
Dedication (2nd Edition)

To

Albert & Diana





Dedication (1st Edition)

To those who increased my1 pleasure in mathematics:

Wilhelm Braun(1970-1975)
Klaus ReuschandWilhelm Gieselmann(1976-1979)

Gerard de Beuckelaer(1989-1992).

To2 Helen, Alex, Tim andJack.

1 Josef Kallrath
2 John M. Wilson





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . xvii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . xix

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . xxi

Preface to the 2nd Edition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . xxvii

1 Optimization: Using Models, Validating Models, Solutions, Answers . 1
1.1 Introduction: Some Words on Optimization . . . . . . . . . . . .. . . . . . . . . 1
1.2 The Scope of this Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5
1.3 The Significance and Benefits of Models . . . . . . . . . . . . . . . .. . . . . . . 7
1.4 Mathematical Optimization . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 11

1.4.1 A Linear Optimization Example . . . . . . . . . . . . . . . . . . . .. . . . 11
1.4.2 A Typical Linear Programming Problem . . . . . . . . . . . . . .. . . 16

1.5 Using Modeling Systems and Software . . . . . . . . . . . . . . . . .. . . . . . . 17
1.5.1 Modeling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 18
1.5.2 A Brief History of Modeling Systems . . . . . . . . . . . . . . . .. . . 19
1.5.3 Modeling Specialists and Applications Experts . . . . .. . . . . . 20
1.5.4 Implementing a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 20
1.5.5 Obtaining a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21
1.5.6 Interpreting the Output . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 22

1.6 Benefiting from and Extending the Simple Model . . . . . . . . .. . . . . . . 23
1.7 A Survey of Real-World Problems . . . . . . . . . . . . . . . . . . . . .. . . . . . . 24
1.8 Summary & Recommended Bibliography . . . . . . . . . . . . . . . . .. . . . . 26
1.9 Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 27

1.9.1 Notation, Symbols and Abbreviations . . . . . . . . . . . . . .. . . . . 27
1.9.2 A Brief History of Optimization⊖ . . . . . . . . . . . . . . . . . . . . . . 28

v



vi Contents

2 From the Problem to its Mathematical Formulation . . . . . . . . . . . . . . . . 31
2.1 How to Model and Formulate a Problem . . . . . . . . . . . . . . . . . .. . . . . 31
2.2 Variables, Indices, Sets and Domains . . . . . . . . . . . . . . . .. . . . . . . . . . 33

2.2.1 Indices, Sets and Domains . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 36
2.2.2 Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 38

2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 40
2.3.1 Types of Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 41
2.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 44

2.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 45
2.5 Building More Sophisticated Models . . . . . . . . . . . . . . . . .. . . . . . . . . 46

2.5.1 A Simple Production Planning Problem – The Background. 47
2.5.2 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 47

2.6 Mixed Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 49
2.6.1 Example: A Farmer Buying Calves and Pigs . . . . . . . . . . . .. 50
2.6.2 A Formal Definition of Mixed-Integer Optimization . . .. . . . 52
2.6.3 Difficult Optimization Problems . . . . . . . . . . . . . . . . . .. . . . . . 54

2.7 Interfaces - Spreadsheets and Databases . . . . . . . . . . . . .. . . . . . . . . . . 55
2.7.1 Example: A Blending Problem . . . . . . . . . . . . . . . . . . . . . .. . . 56
2.7.2 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57
2.7.3 Re-running the Model with New Data . . . . . . . . . . . . . . . . .. . 59

2.8 Creating a Production System . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 60
2.9 Collecting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 61
2.10 Modeling Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 62
2.11 Practical Solution of LP Models . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 63

2.11.1 Problem Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 63
2.11.2 Ease of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 63

2.12 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 65
2.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 65

3 Mathematical Solution Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 67

3.1.1 Standard Formulation of Linear Programming Problems. . . 67
3.1.2 Slack and Surplus Variables . . . . . . . . . . . . . . . . . . . . . .. . . . . 69
3.1.3 Underdetermined Linear Equations and Optimization .. . . . 70

3.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 71
3.2.1 Simplex Algorithm — A Brief Overview . . . . . . . . . . . . . . .. 71
3.2.2 Solving the Boat Problem with the Simplex Algorithm . .. . . 72
3.2.3 Interior-Point Methods — A Brief Overview . . . . . . . . . .. . . 77
3.2.4 LP as a Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 79

3.3 Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . .. . . . . . . . 80
3.3.1 Solving the Farmer’s Problem using Branch & Bound . . . .. 80
3.3.2 Solving Mixed Integer Linear Programming Problems . .. . . 84
3.3.3 Cutting-Planes and Branch-and-Cut (B&C) . . . . . . . . . .. . . . 86
3.3.4 Branch&Price: Optimization with Column Generation .. . . . 88

3.4 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 89



Contents vii

3.4.1 LP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 89
3.4.2 Outputing Results and Report Writing . . . . . . . . . . . . . . .. . . . 90
3.4.3 Dual Value (Shadow Price) . . . . . . . . . . . . . . . . . . . . . . . .. . . . 91
3.4.4 Reduced Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 92

3.5 Duality⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.1 Constructing the Dual Problem . . . . . . . . . . . . . . . . . . . .. . . . . 93
3.5.2 Interpreting the Dual Problem . . . . . . . . . . . . . . . . . . . .. . . . . . 95
3.5.3 Duality Gap and Complementarity . . . . . . . . . . . . . . . . . .. . . . 96

3.6 Summary & Recommended Bibliography . . . . . . . . . . . . . . . . .. . . . . 98
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 99
3.8 Appendix to Chapter 3⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8.1 Linear Programming — A Detailed Description . . . . . . . .. . . 99
3.8.2 Computing Initial Feasible LP Solutions . . . . . . . . . . .. . . . . . 106
3.8.3 LP Problems with Upper Bounds . . . . . . . . . . . . . . . . . . . . .. . 107
3.8.4 Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 111
3.8.5 Interior-Point Methods — A Detailed Description . . . .. . . . . 112

3.8.5.1 A Primal-Dual Interior-Point Method . . . . . . . . . . . 114
3.8.5.2 Predictor-Corrector Step . . . . . . . . . . . . . . . . . . . . .. 117
3.8.5.3 Computing Initial Points . . . . . . . . . . . . . . . . . . . . . .117
3.8.5.4 Updating the Homotopy Parameter . . . . . . . . . . . . . 118
3.8.5.5 Termination Criterion . . . . . . . . . . . . . . . . . . . . . . . .119
3.8.5.6 Basis Identification and Cross-Over . . . . . . . . . . . . .119
3.8.5.7 Interior-Point versus Simplex Methods . . . . . . . . . .120

3.8.6 Branch & Bound with LP-Relaxation . . . . . . . . . . . . . . . . .. . 121

4 Problems Solvable Using Linear Programming. . . . . . . . . . . . . . . . . . . . 125
4.1 Cutting Stock – Trimloss Problems . . . . . . . . . . . . . . . . . . .. . . . . . . . . 125

4.1.1 Example: A Trimloss Problem in the Paper Industry . . . .. . . 126
4.1.2 Example: An Integer Trimloss Problem . . . . . . . . . . . . . .. . . . 127

4.2 The Food Mix Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 129
4.3 Transportation and Assignment Problems . . . . . . . . . . . . .. . . . . . . . . 130

4.3.1 The Transportation Problem . . . . . . . . . . . . . . . . . . . . . .. . . . . 130
4.3.2 The Transshipment Problem . . . . . . . . . . . . . . . . . . . . . . .. . . . 133
4.3.3 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 134
4.3.4 Transportation & Assignment Problems as Subproblems. . . 135
4.3.5 Matching Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 136

4.4 Network Flow Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 137
4.4.1 Illustrating a Network Flow Problem . . . . . . . . . . . . . . .. . . . . 137
4.4.2 The Structure and Importance of Network Flow Models . .. . 138
4.4.3 Case Study: A Telephone Betting Scheduling Problem . .. . . 139
4.4.4 Other Applications of Network Modeling Technique . . .. . . . 141

4.5 Unimodularity⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.6 Summary & Recommended Bibliography . . . . . . . . . . . . . . . . .. . . . . 142
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 142



viii Contents

5 How Optimization is Used in Practice: Case Studies in Linear
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Optimizing the Production of a Chemical Reactor . . . . . . .. . . . . . . . 143
5.2 An Apparently Nonlinear Blending Problem . . . . . . . . . . . .. . . . . . . . 145

5.2.1 Formulating the Direct Problem . . . . . . . . . . . . . . . . . . .. . . . . 146
5.2.2 Formulating the Inverse Problem . . . . . . . . . . . . . . . . . .. . . . . 147
5.2.3 Analyzing and Reformulating the Model . . . . . . . . . . . . .. . . . 148

5.3 Data Envelopment Analysis (DEA) . . . . . . . . . . . . . . . . . . . .. . . . . . . . 150
5.3.1 Example Illustrating DEA . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 151
5.3.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 153
5.3.3 Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 154
5.3.4 More than one Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 155
5.3.5 Small Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 155
5.3.6 Applications of DEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 156
5.3.7 A General Model for DEA . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156

5.4 Vector Minimization and Goal Programming. . . . . . . . . . . .. . . . . . . . 157
5.4.1 Solution Approaches for Multi-Criteria Optimization

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
5.4.2 A Case Study Involving Soft Constraints . . . . . . . . . . . .. . . . . 161
5.4.3 A Case Study exploiting a Hierarchy of Goals . . . . . . . . .. . . 162

5.5 Limitations of Linear Programming . . . . . . . . . . . . . . . . . .. . . . . . . . . 164
5.5.1 Single Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 164
5.5.2 Assumption of Linearity . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 164
5.5.3 Satisfaction of Constraints . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 165
5.5.4 Structured Situations . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 166
5.5.5 Consistent and Available Data . . . . . . . . . . . . . . . . . . . .. . . . . 166

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 167
5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 167

6 Modeling Structures Using Mixed Integer Programming . . . . . . . . . . . 169
6.1 Using Binary Variables to Model Logical Conditions . . . .. . . . . . . . . 169

6.1.1 General Integer Variables and Logical Conditions . . .. . . . . . 170
6.1.2 Transforming Logical into Arithmetical Expressions. . . . . . . 171
6.1.3 Logical Expressions with Two Arguments . . . . . . . . . . . .. . . 172
6.1.4 Logical Expressions with More than Two Arguments . . . .. . 174

6.2 Logical Restrictions on Constraints . . . . . . . . . . . . . . . .. . . . . . . . . . . . 176
6.2.1 Bound Implications on Single Variables . . . . . . . . . . . .. . . . . 177
6.2.2 Bound Implications on Constraints . . . . . . . . . . . . . . . .. . . . . 177
6.2.3 Disjunctive Sets of Implications . . . . . . . . . . . . . . . . .. . . . . . . 179

6.3 Modeling Non-Zero Variables . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 181
6.4 Modeling Sets of All-Different Elements . . . . . . . . . . . . .. . . . . . . . . . 182
6.5 Modeling Absolute Value Terms⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.6 Nonlinear Terms and Equivalent MILP Formulations . . . . .. . . . . . . . 185
6.7 Modeling Products of Binary Variables . . . . . . . . . . . . . . .. . . . . . . . . 189
6.8 Special Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 190



Contents ix

6.8.1 Special Ordered Sets of Type 1 . . . . . . . . . . . . . . . . . . . . .. . . . 190
6.8.2 Special Ordered Sets of Type 2 . . . . . . . . . . . . . . . . . . . . .. . . . 192
6.8.3 Linked Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 197
6.8.4 Families of Special Ordered Sets . . . . . . . . . . . . . . . . . .. . . . . 199

6.9 Improving Formulations by Adding Logical Inequalities. . . . . . . . . . 199
6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 201
6.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 201

7 Types of Mixed Integer Linear Programming Problems . . . . . . . . . . . . 205
7.1 Knapsack and Related Problems . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 205

7.1.1 The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 205
7.1.2 Case Study: Float Glass Manufacturing . . . . . . . . . . . . .. . . . . 207
7.1.3 The Generalized Assignment Problem . . . . . . . . . . . . . . .. . . . 208
7.1.4 The Multiple Binary Knapsack Problem . . . . . . . . . . . . . .. . . 209

7.2 The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 210
7.2.1 Postman Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 213
7.2.2 Vehicle Routing Problems . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 213
7.2.3 Case Study: Heating Oil Delivery . . . . . . . . . . . . . . . . . .. . . . . 214

7.3 Facility Location Problems . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 217
7.3.1 The Uncapacitated Facility Location Problem . . . . . . .. . . . . 217
7.3.2 The Capacitated Facility Location Problem . . . . . . . . .. . . . . 219

7.4 Set Covering, Partitioning and Packing. . . . . . . . . . . . . .. . . . . . . . . . . 219
7.4.1 The Set Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . .. . . 219
7.4.2 The Set Partitioning Problem . . . . . . . . . . . . . . . . . . . . .. . . . . 221
7.4.3 The Set Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 222
7.4.4 Additional Applications . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 223
7.4.5 Case Study: Airline Management at Delta Air Lines . . . .. . . 223

7.5 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 225
7.6 Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 227

7.6.1 The Bin Packing Problem . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 227
7.6.2 The Capacitated Plant Location Problem . . . . . . . . . . . .. . . . . 228

7.7 Clustering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 229
7.7.1 The Capacitated Clustering Problem . . . . . . . . . . . . . . .. . . . . 229
7.7.2 The p-Median Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 230

7.8 Scheduling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 231
7.8.1 Example A: Scheduling Machine Operations . . . . . . . . . .. . . 231
7.8.2 Example B: A Flowshop Problem . . . . . . . . . . . . . . . . . . . . .. 233
7.8.3 Example C: Scheduling Involving Job Switching . . . . . .. . . . 235
7.8.4 Case Study: Bus Crew Scheduling . . . . . . . . . . . . . . . . . . .. . . 236

7.9 Summary & Recommended Bibliography . . . . . . . . . . . . . . . . .. . . . . 238
7.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 238



x Contents

8 Case Studies and Problem Formulations. . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.1 A Depot Location Problem. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 241
8.2 Planning and Scheduling Across Time Periods . . . . . . . . . .. . . . . . . . 243

8.2.1 Indices, Data and Variables . . . . . . . . . . . . . . . . . . . . . .. . . . . . 243
8.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 244
8.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 245

8.3 Distribution Planning for a Brewery . . . . . . . . . . . . . . . . .. . . . . . . . . . 246
8.3.1 Dimensions, Indices, Data and Variables . . . . . . . . . . .. . . . . . 247
8.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 249
8.3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 249
8.3.4 Running the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 251

8.4 Financial Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 251
8.4.1 Optimal Purchasing Strategies . . . . . . . . . . . . . . . . . . .. . . . . . 252
8.4.2 A Yield Management Example . . . . . . . . . . . . . . . . . . . . . . .. . 256

8.5 Post-Optimal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 258
8.5.1 Getting Around Infeasibility . . . . . . . . . . . . . . . . . . . .. . . . . . . 258
8.5.2 Basic Concept of Ranging . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 260
8.5.3 Parametric Programming . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 262
8.5.4 Sensitivity Analysis in MILP Problems . . . . . . . . . . . . .. . . . . 263

8.6 Summary & Recommended Bibliography . . . . . . . . . . . . . . . . .. . . . . 264

9 User Control of the Optimization Process and Improving Efficiency . 265
9.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 265

9.1.1 Presolve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 266
9.1.1.1 Arithmetic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
9.1.1.2 Tightening Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.1.2 Disaggregation of Constraints . . . . . . . . . . . . . . . . . . .. . . . . . . 269
9.1.3 Coefficient Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 271
9.1.4 Clique Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 273
9.1.5 Cover Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 274

9.2 Efficient LP Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 275
9.2.1 Warm Starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 275
9.2.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 276

9.3 Good Modeling Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 277
9.4 Choice of Branch in Integer Programming . . . . . . . . . . . . . .. . . . . . . . 280

9.4.1 Control of the Objective Function Cut-off . . . . . . . . . .. . . . . . 281
9.4.2 Branching Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 281

9.4.2.1 Entity Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.4.2.2 Choice of Branch or Node . . . . . . . . . . . . . . . . . . . . . 282

9.4.3 Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 283
9.4.4 Branching on Special Ordered Sets . . . . . . . . . . . . . . . . .. . . . 283
9.4.5 Branching on Semi-Continuous and Partial Integer Variables 285

9.5 Symmetry and Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 286
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 287
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 287



Contents xi

10 How Optimization is Used in Practice: Case Studies in Integer
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.1 What Can be Learned from Real-World Problems?. . . . . . . . .. . . . . . 289
10.2 Three Instructive Solved Real-World Problems . . . . . . .. . . . . . . . . . . 290

10.2.1 Contract Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 290
10.2.2 Metal Ingot Production . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 292
10.2.3 Project Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 293
10.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 295

10.3 A Case Study in Production Scheduling . . . . . . . . . . . . . . .. . . . . . . . . 296
10.4 Optimal Worldwide Production Plans⊖ . . . . . . . . . . . . . . . . . . . . . . . . 301

10.4.1 Brief Description of the Problem . . . . . . . . . . . . . . . . .. . . . . . 301
10.4.2 Mathematical Formulation of the Model . . . . . . . . . . . .. . . . . 302

