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Abstract. The problem of packing a given set of freely translated and rotated convex 

polygons in a minimum-perimeter convex polygon (in particular the minimum-

perimeter convex hull) is introduced. A mathematical model of the problem using the 

phi-function technique is provided. Problem instances with up to 6 convex polygons are 

solved by the global NLP solver BARON to get a minimum-perimeter convex hull. 

Numerical experiments for larger instances are reported using the local NLP solver 

IPOPT. 

Keywords: Global optimization, non-convex nonlinear programming, polygon packing 
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1 INTRODUCTION 

Finding a convex hull for a given number of polygons fixed w.r.t. to position and 

orientation is a classical problem in computational geometry (Preparata 1985; Avis 

1997; Thomas, 2001) and has important applications in packing and cutting, 

manufacturing, operations research, mechanics, chemistry (DeBerg, 2008; Scheithauer, 

2018). The applications range from collision detecting in animation to estimating output 

of oil wells (DeBerg, 2008), from spatial extent of an epidemic (Dumonteil, 2013) to 

path finding in robotics (Scheithauer, 2018). In most applications analyses of several 

polygons are substituted by studying a single geometric object (convex hull). Various 

efficient solution techniques for this problem have been proposed (Alt, 2015; Yagiura, 



2021). The problem becomes more complicated when the polygons are freely translated 

and rotated without mutual overlapping of their interiors. In this case different convex 

hulls can be constructed depending on the positioning and rotating polygons. 

Correspondingly, the problem to find a minimum perimeter (area) convex hull arises 

(Alt, 2015, Tang 2006).  It can be also interpreted as packing polygonal objects in a 

minimal convex container (Kallrath, 2009).  

Polynomial solution techniques for minimum-perimeter convex hulls are known for a 

few (two or three) polygons (Ahn, 2012) and/or for polygons with limited 

translations/rotations (Park, 2016). Numerical techniques for packing two freely 

translated and rotated irregular objects in a minimal polygonal container with a limited 

number of vertices were proposed in (Bennel 2015). Solution methods for finding a 

minimal perimeter convex hull of an arbitrary number of disks were considered in 

(Kallrath, 2019) with analytical solutions obtained for 3 disks. In (Kallrath, 2018) the 

minimal surface convex hull problem for spheres was studied numerically and 

analytically.  

In this paper the problem of packing freely translated and rotated convex polygons in a 

minimum perimeter convex polygonal container is considered. The maximal number of 

vertices of the container is fixed, however the shape of the container is not specified and 

is defined to minimize the perimeter. More specifically, the problem is as follows: find 

a minimum-perimeter convex m -gon (polygon with at most m  vertices) containing all 

given convex polygons (objects) without overlapping. Note that if m is sufficiently 

large (at least the total number of vertices of all polygons), the minimal perimeter m -

gon provides a minimal convex hull of the polygons. 

The main contributions of the paper are as follows: 

• The problem of packing a given set of freely translated and rotated convex 

polygons in a minimum-perimeter convex m -gon is introduced. 

• Analytical tools to state placement conditions for variable polygonal shape 

domain are presented, using the phi-function technique. 

• A nonlinear optimization problem is formulated for packing convex polygons in 

a minimal perimeter convex polygonal container using the phi-function 

technique. 



• A number of problem instances (with up to 6 convex polygons) are solved to 

optimality by the global optimizer BARON (Tawarmalani & Sahinidis, 2005) 

and can be used as the benchmark problems for further research. 

• Numerical experiments for larger instances are reported. 

The rest of the paper is organized as follows. Section 2 presents the problem 

formulation. Analytical tools to state placement conditions are given in Section 3, while 

two mathematical models, using phi-functions and quasi phi-functions, are provided in 

the next section. In Section 5 the main details of the mathematical models are illustrated 

for the case of two triangular objects. Computational results are discussed in Section 6, 

while Section 7 concludes. Comments on an analytical solution for the case of two 

triangles are presented in Appendix. 

 

2 PROBLEM FORMULATION 

Objects. Let a collection of convex polygons qA , {1, ..., }nq I n∈ =  be given. Each 

convex polygon qA  is defined by its vertices ( , )qi qi qiv x y=% % % , = 1, ..., qi m , in the local 

coordinate system and = {( , ) : ( , ) 0, = 1, ..., }q qi qA x y x y i mϕ ≤%% % % % , where ( , ) = 0qi x yϕ% % %  

for = 1, ..., qi m , are equations of its sides,  ( , ) =qi qi qi qix y x yϕ α + β + γ%% % % , 2 2 = 1qi qiα + β%%     

The location and orientation of qA  is defined by a variable vector of its placement 

parameters ( , , )q q qx y θ . The translation of qA  by the vector 2= ( , )q q qv x y R∈  and the 

rotation of qA  by the angle [0, 2 )qθ ∈ π  is defined by ( , ) =q q qA v θ  

2= { : = ( ) , (0, 0, 0)}q q qt R t v M t t A∈ + θ ∀ ∈% % , where (0, 0, 0)qA  denotes the non-

translated and non-rotated polygon qA  and 
cos sin

( ) =
sin cos

q q

q
q q

M
θ θ 

θ  
 − θ θ 

 is the 

rotation matrix. 

Each point % %( , ) (0,0,0)qt x y A= ∈%  in the local coordinate system of qA  is 

transformed into a point ( , )x y  given a translation of ( , )q qx y  and rotated by an angle 

qθ  as follows:  

% %cos sin ,q q qx x y x= ⋅ + ⋅ +θ θ  % %sin cosq q qy x y y= − ⋅ + ⋅ +θ θ . 

Each straight line  



   %  2 22{( , ) 0, 1}L x y R x yα β γ α β= ∈ + + = + =  

is transformed into the straight line 2{( , ) 0}L x y R x yα β γ= ∈ + + = , 

where  cos sinq q= ⋅ + ⋅α α θ β θ ,  sin cosq q= − ⋅ + ⋅β α θ β θ , %
q qx y= − ⋅ − ⋅γ γ α β ,  

qθ   is a rotation parameter, ( , )q qx y  is a translation vector qA . 

