alba, E., Luque, G., Nesmachnow, S.: Parallel Metaheuristics: Recent Advances and
New Trends. ITOR 20(1), 1–48 (2013)

4. Alba, E., Talbi, E.G., Luque, G., Melab, N.: In: E. Alba (ed.) Parallel Metaheuristics:

A New Class of Algorithms, Wiley Series on Parallel and Distributed Computing,
chap. 4. Metaheuristics and Parallelism, pp. 79–104. Wiley (2005)

5. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-parameter Opti-
mization. In: Proceedings of the 24th International Conference on Neural Information

Processing Systems, NIPS’11, pp. 2546–2554. Curran Associates Inc., USA (2011)
6. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. J. Mach.

Learn. Res. 13, 281–305 (2012)

7. Berthold, T., Farmer, J., Heinz, S., Perregaard, M.: Parallelization of the FICO xpress-
optimizer. Optimization Methods and Software 33(3), 518–529 (2018)

8. Borisovsky, P.A., Eremeev, A.V., Kallrath, J.: Reducing the Number of Changeover
Constraints in a MIP Formulation of a Continuous-Time Scheduling Problem. arXiv

e-prints arXiv:1408.5832 (2014)
9. Colombani, Y., Heipcke, S.: Multiple Models and Parallel Solving with Mosel. Tech.

rep., FICO Xpress Optimization, Birmingham, UK. URL http://www.fico.com/

fico-xpress-optimization/docs/latest/mosel/mosel{_}parallel/dhtml

10. Crainic, T.G.: Parallel metaheuristics and cooperative search. In: M. Gendreau, J.Y.
Potvin (eds.) Handbook of Metaheuristics, pp. 419–451. Springer (2019)

11. Figueira, J., Liefooghe, A., Talbi, E.G., Wierzbicki, A.: A Parallel Multiple Reference

Point Approach for Multi-objective Optimization. European Journal of Operational
Research 205(2), 390 – 400 (2010). DOI https://doi.org/10.1016/j.ejor.2009.12.027.
URL http://www.sciencedirect.com/science/article/pii/S0377221710000081

12. Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, 2nd edn. Springer Publishing

Company, Incorporated (2010)
13. Ghildyal, V., Sahinidis, N.V.: Solving Global Optimization Problems with BARON.

In: A. Migdalas, P. Pardalos, P. Varbrand (eds.) From Local to Global Optimization.
A Workshop on the Occasion of the 70th Birthday of Professor Hoang Tuy, chap. 10,

pp. 205–230. Kluwer Academic Publishers, Boston, MA (2001)

14 J. Kallrath, R. Blackburn, J. Näumann

14. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel,
G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B.,
Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F.,
Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The

SCIP Optimization Suite 6.0. Technical report, Optimization Online (2018). URL
http://www.optimization-online.org/DB_HTML/2018/07/6692.html

15. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2019). URL http:

//www.gurobi.com

16. Heipcke, S.: Xpress-Mosel: Multi-Solver, Multi-Problem, Multi-Model, Multi-Node
Modeling and Problem Solving. In: J. Kallrath (ed.) Algebraic Modeling Systems:
Modeling and Solving Real World Optimization Problems, pp. 77–110. Springer, Hei-

delberg, Germany (2012)
17. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint, 1st

edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2012)
18. IBM: IBM ILOG CPLEX Optimization Studio (2017) CPLEX Users Manual (2017).

URL http://www.ibm.com

19. Janak, S.L., Floudas, C.A., Kallrath, J., Vormbrock, N.: Production Scheduling of
a Large-Scale Industrial Batch Plant: I. Short-Term and Medium-Term Scheduling.

Industrial and Engineering Chemistry Research 45, 8234–8252 (2006a)
20. Jozefowiez, N., Semet, F., Talbi, E.G.: Parallel and Hybrid Models for Multi-objective

Optimization: Application to the Vehicle Routing Problem. In: J.J.M. Guervós,
P. Adamidis, H.G. Beyer, H.P. Schwefel, J.L. Fernández-Villacañas (eds.) Parallel

Problem Solving from Nature — PPSN VII, pp. 271–280. Springer Berlin Heidelberg,
Berlin, Heidelberg (2002)

21. Kallrath, J.: Polylithic Modeling and Solution Approaches Using Algebraic Modeling
Systems. Optimization Letters 5, 453–466 (2011). 10.1007/s11590-011-0320-4