10.4.2.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.4.2.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . .. 303
10.4.2.3 Including Several Market Demand Scenarios . . . . . 303
10.4.2.4 The Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303
10.4.2.5 The State of the Production Network . . . . . . . . . . . . 305
10.4.2.6 Exploiting Fixed Setup Plans . . . . . . . . . . . . . . . . . .305
10.4.2.7 Keeping Track of Mode Changes . . . . . . . . . . . . . . . 305
10.4.2.8 Coupling Modes and Production . . . . . . . . . . . . . . . 307
10.4.2.9 Minimum Production Requirements . . . . . . . . . . . . 308
10.4.2.10Modeling Stock Balances and Inventories . . . . . . .. 309
10.4.2.11Modeling Transport . . . . . . . . . . . . . . . . . . . . . . . . .. 310
10.4.2.12External Purchase . . . . . . . . . . . . . . . . . . . . . . . . . .. . 310
10.4.2.13Modeling Sales and Demands . . . . . . . . . . . . . . . . . . 310
10.4.2.14Defining the Objective Function . . . . . . . . . . . . . . .. 311

10.4.3 Remarks on the Model Formulation . . . . . . . . . . . . . . . . .. . . . 312
10.4.3.1 Including Minimum Utilization Rates . . . . . . . . . . .312
10.4.3.2 Exploiting Sparsity . . . . . . . . . . . . . . . . . . . . . . . . .. . 313
10.4.3.3 Avoiding Zero Right-Hand Side Equations . . . . . . . 314
10.4.3.4 The Structure of the Objective Function . . . . . . . . .315

10.4.4 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 316
10.4.5 Reformulations of the Model . . . . . . . . . . . . . . . . . . . . .. . . . . 316

10.4.5.1 Estimating the Quality of the Solution . . . . . . . . . .. 317
10.4.5.2 Including Mode-Dependent Capacities . . . . . . . . . .317
10.4.5.3 Modes, Change-Overs and Production . . . . . . . . . . . 318
10.4.5.4 Reformulated Capacity Constraints . . . . . . . . . . . .. 320
10.4.5.5 Some Remarks on the Reformulation . . . . . . . . . . . 321

10.4.6 What can be Learned from this Case Study? . . . . . . . . . . . .. . 322
10.5 A Complex Scheduling Problem⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

10.5.1 Description of the Problem . . . . . . . . . . . . . . . . . . . . . .. . . . . . 322
10.5.2 Structuring the Problem . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 323

10.5.2.1 Orders, Procedures, Tasks and Jobs . . . . . . . . . . . . . 323
10.5.2.2 Labor, Shifts, Workers and their Relations . . . . . . . 324
10.5.2.3 Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325



xii Contents

10.5.2.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 326
10.5.2.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 326

10.5.3 Mathematical Formulation of the Problem . . . . . . . . . .. . . . . 326
10.5.3.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.5.3.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . .. 327
10.5.3.3 Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 327
10.5.3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327
10.5.3.5 Main Decision Variables . . . . . . . . . . . . . . . . . . . . . .328
10.5.3.6 Other Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 328
10.5.3.7 Auxiliary Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 328

10.5.4 Time-Indexed Formulations . . . . . . . . . . . . . . . . . . . . .. . . . . . 329
10.5.4.1 The delta Formulation . . . . . . . . . . . . . . . . . . . . . . . .329
10.5.4.2 The alpha Formulation . . . . . . . . . . . . . . . . . . . . . . . .331

10.5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 332
10.5.5.1 Description of Small Scenarios . . . . . . . . . . . . . . . .. 332
10.5.5.2 A Client’s Prototype . . . . . . . . . . . . . . . . . . . . . . . . .. 334

10.5.6 What can be Learned from this Case Study? . . . . . . . . . . . .. . 337
10.6 Telecommunication Service Network⊖ . . . . . . . . . . . . . . . . . . . . . . . . 339

10.6.1 Description of the Model . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 339
10.6.1.1 Technical Aspects of Private Lines . . . . . . . . . . . . .. 339
10.6.1.2 Tariff Structure of Private Line Services . . . . . . .. . 340
10.6.1.3 Demands on Private Line Services . . . . . . . . . . . . . . 341
10.6.1.4 Private Line Network Optimization . . . . . . . . . . . . .342

10.6.2 Mathematical Model Formulation . . . . . . . . . . . . . . . . .. . . . . 342
10.6.2.1 General Foundations . . . . . . . . . . . . . . . . . . . . . . . . .342
10.6.2.2 Flow Conservation Constraints . . . . . . . . . . . . . . . .. 345
10.6.2.3 Edge Capacity Constraints . . . . . . . . . . . . . . . . . . . .346
10.6.2.4 Additional Constraints . . . . . . . . . . . . . . . . . . . . . .. . 347
10.6.2.5 Objective Function of the Model . . . . . . . . . . . . . . . 349
10.6.2.6 Estimation of Problem Size . . . . . . . . . . . . . . . . . . . .349
10.6.2.7 Computational Needs . . . . . . . . . . . . . . . . . . . . . . . . .350

10.6.3 Analysis and Reformulations of the Models . . . . . . . . .. . . . . 350
10.6.3.1 Basic Structure of the Model . . . . . . . . . . . . . . . . . . .351
10.6.3.2 Some Valid Inequalities: Edge Capacity Cuts . . . . .351
10.6.3.3 Some Improvements to the Model Formulation . . . 352
10.6.3.4 A Surrogate Problem with a Simplified Cost

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
10.6.3.5 More Valid Inequalities: Node Flow Cuts . . . . . . . . 355
10.6.3.6 Some Remarks on Performance . . . . . . . . . . . . . . . . 355

10.7 Synchronization of Batch and Continuous Processes . . .. . . . . . . . . . 355
10.7.1 Time Sequencing Constraints . . . . . . . . . . . . . . . . . . . .. . . . . . 358
10.7.2 Reactor Availability Constraints . . . . . . . . . . . . . . .. . . . . . . . . 359
10.7.3 Exploiting Free Reactor Time – Delaying Campaign Starts . 360
10.7.4 Restricting the Latest Time a Reactor is Available . .. . . . . . . 361

10.8 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 361



Contents xiii

10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 362

11 Beyond LP and MILP Problems⊖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.1 Fractional Programming * . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 366
11.2 Recursion or Successive Linear Programming . . . . . . . . .. . . . . . . . . . 367

11.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 367
11.2.2 The Pooling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 370

11.3 Optimization under Uncertainty* . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 373
11.3.1 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 374
11.3.2 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 377

11.3.2.1 Example: The Newsvendor Problem . . . . . . . . . . . . 378
11.3.2.2 Scenario-based Stochastic Optimization . . . . . . .. . 381
11.3.2.3 Terminology and Technical Preliminaries . . . . . . .. 382
11.3.2.4 Practical Usage and Policies . . . . . . . . . . . . . . . . . .. 383
11.3.2.5 The Value of the Stochastic Extension . . . . . . . . . . .384

11.3.3 Recommended Literature . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 389
11.4 Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 390
11.5 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 394
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 394

12 Mathematical Solution Techniques - The Nonlinear World. . . . . . . . . . 395
12.1 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 395
12.2 Constrained Optimization – Foundations and Theorems .. . . . . . . . . 399
12.3 Reduced Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 401
12.4 Sequential Quadratic Programming. . . . . . . . . . . . . . . . .. . . . . . . . . . . 405
12.5 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 406
12.6 Mixed Integer Nonlinear Programming . . . . . . . . . . . . . . .. . . . . . . . . 406

12.6.1 Definition of an MINLP Problem . . . . . . . . . . . . . . . . . . . .. . . 407
12.6.2 Some General Comments on MINLP. . . . . . . . . . . . . . . . . . .. 407
12.6.3 Deterministic Methods for Solving MINLP Problems . .. . . . 409
12.6.4 Algorithms and Software for Solving Non-convex MINLP

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410
12.7 Global Optimization - Mathematical Background . . . . . .. . . . . . . . . . 411
12.8 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 416
12.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 416

13 Global Optimization in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
13.1 Global Optimization Applied to Real World Problems . . .. . . . . . . . . 418
13.2 A Trimloss Problem in Paper Industry . . . . . . . . . . . . . . . .. . . . . . . . . 419
13.3 Cutting and Packing involving Convex Objects . . . . . . . .. . . . . . . . . . 422

13.3.1 Modeling the Cutting Constraints . . . . . . . . . . . . . . . .. . . . . . . 423
13.3.1.1 Cutting Constraints for Circles . . . . . . . . . . . . . . .. . 423
13.3.1.2 Cutting Conditions for Polygons . . . . . . . . . . . . . . .423

13.3.2 Problem Structure and Symmetry . . . . . . . . . . . . . . . . . .. . . . . 426
13.3.3 Some Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 428



xiv Contents

13.4 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 428
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 428

14 Polylithic Modeling and Solution Approaches . . . . . . . . . . . . . . . . . . . . . 429
14.1 Polylithic Modeling and Solution Approaches (PMSAs) .. . . . . . . . . 429

14.1.1 Idea and Foundations of Polylithic Solution Approaches . . . 430
14.1.1.1 Monolithic Models and Solution Approaches . . . . . 431
14.1.1.2 Polylithic Modeling and Solution Approaches . . . .431

14.1.2 Problem-specific Preprocessing . . . . . . . . . . . . . . . . .. . . . . . . 432
14.1.2.1 Dynamic Reduction of Big-M Coefficients . . . . . . . 432
14.1.2.2 Bound Tightening for Integer Variables . . . . . . . . .. 434
14.1.2.3 Data Consistency Checks . . . . . . . . . . . . . . . . . . . . . 434

14.1.3 Mathematical Algorithms . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 435
14.1.3.1 Branch&Bound and Branch&Cut Methodologies . 435
14.1.3.2 Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . 436

14.1.3.2.1 Benders Decomposition (BD) . . . . . . . . 436
14.1.3.2.2 Column Enumeration (CE) and

Column Generation (CG) . . . . . . . . . . . . 436
14.1.3.2.3 Column Generation and

Branch&Price Methodology . . . . . . . . . 437
14.1.3.3 Lagrange Relaxation . . . . . . . . . . . . . . . . . . . . . . . . .438

14.1.3.3.1 Subgradient Method . . . . . . . . . . . . . . . . 440
14.1.3.3.2 Example: Generalized Assignment

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 441
14.1.3.3.3 Variations for Nonlinear Problems . . . . 445

14.1.3.4 Bilevel Programming . . . . . . . . . . . . . . . . . . . . . . . . .445
14.1.4 Primal Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 447

14.1.4.1 Structured Primal Heuristics . . . . . . . . . . . . . . . . .. . 448
14.1.4.1.1 LP-Guided Dives, Relax-and-Fix . . . . . 448
14.1.4.1.2 Linear Approximations for NLP

Problems . . . . . . . . . . . . . . . . . . . . . . . . . 449
14.1.4.1.3 Homotopy Sequences of Models . . . . . . 450

14.1.4.2 Hybrid-Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . .450
14.1.5 Proving Optimality using PMSAs . . . . . . . . . . . . . . . . . .. . . . 451

14.2 PMSAs Applied to Real-World Problems . . . . . . . . . . . . . . .. . . . . . . 452
14.2.1 Cutting Stock and Packing . . . . . . . . . . . . . . . . . . . . . . .. . . . . 453

14.2.1.1 Complete Enumeration . . . . . . . . . . . . . . . . . . . . . . . 453
14.2.1.2 Incremental, Swapping and Tour-reversing

Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
14.2.2 Evolutionary Approach . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 454
14.2.3 Optimal Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 457

14.3 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 460
14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 460



Contents xv

15 Cutting & Packing beyond and within Mathematical Programming . . 463
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 463
15.2 Phi-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 466

15.2.1 Phi-objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 466
15.2.2 Primary and Composed Phi-objects . . . . . . . . . . . . . . . .. . . . . 467
15.2.3 Geometric Parameters of Phi-objects . . . . . . . . . . . . .. . . . . . . 468
15.2.4 Position Parameters of Phi-objects . . . . . . . . . . . . . .. . . . . . . . 470
15.2.5 Interaction of Phi-objects . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 471

15.3 Phi-functions: Relating Phi-objects . . . . . . . . . . . . . .. . . . . . . . . . . . . . 471
15.3.1 Construction of Phi-functions for various Situations . . . . . . . 472
15.3.2 Properties of Phi-functions . . . . . . . . . . . . . . . . . . . .. . . . . . . . 480

15.4 Mathematical Optimization Model . . . . . . . . . . . . . . . . . .. . . . . . . . . . 481
15.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 481
15.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 482
15.4.3 Simplifying Distance Constraints . . . . . . . . . . . . . . .. . . . . . . . 483
15.4.4 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 484

15.5 Solving the Optimization Problem . . . . . . . . . . . . . . . . . .. . . . . . . . . . 484
15.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 486

15.6.1 Arranging Two Triangles . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 486
15.6.2 Arranging Two Irregular Objects . . . . . . . . . . . . . . . . .. . . . . . 489

15.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 491
15.8 Summary & Recommended Bibliography . . . . . . . . . . . . . . . .. . . . . . 491
15.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 492

16 The Impact and Implications of Optimization . . . . . . . . . . . . . . . . . . . . . 493
16.1 Benefits of Mathematical Programming to Users . . . . . . . .. . . . . . . . 493
16.2 Implementing and Validating Solutions . . . . . . . . . . . . .. . . . . . . . . . . 494
16.3 Communicating with Management . . . . . . . . . . . . . . . . . . . .. . . . . . . . 495
16.4 Keeping a Model Alive . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 495
16.5 Mathematical Optimization in Small and Medium Size Business . . . 496
16.6 Online Optimization by Exploiting Parallelism? . . . . .. . . . . . . . . . . . 497

16.6.1 Parallel Optimization: Status and Perspectives in 1997 . . . . . 497
16.6.1.1 Algorithmic Components Suitable for

Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
16.6.1.2 Non-determinism in Parallel Optimization . . . . . .. 499
16.6.1.3 Platforms for Parallel Optimization Software . . .. . 499
16.6.1.4 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . .500
16.6.1.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 501
16.6.1.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .502
16.6.1.7 Acceptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 502

16.6.2 Parallel Optimization: Status and Perspectives in 2020 . . . . . 503
16.6.2.1 Parallel Algorithms and Solver Worlds . . . . . . . . . .503
16.6.2.2 Parallel Metaheuristics . . . . . . . . . . . . . . . . . . . . .. . . 505
16.6.2.3 Machine Learning & Hyper-Parameter

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506



xvi Contents

16.6.2.4 Parallel Optimization in the Real World . . . . . . . . .506
16.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 507

17 Concluding Remarks and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
17.1 Learnings from the Examples and Models . . . . . . . . . . . . . .. . . . . . . . 509
17.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 510

17.2.1 Pushing the Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 510
17.2.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 512
17.2.3 The Importance of Modeling . . . . . . . . . . . . . . . . . . . . . .. . . . . 512
17.2.4 Tools around Optimization . . . . . . . . . . . . . . . . . . . . . .. . . . . . 514
17.2.5 Visualization of Input Data and Output Results . . . . .. . . . . . 516

17.2.5.1 Tools & Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
17.2.5.2 The Broader Company Picture: IT . . . . . . . . . . . . . . 520
17.2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

17.2.6 Increasing Problem Size and Complexity . . . . . . . . . . .. . . . . 521
17.2.7 The Future of Planning and Scheduling . . . . . . . . . . . . .. . . . . 524
17.2.8 Simultaneous Operational Planning and Design &

Strategic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 525
17.3 Mathematical Optimization for a Better World * . . . . . . .. . . . . . . . . . 527

A Software Related Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
A.1 Accessing Data from Algebraic Modeling Systems . . . . . . .. . . . . . . 531
A.2 List of Case Studies and Model Files . . . . . . . . . . . . . . . . . .. . . . . . . . 533

B Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 535

C Mathematical Foundations: Linear Algebra & Calculus . . . . . . . . . . . . 541
C.1 Sets and Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 541
C.2 Absolute Value and Triangle Inequality . . . . . . . . . . . . . .. . . . . . . . . . 545
C.3 Vectors in IRn and Matrices inM (m×n, IR) . . . . . . . . . . . . . . . . . . . . 545
C.4 Vector Spaces, Bases, Linear Independence and Generating Systems 548
C.5 Rank of Matrices, Determinant and Criteria for Invertible Matrices . 552
C.6 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 553
C.7 Some Facts on Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 555

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 558

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 585



List of Figures

1.1 Transforming a real-world decision problem. . . . . . . . . .. . . . . . . . . . . 3
1.2 A powerful modeler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 10
1.3 Boat problem illustrated. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 12
1.4 Graphical solution of an LP problem in two variables . . . .. . . . . . . . . 15

2.1 A modeler thinking about a model of a real-world problem.. . . . . . . . 31
2.2 Integer model coded inGAMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Simple spreadsheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 55

3.1 Simplex algorithm versus interior-point methods. . . . .. . . . . . . . . . . . . 78
3.2 LP relaxation and the first two subproblems of a B&B tree. .. . . . . . . 81
3.3 B&B tree for the cows and pigs problem. . . . . . . . . . . . . . . . .. . . . . . . . 82
3.4 LP relaxation, convex hull, and a B&B tree. . . . . . . . . . . . .. . . . . . . . . 85
3.5 Illustrating the idea of Branch & Cut. . . . . . . . . . . . . . . . .. . . . . . . . . . . 87
3.6 Feasible region of an LP problem. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 100
3.7 The revised Simplex algorithm. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 102
3.8 Logarithmic penalty term. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 113
3.9 The Branch & Bound algorithm. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 121
3.10 Branch & Bound tree: Updating the value of the LP relaxation. . . . . . 123