Container. Define a collection of line segments ke , 1, ...,k m= , considered in the fixed 

coordinate system OXY .  Each line segment ke  is given by the variable vector  

( , , )k k ktΘω ,                                                         (1) 

where   ( , )k k kx y= ω ωω  is an initial vertex, kt  is a variable length and kΘ  is a variable 

rotation angle of ke  with respect to OX axis (see Fig.1). 

 

Fig. 1 A collection of line segments ke , 1, ...,k m=   

 

The vector of all variables of the collection of m  line segments is denoted by 

( , , , , 1, 2, ..., )k k k kx y t k m= Θ =p
ω ω . 

 

The objective is to find an arrangement of the line segments ke , 1, ...,k m= , that form 

a minimum perimeter convex polygon having at most m  vertices and containing the 

collection of  convex polygons qA , nq I∈ . 

 



The following restrictions on the arrangement of the segments  ke , 1, ...,k m=  have to 

be taken into account: 

a cycle configuration condition 

1 cosk k k kx x t+ = + ⋅ Θω ω , 1 sink k k ky y t+ = + ⋅ Θω ω ,                            (2) 

for 1, ...,k m= , 1 1mx x+ =ω ω , 1 1my y+ =ω ω ; 

Further the domain bounded by the line segments ke , 1, ...,k m=  and satisfying 

conditions (1)-(2) is denoted by Ω  (see Fig. 2). 

 

 

Fig. 2 Domain Ω  of the variable vector ( , , , , 1, 2, ..., 5)k k k kx y t k= Θ =p
ω ω : convex m-

gon of variable edges ke , 1, ..., 5k m= =   

 

A domain Ω  with the variable metrical characteristics p  defined above is called  a 

variable container  ( )Ω = Ω p  for the collection of moving convex polygons qA , 

nq I∈ .    

The optimization problem is considered in the following setting. 

Problem. Find the minimal perimeter container *( )Ω p  with at most m  vertices for the 

collection of non-overlapping convex polygons qA , nq I∈ . 

Remark. Note that the problem above is considered for a fixed m . The minimal 

perimeter container with at most m vertices in general does not provide a convex hull of 

the polygons. However, if m is sufficiently large (greater or iqual to the sum of qm  for 

tk 

ek 

kΘ  

ek 

X 0 

1k+ω  

kω  



all nq I∈ ), then the minimal perimeter polygonal container is a minimal perimeter 

convex hull. 

 

The following placement constraints have to be fulfilled: 

non-overlapping of each pair of convex polygons ( )q qA u and ( )g gA u , i.e., 

int ( ) int ( )q q g gA u A u = ∅I  for nq g I< ∈ ,                               (3) 

containment of each convex polygon ( )q qA u  into ( )Ω p , i.e., 

*( ) ( ) int ( ) ( )q q q qA u A u⊂ Ω ⇔ Ω = ∅p pI  for nq I∈ ,                   (4) 

where * 2( ) \ int ( )RΩ = Ωp p . 

To formalize the placement constraints (3)-(4), the phi-function technique is used to 

describe analytically relations between a pair of objects. 

 

3 MATHEMATICAL MODELLING 

 

For the reader convenience a few basic defenitions of the phi-function technique are 

provided.   

Let A be a two-dimensional object. The position of the object A  is defined by a 

vector of placement parameters ( , )A A Au v= θ , where ( , , )A A A Av x y z=  is a translation 

vector and Aθ  is a vector of rotation parametrs. The object A, rotated by Aθ  and 

translated by Av  is denoted by ( )AA u .  

For two objects ( )AA u  and ( )BB u  a phi-function allows distinguishing the 

following three cases: b) ( )AA u  and ( )BB u  do not overlap, i.e., ( )AA u  and ( )BB u  do 

not have any common points; c) ( )AA u  and ( )BB u  are in contact, i.e., ( )AA u  and 

( )BB u  have only common frontier points; a) ( )AA u  and ( )BB u  are overlapping so that 

( )AA u  and ( )BB u  have common interior points. 

By the definition (Chernov N., Stoyan Yu, Romanova T., 2010) a continuous and 

everywhere defined function, denoted by ( , )AB
A Bu uΦ , is called a phi-function of the 

objects ( )AA u  and ( )BB u  if the following conditions are fulfilled:  

( , ) 0,AB
A Bu uΦ >  for ( ) ( )A BA u B u∩ = ∅  , 



( , ) 0,AB
A Bu uΦ =  for int ( ) int ( )A BA u B u∩ = ∅  and ( ) ( )A BfrA u frB u∩ ≠ ∅ ;  

( , ) 0,AB
A Bu uΦ <  for int ( ) int ( )A BA u B u∩ ≠ ∅ . 

Here frA  denotes the boundary (frontier) of the object A , while int A  stands for its 

interior. 

Thus,   

( , ) 0 int ( ) int ( )AB
A B A Bu u A u B uΦ ≥ ⇔ ∩ = ∅ . 

 

Define a function ( , , )AB
A Bu u u′ ′Φ  introducing auxiliary variables 'u  defined in a 

domain n
U R⊂  depending on the shapes of the objects A and B. This function is 

defined for all values of ,Au  Bu  and has to be continuous in all its variables.  

By the definition (Stoyan, Yu., Pankratov, A., Romanova, T.,  2016) the 

function ( , , )AB
A Bu u u′ ′Φ  is called a quasi-phi-function for two objects ( )AA u  and 

( )BB u  if max ( , , )AB
A B

u U
u u u

′∈
′ ′Φ

 
is a phi-function for the objects.  

The definition of the quasi-phi-function provides an additional “degree of 

freedom” since the auxiliary variables u′  can be chosen as necessary. 