22. Kallrath, J., Frey, M.M.: Minimal Surface Convex Hulls of Spheres. Vietnam Journal
of Mathematics 46, 883–913 (2018)

23. Kallrath, J., Frey, M.M.: Packing Circles into Perimeter-Minimizing Convex Hulls.

Journal of Global Optimization 73(4), 723–759 (2019). DOI https://doi.org/10.1007/
s10898-018-0724-0

24. Kallrath, J., Rebennack, S., Kallrath, J., Kusche, R.: Solving Real-World Cutting
Stock-Problems in the Paper Industry: Mathematical Approaches, Experience and

Challenges. European Journal of Operational Research 238, 374–389 (2014)
25. Laundy, R.S.: Implementation of Parallel Branch-and-Bound Algorithms in Xpress-

MP. In: T.A. Ciriani, S. Gliozzi, E.L. Johnson, R. Tadei (eds.) Operational Research
in Industry. MacMillan, London (1999)

26. Lindo Systems: Lindo API: User’s Manual. Lindo Systems, Inc., Chicago (2004)
27. Maniezzo, V., Sttzle, T., Vo, S.: Matheuristics: Hybridizing Metaheuristics and Math-

ematical Programming, 1st edn. Springer Publishing Company, Incorporated (2009)

28. Misener, R., Floudas, C.: ANTIGONE: Algorithms for coNTinuous / Integer Global
Optimization of Nonlinear Equations. Journal of Global Optimization 59, 503–526
(2014). DOI 10.1007/s10898-014-0166-2

29. Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel Search

for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu
Search and GRASP. In: Parallel Algorithms for Irregularly Structured Problems,
Second International Workshop, IRREGULAR ’95, Lyon, France, September 4-6,

1995, Proceedings, pp. 317–331 (1995). DOI 10.1007/3-540-60321-2\ 26. URL
https://doi.org/10.1007/3-540-60321-2_26

30. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, New York (2006)

31. Régin, J.C., Malapert, A.: Parallel Constraint Programming. In: Y. Hamadi, L. Sais
(eds.) Handbook of Parallel Constraint Reasoning, pp. 337–379. Springer International
Publishing (2018)

Grid-enhanced Polylithic Modeling and Solution Approaches 15

32. Shaik, M.A., Floudas, C.A., Kallrath, J., Pitz, H.J.: Production Scheduling of a Large-
Scale Industrial Continuous Plant: Short-Term and Medium-Term Scheduling. Com-
puters and Chemical Engineering 33, 670–686 (2009)

33. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: A Parallel

Extension of SCIP. In: Competence in High Performance Computing 2010 - Proceed-
ings of an International Conference on Competence in High Performance Computing,
Schloss Schwetzingen, Germany, June 2010., pp. 135–148 (2010)

34. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving

Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores.
In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 770–779 (2016)

35. Shinano, Y., Berthold, T., Heinz, S.: A First Implementation of ParaXpress: Com-
bining Internal and External Parallelization to solve MIPs on Supercomputers. In:
International Congress on Mathematical Software, pp. 308–316. Springer (2016)

36. Shinano, Y., Berthold, T., Heinz, S.: ParaXpress: An Experimental Extension of the

FICO Xpress-Optimizer to Solve Hard MIPs on Supercomputers. Optimization Meth-
ods & Software (2018). DOI 10.1080/10556788.2018.1428602. Accepted for publication
on 2018-01-13

37. Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness of Parallelizing the ILOG-CPLEX
Mixed Integer Optimizer in the PUBB2 Framework. In: K. H., L. Böszörményi, H. Hell-
wagner (eds.) Euro-Par 2003 Parallel Processing. Euro-Par 2003, Lecture Notes in

Computer Science, vol. 2790, pp. 770–779 (2003). DOI 10.1109/IPDPS.2016.56

38. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP - A Shared Memory
Parallelization of SCIP. INFORMS Journal on Computing 30(1), 11 – 30 (2018).
DOI 10.1287/ijoc.2017.0762

39. Trelles, O., Rodriguez, A.: In: E. Alba (ed.) Parallel Metaheuristics: A New Class of

Algorithms, Wiley Series on Parallel and Distributed Computing, chap. 21. Bioinfor-
matics and Parallel Metaheuristics, pp. 517–549. Wiley (2005)

40. Verstichel, J., De Causmaecker, P., Spieksma, F., Vanden Berghe, G.: Exact and

Heuristic Methods for Placing Ships in Locks. European Journal of Operational
Research 235(2), 387–398 (2014). DOI 10.1016/j.ejor.2013.06.045. URL https:

//lirias.kuleuven.be/handle/123456789/403645