4.1 Geometry of a trimloss problem. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 126
4.2 Routes on transportation network (left) and transshipment network

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 134
4.3 Flows between nodes of a network. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 138
4.4 A time expanded network. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 140

6.1 Smallest Big-M coefficient. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 188
6.2 Using SOS1 to select capacity size. . . . . . . . . . . . . . . . . . .. . . . . . . . . . 191
6.3 Using SOS2 to model a nonlinear function. . . . . . . . . . . . . .. . . . . . . . . 193

7.1 Knapsack problem illustrated using a burglar example. .. . . . . . . . . . . 206

xvii



xviii LIST OF FIGURES

7.2 Traveling salesman problem with four cities. . . . . . . . . .. . . . . . . . . . . . 212
7.3 Vehicle routing and dispatching. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 214
7.4 A set covering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 220
7.5 Gantt chart showing the schedule. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 234

8.1 Costs versus number of items. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 252
8.2 Sensitivity analysis: objective versus optimal value.. . . . . . . . . . . . . . . 261
8.3 Sensitivity analysis: optimal value versus unit profit.. . . . . . . . . . . . . . 261
8.4 Sensitivity analysis: slope of objective function. . . .. . . . . . . . . . . . . . . 262

10.1 Production network with three sites. . . . . . . . . . . . . . . .. . . . . . . . . . . . . 301
10.2 Illustration of a set-up change. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 306
10.3 Production plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 313
10.4 Precedence relations between jobs. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 335
10.5 Gantt chart and personnel occupation diagram. . . . . . . .. . . . . . . . . . . . 336
10.6 Cost of bandwidth for POP-to-POP private lines. . . . . . .. . . . . . . . . . . 341
10.7 A possible routing via hub sites for a demandDi j . . . . . . . . . . . . . . . . . 344
10.8 Combination of batch and continuous production process. . . . . . . . . . 356
10.9 Combination of batch and continuous production process. . . . . . . . . . 358

11.1 The pooling problem and a process unit fed by a pool. . . . .. . . . . . . . . 372
11.2 Newsvendor problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 378

12.1 NLP-solution-structure. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 405
12.2 Convex and non-convex sets and functions. . . . . . . . . . . .. . . . . . . . . . . 408
12.3 Non-convex function and a convex underestimator. . . . .. . . . . . . . . . . 414

13.1 Representation of polygons. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 424
13.2 Lines separating polygons. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 425

14.1 Polylithic versus monolithic modeling. . . . . . . . . . . . .. . . . . . . . . . . . . . 430

15.1 Strip packing polygons into a rectangle. . . . . . . . . . . . .. . . . . . . . . . . . . 464
15.2 3D packing examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 464
15.3 Invalid phi-objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 466
15.4 Examples of composed phi-objects in 2D. . . . . . . . . . . . . .. . . . . . . . . . 468
15.5 Examples of composed phi-objects in 3D. . . . . . . . . . . . . .. . . . . . . . . . 469
15.6 Phi-functions illustrated. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 471
15.7 Arrangements of two objectsA andB. . . . . . . . . . . . . . . . . . . . . . . . . . . 472
15.8 Phi-function for two circles. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 473
15.9 Phi-function for two rectangles. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 474
15.10Phi-function for a rectangle and a circle. . . . . . . . . . .. . . . . . . . . . . . . . 477
15.11Composed object and a circle. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 478
15.12Simplifying distance constraints forA andB. . . . . . . . . . . . . . . . . . . . . 483
15.13Two triangles attached to each other and its convex hull. . . . . . . . . . . . 489
15.14Arrangement of two objectsA andB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 490



List of Figures xix

15.15Convex hull for two objectsA andB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
15.16An approximation of them-polygonal convex hull. . . . . . . . . . . . . . . . 491
15.17Two phi-objectsA andB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

16.1 Speed-up achieved with eight slaves. . . . . . . . . . . . . . . .. . . . . . . . . . . . 498

17.1 A typical side-by-side scenario comparison. . . . . . . . .. . . . . . . . . . . . . 516
17.2 A horizontal bar chart showing supplier profiles. . . . . .. . . . . . . . . . . . 517
17.3 Churn rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 517
17.4 A production plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 518
17.5 A routing map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 518





Foreword

Mathematical optimization is an inherent paradigm of modern Operational Research
(OR) for eighty years already. Although many subfields of OR got a kind of disci-
plinary independence over this period of time, ”searching for the best” is still the
main challenge for OR. Anyway, all sister-disciplines of ORstill benefit of more
and more efficient methods of optimization developed withinOR. Would machine
learning do its great career without optimization? Would wehear about the suc-
cess of deep learning if a proper optimization method would not be available? The
present book reflects a continued interest in mathematical optimization. Its first edi-
tion written twenty years ago provided a faithful picture ofoptimization methods
and their applications at the turn of the last century. An important progress in the
methodology and applications of optimization, that we wereable to observe over
the last two decades, as well as a continuing interest in the first edition of the book,
encouraged its first author to write the current update.

What one can learn from this book? A reader who reminds the firstedition, will
quickly acknowledge that this edition goes far beyond the previous content. In par-
ticular, it includes a new material on stochastic programming and nonlinear mixed
integer optimization. Global optimization gets also a special place for its capacity of
solving non-convex continuous or mixed integer nonlinear problems. The coupling
of global optimization with mixed-integer optimization, Lagrange relaxation and
polylithic modeling (sequence of models for one complex problem) is illustrated by
interesting real-world examples from paper industry. Sometopics, like phi-function
techniques for cutting and packing, are not covered by otherbooks on optimization
known to me. A valuable feature of this book is also examples coded in popular
algebraic modeling languages, and available on-line.

The book is written in full respect of the link existing between three necessary
components of practical decision making: ”model-algorithm-software”. In this way,
the reader learns how real-world problems can be modeled in mathematical terms
understood by optimization algorithms, and then solved with commercially avail-
able software. This holistic approach to solving complex problems with optimiza-
tion methods makes this book self-contained. Moreover, because the content of the-
ory, didactic examples, and real-world case studies is perfectly balanced in the book,

xxi



xxii Foreword

the reader gets a convincing report on the practical relevance of contemporary math-
ematical optimization.

As a coordinating editor of the European Journal of Operational Research (EJOR)
since twenty years, I can say that the character of this book is perfectly consistent
with our editorial policy in the sense that, similarly to EJOR, it underlines the link
between the state-of-the-art methodology of optimizationwith practice of decision
making. Thus, I am pleased to congratulate Josef Kallrath onthe excellent update of
the first edition, and I am confidently recommending this bookto students, teachers,
researchers, and industrial practitioners who wish to learn how to effectively cope
with complex decision problems using mathematical optimization.

Roman Słowínski, Poznán in August, 2020



Preface to the 2nd Edition

With the continuing interest in my book, it is a pleasure, approximately 20 years
after the completion of the first edition, to enhance it with some topics which, after
two decades, have gained importance or led to a change in perspective.

This book, as the first edition, introduces business optimization using mathemat-
ical programming (optimization) from a practitioner’s, but also from a researcher’s
point of view. It covers the entire process of solving a real-world decision prob-
lem by mathematical optimization: structuring and formulating the problem (free of
mathematics) as well as collecting the input data, translating it into the mathemati-
cal language obtaining an optimization model, solving it and validating the results.
Linear programming case studies exemplify and showcase thelearnings. Building
on these concepts, the book examines mixed integer linear programming problems
and presents problem formulations and case studies for these applications, and ex-
tends into the nonlinear optimization world both continuous and discrete. Another
series of case studies show optimization in practice employing integer programming
leading to larger practical examples,e.g., from production or supply chain planning,
network planning or cutting and packing. Hints are given on how users can con-
trol the optimization process and improve its efficiency. The book concludes with
observations on the impact and implications of optimization in business. New to
the second edition: Many examples are coded in the algebraicmodeling languages
AMPL, GAMS, FICO(R) XpressMosel andSAS/OR – and are availableonline.

The second edition goes beyond linear optimization,i.e., beyond linear program-
ming and mixed integer linear programming. Thus, the previous Chapter 11 has
been renamed inBeyond LP and MILP Problems, and now includes fractional pro-
gramming and its transformation into linear programming, successive linear pro-
gramming as a special solution technique of nonlinear optimization, and optimiza-
tion under uncertainty (especially, stochastic programming). Also in Chapter 11, for
quadratic programming, which is again a special case of nonlinear optimization, we
provide an equivalent formulation based on special orderedsets. Chapter 12 pro-
vides an introduction into nonlinear continuous and mixed-integer optimization.

More attention is paid to the field ofGlobal Optimization, as after 2002, strong
commercial software using deterministic global optimization techniques became

xxiii



xxiv Preface

available for solving non-convex continuous or mixed integer nonlinear problems.
The techniques used in this type of optimization are closelyrelated to those used to
solve mixed-integer optimization problems and are described in Chapter 12. They
are illustrated with applications from paper and metals industry in Chapter 13. A
further coupling of global optimization and mixed-integeroptimization becomes
apparent in the calculation of optimal breakpoint systems in connection with the
modeling of nonlinear terms using SOS2 variables. In Chapter 14, Polylithic Mod-
eling and Solution Approaches, we demonstrate how to use these SOS2 variables
for obtaining good approximations for solving nonlinear problems. In the context
of mixed-integer linear problems we also consider the topicof Lagrange relaxation
for the improvement of lower bounds. Overall, as this secondedition covers also the
nonlinear optimization world, it is somewhat more demanding on the mathematical
side. Therefore, it also contains Appendix C summarizing some of the fundamentals
of linear algebra and calculus.

As cutting and packing is used in many examples throughout this book, and cut-
ting and packing industry significantly contributes to the GDP of several countries,
a full chapter on it has been added. Most of thephi-function techniquematerial in
Chapter 15 has been provided by Prof. Dr. Yuriy Stoyan & Prof.Dr. Tatiana Ro-
manova.3 This technique is a generic approach beyond and within mathematical
programming very suitable for solving large-scale real-world cutting and packing
problems in 2D and 3D.

In Tools around Optimizationin Chapter 17 we have added a section on algebraic
modeling languages. Later in this chapter we address the importance of visualization
of input data and output results.

Many examples in this book are coded in the algebraic modeling languages
mp-model, GAMS, Mosel andSAS/OR – online atwww.springer.comand refer-
enced as MCOL (ModelCollectionOnLine). This online access granted to readers
of this book replaces the CD-ROM which came with the first edition. For compat-
ibility with the first edition, we keep themp-model files as well. In this second
edition we avoid using or explaining software specific syntax and keep implemen-
tation issues on a generic level.

Reading flowsuggestions by target group and sequence of chapters:

flow target group sequence
F1 novice, beginners 1–17
F2 linear optimization 1–10
F3 nonlinear optimization 11–15
F4 practical optimization 1,5,10,13–17
F5 advanced readers 10, 11, 13–15

.

In the first edition, a few larger case studies had been analyzed and solved with
XPRESS-MP, the predecessor of what is nowFICO Xpress Mosel and FICO

3 The National Academy of Sciences of Ukraine, Institute of Mechanical Engineering Problems,
Department of Mathematical Modeling and Optimal Design, Kharkiv, Ukraine & Kharkiv National
University of Radioelectronics, Department of Applied Mathematics.



Preface to the 2nd Edition xxv

Xpress Optimization, or Xpress in short. We have kept the text from the
first edition in this second edition and continue referring to this modeling and solver
XPRESS-MP from the 1990s in this context. We proceed similarly for currencies
as well as the hardware or software equipment used. The real-world case studies
from the 1990s remain unchanged. AsXPRESS-MP and its modeling language
mp-model use integer indices but not index sets, the first edition and its case stud-
ies are formulated using numerical indices. In this second edition, we leave the case
studies untouched but use index sets in all material added. The formerly large MILP
problems from 20 years ago have become toy examples for commercial solvers in
2020 – and the spreadsheet softwareLOTUS-1-2-3 does not seem to be in use any
longer. This should serve as a good warning and advise for thefuture. Only ASCII
data has a reasonably long lifetime. Everything else strongly depends on market
changes. The lifetime of software seems to be very limited – and even if the soft-
ware still exists, backward compatibility is not guaranteed either. Fortunately, the
first edition has been written in LATEX, and is retained, largely, in the second edition.

Overall, we hope that the reader benefits from this second edition in various
ways: Providing a path to efficient modeling, and learning what is relevant nowa-
days, and which problems can be handled efficiently concerning mixed integer op-
timization and non-convex nonlinear optimization. If the reader has fun on the way
reading this book, all the better.

Acknowledgement

It is a pleasure to again thank some friends and colleagues who have accompa-
nied me for many years in my working or private environment and who in various
ways have directly or indirectly contributed to the successof this book. This ap-
plies to everyone who has already been mentioned in the acknowledgement of the
first edition. In the time between 1997 and 2020, I have established close relation-
ships or friendships with many new collaboration partners.These are, especially,
Dr. Franz Nelißen and Dr. Michael Bussieck (GAMS Software GmbH, Frechen &
Braunschweig, Germany), Prof. Dr. Christoudoulos A. Floudas (Princeton Univer-
sity, Princeton, NJ, USA)4, and Prof. Dr. Panos M. Pardalos (Center of Applied
Optimization, University of Florida, Gainesville, FL). The contacts from my leader-
ship of the GOR working groupPraxis der Mathematischen Optimierunghave also
contributed indirectly to this expanded second edition.

A special word of thanks is directed to all the (new) project partners during the
last 20 years: I have cherished many of them because of their enthusiasm and their
in-depth knowledge of their application areas – and I have all of them in good mem-
ory. They all had in common that, for improving the benefits oftheir company, they
wanted to enhance their methods in their applications areasby thorough mathe-
matical modeling, which often led to mixed integer optimization. Interacting and

4 Unfortunately, for the whole community, Prof. Floudas has passed away in August 2016. I lost
a close collaborator and friend, we shared many common ideas and had joint activities since the
early 1990s.



xxvi Preface

communicating with them has been an important element during the projects and
has some influence on this book. From the many German BASF project partners
who have contributed indirectly to this book over several years, I would like to men-
tion a few: Dr. Wolfram Schmidt and his team with Dr. Markus Klumpe and Bernd
Heisel-Hoffmann, Norbert Vormbrock with a common history at Bonn University
and Dr. Gerd Fischer with his exciting rail car projects. It has been a pleasure to
work with such people who feel the need to understand and solve a problem as
deeply and as thoroughly as possible. High quality and sustainable solutions require
deepunderstanding, dedication to detail, and the will to solve a problem on one’s
own initiative. I strongly hope that the project partners mentioned above will still
have sufficient time left for focussing deeply on their projects and that they can
enjoy their work.

For a thorough examination and proofreading of the manuscript as well as
many constructive comments an suggestions which have improved the book, it is
a pleasure to thank Dr. Jens Schulz & Dr. Susanne Heipcke (FICO, Berlin, Ger-
many & Marseille, France), Jan-Erik Justkowiak (Siegen University, Siegen, Ger-
many), Dr. Philipp M. Christophel (SAS Institute, Heidelberg, Germany), Dr. Jo-
hannes Schlöder (IWR, Heidelberg University, Heidelberg, Germany), Prof. Dr. Iiro
Harjunkoski (Hitachi ABB Power Grids, Mannheim, Germany),Prof. Dr. Eugene
F. Milone (University of Calgary, Calgary, Canada), Prof. Dr. Tapio Westerlund
(Abo University, Finland), Prof. Dr. Ivo Nowak (Hochschulefür angewandte Wis-
senschaften Hamburg, Hamburg, Germany), Prof. Dr. Alexandra Newman & Prof.
Dr. Tulay Flamand & Phillip B̈ulow & Louis Kamga & Oluwaseun Ogunmodede
(Colorado School of Mines, Golden, CO, USA), John Cox (US AirForce, Colorado
School of Mines, Golden, CO, USA), Prof. Dr. David Morton (Northwestern Uni-
versity, Evanston, IL, USA), Dr. Joonghyun Ryu (Hanyang University, Seoul, Ko-
rea), Dominik Schweisgut who also wrote a first draft of Appendix C (Heidelberg
University, Heidelberg, Germany), Prof. Eli V. Olinick (Southern Methodist Univer-
sity in Dallas, TX, USA), Prof. Dr. Ignacio E. Grossmann, CanLi & Prof. Dr. Deste-
nie Nock (Carnegie Mellon University, PA, USA), Dr. MichaelBussieck, Frederick
Fiand & Dr. Stefan Vigerske (GAMS Software GmbH, Braunschweig, Germany),
Dr. Anna Schreieck (Neustadt a.d. Weinstraße, Germany), Prof. Dr. Stefan Helber
(Leibniz University Hanover, Hanover, Germany), and Prof.Dr. Siegfried Jetzke
(Ostfalia University of Applied Sciences, Salzgitter, Germany).

I thank Erwin Kalvelagen (www.amsterdamoptimization.com) for his kind per-
mission to use hisGAMS file lagRel.gmsin MCOL and parts of his description on
Lagrange relaxation in this book. From Fair Issac Corporation I received the per-
mission to use the FICO® Xpress Mosel modeling examples and FICO® Xpress
Insight visualization examples. FICO is a trademark of FairIsaac Corporation.