The general property of the quasi-phi-function for two objects ( )AA u  and 

( )BB u  is as follows:  

if ( , , ) 0AB
A Bu u u′ ′Φ ≥  for some u′ , then int ( ) int ( )A BA u B u∩ = ∅ .  

 

 3.1 Non-overlapping condition  

 

The condition (3) can be stated in twofold: a) using phi-functions; b) using quasi phi-

functions.   

Let two convex polygons  qA  and gA  be defined by their vertices ( , )qi qi qiv x y=% % % , 

= 1, ..., qi m , and ( , )gj gj gjv x y=% % % , 1, ..., gj m=  respectively. Placement parameters of 

qA  and gA   are denoted by ( , , )q q q qu x y= θ  and ( , , )g g g gu x y= θ . 

 

Phi-function for two convex polygons 



The phi-function for two convex polygons ( )q qA u and ( )g gA u  can be defined 

as follows: 

1 11 1
( , ) = max{ max min ( , ), max min ( , )},

g qq g

ij ji
qg q g qg q g qg q g

j m i mi m j m
u u u u u u

≤ ≤ ≤ ≤≤ ≤ ≤ ≤
Φ ϕ ψ   (5) 

 

where  

( , ) =ij
qg q g qi gj qi gj qiu u x y′ ′′ ′ ′′ ′ϕ α + β + γ , ( , ) =ji

qg q g gj qi gj qi gju u x y′′ ′ ′′ ′ ′′ψ α + β + γ  ,  

 

cos sin , sin cosqi qi q qi q q qi qi q qi q qx x y x y x y y′ ′ ′ ′ ′ ′= ⋅ + ⋅ + = − ⋅ + ⋅ +% % % %θ θ θ θ , 

 

cos sin , sin cosgj gj g gj g g gj gj g gj g gx x y x y x y y′′ ′′ ′′ ′′ ′′ ′′= ⋅ + ⋅ + = − ⋅ + ⋅ +% % % %θ θ θ θ , 

 

cos sinqi qi q qi q′ ′ ′= ⋅ + ⋅%%α α θ β θ ,  sin cosqi qi q qi q′ ′ ′= − ⋅ + ⋅%%β α θ β θ ,  

qi qi qi q qi qx y′ ′ ′ ′= − ⋅ − ⋅%% %γ γ α β , 

 

cos singj gj g gj g′′ ′′ ′′= ⋅ + ⋅%%α α θ β θ ,  sin cosgj gj g gj g′ ′′ ′′= − ⋅ + ⋅%%β α θ β θ ,  

gj gj gj g gj gx y′′ ′′ ′′ ′′= − ⋅ − ⋅%% %γ γ α β . 

 

Therefore ( , ) 0qg q gu uΦ ≥  provides the non-overlapping condition (3), i.e., 

int ( ) int ( )q q g gA u A u∩ = ∅ . 

 

Quasi phi-function for two convex polygons  

 

 Let ( ) {( , ) : cos sin 0}qg qg qg qg qgP u x y x y= = ⋅ + ⋅ + ≤µ φ φ γ  be a half plane,  

where 2( , )qg qg qgu R= ∈φ γ  is a vector of  variable parameters of ( )qgP u . Here 

0qg =µ  is the normal equation of the line with variable coefficients cos qgφ  , sin qgφ  

and free term  qgγ .  

The quasi phi-function for ( )q qA u and ( )g gA u  can be derived in the form  



 ( , , ) min{ ( , ), ( , )}P P
qg q g qg q q qg g g qgu u u u u u u

∗
′Φ = Φ Φ , (6) 

where   

1
( , ) min (cos sin )

q

P
q q qg qg qi qg qi qg

i m
u u x y

≤ ≤
′ ′Φ = ⋅ + ⋅ +φ φ γ  

is the normalized phi-function for ( )q qA u  and ( )qgP u ,  

1
( , ) min ( cos sin )

g

P
g g qg qg gj qg gj qg

j m
u u x y

∗

≤ ≤
′′ ′′Φ = − ⋅ − ⋅ −φ φ γ  

is the normalized phi-function for ( )g gA u  and * 2( ) \ int ( )qg qgP u R P u= .  

Therefore, the inequality ( , , ) 0qg q g qgu u u′Φ ≥  for some * *( , )qg qg qgu = φ γ  

provides the non-overlapping condition (3), i.e., int ( ) int ( )q q g gA u A u∩ = ∅ . In other 

words, if objects int ( )q qA u  and  int ( )g gA u  do not overlap then there is always exists 

the separation line with the normal equation * *( , ) 0qg qg qg =µ φ γ  .  

 

 3.2 Containment conditions 

 

By the definition, ( ) ( )q qA u ⊆ Ω p  if *int ( )q qA u Ω = ∅I , * 2 \ intRΩ = Ω . Below a 

phi-function 
*

( , )A
Au

ΩΦ p  for a convex polygon ( )q qA u  and the object *( )Ω p  is 

presented. 

Let ( , )qi qix y′ ′% % , = 1, ..., qi m , be the vertices of qA  and let = 0kϖ  be an 

equation of the side  1[ , ]k k ke += ω ω  of the container  Ω , where k k k kx y
ω ω ωϖ = α + β + γ , 

such that (0, 0) 0kϖ > . 

The container side 
k

e  has its vertices ( , )
k k k

x y= ω ωω  and 

1 ( cos , sin )
k k k k k k k

x t y t+ = + Θ + Θω ωω , while the coefficients of the side equation are 

k
ωα = sin

k
− Θ , k

ωβ = cos
k

Θ  and k
ωγ = sin cos

k k k k
x yΘ − Θω ω  respectively.  



The phi-function for a convex polygon ( )q qA u  and the object *( )Ω p can be 

stated in the form 

*

1 1
( , ) = min min ( , ),

q
q kqi q

k m i m
u u

≤ ≤ ≤ ≤
′Φ ϖp p                                           (7) 

where 

kqi k qi k qi kx y
ω ω ω′ ′ ′ϖ = α + β + γ , 

and 

cos sin ,qi qi q qi q qx x y x′ ′ ′= ⋅ + ⋅ +% %θ θ  sin cosqi qi q qi q qy x y y′ ′ ′= − ⋅ + ⋅ +% %θ θ , 

= 1, ..., qi m , are vertices of ( )q qA u . 

 

4 MATHEMATICAL MODEL 

 

Let 1 1 1 1( , , , , ..., , , , )m m m mx y t x y t= Θ Θp ω ω ω ω  be a vector of variable metrical 

characteristics of the container Ω , while 1( , ..., )nu u  be a vector of variable placement 

parameters of polygons qA   for nq I∈ .  

 

4.1 Mathematical model using phi functions 

The problem of finding the minimum perimeter container for N convex polygons can 

be stated using phi-functions as follows:  

 

min ( )F u     s.t. u W∈                                                   (8) 

 

{ *: ( , ) 0, , ( , ) 0, , ( ) 0}qg q g n q nW u R u u q g I u q I f= ∈ Φ ≥ < ∈ Φ ≥ ∈ ≥p p
σ ,       (9) 

where  

1

( )
m

i

i

F u t

=

=∑  (the perimeter of ( )Ω p ,  

1( , , ..., )nu u u= =p  1 1 1 1 1( , , , , ..., , , , , , ..., )m m m m nx y t x y t u u RΘ Θ ∈ω ω ω ω σ
 is a vector of 

variables, Rσ  is Euclidean space of σ  dimension, 4 3m n= +σ  (for rotatable 

polygons), 4 2m n= +σ  (for non-rotatable polygons),  

W  denotes the corresponding set of feasible solutions (the solution space),  

( , )qg q gu uΦ  is the phi-function for two convex polygons ( )q qA u and ( )g gA u ,  



( , ) 0qg q gu uΦ ≥  implies int ( ) int ( )q q g gA u A u = ∅I ; 

* ( , )q quΦ p  is the phi-function for the convex polygon ( )q qA u  and the object 

*( )Ω p , * ( , ) 0q quΦ ≥p  implies ( ) ( )q qA u ⊆ Ω p ;  

 ( ) 0f ≥p  describes condition (2). 

 The phi-functions in (9) are composed of max - and min - combinations of 

linear and\or non-linear functions including sin - and cos -terms (see (5) and (7)).   

As a result, the set W  of feasible solutions is non-convex, leading to many local 

extrema. Hence, the problem  (8)-(9) is a nonsmooth nonconvex optimization problem. 

A feasible region W  of the problem (9)-(10) is presented as a union of 

subregions , = 1, 2, ...,sW s η . (For example, A Bm mη = +  for two convex polygons, 

where Am  is the number of vertices of A  and Bm  is the number of vertices of B , in 

particular, 6η =  for two triangles).  

This property of the set W  comes from the following considerations. 

A single inequality  

 1 2min{ ( ), ( ), ..., ( )} 0u u u ≥ηχ χ χ  

 is equivalent to the system of  η  inequalities 

1

2

( ) 0

( ) 0

...

( ) 0

u

u

u

≥


≥


 ≥ η

χ

χ

χ

. 

From the inequality  

 1 2max{ ( ), ( ), ..., ( )} 0u u u ≥ηχ χ χ  

it follows that at least one of the functions 1 2( ), ( ), ..., ( )u u uηχ χ χ  is non-negative.  

Since 
1

= s

s

W W

η

=

U  the nonsmooth optimization problem (8)-(9) can be reduced 

to the following problem for 1= ( , , ..., )nu u up : 



 

 * *( ) = min{ ( ), = 1, , }s
F u F u s ηK , (10) 

where 

 *( ) = min ( )s
F u F u  s.t. su W∈ . (11) 

Clearly, the global optimum solution *( )F u  can be obtained and proved by inspecting 

and exactly solving all subproblems defined in (11) .  

Subproblems (11) are in general nonlinear mathematical programming problems 

and they can be solved by standard techniques of local optimization.  

 

4.2 Mathematical model with quasi phi functions 

 

Using the quasi phi-functions the problem of finding the minimum perimeter polygonal 

container for n  convex polygons can be formulated as the following NLP problem.  

The decision variables are as follows: 

– 1 1 1 1( , , , , ..., , , , )m m m mx y t x y t= Θ Θp ω ω ω ω  is a variable vector of the container Ω ,  

1, ...,k m= , 

– ( , , )q q q qu x y= θ , nq I∈   are vectors of placement parameters of convex 

polygons ( )q qA u , nq I∈ ; 

– qgu , nq g I< ∈  are vectors of the auxiliary variables in the quasi phi-

functions ( , , ),qg q g qg nu u u q g I′Φ < ∈ . 

Now the packing problem can be formulated in the following from:  

 min ( )F u  s.t. ( ), ,u W ′∈pτ , (12) 

*{( , , ) : ( , , ) 0, , ( , ) 0, , ( ) 0}qg q g qg n q q nW u u u u q g I u q I f′ ′= Φ ≥ < ∈ Φ ≥ ∈ ≥p p pτ , (13) 

where 
1

( )
m

i

i

F u t

=

=∑  (the perimeter of Ω ),  

1( , ..., )nu u u= , 11 12 ( 1),( , , ..., , ..., )qg n nu u u u −=τ ,  



( , , ) 0qg q g qgu u u′Φ ≥  assures the non-overlapping constraint (3) for ( )q qA u  and 

( )g gA u ,  nq g I< ∈ ;  

* ( , ) 0q quΦ ≥p   represents the containment constraint (4) for ( )q qA u  and *Ω ,  nq I∈ ; 

 ( ) 0f ≥p  describes constraints (2) for variable sizes of the container ( )Ω p . 

The feasible region W  given by (13) is defined by a system of non-smooth 

inequalities that can be reduced to a system of inequalities with smooth functions. This 

can be done due to the specific type of quasi phi-functions (6) and phi-functions for 

containment constraints involved in (13).  