Finally, I thank my daughter Diana for producing the cartoon-like illustrations in
this book and proofreading, and Christian Rauscher, the editor in charge at Springer
(Heidelberg) with whom I had been working for many years – andwho has pro-
moted this second edition of the book.

Weisenheim am Berg, September 2020 Josef Kallrath



Preface

This book arose from a realization that modeling using mathematical programming
should be tightly linked with algorithms and their softwareimplementation to solve
optimization problems. Such linkage is necessary for a fullappreciation of the meth-
ods used to model problems that will ensure they can be solvedsuccessfully. While
there exist textbooks concentrating on the pure mathematics aspects of optimiza-
tion, and others which just describe applications without providing sufficient tech-
nical background, we see our book as trying to provide a link between applications
and the mathematics required to solve real-world problems.Few textbooks have in-
tegrated modeling with state-of-the-art commercially available software. Our book
will also incorporate this missing link and will include thesoftware to solve the
models discussed.

Optimization using mathematical programming is an important subject area as
it can determine the dramatic savings available to organizations that could not be
achieved by other means. In this book, examples are cited where organizations are
saving many millions of pounds (sterling) or dollars (US) byusing optimization
methods. Mathematical optimization models are part of tools that can help people
in the process of making decisions concerning the use of resources and saving costs.

Mathematical programming also provides a way to solve problems that, because
of their size or other features, would not otherwise be solvable by other methods.
In major cities, for example London, mathematical programming models influence
the control of the flow of domestic water through the city as the model is used to
determine the most efficient strategy to move water from source to user as peaks
and troughs in the usage pattern develop. Thus, the results from mathematical pro-
gramming models are literally all around many of us.

The need for a source book of material on the subject was recognized while
teaching at Heidelberg University and Loughborough University and while planning
conference sessions on the practical relevance of mixed integer optimization.

Although there is an extensive literature on mathematical programming, the
paucity of instructional materials in the area of efficient modeling and solving real-
world problems is striking. The student, researcher, or industrial practitioner must
read between the lines of material, usually only available in journal articles or sim-

xxvii



xxviii Preface

ilar, to glean the details of the modeling process and the “tricks of the trade”. Yet
the need is acute: as with many other areas of science, the computer revolution has
given many modelers in industry as well as at universities the tools to attempt to
solve realistic and complex models. In this work, we endeavor to provide a suitable
background as an aid to the novice modeler, a useful reference book for the expe-
rienced modeler, and a springboard for the development of new modeling ideas. In
particular, by tailoring this book around a commercially available software pack-
age we are able to illustrate some of the subtle details that determine the success or
failure of the modeling efforts.

Readership
This book has been planned for use by more than one type of readership. Most of
this book is designed to be used by readers who possess fairlyelementary mathemat-
ical skills, i.e., the use of algebraic manipulation, and it is made clear which sections
are not of this type. Further mathematical skills required are developed during the
course of the book but the presentation should not prove too daunting. The material
is suitable for use in courses in Business and Management Studies and operations
research environments. Readers with stronger mathematical skills (e.g., linear and
matrix algebra) and experienced practitioners in the field will still find much to in-
terest them as the logic of modeling is developed. The book, therefore, will provide
appropriate course material for lecture courses, short courses and self-teaching on
the topics contained in it.

As some material is for the more advanced reader, or for the reader to use on a
second pass through the book, certain sections in chapters have been marked as “ad-
vanced”. These sections may be omitted on a first pass throughthe book. The more
advanced parts of the book are written in such a way that it is sufficient if the reader
is familiar with the basic concepts and techniques of linearalgebra. A discussion of
some foundations of optimization is provided at the end of some chapters, where it
is helpful if the reader has familiarity with calculus techniques. It is also expected
that the later advanced chapters will be read only once the reader has started to build
models in earnest. A glossary at the end of the book will provide further help.

Scope
The focus of the book is primarily on models, model applications and individual
case studies rather than algorithmic details. However, because the success of so-
lution of complex problems requires efficient problem solving, it is important that
models and algorithms are tightly connected. Therefore, wealso concentrate on the
mathematical formulation of models and the mathematical background of the al-
gorithms. The understanding of the mathematics involved ina problem or model
explains why certain model formulations work well while others do not. We have
tried to present in this book a self-contained treatment of the subject where possi-
ble. The presentation of the material is not too far away fromwhat real modeling in
business looks like. Most of the case studies have a commercial or industrial back-
ground. For instance, some of the case studies in Chapter 10 stem from problems
recently analyzed and solved in a mathematical consultancygroup in the chemical
industry.



Preface xxix

Organization
Chapter 1 gives an introduction and overview of the field. Parts of this chapter, in
particular the details on the software used in this book, canbe skipped by the ex-
perienced practitioner. An overview on the history of optimization is presented in
the appendix to Chapter 1. It is presented as an appendix because it requires some
familiarity with the terminology of the subject. This chapter and parts of Chapter 2,
illustrating how small linear and integer programming problems may be formulated,
are kept on a very elementary level appropriate to the novicewithout a background
in mathematics. We provide a systematic overview of mathematical solution tech-
niques on both linear and mixed integer linear programming in Chapter 3, while
Chapter 12 contains details on nonlinear optimization techniques. Exercises are in-
cluded at the ends of chapters. These exercises can be tackled by hand or by using
the software, where appropriate, included with the book.

Types of linear programming problems and their modeling arediscussed in Chap-
ter 4. Chapter 5 is a collection of case studies in the framework of linear program-
ming. Chapters 6 and 7 cover foundations of integer programming while in Chapter
8 case studies are discussed. In Chapter 9 we consider how practitioners may best
set up and solve their optimization problems and in Chapter 10 we consider exam-
ples of large cases. Then in Chapter 11 we consider other types of optimization,
e.g., sequential linear, quadratic and mixed integer stochastic programming. New to
the second edition are the chapters devoted to nonlinear optimization (Chapter 12),
deterministic global optimization (Chapter 13), polylithic modeling and solution
approaches (Chapter 14), cutting and packing (Chapter 15),impact of optimization
and especially parallel optimization (Chapter 16). Finally, Chapter 17 reflects the
author’s view on mathematical optimization and modeling, how it is and should be
used, and what is to be expected from it in the future.

Certain sections of chapters may be skipped by readers new tothe area of opti-
mization. They are marked by⊖ in the section heading. These sections should be
read through when required on a subsequent reading.

Instructors Manual
An Instructors Manual is available tobona fidelecturers. Please, contact the author
Josef Kallrath.

Acknowledgements
We would to like to thank colleagues and mentors who have advised and/or inspired
us over the years. These are too numerous to mention but we would like to single out
Beate Brockm̈uller for providing material on the telecommunication network prob-
lem, Bob Daniel and Gunter Schnabel for the time they spent with us discussing the
manuscript in great detail, Tom Horak, Gernot Sauerborn, Anna Schreieck, James
Tebboth, Christian Timpe and Max Wagner for reading the manuscript (JK), and in-
spiration from the work of Peter Hammer, Ailsa Land, Gautam Mitra, Paul Williams
and the late Martin Beale (JMW). We also offer our thanks to Dash Associates for
help, advice and cooperation over the inclusion of theXPRESS-MP software and



xxx Preface

related discussion material.5 JK wants to express his special thanks to Marilyn Dal-
ton for her kind hospitality during numerous visits to Blisworth House. Finally, JK
wants to thank the clients involved in some of the real-worldcases. The interaction
and communication with the clients, most of whom were enthusiastic persons with
deep knowledge of the business process they wanted to improve using mathematical
optimization, was an important and irreplaceable resourcewhich made the solution
of challenging problems possible. Although, after all the years these people might
have forgotten6 the work and the exciting time we spent together and might notbe
aware how they indirectly contributed to this book I want to mention them: Peter
Bassler, David DeSantis, Andy Hayter, Klaus Kindler, Jan Orband, Gunter Schn-
abel, Hubert Smuda and Eckhardt Schubert.

Ludwigshafen and Loughborough
1997 Josef Kallrath and John M. Wilson

5 Dash holds a copyright on parts of the following sections: 2.7, 10.2, 10.3 and 16.6.
6 Of course, I hope they have not forgotten! All the special adventures involved in the time working
on their problems could fill a book on its own.



Chapter 1
Optimization: Using Models, Validating Models,
Solutions, Answers

This chapter guides the reader into the field of mathematicaloptimization, distin-
guishes optimization from simulation and introduces the key objects used in opti-
mization models. It sketches how simple linear programming(LP) problems may
be solved graphically. The chapter contains a survey of real-world problems, and
finally a review of the history of optimization. Those readers who want to use the
optimization software attached to this book will find sufficient information in this
chapter to do so. Readers less interested in implementationissues or already familiar
with the use of commercial software may of course skip those parts.

1.1 Introduction: Some Words on Optimization

The title of this book contains the termmathematical programming. So let us
first consider the question: “What is mathematical programming1 or optimization
and what are optimization problems?” Optimization problems arise in almost all
branches of industry or society,e.g., in product and process design, allocation of
scarce resources, production, logistics, scheduling, strategic planning or traffic con-
trol. They can have different time scales: real-time (just now), operational (short-
term), tactical (mid-term) and strategic (long-term) planning. Unfortunately, the
wordoptimization, in nontechnical language, is often used in the sense ofimproving
while the original meaning of the word is related to finding thebest. In an optimiza-

1 The termmathematical programminghas its historical roots in the first problems solved by
linear programmingin the Second World War. In these days,programminghad more the meaning
of planning. Nowadays,mathematical optimizationseems more appropriate. In this book we will
use the termsmathematical programmingandmathematical optimizationsynonymously.

1



2 Optimization: Using Models, Validating Models, Solutions, Answers

tion problem (OP), one tries to minimize or maximize an important characteristic
of a process within the problem such as revenue, elapsed timeor cost, by an ap-
propriate choice of decisions which influence this process,e.g., budget allocations,
manpower deployed, or quantities to be manufactured. Such decisions can be con-
trolled, but are influenced and ultimately limited by a set ofconstraints, linked for
example to physical limits,e.g., limits on the budget or manpower available. The
results of the optimization process will suggest decisionsthat could be taken and, if
appropriate, the levels of resources that should be utilized.

A traditional way to develop answers to decision problems isto propose a num-
ber of choices for the values of the decisions, using trial and error methods. The
processes under investigation are then evaluated or simulated under these vari-
ous choices, and the results are compared. This concept ofsimulation [cf. Pidd
(1992,[450])], may involve varying certain input data or building scenarios from in-
vestigating the behavior of a model under various sets of conditions. Simulation can
be carried out using sophisticated software systems,e.g., SIMSCRIPT,2 and is also
prevalent as the “what if” facility provided by more generalpurpose software such
as spreadsheets (e.g., LOTUS,3 EXCEL4). Analysts in charge of simulating these de-
cisions have developed intuition and simple rules to selectappropriate conditions,
and simulation software exists to perform the evaluation oftheir performance. The
“traditional” techniques may lead to useful and usable results, but there is no guar-
antee that the best solution (the optimal solution) or even asolution close to the
optimal solution has been found. This is especially troublesome for large or com-
plex problems, or those which require decisions with high financial impact. Below
we will discuss the difference between simulation and mathematical optimization.
This difference can be more easily discussed when we have answered the following
question:

What do we need when we want to solve a real-world problem by mathematical
optimization?

The first thing we need is to represent the real-world problemby amathematical
model. A mathematical model of a system is a set of mathematical relationships
(e.g., equalities, inequalities, logical conditions) which represent an abstraction of
the real-world problem under consideration [see Fig. 1.1].Usually, a mathematical
model in optimization consists of four key objects:

• data or parameters,5

• variables (continuous, semi-continuous, binary, integer),6

• constraints (equalities, inequalities),7 and
• objective function.

2 SIMSCRIPT is a trademark of CACI products.
3 LOTUS is a registered trademark of Lotus Development Corp.
4 EXCEL is a trademark of Microsoft Corp.
5 Engineers often prefer the termparametersto refer to fixed data.
6 Synonyms aredecision variables, unknownsor columns, depending on community.
7 Sometimes also calledrestrictions.



1.1 Introduction: Some Words on Optimization 3

Customer's

Problem

max f(x)          g(x)=0, h(x) > 0

A

Cf(x)

Linear

objective

function

Mathematical

Optimisation

convex hull

Linear discrete

optimisation

feasible

region

Non-linear

objective

function

Benefits

- feasible solution

- optimal solution

- fast solution

- insight and understanding

LP relaxation

Objective Constraints

Fig. 1.1 Transforming a real-world decision problem to a mathematical optimization problem. The
input data and parameters are hidden in the step from the customer’s problem through the green
glasses to the mathematical structure (objective function and constraints).

The data or parameters define an instance of a problem. They may represent costs
or demands, fixed operating conditions of a reactor, capacities of plants and so on.
The variables represent the degrees of freedom,i.e., our decisions: how much of a
certain product is to be produced, whether a depot is closed or not, or how much
material should be stored in the inventory for later use. Theconstraints can be a
wide range of mathematical relationships: algebraic, logic, differential or integral;
in this book, only algebraic and logic constraints are considered. They may represent
mass balances, quality relations, capacity limits, and so on. The objective function,
finally, expresses our goals or objectives in a mathematicalform: minimize costs,
maximize utilization rate, minimize waste and so on. When building mathematical
optimization models they usually lead to structured problems such as:

• linear programming (LP) problems,
• mixed integer linear programming (MILP) problems,
• nonlinear programming (NLP) problems, and
• mixed integer nonlinear programming (MINLP) problems.

Besides building a model and classifying the problem one needs asolver, i.e., a
piece of software which has a set of algorithms capable of solving the problems
listed above.



4 Optimization: Using Models, Validating Models, Solutions, Answers

Above, the termsinteger or mixed integeroccurred. What ismixed integeror
discrete8optimization? Classical optimization theory (calculus, variational calculus,
optimal control) treats those cases in which the decision variables can be changed
continuously,e.g., the temperature in a chemical reactor or the amount of a prod-
uct to be produced. On the other hand,mixed integer, combinatorialor discrete
optimizationaddresses degrees of freedom which are limited to integer values, for
example counts (numbers of containers, ships), decisions (yes-no), or logical rela-
tions (if product A is produced then product B also needs to beproduced). This
discipline, formerly only a marginal discipline within mathematical optimization, is
becoming more and more important (Grötschel, 1992,[252]) as it extends the power
of mathematical optimization to situations which are relevant to practical decision
making where business success is at stake.

Above, simulation is also mentioned as a mean to improve a company’s business.
What is the difference between simulation and mathematicaloptimization?In con-
trast to simulation, optimization methods search directlyfor an optimal solution that
fulfills all restrictions and relations which are relevant for the real-world problem,
and prove that a certain solution is optimal (proof of optimality). In simulation, the
effects on a model of selected solutions will be examined, but there will be no guar-
antee that any of the solutions under consideration is optimal. Besides optimality,
notice the other very substantial difference between simulation and optimization: the
existence of constraints. While in simulation somebody has to make sure that only
those combinations of variables are evaluated which represent “appropriate condi-
tions”, in optimization models it has to be specifieda priori what makes a feasible
solution. Once the problem has been solved to optimality within the specified lim-
itations or constraints, then it is known that no other set ofdecisions or values for
quantities suggested by these decisions can provide any other solution which will
give a “better” value to the characteristic that has been optimized. “Better” here will
mean larger if the characteristic is to be maximized (e.g., discounted revenue being
maximized) and smaller if the characteristic is to be minimized (e.g., total cost be-
ing minimized). The optimization process is a prescriptiveone which tells its user
what decisions should be taken and what levels of resources should be used. These
levels might eventually not be accepted at face value in their entirety, for a variety
of reasons, but they provide a yardstick against which all alternatively proposed de-
cisions and levels of recommended resource can be compared.This is not to suggest
that an organization will choose to implement a policy that is not the best for any
frivolous reason, but rather it may choose to implement another policy which is very
near to being optimal but which has certain other appealing features about it,e.g., it
may only involve disturbing 10% of existing practice whereas the optimal solution
would disturb 90% of existing practice. Such features may beintangible and difficult
to include directly in a representation of the problem. Based on the two fundamental
differences (optimality proof, incorporation of constraints) between simulation and
optimization we conclude: by using mathematical optimization it becomes possible
to control and adjust complex systems even when they are difficult for a human be-

8 The termsmixed integer optimizationanddiscrete optimizationare used synonymously in this
book. Sometimes, in the literature, the termcombinatorial optimizationis also used.



1.2 The Scope of this Book 5

ing to grasp. Therefore, optimization techniques allow a better exploitation of the
advantages inherent in complex systems.