The model (12)–(13) is a non-convex and continuous nonlinear programming 

problem. This is an exact formulation in the sense that it gives all optimal solutions to 

the packing problem. 

There are number of the problem variables is 4 3 ( 1)m n n nσ = + + − . The model 

(12)–(13) involves 2( )O n  nonlinear inequalities.  

 

5 SOLUTION STRATEGY FOR TWO TRIANGLES  

 

5.1 Solution strategy using phi functions 

 

Let A  and B  be two triangles given by their vertices. And let ( , )i i iv x y′ ′ ′=% % % , 

= 1, 2, 3i , denote the vertices of A , and ( , )j j jv x y′′ ′′ ′′=% % % , = 1, 2, 3j , denote those of B . 

The following presentation of the triangles is use: = {( , ) : ( , ) 0, = 1, 2, 3}iA x y x y iϕ ≤%% % % % , 

where ( , ) =i i i ix y x y′ ′ ′ϕ α + β + γ%% % %% % , 2 2 = 1,i i′ ′α + β%%  and 0iϕ =%  is the normal equation of  

the i -th side  of  A  for = 1, 2, 3i ; 

= {( , ) : ( , ) 0, = 1, 2, 3},jB x y x y jψ ≤%% % % %  ( , ) =j j j jx y x y′′ ′′ ′′ψ α + β + γ%% % %% % , 2 2 = 1,j j′′ ′′α + β%%  and 

0jψ =%  is the normal equation of  the j -th side  of  B  for = 1, 2, 3j . 

To break symmetry and degeneration assume that triangle A  is fixed and triangle B  

can freely be translated and rotated.  

The phi-function (5) for the  triangles A  and ( )BB u  takes the form: 

 



1 3 1 31 3 1 3
( ) = max{max min ( ), max min ( )},AB

B ij B ji B
j ii j

u u u
≤ ≤ ≤ ≤≤ ≤ ≤ ≤

Φ ϕ ψ        (14) 

 

where ( ) =ij B i j i j iu x y′ ′′ ′ ′′ ′ϕ α + β + γ%% % , ( ) =ji B j i j i ju x y′′ ′ ′′ ′ ′′ψ α + β + γ% % ,    

( ) ( , )ij B i j ju x y′′ ′′ϕ = ϕ% , ( ) ( , , )ji B j j j iju ′′ ′′ ′′ψ = ψ α β γ% . 

To simplify notations, ijϕ  will be used for ( )ij Buϕ  and jiψ  for ( )ji Buψ . 

It follows from (14) that for a fixed Au  

( ) 0AB
BuΦ ≥  if 

 

1 31 3
max min 0ij

ji ≤ ≤≤ ≤
ϕ ≥ (fixed sides of triangle A  and variable vertices of triangle ( )BB u , 

case 1, Fig. 3a)  or  
1 31 3

max min 0ji
ij ≤ ≤≤ ≤

ψ ≥  (variable sides of triangle ( )BB u  and fixed 

vertices of triangle A , case 2, Fig. 3b). 

                                   

a) 

                                

b) 

Fig. 3 Two cases are meeting in ABΦ : a) case 1; b) case 2 

 

iv′%  

0iϕ =%  



Moreover,  

1 31 3
max min 0ij

ji ≤ ≤≤ ≤
ϕ ≥    if  1

1 3
min 0j

j≤ ≤
ϕ ≥  or 2

1 3
min 0j

j≤ ≤
ϕ ≥  or 3

1 3
min 0j

j≤ ≤
ϕ ≥ ,  

                                         

 
1 31 3

max min 0ji
ij ≤ ≤≤ ≤

ψ ≥  if   1
1 3
min 0i

i≤ ≤
ψ ≥  or 2

1 3
min 0i

i≤ ≤
ψ ≥  or 3

1 3
min 0i

i≤ ≤
ψ ≥ , 

 

where  

1
1 3
min 0j

j≤ ≤
ϕ ≥  can be replaced by the system  

11

12

13

0

0

0

ϕ ≥


ϕ ≥
ϕ ≥

                                                             (15) 

Simililary for the other nonosmoth inequalities 2
1 3
min 0j

j≤ ≤
ϕ ≥ , 

3
1 3
min 0j

j≤ ≤
ϕ ≥ , 1

1 3
min 0i

i≤ ≤
ψ ≥ , 2

1 3
min 0i

i≤ ≤
ψ ≥ , 3

1 3
min 0i

i≤ ≤
ψ ≥  we define the appropriate 

systems 

21

22

23

0

0

0

ϕ ≥


ϕ ≥
ϕ ≥

,  
31

32

33

0

0

0

ϕ ≥


ϕ ≥
ϕ ≥

,  
11

12

13

0

0

0

ψ ≥


ψ ≥
ψ ≥

,  
21

22

23

0

0

0

ψ ≥


ψ ≥
ψ ≥

,  
31

32

33

0

0

0

ψ ≥


ψ ≥
ψ ≥

. 

Finally, we have six inequality systems (15)-(20). 

Note that for the containment conditions the phi-function (7) is used, therefore 

*

1 1 3
( ) = min min ( )A

ki
k m i

Ω

≤ ≤ ≤ ≤
′Φ ϖp p , 

*

1 1 3
( , ) = min min ( , ).B

B ki B
k m j

u uΩ

≤ ≤ ≤ ≤
′′Φ ϖp p  

Thus for 6A Bm m m= + =  

*

11

12

13

61

62

63

0

0

0

0 ...

0

0

0

AΩ

′ω ≥
 ′ω ≥
 ′ω ≥


Φ ≥ ⇔ 
 ′ω ≥


′ω ≥


′ω ≥

 and 
*

11

12

13

61

62

63

0

0

0

0 ...