What commercial potential is in mathematical optimization? To give some idea
of the scope of mathematical programming in helping organizations we cite four
recent examples of benefits achieved. First, at Delta Airlines it is reported in a pa-
per by Subramanianet al. (1994,[549]) that use of an optimization model is ex-
pected to save the company (US)$300 million over a three yearperiod. Similar
models in use at other airlines around the world are likely toachieve compara-
ble savings. Secondly, a comprehensive mathematical programming model used by
Digital Equipment Corporation (DEC) is described by Arntzen et al. (1995,[35]).
The model has helped the company to save (US)$100 million. Thirdly, in the UK
considerable savings in the electricity industry are attributable to the use of mathe-
matical programming. Fourthly, in some blending problems in the 1990s BASF-AG
saved several hundred thousand DM/year. The potential saving in complex produc-
tion networks in chemical industry is of the order of millions of DM. Pay-back time
of projects is usually less than six months. Blackburnet al. (2014,[88]) have high-
lighted optimization-centered applications of Operations Research (OR) at BASF in
the area of supply chain management (SCM) through the use of selected examples
with annual cost savings ranging between several hundred thousand and several mil-
lionse. The role of mathematical optimization and its impact in industrial practice
in chemical and petroleum industry is well described and reviewed by Grossmann
& Harjunkoski (2019,[250]); they report about 30% enery savings in operations.

The reader can find more about the financial impact of optimization (and Oper-
ations Research in the broader picture) by searching for theFranz Edelman Award
on www.informs.org, the webpage of the Institute for Operations Research and the
Management Sciences (INFORMS). First awarded in 1972 as theINFORMS prac-
tice prize TIMS, in 1982 the prize has been renamed inFranz Edelman Awardand
is annually presented in honor of Franz Edelman, who foundedthe Operations Re-
search division within Radio Corporation of America (RCA),one of the first corpo-
rations to embed operations research as a business imperative. Since its inception,
nearly $250 billion in benefits have been tabulated among Franz Edelman Award
finalist teams. Following the competition, INFORMS publishes papers by the Edel-
man finalists in the January issue of the INFORMS journalInterfaces.

1.2 The Scope of this Book

In the first edition of this book published in 1997, this section started with the fol-
lowing paragraph:

This book will consider the two types of mathematical programming problems
introduced, namely the linear programming problem and its extension, the “mixed
integer linear programming problem”, and certain variations on these problems. We
will consider how to set up these types of problem, how they are used, how they are
solved and how to use software to both model and solve practical situations that can



6 Optimization: Using Models, Validating Models, Solutions, Answers

be tackled using these two types of problems. Some other types of problems, prin-
cipally those most closely related to these two, will be considered, but in very much
less detail. That is not to say that problems which can be handled by techniques
such as dynamic programming [cf. Bellman (1957,[62])] or nonlinear programming
[cf. Chapter 12 or Bazaraaet al. (1993,[56])] are not important, but rather that most
commercially available software has concentrated on the linear programming prob-
lem or the mixed integer linear programming problem becausethey are the most
useful in applications and the most straightforward to solve for problems of large
size. Thus we will tend to “follow the crowd”, but this will have the advantage that
we can benefit from the considerable effort that has gone intosolving such problems
over the last 30-40 years, and, in particular, from the developments in software to
solve such problems.

The chapters of the book introduce the concepts necessary for an understanding
of mathematical optimization problems. However, these topics are not introduced in
a purely abstract form, but rather they will be related to using these techniques and
approaches together with a software system, as would be donein practice.

In this second edition, the scope has been significantly extended. It covers non-
linear optimization as well as mixed integer nonlinear optimization. Polylithic mod-
eling and solution approaches have been added and optimization under uncertainty
has been treated in more detail. Readers interested in cutting and packing will find
more specific material on this interesting topic with relations to computational ge-
ometry. Unless readers want to start with the nonlinear world right away, the easier
path to follow is to start with linear programming, moving tomixed integer linear
programming, and finally entering the world of nonlinear optimizations problems.

The software,i.e., the model files which come with this book, can be solved with
the algebraic modeling systems (AMSs, hereafter) and the algebraic modeling lan-
guages (AMLs) contained therein:GAMS,9 FICO Xpress Mosel, (short form:
Xpress Mosel or justMosel),10 or SAS/OR11; it should not be too difficult if
the reader wants to useAMPL12, instead. Their modeling environment provides the
user with an easy to use yet powerful language for implementing the problem. It also
enables the user to gather the appropriate data from text files and a range of popular
spreadsheet systems and database systems. The optimization software provides a
solver that uses the problem description produced by the modeler, and then solves it
to provide the user with the optimal solution. AMLs and AMSs have been available
and updated since the early 1980s and are innovative optimization systems widely
used worldwide; for a timeline and a historical review see Kallrath (2004,[316]).

Coming with this book are coded models inGAMS, Fico Xpress Mosel
andSAS/OR hosted atwww.springer.com. Some of these models are stand-alone
models, while others will progressively introduce new features so that by the later

9 www.gams.com; see also Brookeet al. (1988,[105]) and Bussieck & Meeraus (2003,[111]).
10 www.fico.com/xpress; see also Heipcke (2002,[268]), Guéretet al. (2002,[254], Colombani &
Heipcke (2002,[135], Cirianiet al. (2003,[130] and Colombaniet al. (2004,[133].
11 http://go.documentation.sas.com; see alsoSAS/OR User’s Guide(2018,[495]).
12 www.ampl.com; see also Foureret al. (1987,[205] or Foureret al. (1990,[206] and Foureret al.
(2003,[207]).



1.3 The Significance and Benefits of Models 7

stages of the book the reader should be able to formulate, model and solve business
problems of commercial size.

Apart from the classical AMLs we mention the recentPython based develop-
mentPyomo13 as well asJuMP (a domain-specific modeling language for math-
ematical optimization based onJulia).14 Matlab now also offers modeling
based mathematical programming. Students might like to seeoptimization problems
solved with software such asR or maybePython as they are indeed very popular.
We do not includeR, Python, Pyomo, or JuMP code in this book, as we feel that
especially thePython based approaches lack the stability required by industrial
needs. That should, however, not discourage students from solving the exercises by
using the tools.

Exercises will be presented at the end of most chapters. These will vary in diffi-
culty and it is intended that these be worked through by the reader either by hand or
by using an AMS – or by usingR, Python, Pyomo, or JuMP if preferred. Com-
plete solutions to exercises will be given with full instructions relating to the use of
software on such exercises, where appropriate.

1.3 The Significance and Benefits of Models

The termmodelingpresupposes the termmodel, which first derives from the Latin
word modelus(scale [diminutive of mode, measure] and then from the wordmod-
elo formed in the 16th century and which is used today in everydaylife and in
scientific language with various meanings, but mostly in thesense of a simplified,
abstracted or structured representation of an interestingpart of reality. However, the
idea and thus the terminology is much older. Even with Pythagoras around 600 BC,
classical geometry consciously distinguished between wheel and circle; field and
rectangle. Around 1100 A.D., a wooden model was made as an abstraction of the
later Speyer Cathedral. Astrolabes and celestial spheres were used as manifested
models of the motion sequences in the firmament to calculate the rising and set-
ting of the sun, moon and stars. Until the 19th century, mechanical models were
understood as images of reality; they attributed all processes to the movement of
the smallest particles, which followed the principles of classical mechanics. Further
attempts were made to reduce all physical and other processes to the mechanistic
model. Nowadays in physics and mathematical sciences one speaks of models, if

1. for reasons of simplification, the investigation is limited to certain phenomena
which, in a given context, are regarded as important (example: in the movement
of the planets, the spatial extent of these bodies is initially neglected),

2. for reasons of didactic illustration, one gives a picturebased on classical ideas for
phenomena which are not accessible in a descriptive way (example: the planetary
model to illustrate the conditions in atomic nuclei), or

13 www.pyomo.org
14 www.juliaopt.org



8 Optimization: Using Models, Validating Models, Solutions, Answers

3. one studies situations in one range in analogy to known situations in another
range (analogy models).

Let us generally define a model as an appropriate abstract representation of a real
system [cf. Williams (1993,[592]) or Bossel (1994,[98])]. Naturally, a mathematical
model of a process or a problem is formulated with the help of mathematical objects
(variables, terms, relations). A (mathematical) model represents a real problem in
the language of mathematics,i.e., using mathematical symbols, variables, equations,
inequalities and other relations.

A very important aspect, which is connected with modeling and precedes it,
is themodel purpose. It results directly in connection with the problem and very
substantially influences the process of modeling. In science (e.g., Physics, Astron-
omy, Chemistry and Biology) models are used to gain a deeper understanding of
processes occurring in nature (an epistemological argument), e.g., to explain the
movements of planets. The comparison of measurements and observations with the
predictions of a model is used to determine the appropriateness and quality of the
model. Sir Karl Popper (1980,[455]) uses the expressionsfalsificationandverifica-
tion in his famous bookLogic of Scientific Discoveryas tasks when accomplished
deciding on whether a certain model is eliminated, slightlymodified or accepted in
improving the scientific process. Later, aspects and questions of accepting and im-
proving global and fundamental models (e.g.,general relativity or quantum physics)
formed part of the discussion of the philosophy of science.

In the disciplines ”Scientific Computing” and ”Operations Research” models of-
ten have a rather local meaning; a special part of reality15 is illustrated in great
detail. Here, on the one hand, the motivation for model development is epistemo-
logical. On the other hand, we find military, pragmatic and commercial aspects,
from which operational instructions for actions can often be derived. What follows
is a list of reasons and motives. The model maps most of the relevant features, and
neglects less important aspects to

• provide insight into the problem,
• permit experimentation but avoid expensive and/or dangerous experiments,
• avoid the production of unwanted side products,
• optimize some objective,
• propose careful use of resources.

Let us now have a closer look on how to develop a mathematical model for a real-
world problem, or alternatively, how does one transform a given real-world problem
into a mathematical model? The associated process of modeling is by no means
easy nor unique; its difficulties somewhat resemble the solution of text problems, in

15 Reality itself is already as compact as possible to be able to present itself lossless. Consequently
each self-image on a small section (individual human being) is inevitably connected with a loss
of information. So we shape ourselves and our view of the world only by a very small part of
reality which is filtered by our sensory organs and learned behavior. Our terms and languages in
general are products of limited perception - and therefore highly subjective. Modeling then occurs
as reduction in already limited worldviews.



1.3 The Significance and Benefits of Models 9

school,cf. Polya (1979,[454]), but the advantage was that from the teaching content
it was always known which mathematical technique was the most suitable one to
solve the problem at hand,e.g., the law of Pythagoras, quadratic equations, linear
systems with several variables, to name a few. In practice, however, one usually
does not know which mathematical technique is needed. Therefore it is important
to be open and creative in the first approaching attempts to understand and solve
the problem. It is helpful to know as many problem-solving strategies and heuristics
[cf. Michalewicz & Fogel (2000,[408])] as possible and to be ableto use them or
develop new ones from them. The following points are useful to remember when
starting to build a model:

1. There is no precise recipe telling the user how to build a model,
2. Experience and judgement are two important aspects of model building,
3. There is not necessarily acorrectmodel,
4. There may not necessarily be auniquemodel, as different models focusing on

different aspects may be appropriate. Co-existence of models can be useful to in-
vestigate different aspects (example: wave-particle dualism in physics). It should
be noted that different models for the description of the same facts may rquire
different data inputbe based on very different databases.

5. Model building should follow the principle ”as simple as possible, as complex as
necessary” or in a free translation of the words of Antoine deSaint-Exuṕery: ”A
model is not ready when you can’t add anything anymore, but when you can’t
leave anything out”.

However, there are some aspects that should be considered when building a model:

1. Definition of the problem and the purpose of the model: A clearly formulated task
should be used as a basis for defining the purpose of the model.

2. Problem scope: It is necessary to clearly define what belongs to the problemor
model and what does not (example: in a production planning system for medium-
and long-term planning we may neglect detailed planning aspects).

3. Identification of important model objects(examples: products, production sites,
warehouses, transport links, time periods, etc.) and relations between these ob-
jects.

4. Acceptanceandusers: The model formulation should be adapted to the problem,
the model purpose and the potential user. For instance, the planner who needs
to accept the model for his planning purposes. It helps if themodeler knows all
relevant aspects – and the motivations of people involved ordesignated to use
the model. Models for vehicle routing and their use can encounter acceptance
problems among truck drivers, if the client, the routing planner, has named the
minimization of travel costs as a target for the modeler, buteach individual truck
driver is paid on the basis of the delivery value of goods. So adriver would rather
take a trip with one expensive piece of furniture to be delivered and mounted,
than a trip with many destinations, where only cheap and perhaps even time-
consuming set-up work has to be done.



10 Optimization: Using Models, Validating Models, Solutions, Answers

Fig. 1.2 A powerful modeler. Sometimes, modeling done right
seems like magic. Produced for this book by Diana Kallrath,
Copyright ©2020.

These points may already indicate that modeling is one of themost important and
critical tasks in optimization. This might suggest the question: is it possible to learn
good and efficient modeling? The answer is both “Yes” and “No”. For good model
building, experience is essential;cf. Williams (1993,[592]) or Ashford & Daniel
(1992,[40]). The choice of the right decision variables to include the model and a
good model formulation correlate with one another. It is notnecessarily the number
of decisions or restrictions that reflects the complexity ofa problem [concerning
complexity, see remarks on page 521]. The criterion that separates a good formu-
lation from a bad one has a mathematical foundation which is difficult for a mod-
eler to establish, if at all possible. Nevertheless, rigid approaches exist which try
to improve the model formulation by exploiting certain mathematical features [see
Chapters 8 and 9, and examples]. The effect is that the computing time needed to
solve the problem is reduced significantly. For further discussion see Jeroslow &
Lowe (1984,[298]) and Williams (1993,[592]). It is important that a model devel-
oper needs to be knowledgeable about both: The ”model” (the right level of ab-
straction...) and the ”mathematical formulation”, which is also often refered to as
the ”mathematical model”. We will come back to the importance of good modeling
again and again in this book. At this stage, let us first focus on the question:

What is a model good for and how can we benefit from it? A well formulated and
documented model is useful for deduction,i.e., it allows us to derive consequences
and results. The results from the model have to be interpreted with respect to their
consequences in reality. The model-building process increases our understanding
of a real-world problem. It documents structural features of that problem and thus
provides the know-how that that others can use later on. The evaluation of a model
is coupled to the degree of reality contained in the model andthe modeler’s power.
While within mathematics a strict mathematicalproof is the ideal measure, and one
speaks of natural scientific models being subjected tofalsificationor verification, in
economic or business orientated modelsvalidation is what comes next to falsifica-
tion and verification, whereby the relations

Validation≤ Falsification/Verification≤ Mathematical Proof



1.4 Mathematical Optimization 11

are fulfilled. However, one should always be aware that with awell-validated model,
the model is only a partial aspect of reality, and hence the model is less than reality.
However, it does not necessarily have to be a lot less. Electrodynamics, for example,
reproduces macroscopic electromagnetic phenomena so accurately that it is possible
to speak of a match between model and reality within the scopeof measurement
accuracy. Furthermore, for the real-world problems and models we are dealing with,
we have to keep in mind that today’s reality (and model) can bequite different from
tomorrow’s reality. Let us conclude this section with a statements found in Box &
Draper (1987,[100]) “. . . all models are wrong, but some are useful.”

1.4 Mathematical Optimization

Four fundamental problem types are considered in this book.The first is linear pro-
gramming (LP), introduced now, the second is mixed integer linear programming
(MILP), to be introduced in Chapter 2, the third and fourth are nonlinear (NLP) and
mixed integer nonlinear programming (MINLP) to be treated in Chapter 3.

1.4.1 A Linear Optimization Example

We now turn to an example where we will identify the main features of this linear
optimization problem. Sunshine Cruises is a national company specialising in rent-
ing out river-going boats to tourists. The company makes useof two types of boats
- the Premier and the Standard. The Premier is the more expensive boat to hire and
each Premier boat brings in an average net revenue of 800 per week, while for the
Standard the corresponding figure is £600 per week. The company is about to scrap
its older boats and lease new ones and has asked for some advice about decision
making. Decisions to be taken will be based on a scenario of “atypical week”.

The company has maximum berthing accommodation around the country for
350 boats in total, of which not more than 200 can be Premier boats. The company
also wants to have no fewer Premier boats than Standard. Maintenance of boats is a
further restriction. Each Premier craft requires 4 hours maintenance per week while
each Standard craft requires 3 hours. The maximum number of maintenance hours
available per week is 1400.

The problem introduced so far is simple and structured. Manyaspects of com-
plexity16 have been removed in advance and much information in the problem is in
an easily digestible form.

What are the degrees of freedom and what are the decisions?

16 The advanced reader or those who have had already a glance at Chapter 3 notice that this prob-
lem is technically an integer linear programming problem. But for the moment, we avoid the differ-
ence between Linear Programming involving only continuous variables and Integer Programming
involving integer variables.



12 Optimization: Using Models, Validating Models, Solutions, Answers

Fig. 1.3 Boat problem illustrated. The decision maker from Sunshine Cruises pondering the num-
ber of Premier boats and Standard boats. Produced for this bookby Diana Kallrath, Copyright
©2020.

Berthing and maintenance are consequences of having boats and are not fundamen-
tal decisions. The fundamental decisions are:

How many Premier boats should be leased?
How many Standard boats should be leased?

Once we have the answers to these questions, most other aspects of the problem
fall into place. We now endeavor to express the problem in terms of variables rep-
resenting the decisions (decision variables) and subject these decisions to a series
of conditions (constraints). We also associate a “driving force” with the problem
termed the objective (objective function) and we aim to optimize this objective.

Let p be the desired number of Premier boats, ands the desired number of Stan-
dard boats. For practical sense it is clear that neitherp nor s should ever take a
negative value, but otherwise we can expect large or small values forp ands - at the
moment we are uncertain. It might be more realistic ifp ands could avoid taking
values which include fractions. The fractional solution of18.5 Premier boats might
not be appropriate, even if it were acceptable mathematically. However, we will as-
sume that for the moment such an answer will be regarded as appropriate, if it arises,
as such an answer is considered admissible in a linear programming problem.

For the example introduced, the variables can now be linked together in expres-
sions to model the relationships of the problem.

Firstly, there is a limit on accommodation for berthing. Thetotal number of boats
in our model is

p+s (1.4.1)



1.4 Mathematical Optimization 13

and this total is limited by 350. We therefore introduce the inequality

p+s≤ 350 (1.4.2)

to model this restriction. Notice that the restriction takes the form of an inequality
rather than an equation as the total number of boats which is desired to be used may
turn out to be less than 350.

The restriction that not more than 200 can be Premier boats ismodeled by the
inequality

p≤ 200. (1.4.3)

An inequality as (1.4.3), or any constraint (equality or inequality) containing a right-
hand side coefficient and only a single variable with coefficient 1 in front of it is
called abound. It turns out that mathematical programming software handles bounds
particularly efficiently.

To model the maintenance restriction we first calculate the total number of main-
tenance hours required. This is obtained by taking the number, 4, of maintenance
hours required by each Premier boat and multiplying it by thenumber,p, of Pre-
mier boats used giving 4p and adding to that maintenance time a similar expression
for the Standard boats, 3s, giving 4p+3s. We then construct the inequality

4p+3s≤ 1400 (1.4.4)

to show that the total number of maintenance hours used is limited by 1400.
To model the restriction that there must be no fewer Premier boats than Standard

we introduce the constraint

p≥ s,

which may be rewritten as

p−s≥ 0. (1.4.5)

Finally we have the non-negativity conditions mentioned atthe start of the definition
of the variables

p≥ 0 , s≥ 0. (1.4.6)

The inequalities (and any equations, if they are required) which restrict the solution
space are calledconstraints.

Notice that different units are involved in different constraints. The first two con-
straints are expressed in terms of numbers of boats, but the third is measured in
terms of hours. It is very important and always required thatthere is consistency
between all terms of a constraint, in particular between theleft-hand side of a con-
straint and the right-hand side of a constraint - these two sides must be expressed
in the same units. Clearly, quantities with dimensionskg andcmcannot be added,
but care is also needed when quantities of similar type are added (e.g., cmandkm,



14 Optimization: Using Models, Validating Models, Solutions, Answers

or liter andm3) which need to be converted to the same units before additiontakes
place. In general a model contains several units in different constraints:e.g.,energy,
mass flow, number of personnel at work, money, and so on.

All of the restrictions on the problem have now been modeled.For the problem
the obvious objective seems to be to maximize net weekly revenue. As each Premier
boat gives us revenue of £800 per week, if we havep Premier boats then the weekly
revenue from these is 800p. Similarly, the revenue fromsStandard boats is 600s, so
the revenue function, expressed in £ units is

800p+600s. (1.4.7)

This function is called theobjective function(or objective) and is to be maximized.
In mathematical programming problems an objective function has to be maximized
or minimized (e.g., minimization may be appropriate if the objective function was
a measure of cost). The optimal solution is characterized bythe optimal objective
function value and the solution values of the variables leading to that value. Let us
summarize our problem as follows:

max 800p+600s (1.4.8)

subject to harbor capacity, limit on the number of Premier boats, maintenance ca-
pacity, more-premier-than-standard boats, and non-negativity:

p + s≤ 350
p ≤ 200

4p + 3s≤ 1400
p − s≥ 0

, p≥ 0 , s≥ 0. (1.4.9)

The problem just introduced, along with other problems containing many more con-
straints and variables, will be solved using optimization software. However, prob-
lems containing only two variables may be represented graphically as follows, and
this representation gives some “feel” as to the operation ofthe optimization process.

How might we solve such a problem? We might start with a trial and error ap-
proach. We could try values of 50, 100, 150, 200, 250, 300, 350where appropriate
for the variables and we might hit onp= 150 ands= 150 and the revenue = 210,000
or p= 200 ands= 100 and the revenue = 220,000.

This problem may be represented graphically as shown in Fig.1.4. Assandp are
non-negative, we need only concern ourselves with a graph ofnon-negative values.
In the graph the boundary (excluding the axes) of the constraint

p+s≤ 350 (1.4.10)

is represented by the line corresponding to

p+s= 350 (1.4.11)

and as all values ofp ands such that



1.4 Mathematical Optimization 15

Fig. 1.4 Graphical solu-
tion of an LP problem in
two variables, p and s.
The colored area repre-
sents the feasible region
established by harbor
capacity p + s ≤ 350,
limit on the number of
Premier boatsp ≤ 200,
maintenance capacity
4p + 3s ≤ 1400, more-
premier-than-standard
boats p ≥ s, and non-
negativity p ≥ 0 and
s ≥ 0. The dashed line
represents the contour line
of the objective function
through the optimal point
(in red) at(200,150).

p+s< 350 (1.4.12)

are also valid, the region lying between the line and the axesis also valid. Other
constraints are represented similarly. The shaded area denotes all the possible values
of p ands satisfying the constraints. The objective function must lie parallel to any
line of form

800p+600s= k (1.4.13)

wherek is a constant. Such a contour line may be represented on the graph by
choosing a typical value fork, say by taking values of 200 fors and p and then
determining the slope of the line.

As we are maximizing, we wish to move the contour line such that the constant
k increases, while still lying within the shaded area, or justtouching it. This occurs
at p= 200,s= 150.

In the small example the optimal solution turns out to bep= 200,s= 150 and ob-
jective function value= £250,000. Thus the recommendation being made is to lease
200 Premier craft and 150 Standard craft, which can be accommodated, and will re-
sult in average net weekly revenue of £250,000. The solutionis not entirely intuitive
in the sense that the higher contribution is given by Premiercraft, but leasing some
Standard craft has also been recommended. Even on such a simple problem we see
that mathematical programming appears to be able to provideus with information
which we could not acquire in other ways. It should be noted that in this example
it is fortunate that the decision variables took integer values in the solution, and so
“made sense” as practical decisions. This will not happen inall such problems and



16 Optimization: Using Models, Validating Models, Solutions, Answers

we will see in Section 3.3 how to ensure that we do not end up with values such as
“25.3 boats”.

1.4.2 A Typical Linear Programming Problem

The problem of linear programming (LP) is to optimize (maximize or minimize) a
linear function, see Eq. (1.4.14) below, of decision variables subject to a series of
constraints, which are also linear, on these variables. A decision variable is denoted
by a symbol, such asp, x or y, used to represent a quantifiable decision, such as
“how much” (continuous) or “how many” (integer valued) in a decision-making
problem. A new example is introduced here to illustrate somefeatures absent from
the example of the previous section. Considering a simple situation involving only
the three decision variablesx, y, andz, then a typical linear programming problem
in these variables might be:

max 2x+4y+3z (1.4.14)

subject to
3x + 2y + z≤ 38.5
x + y + 1.3z= 10.0

4y − z≥ 6.2
(1.4.15)

with the additional requirement that all variables must take non-negative values
(symbolically written asx, y, z≥ 0). It is very important tospecify the basic do-
main of variables. In LP problems, the variables can usually take all real values,
but often only non-negative values. For the boat problem in the previous section we
should have explicitly required that the variables representing the ”how many boats”
decision can only take integer values.

A number of features of the LP problem described by (1.4.14) and (1.4.15) are
typical of all linear programming (LP) problems.

1. There is an objective function (the first expression) which is to be maximized (in
this case) or to be minimized. This function is linear in the (three) variables,i.e.,
the function contains only variables multiplied by a constant and each expression
Constant·variable is separated from an adjacent pair by a + or− sign. There is
no multiplication of variables such asx ·y or introduction of mathematical func-
tions such as power (e.g., x3), exponential (e.g., ex) or trigonometric (e.g.,cosx)
functions of variables, which would make the problem nonlinear. Independent of
the optimization sense, it is the objective function which drives the process of
optimization.

2. The variables are constrained by a number of expressions introduced by the
phrase “subject to” or the abbreviations.t. for short. These are termed “con-
straints”, and, like the objective function they are also linear expressions on the
left-hand side. They are linked to a constant right-hand side by a relation which
will be one of≤, ≥, or =. No other relations are permitted.



1.5 Using Modeling Systems and Software 17

3. There is also a requirement that the variables cannot takenegative values (this
requirement will be reconsidered subsequently).

4. In the linear expressions the constants are whole numbersand decimal fractions.
GAMS allows symbolic expressions such as 3/7,

√
2 orπ, but approximates them

to a given number of digits.
5. Inequalities< or > are not permitted17 in the constraints, but this turns out not

to be a drawback. Usually practical models will only require≤ or≥ constraints.
However, if the condition

2x+3.1y> 18.5 (1.4.16)

had to be included, then it could probably be replaced by a constraint such as

2x+3.1y≥ 18.5+ ε , (1.4.17)

whereε = 0.000125 is a sufficiently small quantity for the purpose of theappli-
cation. This can present difficulties when integer values are required for variables
and such a “sufficiently small quantity” is of equivalent magnitude to the degree
of tolerance the software uses to determine whether a decimal number is actually
an integer. Care should be taken in implementing< or> using this approach.

The frequently used convention that the right-hand side of aconstraint has to be a
constant, in order to represent a constraint in a standard form, leads to a constraint
initially expressed in the form

x+2y≤ 1+z . (1.4.18)

Simply collecting variable terms over to the left-hand sideleads to the desired form

x+2y−z≤ 1 . (1.4.19)

1.5 Using Modeling Systems and Software

The problem introduced in Section 1.4.1 was comparatively easy to handle. It had
only two variables and four constraints, one of which was a simple bound. Realistic
problems are much larger and may involve hundreds or thousands of variables and
hundreds of constraints. Such problems must be handled systematically - in terms
of modeling and solving the problem. To solve a larger problem some software will
be required and this will take the form of a modeling system (sometimes called
a Matrix Generator, or even a Matrix Generator Generator) and an Optimization
System which will optimize the model.

17 The reason is that continuous functions do not necessarily assume their optimum on non-
compact sets. Using≤ or ≥ ensures that the feasible set is compact, even a closed set in this
case, which guarantees that the optimum is realized for some point contained in this set; see also
Appendix C.7.



18 Optimization: Using Models, Validating Models, Solutions, Answers

1.5.1 Modeling Systems

A modeling system18 allows the user to specify variables, constraints, objective func-
tions and other details of the problem in a systematic way. The modeling system is
then used to generate a mathematical programming matrix by systematically reor-
ganizing this information into a standard form.

Modeling systems offer a number of advantages, such as the general aspects of
software system discipline applied to modeling. Once a model is built using a Mod-
eling System it is easy to modify the model to accommodate changes required by
the client, particularly if it is necessary to change the scope or size of the model
when moving from the broad-brush approach to the detailed approach. It is rare that
a model is only solved once and its results then implemented as decisions. Clients
will want to ask “what if” questions, data may undergo small changes and new facts
will become available during the life of a project. Hence, the problem will be run
and re-run. This is tedious to do if substantial retyping of amodel is required to ac-
commodate small changes. A Modeling System will facilitatethe incorporation of
small changes very easily, and large changes at modest effort, and allow re-running
to take place. Once clients are “comfortable” with a model they will be able to han-
dle much experimental and developmental work for themselves using the Modeling
System [see Section 2.8].

Once a model has been formulated algebraically, in what Fourer (1983,[204])
called a modeler’s form and the data obtained, it is then converted into a form suit-
able for a solver. The industry standard input form of LP and MILP problems is
MPS (Mathematical Programming System), a file format originally developed by
IBM and used by almost all systems. This format goes back to the early days of
computers with its reliance on data being read in sequentially as a fixed format list.
Although its origins are in Fortran programming it has remained the standard since
the 1960s. The style is an ordered list of constraints (rows)followed by the matrix of
non-zero coefficients: each is specified by an 8-character variable (column) name, a
similar styled constraint name and the element value,e.g.,

xprod fact1con 5.6

wherexprod is a variable name andfact1con is one of the constraints in which
it appears with a non-zero coefficient. At most two elements can be specified per
line and the line has to conform to a strict layout. A model with 1,000 constraints
and 5,000 variables might require an MPS file of 10,000 lines which is clearly im-
practical to prepare or maintain with a standard data preparation and editing facility.
Because of the presence of sparsity, which will be discussedin Section 2.11.2, data
preparation should also be performed in an efficient way to avoid duplication of ef-
fort by continually retyping some frequently occurring coefficient. What is required
is a procedure to generate the coefficient matrix easily and efficiently. This can be
achieved using matrix generation programs.

18 The modeling system associated with the first edition of this book wasXPRESS-MP, a typical
representative of many commercially available systems in the late 1990s.XPRESS-MP contained
the AML mp-model which appeared in 1983 on the market.



1.5 Using Modeling Systems and Software 19

1.5.2 A Brief History of Modeling Systems

Here we present just a brief history of how matrix generationprograms of the early
days developed into algebraic modeling languages for optimization; more details
and more recent developments are provided in Section 17.2.4. Initially matrix gen-
erators were purpose built programs designed by users for specific purposes written
in high level languages and were task specific. Programs werenot user friendly and
were hard to maintain, update, debug and were rarely well documented.

An early advance was the introduction of the (special purpose) matrix generator
generatorsOMNI/PDS MAGEN by Haverly Systems andMGG by Scicon, software
written in a high level language but offering flexibility across models and applica-
tions. The software allowed the user to provide a model and data in the modeler’s
form, albeit fairly structured and not in a particularly user friendly manner and gen-
erated MPS format matrices from the specification and data provided. Checking
within the system was provided but this did not necessarily avoid the problem of cre-
ating totally unreasonable matrices. Such software encouraged self-documentation
and was clearly a dramatic advance on user written programs.There were disadvan-
tages in that the software could be slow to use and somewhat awkward.

The next development was the introduction ofgeneral purposematrix gen-
eration programs that interpreted the modeler’s form to produce the MPS ma-
trix. Examples aremp-model within XPRESS-MP in 1982 [Ashford & Daniel
(1987,[38])],MAGIC [Day (1982,[154]],GAMS [Meeraus (1983,[403])],LINGO,
AMPL [Foureret al. (1990,[208])] andMPL [Kristjansson (1992,[353])]. Systems
such asOMNI, DATAFORM19 andXPRESS-MP allowed the user in 1990s to read
data from files, spreadsheets or databases. These latter developments have been
particularly influenced by the development of small, inexpensive but increasingly
powerful small computers, either PCs or workstations. The development of ma-
trix generation systems has thus been influenced by the move away from large
computers to smaller ones, which perhaps interface with other machines. Data is
now more commonly picked up from existing sources already stored on the ma-
chine or downloaded onto it, so flexibility of format styles is important in ma-
trix generation software. Modeling languages have been developed by several au-
thors, including Anthonisse (1970,[28]), Bisschop & Meeraus (1982,[85]), Fourer
(1983,[204]), Bisschop & Kuip (1993,[86]). Systems now offer more flexibility
for use on smaller machines. Among such systems is alsoEASY MODELER [IBM
(1993,[287])]. A review of systems available appears in Sharda (1993,[513]), a com-
parison of several systems appears in Greenberg & Murphy (1992,[247]), and Kall-
rath (2004,2012;[316],[323]).

19 DATAFORM is a trademark of Ketron Inc.



20 Optimization: Using Models, Validating Models, Solutions, Answers

1.5.3 Modeling Specialists and Applications Experts

Once a model has been built by amodeling specialistit is often used by somebody –
here calledapplication expert20 – possibly without any background in mathematics
or modeling. The modeling specialist will be responsible for formulation, validation
and debugging of the model but then needs to present it in a sufficiently robust man-
ner for the non-specialist to use. The model must therefore be usable by people other
than the designer, and so must be easily accessible and user friendly. In particular,
data input facilities need to be straightforward to initiate and modify. Further, the
management of the model building and optimization process must be transparent
and pictorial displays of model and solution must be meaningful to the environment
in which they will be used. Graphical and Windows based interfacing will be used
frequently. Many models will need to interface with commonly used spreadsheets
such asLOTUS (in the 1980s and 1990s) orEXCEL. Data might also be recovered
from SQL-queries to corporate or departmental databases. State-of-the-art modeling
software provides this functionality.

Thus the user of the model and its results will usually be insulated from mathe-
matical programming and optimization and will be able to treat results as if coming
from a “black box” system. This may sound oversimplified as itwould be unwise
for an end-user to employ an optimization model indiscriminately, but a compromise
between the two extremes of na¨ıve user and expert user is necessary.

1.5.4 Implementing a Model

Let us illustrate how to formulate the problem of Section 1.4.1 using anAMS. As the
problem is small a simplified approach to modeling can be taken.

After installing theAMS, and calling up theAMS icon in the file manager, we see
a graphical modeling environment. This should allow us to choose theFile option
from the menu and click with the mouse on it. Then click onNew and enter a Model
Name, in this caseboats in the box and click onOK (we can provide information in
the other boxes by moving around with the mouse and typing if we wish, but it is not
mandatory). The model has two essential partsVARIABLES andCONSTRAINTS.
In the first part, theVARIABLES section, the decision variables are specified. In the
CONSTRAINTS section, the constraints and objective function are specified. The
first step is to identify the decision variables. The keywordVARIABLES is typed
followed by the names of the decision variables. Any information on a new line
following the VARIABLES keyword is treated as variable definition information
until the next keyword is read. The main structure of the model, i.e., the constraints
and objective function, are now described in theCONSTRAINTS section.