0

0

0

BΩ

′′ω ≥
 ′′ω ≥
 ′′ω ≥


Φ ≥ ⇔ 
 ′′ω ≥


′′ω ≥


′′ω ≥

.                                (16) 

 



Now the problem (8)-(9) for two triangles A  and ( )BB u  with the feasible region 

1 2 3 4 5 6=W W W W W W W∪ ∪ ∪ ∪ ∪  

 

can be reduced to the problem (10)-(11) of the form 

  

* *( ) = min{ ( ), = 1, , 6}s
F u F u s K , 

 

 *( ) = min ( )s
F u F u  s.t. su W∈ ,  

 

where the objective function to be minimized is simply  

6

1

( ) i

i

F u t

=

=∑ , 

( , )Bu u= =p 1 1 1 1 6 6 6 6( , , , , ..., , , , , )Bx y t x y t u R∈ σθ θ  is a vector of variables, 

4 3 24 3 27m= + = + =σ  is the number of variables, 1 1 1 1 6 6 6 6( , , , , ..., , , , )x y t x y t=p θ θ  

is a vector of variable metrical characteristics of the container  Ω , ( , , )B B B Bu x y= θ  is 

a vector of variable placement parameters of triangle B .  

Each sW  is defined by the system (16) describing the containment constrants 

combained with one of the inequality systems of the form (15) describing the non-

overlapping conditions, 1, 2, ..., 6s = , and the inequality system 0f ≥  describing 

condition (2). 

 

5.2 Solution strategy using quasi phi functions  

The quasi phi-function (7) for the triangles A  and ( )BB u  takes the form: 

 

( , ) min{ ( ), ( , )}P P
AB B AB A AB B B ABu u u u u

∗
′Φ = Φ Φ , 

where   

1 3
( ) min(cos sin )P

A AB AB Ai AB Ai AB
i

u x y
≤ ≤

′ ′Φ = ⋅ + ⋅ +% %φ φ γ  



is the normalized phi-function for A  and ( )ABB u ,  

1 3
( , ) min ( cos sin )P

B B AB AB Bj AB Bj AB
j

u u x y
∗

≤ ≤
′′ ′′Φ = − ⋅ − ⋅ −φ φ γ  

Therefore for describing the non-overlapping condition, the nonsmooth inequality  

( , ) 0AB B ABu u′Φ ≥  

is reduced equivalently to the following system of six inequalities with smooth 

functions 

 

11 11

12 12

13 13

21 21

22 22

23 23

cos sin 0

cos sin 0

cos sin 0

cos sin 0

cos sin 0

cos sin 0

AB AB AB

AB AB AB

AB AB AB

AB AB AB

AB AB AB

AB AB AB

x y

x y

x y

x y

x y

x y

′ ′⋅ + ⋅ + ≥
 ′ ′⋅ + ⋅ + ≥
 ′ ′⋅ + ⋅ + ≥


′′ ′′− ⋅ − ⋅ − ≥
 ′′ ′′− ⋅ − ⋅ − ≥


′′ ′′− ⋅ − ⋅ − ≥

φ φ γ

φ φ γ

φ φ γ

φ φ γ

φ φ γ

φ φ γ

 

 

 Note that for describing the containment conditions the system (16) with 36 inequalities 

is used: 

11

12

13

11

12

13

61

62

63

61

62

63

0

0

0

0

0

0

...

0

0

0

0

0

0

′ω ≥
 ′ω ≥
 ′ω ≥


′′ω ≥
 ′′ω ≥


′′ω ≥


 ′ω ≥


′ω ≥


′ω ≥
 ′′ω ≥


′′ω ≥
 ′′ω ≥

  

Now the packing problem of two triangles for 6A Bm m m= + =  can be formulated as 

the following nonlinear optimization problem:  



6

1

max i

i

t

=
∑  s.t. ( ), ,B ABu u W ′∈p ,

 * *{( , , ) : ( , ) 0, ( ) 0, ( , ) 0, ( ) 0}B AB AB B AB A B BW u u u u u f′ ′= Φ ≥ Φ ≥ Φ ≥ ≥p p p p  

( , ) 0AB B ABu u′Φ ≥  represents the non-overlapping constraint (3) for triangles A  and 

( )BB u  ;  

* ( ) 0AΦ ≥p  represents the containment constraint (4) for A  and *Ω ; 

* ( , ) 0B BuΦ ≥p  describes the containment constraint (4) for ( )BB u  and *Ω ; 

( ) 0f ≥p  means auxiliary conditions for variable sizes of the container ( )Ω p . 

The variables used in the optimization problem are as follows: 

( , , )A Bu u u= =p 1 1 1 1 6 6 6 6( , , , , ..., , , , , , )B ABx y t x y t u u R∈ σθ θ  is a vector of 

variables, 4 3 2 24 5 29m= + + = + =σ  is the number of variables;  

1 1 1 1 6 6 6 6( , , , , ..., , , , )x y t x y t=p θ θ  is a vector of variable metrical characteristics of the 

container  Ω ;  

( , , )B B B Bu x y= θ  is a vector of variable placement parameters of triangle ( )BB u ;  

( , )AB AB ABu = φ γ  is the vector of the auxiliary variables in the quasi phi-function 

( , )AB B ABu u′Φ ; 

the feasible region W ′  is described by the system of 42 inequalities with smooth 

functions.  

 

6 COMPUTATIONAL RESULTS 

  

In this section numerical examples are presented. The problem instances 1-6 were 

solved to optimality by the global NLP solver BARON (Khajavirad 2018, Sahinidis 

2019, Tawarmalani 2005). These experiments were run on a 64 bit machine with an 

Intel(R) Core(TM) i7 CPU 2.8 GHz, 16 GB, RAM, Windows 7. Numerical results for 

larger instances 7, 8 were obtained by the non-commercial local NLP solver IPOPT 

(https://github.com/coin-or/Ipopt) developed in (Wächter, A., Biegler, L.T., 2006). 



Default options were used for running this software. These experiments were run on an 

AMD FX(tm)-6100, 3.30 GHz computer, Programming Language C++, Windows 7.   