20 The term “application specialist” here refers to a person who does not necessarily have famil-
iarity with management science, LP or modeling but may be a specialist in another field,e.g.,
accounting or engineering, or may perform a purely clerical or administrative role.



1.5 Using Modeling Systems and Software 21

The CONSTRAINTS section requires some explanation. AMLs require that
each constraint be given a name. For this problem the constraint names used are
berthing for berthing accommodation available,prem lim for the limit on Pre-
mier boats,maintenance for the maintenance hours restriction, andmixture
for the “no fewer Premier boats” restriction. To enter theseconstraints, the key-
word CONSTRAINTS is typed and each constraint specified. The constraint name
is followed by a colon and then by the inequality. If we look carefully we see that a
constraint is made up from:

a constraint name, followed by
a separator [colon (:), colon (;)] followed by
a linear expression, followed by
a constraint type, usually followed by
a right-hand side value.

A linear expression was alluded to in Section 1.4.2. Constraint types are, for in-
stance, inGAMS :

=L= meaning a ≤ constraint,
=G= meaning a ≥ constraint, and
=E= meaning an= constraint.

As the objective function has a similar structure to a constraint, it is coded as a
constraint. In keeping with constraints, the objective function is given a name. We
use the namerevenue.

By default, most AMLs assumes that all variables are constrained to be non-
negative unless stated otherwise. Therefore, there is no need to specify non-negativity
constraints on variables. Also by default, all variables not specified in particular con-
straints are assumed to have the coefficient zero. Thus, variables which do not occur
in particular constraints or the objective function do not need to be specified with
zero coefficients.

1.5.5 Obtaining a Solution

Now we wish to maximize this problem. So, either in the GUI or by some language
commands, we tell the system the sense of the optimization problem:maxor min.
Finally, we call the optimizer or solver, to take care of the problem and to solve it
for us. The solver call may return with the indications on problems, or it may return
the solution.

How to identify particular values or extract the solution values of variables, de-
pends on theAMS at hand. For the numberp of Premier boats we findp= 200. We
can also display shadow prices/dual values (on the constraints) and reduced costs
(on the variables) discussed in Sections 3.4.4 and 3.4.3. Toexit from each solution
dialogue, click on the top left corner of its box and chooseExit. Save the model by
clicking onFile on the menu and thenSave. It is advisable to save a model every



22 Optimization: Using Models, Validating Models, Solutions, Answers

time you make changes that you wish to keep. If we are finished with theAMS we
could now chooseExit. If we wish to continue with theAMS we shouldClose
the currentFile.

What happens when things go wrong in our model? Suppose we havetyped in
an erroneous problem which, when we attempted to compile andrun it, resulted in
two errors. Ideally, the indicated type of error and the lineof the model on which it
occurs helps us to identify the problem. Both these errors can be corrected by over-
typing on the appropriate lines of the model and then the problem can beRun again.
Note that correcting all obvious errors in the model and achieving a working model
does not ensure that the model is “correct”. There may be other errors of logic in
the model that are harder to disentangle.

1.5.6 Interpreting the Output

The names of the decision variables and their optimal valueshave been obtained
above. We saw that the optimal value ofp is 200,i.e.,200 Premier boats should be
leased in order to maximize profit. Similarly, the optimal value of variables is 150,
i.e.,150 Standard boats should be leased.
We also see the optimal revenue produced. The optimal revenue obtained is

£250,000. In the present example it is fortunate that the numbers of boats required
of each type have turned out as whole numbers. If a problem requires that integer
numbers be produced in the optimal solution then we normallyrequire the tech-
niques of (mixed) integer linear programming. Further details of this approach can
be found in Chapter 3.

Although we have found an optimal solution to the problem given, this may
not always be possible. If the constraints were insufficientto constrain the problem
it may be possible to improve the objective function indefinitely. In this case the
problem is said to beunbounded. This usually means that a relevant constraint has
been omitted from the problem or that the data are in error rather than indicating an
infinite source of profit. Conversely, if the constraints aretoo restrictive it may not
be possible to find any values for the decision variables thatsatisfy all constraints.
In this case, the problem is said to beinfeasible.

We have now seen that AMSs may have two components, a modelingcomponent
and a solver. We have just built a simple model, and put it intothe language format
expected. We then solved the problem. Finally we displayed the optimal solution
values. In the next section we shall see what our client has tosay about the solution
and extend the boat problem to incorporate more details.



1.6 Benefiting from and Extending the Simple Model 23

1.6 Benefiting from and Extending the Simple Model

We are now ready to present our promising results to the ownerof Sunshine Cruises.
She is very impressed by the information she receives from the results of the lin-
ear programming calculations, but now something happens which is quite common
when modeling real-world problems. She realizes that the problem has not been
modeled in sufficient detail.

After discussion, we learn further that Sunshine Cruises has a seasonal business.
Their year runs from the end of March to the end of October and is divided into
three parts:

early seasonhigh seasonlate season

Different numbers of boats will be required for each season and essential mainte-
nance is performed in early or late season making some boats unavailable. As the
type of customer varies in different seasons, the profile of the demand for the dif-
ferent types of boat alters. In high season most customers are families who require
the larger Premier boat. Pricing policies are also different in the different seasons.
Thus Sunshine Cruises would normally lease different numbers of boats at different
seasons.

The simplified and aggregated version of the model was too simple and now
needs to be disaggregated. We can do this by introducing three pairs of variables:

pe ph pl

se sh sl
(1.6.1)

to denote the numbers of Premier and Standard boats requiredin each season.
Restrictions on requirements for boats are: in early and late seasons more Stan-

dard then Premier boats are required, while in high season more Premier than Stan-
dard boats are required. Thus we require:

pe ≤ se , ph ≥ sh , pl ≤ sl (1.6.2)

Giving the new revenue structure the objective function becomes:

max 500pe+400se+700ph+600sh+400pl +350sl (1.6.3)

subject to
pe + se ≤ 300 , pe ≤ 150
ph + sh ≤ 350 , ph ≤ 200
pl + sl ≤ 300 , pl ≤ 150

(1.6.4)

the upper limits accounting for availabilities of boats. Other constraints for mainte-
nance require:

4pe + 3se ≤ 1000
4ph + 3sh ≤ 1400
4pl + 3sl ≤ 1000

(1.6.5)

As before all variables are non-negative.



24 Optimization: Using Models, Validating Models, Solutions, Answers

This problem, which you find under the nameboats2, can now be solved using a
MILP solver and values for the variables obtained. We find thenew policy is:

pe se ph sh pl sl ob jective
100 200 200 150 100 200 470,000

(1.6.6)

Notice that revenue has risen, but revenue must be regarded as the total revenue for
three weeks with a typical week from each season included.

This model is now more realistic than the first simple model and provides Sun-
shine Cruises with much more information. Further elaboration to the model can
now be considered by bringing in constraints involving these factors:

• fuel is supplied by a company part-owned by Sunshine;
• breakdowns require a boat to replace the broken down boat, conduct repairs,

compensate and perhaps swap customers on to a spare boat;
• other aspects of cost

and so on.
Further major analyses are possible as the fuel company has its own mathematical

programming model to determine what is best for its operations, of which arrange-
ments to provide fuel to Sunshine Cruises is only one part. The two models can
now be compared, or indeed amalgamated, to determine if jointly further gains to
revenue are obtainable.

Thus the Sunshine Cruises model has illustrated the typicaluse of mathematical
programming to aid a company in a series of stages:

1. a simple model is developed initially;
2. once the capabilities of the analysis are grasped, the model is made more realistic;
3. the model is expanded in scope;
4. further gains obtainable from modeling are appreciated and the analysis is further

extended.

1.7 A Survey of Real-World Problems

The problem just considered was small but illustrated a typical situation in which
mathematical programming might be used. In this section we describe the areas in
which applications of mathematical programming are to be found.

The brief survey of real-world problems given in this section is typical for many
businesses and industries but many other applications alsooccur in other areas.

• allocation problems (allocating people to tasks);
• production planning (production, logistics, marketing);
• scheduling problems (production of goods using processessuch as machines);
• sequencing problems (putting production into order);
• blending problems (production and logistics);



1.7 A Survey of Real-World Problems 25

• process design (process industry);
• engineering design (all areas of engineering);
• selection problems (strategic planning);
• network design (planning, strategic planning);
• refinery planning and scheduling (refineries, chemical process industry)
• timetabling problems (in schools, universities);
• timetabling or scheduling and routing for aircrafts and trains;
• distribution and logistics problems;
• purchasing;
• long term resources acquisition/disposal;
• economic problems;
• problems in the financial service industry.

Specific skills often mean that only certain people can perform specialized tasks.
Thus optimization methods can solve problems ofallocatingpersonnel to tasks, see
Chapter 4. Manpower modeling is discussed in Schindler & Semmel (1993,[501]).

Companies which are in a situation to utilize the advantagesof a complex pro-
duction network as in Kallrath (1995,[310]), often becausethey operate at several
sites, may greatly benefit fromproduction planningandproduction scheduling, see
Chapter 10. Of course, scheduling problems occur also in other branches of indus-
try. Production planning and scheduling require detailed answers to the questions:
when is the production of a specific product on a specific machine to be started?
What does the daily production sheet of a worker look like? Scheduling problems
belong to a class of the most difficult problems in optimization. Typical special
structures, which can be tackled by optimization, are minimal production rates, min-
imal utilization rates, minimal transport amounts. Items of production must also be
sequenced.

Blending problemsoccur in a wide variety in the chemical process industry, but
in modified form also in the mineral oil or food industry. In Kallrath (1995,[310]) a
model is described for finding minimal cost blending which simultaneously includes
container handling conditions and other logistic constraints, see also Chapter 10.

In planning it is often required to make aselectionfrom a series of projects in an
optimal manner. This is clearly another type of optimization problem.

Questions of how a telecommunication network should be structured and de-
signed when the annual demand is known, or what the traffic infrastructure should
look like for a given traffic demand, lead tonetwork design problems.

People often need to betimetabled, i.e., allocated to sessions with conflicts being
avoided. These applications lead to complex optimization problems. They can be
classified as resource constrained scheduling problems with time windows. Such a
case is discussed in Section 10.5.

Problems ofdistribution and logisticsprovide a fruitful outlet for optimization -
choosing vehicles, routes, loads and so on, see Chapter 7.

While the problems listed above can be solved with linear mixed integer methods,
problems occurring in process industry very often lead tononlinear discrete prob-
lems. Production planning or scheduling problems in the refineryor petrochemical



26 Optimization: Using Models, Validating Models, Solutions, Answers

industry include blending problems involving manypoolingproblems [see Section
11.2.2]. If, in addition, we have to consider that plants operate in discrete modes,
or that connections between tanks and cracker or tanks and vacuum columns have
to be chosen selectively, then mixed integer nonlinear optimization problems need
to be solved. Process network flow or process synthesis problems usually fall into
this category too. Examples are heat exchanger networks, distillation sequencing or
mass exchange networks.

Problems in the financial services industry are related to financial optimization
[see Section 8.4] and are concerned with risk management andfinancial engineering
and lead usually to nonlinear or even mixed integer nonlinear programming prob-
lems. Models in financial optimization are used, for example, by investment and
brokerage houses.

It should not be inferred from this list of examples that optimization is confined
to large sophisticated problems occurring in large organizations.21 Small problems
are equally important, but it may be that the role of techniques to solve problems
is less important. Some small problems lack the structure required for the use of
optimization techniques and for others the use of techniques would be seen as using
a sledge hammer to crack a nut. A balance is required where gains to be obtained by
finding optimal answers to a problem outweigh the effort required to obtain these
answers.

1.8 Summary & Recommended Bibliography

After reading this chapter the modeler should be able to:

• recognize the features of mathematical programming and, in particular, linear
programming (LP) problems;

• identify decision variables, constraints and an objective function for small LP
problems;

• draw a graph of a 2-variable LP problem;
• solve a small LP problem using anAMS;
• appreciate some of the extensions possible to small LP problems;
• be aware of some of the range of applications of mathematical programming.

The bookIntroduction to Applied Optimizationby Diwekar (2008,[169]) may be a
good starting point for the reader new to optimization.50 Years of Integer Optimiza-
tion by J̈ungeret al.(2010,[305]) is a comprehensive (superb combination of theory,
algorithms and applications with both linear and nonlinearproblems) collection of
superb, high quality chapters by many distinguished scientist of optimization.

21 The use of mathematical optimization in small or medium size business [in the German-speaking
part of the world: kleine und mittelständige Unternehmen] is discussed in Section 16.5.



1.9 Appendix to Chapter 1 27

1.9 Appendix to Chapter 1

1.9.1 Notation, Symbols and Abbreviations

Below we list the most important symbols and abbreviations used in this book.

SymbolExplanation Example
{} set I = {1,2,3,4,5,6}
xi subscripted variable x1,x2,x3,x4,x5,x6

xT transposed vector, row vector xT = {x1,x2,x3,x4,x5,x6}
AT transposed matrix
∈ is an element of i ∈ I
∀ for all (universal quantifier) ∀i
∑ summation ∑4

i=1xi = x1+x2+x3+x4

Π product Π4
i=1xi = x1 ·x2 ·x3 ·x4

⊂ is strictly contained in {2,3,4} ⊂ {2,3,4,5}
⊆ is contained in or equal to {2,3,4} ⊆ {2,3,4}
≤ less than or equal to x≤ y
≥ greater than or equal to y≥ z
:= defined equal to x := y2

|I | number of elements in a set; card(I ) |{1,2,3,4,5,6}|= 6
IN the set of positive integers IN = {1,2,3,4, . . .}
IN0 the set of non-negative integers IN0 = {0,1,2,3,4, . . .}
∞ infinity
exp exponential function exp(x) = ex,e= 2.7182. . .
ln natural logarithm function elnx = x
⌊x⌋ down-rounding function ⌊4.3⌋= 4
⌈x⌉ up-rounding function ⌈4.3⌉= 5
AML abbreviation:algebraic modeling language
AMS abbreviation foralgebraic modeling system
MCOL abbreviation formodel collection online
e.g. the Latin abbreviationexempli gratiameaning:”for example”
i.e. the Latin abbreviationid est meaning: ”that is to say”
s.t. abbreviation forsubject to
w.r.t. abbreviation forwith respect to

Furthermore, we keep the following convention throughout the book:

object sets vectors matricessoftware productssolver namesfile names
print font calligraphicbold facesans serif typewriter small caps italics
example J x A GAMS BARON optGrid.gms



28 Optimization: Using Models, Validating Models, Solutions, Answers

In mathematical model descriptions decision variables/unknowns are always de-
noted by small letters where Greek letters refer to integer,binary, semi-continuous or
variables belonging to special ordered sets. Capital letters indicate known input data
and parameters of the optimization. Equations are numberedand cross-referenced
by (1.2.3) giving chapter, section and equation number in that section.

1.9.2 A Brief History of Optimization⊖

The notion ofoptimization- used in a mathematical sense - means the determination
of the maximum or minimum of a special function, which is defined through a (lim-
ited) region or series of states. Optimization has become more important, because
of remarkable improvements in techniques and the dramatic increase of calcula-
tion (computer) power. However, the benefits of optimization have been around for
longer as will now be shown.

The disciplineOperational Research (OR)developed during the Second World
War and in the immediate post-war period;cf. Nemhauser (1994,[430]) and Jünger
et al. (2010,[305]). The problems to be solved in the period following the Second
World War were closely linked to the military operations to be carried out. Teams
were put together, combining interdisciplinary or multi-disciplinary professionals
with others with a mathematical-natural science background, who then worked to-
gether on problems. Physicists were often in these groups. In the 1950s these ap-
proaches were more and more used for civilian problems and a variety of tech-
niques, methods and algorithms were developed. Developments were paralleled on
both sides of the Atlantic. In the USA the term Operations Research was favored
rather than Operational Research, but to a degree the concepts were similar and for-
tunately both terms have the same initials (OR) as an abbreviation. Operational Re-
search professionals now form a sizeable group, with Professional Societies linked
internationally by IFORS (the International Federation ofOperational Research So-
cieties). In Britain the Operational Research Society has approximately 3,000 mem-
bers and in the USA its counterpart, INFORMS, has over 10,000members. These
professionals are not licensed practitioners in the way that lawyers or dentists are
required to be, so people other than professional society members may practice OR.

The idea of producing a best solution to a given problem has usually been cen-
tral to OR. However, not until the 1960s, did a sub-discipline within OR emerge to
put these procedures on a well-defined mathematical footing. The notion ofmath-
ematical programmingdeveloped as a generalization of the types of optimization
being conducted in OR. (The wordprogramminghere means planning rather than
computer programming, as problems were being considered before the advent of
computers.) Nowadaysoptimizationhas returned as the more suitable term, which
itself can be understood as a part of a practically-orientated discipline of mathemat-
ics, namelyscientific computing, which has developed since the 1980s. The catalyst
in all this has been the development of cheaply available computer power to solve
problems.