The CPU time limit for running BARON in examples 1-6 was set to 48 hours, while for 

running IPOPT in examples 7 and 8 the time limit was 12 min. 

For each problem instance *
m ( *

m m≤ ) denotes the number of vertices (sides) in the 

minimal perimeter container Ω .  Note, that the inequality *
m m≤  can be strict since by 

optimization some vertices may coinside and the length of the corresponding side can 

be zero. The value of the minimal perimeter is denoted by *
F . 

 

6.1 Examples for the phi-function model 

Example 1. Two triangles given by their vertices are considered: triangle 1 = {(0, 0) 

(14, 0) (10, -5)},  triangle 2 = {(0, 0) (8, 0) (6, 4)}. For 6m =  (the total number of 

vertices in 2 triangles) the minimum perimeter convex hull with 

* 33.707980000000F =  and * 4m = was found by BARON.  

Figure 4 shows the configuration for the two triangles that corresponds to the global 

solution .     

 

Fig. 4 The minimum perimeter convex hull for the two triangles     

 

Example 2. Two objects, triangle and quadrangle are considered given by their vertices: 

triangle ={(0, 0) (8, 0) (6, 4)}, quadrangle ={(0, 0) (7.5, 0) (2, 4) (-5, 5)}. For 7m =  

(the total number of vertices in triangle and quadrangle) the minimum perimeter convex 

hull with * 31.8680963110139F =  and * 4m = was found by BARON. Figure 5 

shows the configuration for the triangle and the quadrangle that corresponds to the 

global solution .     



 

Fig. 5 The minimum perimeter convex hull for triangle and quadrangle 

 

Example 3. Two equal pentagons are considered given by the vertices: pentagon 1 

={(1, 0),  (-1, 0),  (-9, 1),  (0, 10),  (9, 1)}, pentagon 2 ={(1, 0),  (-1, 0),  (-9, 1),  (0, 10),  

(9, 1)}. For 10m =  (the total number of vertices in 2 pentagons) the minimum 

perimeter convex hull with * 54.911688000000F =  and * 6m =  was found by 

BARON. 

Figure 6 shows the configuration for the two pentagons that corresponds to the global 

solution .  

  

 

Fig. 6 The minimum perimeter convex hull for two pentagons 

 

Example 4. Three triangles are considered given by their vertices: triangle 1 ={(0, 0) 

(4, 3) (3, 0)}, triangle 2 ={(0, 0) (4, -3) (3, 0)}, triangle 3 = {(0, 0) (1, -3) (1, 3)}. For 

9m =  (the total number of vertices in 3 triangles) the minimum perimeter convex hull 

with * 15.1790222006124F =  and * 5m =  was found by BARON.  

Figure 7 shows the configuration for two pentagons that corresponds to the global 

solution . 



 

Fig. 7 The minimum perimeter convex hull for three triangles 

 

Example 5. Four quadrangles are considered given by their vertices: quadrangle 1 ={(0, 

0) (0, 4) (2, 4) (5, 0)}, quadrangle 2 ={(0, 0) (0, 4) (2, 4) (5, 0)}, quadrangle 3 = {(0, 

0) (0, -4) (2,-4) (5, 0)}, quadrangle 4 ={(0, 0) (0, -4) (2,-4) (5, 0)}. For 16m =  (the total 

number of vertices in 4 quadrangles) the minimum perimeter convex hull with 

* 28.000000000000F =  and * 6m =  was found by BARON. Figure 8 shows the 

configuration for four quadrangles that corresponds to the global solution. 

 

Fig. 8 The minimum perimeter convex hull for four quadrangles 

 

Example 6.  Six equal triangles are considered given by the vertices: {(0, 0) (0, 4) 

(2, 4)} . For 18m =  (the total number of vertices in 6 triangles) the minimum perimeter 

convex polygonal container with *
F = 19.416375209619 and * 6m =  was found by 

BARON. Figure 9 shows the optimal configuration for six triangles. 



 

Fig. 9 The optimized perimeter polygonal container for six triangles 

 

6.2 Examples for the quasi phi-function model 

Example 7. Ten regular pentagons inscribed in circles of the given radii are considered.  

The corresponding radii for the pentagons 1, 2  are 1 2 4r r= = ,  for pentagons 3, 4:  

3 4 3r r= = ,  for pentagons 5, 6, 7:  5 6 7 2r r r= = = , for pentagons 8, 9, 10: 

8 9 10 1r r r= = = . For 12m =  the locally minimal  perimeter convex polygonal container 

with * 49.2339F =  and * 8m =  was found by IPOPT. Figure 10 shows the 

configuration for ten pentagons that corresponds to the local optimal solution. 

 
 

Fig. 10 The optimized perimeter polygonal container for ten pentagons  
 

Example 8. Twenty five convex polygons are considered given by their vertices: 13 

equal trapezoids = {(0, 0) (8, 0) (14, 7) (14, 15)} and 12 equal triangles = {(0, 0) (11, 

0) (14, 11)}. For 20m =  the locally minimal  perimeter convex polygonal container 



with * 166.6851F =  and * 12m =  was found by IPOPT. Figure 11 shows the 

configuration for ten pentagons that corresponds to the local optimal solution. 

 
Fig. 11 The optimized perimeter polygonal container for 25 convex polygons  
 

7 CONCLUSIONS AND OUTLOOK 

In this paper packing convex polygons in a minimal perimeter convex polygonal 

container has been considered. The phi-functions approach has been used to state non-

overlapping and containment conditions and form the corresponding nonlinear 

programming problem.  

An interesting direction for the future research is the generalization of the proposed 

approach for packing in a minimum-area convex polygon. In this case convexity 

conditions for the container should be stated explicitly in the model since they do not 

follow from the optimality (as in the minimal perimeter problem). Also, balancing and 

other equilibrium constraints (Wäscher 2007; Grebennik 2018; Gimenez-Palacios 2020) 

can be taken into account. Additional shape constraints for the container may also be 

imposed. For example, if the vertices of the container are considered as locations for 

transmitting antennas, then the maximal distance between the vertices may be bounded 

to assure the quality of the signal reception. The costs related to the vertices may also be 

introduced. Results in this direction are on the way. 



Packing freely translated and rotated ellipses in an optimized convex polygon of a given 

shape was considered, e.g., in (Kampas 2019, 2020; Pankratov 2019, 2020).  It is 

interesting to generalize their approach for constructing a minimum perimeter/area 

convex m-gon.  

Packing two non-convex objects (bounded by circular lines and/or line segments) in a 

minimum perimeter/area convex polygon was considered in (Bennel 2015). Layout of 

non-convex polygons (Jones 2013; Stoyan 2017), or irregular 3D polyhedra (Stoyan 

20179), or ellipsoids (Romanova 2020) in a minimal convex polygonal container is the 

other promising research direction (see also Araújo 2019; Bennell 2008, 2009; Fasano 

2014; Leao 2020; Warade 2020 and the references therein).  

The approach proposed in this paper for packing polygons in a minimum-perimeter 

container requires solution of a non-convex mathematical programming problem. In this 

paper for some small problem instances global solutions have been obtained by the 

commercial solver BARON, while for medium-sized instances local optima have been 

calculated by freely available solver IPOPT in a reasonable computation time. To solve 

larger instances special techniques can be applied, such as decomposition (Litvinchev 

2010) or aggregation (Litvinchev 1999). Some results in this direction are on the way.  
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Appendix. On an analytical solution for the minimum perimeter convex hull of two 

triangles. 

For the case of two triangles, we may expect geometrical characteristics of the optimal 

layout.  Leaving the rigorous proof for our forthcoming paper, we present here these 

characteristics in the form of the following conjecture. 

Conjecture. The minimal perimeter convex hull for two triangles corresponds to a 

layout with two tangent largest sides of the triangles (see Fig. 12) 



The motivation for this conjecture is as follows. If the triangles have no common points 

(totally separated), then we can move one triangle till they are tangent thus reducing the 

perimeter. Suppose that there is only one tangent point (a vertex of the triangle). Then 

we can rotate the corresponding triangle around its tangent vertex till the triangles have 

tangent sides and thus reducing the perimeter. Finally, among all layouts with tangent 

sides, the case of tangent largest sides corresponds to the minimal perimeter convex hull 

by the triangle inequality. The rigorous proof of this conjecture is on the way. 

Suppose that we have two triangles with their largest tangent sides. Then to get a layout 

with minimum perimeter convex hull we must define the position of the vertex of one 

triangle on the tangent side of another (see Figure 12). This can be done as follows. 

Consider two triangles with vertices iA , iB , and iC , sides ia , ib , and ic , and internal 

angles iα , iβ , and iγ , 1, 2i = . The naming is such, that 1 1 1c A B=  is the largest side of 

the triangle 1 and that 1c  is greater than or equal to the largest side of the triangle 2. 

Therefore, 1A  and 1B  are vertices of the convex hull polygon Ρ .   

Triangle 1 is placed such that its vertex 1A  is in the origin of the x y− -coordinate 

system, 1B  is at ( , 0)c  , and 1C  is in the fourth quadrant with at 1 1( , )x y  with 1 0x >   

and 1 0y < . 1C  is another vertex of the convex hull polygon Ρ .  

If we place triangle 2 such that 2A  and 2B  are on the positive axis with 20 Ax c≤ <  

and  20 Bx c< < , then 2C  at 2 2( , )x y  completes the system of vertices of Ρ  (Figure 

12).  



 

Fig. 12 The minimum perimeter convex hull of two tangent triangles  

 

The 2y -coordinate follows from the triangle itself; it is just its height, i.e., 

2 2 2siny b= α , 
2 2 2
2 2 2

2
2 2

cos
2

b c a
arc

b c

+ −
α = , 

where 
2 2

( , ) (0, 0)
A Ax yv v = , 

2 2
( , )

B Bx yv v  and 
2 2

( , )
C Cx yv v  are the intrinsic 

vertex coordinates of triangle 2.  

As 

 

2 2B Ax x c= + , 

and 

 

2 2 2 2 2cosC Ax x x b= = + α , 

 

the convex hull perimeter ℓ = ℓ(P) depends only on one variable 2Ax x= : 

 

2 2 2 2
1 1 2 2 2 1 2 2 2( cos ) ( ( cos )) .l a b x b y c x b y= + + + α + + − + α +  

 

The contributions 1a  and 1b  are constant and can be computed a priori – for 

this arrangement of the two triangles. Other arrangements – in which the two 

triangles have one touching line – follow by permutations and can be evaluated 



similarly. 

For simplification, let us introduce 

 

2 2cosu x b= + α  , 1 1v a b= +  

and follow up with 

 

2 2 2 2
2 1 2( ) ( ) .l u v u y c u y= + + + − +  

 

Now we consider ( )l u′  and ( )l u′′  to find the local minium *u : 

 

1

2 2 2 2
2 2 1

( )
( )

c uu
l u

y u y c u

−
′ = −

+ + −
 

and 

22
1

3 32 2 2 2
2 2 2 22 2 1 2 2

2 2 1

( )1 1
( ) .

( )
( ) ( ( ) )

c uu
l u

u y y c u
u y y c u

−
′′ = + − −

+ + −
+ + −

 

 

For 1
* 2

c
u =  the first derivative *( )l u′  vanishes. The second derivative takes 

the value 

 

2
1

2
2

3 32
2 221 2 2

2 22 1 1
2 2

21 2
( ) 2 0

2
2 2

c

y
l u

c
y c c

y y




  
    ′′ = − = ≥

      +          + +               

 

 

which is always positive, i.e., we have a local minimum at 1
* 2

c
u = , or 

2 2 2
1 1 2 2 2

2 2
2

cos .
2 2 2

c c b c a
x b

c

+ −
= − α = −  

 