1.9 Appendix to Chapter 1 29

Both the disciplines of scientific computing or operationalresearch try to solve
practical problems of high complexity by mapping givenreal-world problemsonto
mathematical models. The methodology is to formulate the problem in the language
of mathematics using variables, mathematical functions and relations. Next tech-
niques (algorithms) are developed for solving the mathematical problem. Eventu-
ally these algorithms are implemented on a machine (computer) which leads to a
piece ofsoftware.

Already in the early 19th century certain optimization problems played a role
and were solved with the help of a technique known as Lagrangemultipliers. In
this period the French mathematician Fourier investigatedconstrained optimization
problems and proposed an outline of a technique to solve thembut did not make the
final breakthrough. People continued to be interested in optimization problems even
though they did not know precisely how to solve them. From thefield of economics
there was interest in optimal diet problems [Stigler (1945,[532])] and other prob-
lems of resource allocation. Economics, with its interest in scarce resources, was a
natural field to be interested in the optimization of the utilization of these resources.
However, for the birth of the first solved optimization problems in OR, 1947 is the
key, being the year in which Dantzig developed his Simplex algorithm for solving
a known optimization problem from OR (LP) and used it in an air-force-planning
model (Dantziget al., 1954,[152]).

The Simplex algorithm of Dantzig for solving LP problem exploits the geometri-
cal shape of the feasible region which in that case is a polyhedron. It searches from
corner (vertex) to corner progressively. An optimal cornercan be found and the op-
timal solution actually lies at this corner. As early as 1954the first commercial code
for solving LP problems was written by Orchard-Hays (1969,[437]).

In the 1950s the first ideas on an optimization problem known as dynamic pro-
grammingwere introduced by Bellman (1957,[62]). Ford & Fulkerson (1962,[202])
looked at and solvednetwork problems. Kuhn & Tucker (1951,[358]) established
the principles of solvingoptimization problemswhere the conditions and/or objec-
tive of the problem cannot be described by the type of rigid conditions enunciated by
Dantziget al. (1954,[152]). Gomory (1958,[239]) presented the first general algo-
rithm for the solution of an extension of Dantzig’s LP approach to what are termed
integer optimization problems, and finally, Dantzig & Wolfe (1954,[153]) examined
decomposition proceduresand their application on large-scale problems which re-
lated the solution technique back to fundamental ideas on decentralization arising
in economics. The development of solution techniques went hand-in-hand with the
development of large mainframe computers to which industry, commerce and gov-
ernment departments had access through new data-processing departments. Further
information on the history of the development of optimization in OR is contained in
Orden (1993,[438]) and Bodington & Baker (1990,[94]).

Nowadays OR optimization problems with several hundred thousand decision
variables and conditions to be satisfied, for example in the civil aviation area, are
routinely solved. The best Simplex algorithms compete withthe newer approaches
termed interior-point methods, whose original development goes back to Dikin
(1967,[167]). Initiated by the work of Karmakar (1984,[336]) interior-point meth-



30 Optimization: Using Models, Validating Models, Solutions, Answers

ods have undergone further development involving the best researchers in operations
research. Depending on the structure of the problem one or other procedure is more
suitable. In some cases a mixture of several methods is suited for the solution of
problems with several million decision variables.

Essential aspects which lead to an improvement of the algorithms are under con-
tinual investigation by researchers, but these componentscould only be improved
significantly because in the meantime computer systems haveimproved (architec-
ture, memory and software surroundings) and make fast testing easy and thereby
sensible experimenting possible.

The improvement within LP has, on one hand, consequences forthe size and
complexity of the problems which can be solved. On the other hand the technique
of LP is often used within other optimization processes for more complex problems
(e.g., in mixed integer programming, see Chapter 3).

The developments in optimization techniques facilitated the solution of problems
in the areas of logistics, transport, production planning,finance, communication and
yield-management;cf. Grötschel & Lovasz (1982,[253]). An important character-
istic of such problems is the need to model discrete decisions and very complex
structures in the optimization. In addition, due to more efficient algorithms, hard-
ware and software, problems with several million decision variables can be solved
in reasonable time on a simple PC laptop, removing the earlier need for access to
large computers. Among the improvements in optimization techniques are:

• improved algorithms;
• good model formulation;
• preprocessing (investigating the problem intensively before the solution tech-

nique is applied, see Section 9.1);
• approximate methods (heuristics);
• efficient use of resources on a computer (e.g., storage, access and processing).

Algorithms are under continual review and development. Theprincipal recent devel-
opment has been of hybrid algorithms. These algorithms combine the strengths of
several different techniques and either automatically or by user intervention permit
to solve problems by switching from method to another method.

With the help of a facility in optimization software known asautomatic prepro-
cessing which examines the constraints and variables of a model, it is possible to
eliminate redundancies in the model and to improve it logically. Difficult problems,
which could hardly be solved previously, can now be solved and previously solvable
problems can be solved more efficiently.

Heuristics provide ways of approximately solving problems. They may be used
as a starting point by an existing technique or may be used to modify a solution
provided by a technique when it is not possible to solve the problem easily.

Computer resources can now be dedicated to problem solving allowing modelers
dedicated use of storage or machinery or the hard-wiring of aspects of the software
into the machine. Turnkey systems which allow naive users tosolve problems with
simple menu prompting are now cheap with the advent of inexpensive small com-
puters.



Chapter 2
From the Problem to its Mathematical
Formulation

This chapter will cover the fundamentals of modeling problems such as the one
introduced in the previous chapter but now with a view to modeling and solving
much larger problems. By modeling we mean taking all the features of the original
industrial or commercial problem and encapsulating the ideas in it as a mathemat-
ical programming problem. We aim for a one-to-one correspondence between the
original problem and the model.

Fig. 2.1 A modeler thinking about a
model of a real-world problem. Pro-
duced for this book by Diana Kallrath,
Copyright ©2020.

2.1 How to Model and Formulate a Problem

If we understand amodelas anabstraction of the real-world, it is clear that it cannot
cover all details. The main reasons are

31



32 From the Problem to its Mathematical Formulation

1. data availability (in most part of this book we develop anddiscuss deterministic
models assuming that the data are deterministic, although,in practice, input data
may be uncertain, a situation covered in Section 11.3),

2. effort to collect and maintain additional data,
3. complexity to understand the interactions, and
4. finally the results.

Although a one-to-one correspondence between the originalproblem and the model
would be ideal, we will normally have to simplify aspects of the real problem in or-
der to make the modeling manageable. This is not intended as some kind of opt out,
but the simplifications may arise for good reasons as the following three possibilities
(scale, visualization, simplicity) suggest.

1. Scale: When we start to model it may be convenient and easier to commence
with a scaled-down version of the real problem so that we can develop a “feel”
for what is going on. This will be particularly useful as an aid for discussions
between the modeler and the client for whom the model is beingproduced. For
example, if there are 100 vehicles delivering from 12 depotsit may be convenient
to temporarily simplify the problem to 10 vehicles and 2 depots. We start to
examine what conditions are affecting these vehicles and depots. We then can
discuss with the client whether we have taken the correct view of the problem in
all its aspects. What we are trying to do here is to marry together “client’s world”
and “modeler’s world”. The model now becomes a focus for debate between
modeler and client.

2. Visualization: In our own modeling it may be beneficial to visualize what is going
on by trying to model parts of the problem first. Once we have confidence that
we understand the problem we can attempt the full model.

3. Simplicity: Parts of a client’s problem may be genuinely difficult to model, e.g.,
some complex conditions within an industrial process. Or the client cannot pro-
vide data on that detailed granular level required. Thus, itmay be best to simplify
or even ignore these difficulties and see what progress can bemade with a model
which is not complete, but copes with the main thrust of the client’s require-
ments. Once the client sees the results of some solved problems it may be that
the information is sufficient to make decisions,e.g., if aspects of a problem are
treated in an overgenerous way, but the results suggest no gain can be made, then
the client may be satisfied that the proposed ideas are not worth further pursu-
ing. Alternatively, the provisional results may be sufficiently tempting to suggest
gains are possible, and now the client requires a much more precise and complete
model to be built. The moral here is that it may not be worthwhile aiming for a
high degree of precision on the first attempt at building a model as a broad-brush
approach may provide considerable insight.

In the three suggestions made it is important that full communication is retained
between modeler and client so that the client is aware of simplifications being pro-
posed and limitations imposed. These can then be agreed as a suitable starting point.

To model a problem as a mathematical programming problem three key parts of
the problem must be identified:



2.2 Variables, Indices, Sets and Domains 33

• Variables
• Constraints
• Objectives.

The identification of each of these three will form the next three sections of this
chapter. In addition to these three parts we have

• Data structures (clarify what are basic objects and what are attributes to objects).
• Indices (they represent the basic objects).

In more sophisticated modeling these would be the first two parts to be identified,
but in simple examples with few variables and constraints they can be ignored. This
will be done in this chapter, but the importance of data structures and indices will
be stressed as part of the good practice of modeling.

2.2 Variables, Indices, Sets and Domains

Mathematical problems revolve around variables. Variables are used to model the
decisions “how many”, “what kind”, “where to”, “where from”, ”how much” and
so on. Variables are often thought of in algebraic terms as representing “unknown
quantities”. Symbols such asx,y andz may be used to denote variables. These are
commonly used in textbooks on algebra for “unknowns”. However, in our work we
want to make a distinction between what isunknownand what is thedirect resultof
a decision. Therefore, the variables or unknowns are often thought of as “decision
quantities” and are also calleddecision variables.1

For example, if a manager of a factory has to make a decision asto how many
trucks to dispatch at fixed 5 minute intervals, starting withthe earliest at 08.30, then
initially the planned departure time of the last truck is unknown. However, the final
departure time is not a direct decision, but the total numberof trucks to dispatch
is. Once we know that 20 trucks are to be dispatched, the planned departure time
of the last truck is known. Thus the key to identifying variables will be to identify
decisions.

Sometimes it is difficult to identify exactly which decisions exist in a problem
situation. It may often be useful to pose questions such as “what does the manager
need to know?” in order to identify what are the necessary decisions and hence the
variables of the model. In this part of the process we are re-emphasizing the earlier
distinction made between the “client’s world” and the “modeler’s world”. The client
wishes to know what decisions to take, but may wish to remain indifferent about
which variables are in the model. The variables are part of the modeler’s world.

Hence we start to recognize that variables can be classified according to type. In
mathematical programming the usual types of variables are:

• Continuousvariables,x≥ 0

1 In the LP community variables are also calledactivitiesor justcolumns.



34 From the Problem to its Mathematical Formulation

These are non-negative variables which can take any value between zero and some
specified upper limitX, 0≤ x≤ X, andX may take the value infinity. Note that we
use lower-case characters for continuous variables.

A continuous variable might for example be used to model the amount of oil
measured in tons flowing through a pipeline.

• Freevariables,−∞ ≤ x≤ ∞

These are continuous variables unrestricted in sign. They can take any positive,
zero or negative value. They are also calledunconstrainedvariables orunrestricted
variables.

In contrast to the earlier remark about variables usually being non-negative, free
variables exist to model varying quantities such as “growth”, “change” or “net
profit” where the desired value of a variable could be positive or negative, or indeed
zero. A free variable can be thought of as or represented by the difference between
two non-negative variables,e.g., x+−x−, and it is possible to avoid the use of free
variables in models, but this will be unnecessary within most modeling languages.
However, they are often useful to express directly a quantity where conventional
negative values are not unusual.

So we keep in mind, free variables can describe growth, change, or account bal-
ance. On page 373, for example, they are also called unconstrained variables to solve
special nonlinear optimization problems by sequential linear programming.

• Integervariables{0,1,2,3,4, . . .}

These are non-negative variables which can take any integer(whole number) value
between zero and some specified finite upper limit. Throughout the book we use
lower-case Greek characters,e.g., α ,β ,γ , . . ., for all integer variables or other non-
continuous variables,e.g., the binary variables introduced below.

The number of Premier boats, for example, could be represented by an integer
variable.

• Binaryor {0,1} variables.

These are a special form of integer variables which can take only the values 0 or
1. Thus a binary variable has upper limit 1. Note that a binaryvariable, typically
namedδ , always obeys the weaker restriction

0≤ δ ≤ 1. (2.2.1)

Such a restriction is calledrelaxation, or to be more precise, adomain relaxation,
and is a very useful concept to treat optimization problems containing integer or
binary variables.

Binary variables are used to model decisions which have exactly two outcomes,
e.g., do commence a project or do not commence it. In this instancewe may choose
to associate the value “1” with the commencement of the project and the value
“0” with non-commencement. These associations are arbitrary and are decided on
by the modeler. Notice that a binary variable models the logic of a decision, not



2.2 Variables, Indices, Sets and Domains 35

a value which occurs in the client’s world. In many models continuous variables
occur alongside binary variables, the binary variables being used to model major
dichotomies in the decision making and the continuous variables modeling the con-
sequences of these decisions.

• Discretevariables

can only take certain isolated or discrete values,i.e., σ ∈ {W1,W2, . . . ,Wn}. The
valuesW1,W2, . . . ,Wn do not necessarily have to be integer or binary;e.g., σ ∈
{−3,0,+0.25,+1,+17.1} is also possible. Discrete variables contain integer vari-
ables as special cases and can be described with the help of binary variablesδ i , the
equationσ := ∑n

i=1Wiδ i and the constraint∑n
i=1 δ i = 1 or the special ordered sets

of type 1 described in Section 6.8, respectively.

• Semi-continuousvariables (and alsosemi-continuous integers), σ

These are variables which can take the value zero or any continuous value equal to
or greater than a constant. In many software packages the constant is predefined as
1. Thus the variables need to be scaled accordingly,e.g.,if a variablex is to be zero
or any continuous value greater thanX− = 3 thenσ = x/3 is a semi-continuous
variable taking the value zero or any continuous value greater than 1. Formally, this
variable fulfills the relation

x= 0 or X− ≤ x≤ X+, (2.2.2)

where the lower limitX− is any positive number,X− > 0, and the upper limitX+

may take the value infinity. If scaling toσ− = 1 is necessary then a semi-continuous
variable

σ =
x

X− which is equivalent to x= X−σ (2.2.3)

is introduced. Note thatσ is scaled to unity,i.e.,

σ = 0 or 1≤ σ ≤ X+/X−. (2.2.4)

These variables are used to model aspects of industrial processes where either noth-
ing is produced or if anything is produced, it has to be above aminimal level. Semi-
continuous variables are also used in transport problems. Imagine a company with
production sites on different continents. They can ship goods from one site to an-
other. But if goods are shipped then the requirement is that at least, say, 20 tons,
are shipped. Otherwise no transport is possible. Such a situation occurs in the case
study in Section 10.4 where semi-continuous variables are also used to include cer-
tain plant utilization rates.

• Partial integervariables

Partial integer variables, also known as semi-integer variables, are variables that
must be integral if they lie below some stated value, otherwise they are considered
to be continuous variables. They are a generalization of semi-continuous variables.



36 From the Problem to its Mathematical Formulation

The reason for having such variables is that once a variable is larger than some stated
value any fractional part associated with it will be sufficiently small compared to
the integer part of its value that it may be regarded as relatively insignificant. Thus
the variable can be regarded as continuous once it is relatively large. As continuous
variables are easier to deal with when solving mathematicalprogramming problems,
one should always check whether it is possible to replace integer variables by partial
integer variables. Conversely, such a variable taking a lowvalue would mean that if
the value were not integral then the fractional part formed asignificant part of the
overall value and could not be neglected. There will be no standard breakpoint that
can be used to form the “stated value” - it will depend on the individual decision
modeled by the variable; see also the example on page 286.

Note that apart from what we have learned above about the various types of
variables, binary, integer, semi-continuous and partial integer variables are often
referred to asdiscrete variables.

All work in linear programming (LP), integer linear programming (ILP) or mixed
integer linear programming (MILP) variables are assumed tobe non-negative unless
otherwise stated. Sometimes, however, it is necessary to have variables unrestricted
in sign.
It is not obligatory to use single letters to denote variables. In fact it may be useful
to use mnemonic names to denote them,e.g., xcash, prod1, prod2, as this can help
to document the model (but one should bear in mind that it makes mathematical
relations more difficult to read). However, there is a trade-off between mathematical
elegance and the use of mnemonic names which might improve the understanding
of a model, particularly to those people not involved in building it in the first place.

So far in this section we have thought of variables as individual items whose
individual values may range widely. In more realistic modeling it will be useful to
think of variables collectively in sets and to define their range.

2.2.1 Indices, Sets and Domains

If we wish to model quantities of a product produced at 12 different time intervals
and 5 different locations, it would be quite cumbersome or impractical, to introduce
60 individual variables with namesx01, . . . ,x60 and to remember which index value
corresponds to which combination. It is much easier to thinkof a generic variable,
x, depending on the time slicet and locationl . The variablex now becomes an array
of variables. The indices are linked withx and are used to describe each member
of a set of variables. Therefore, we introduce the indext = 1,2, ...,12 for time and
the indexl = 1,2,3,4,5 are used for the locations. More precisely,t is used as an
element (index) in theindex setT = {1,2, ...,12}, in mathematical writingt ∈ T ;
and similarly forl andl ∈L = {1,2, ...,5}. Now,xtl or xt,l represents production at
timet at locationl , e.g., x4,5 for a quantity of the production quantity in time interval
4 at location 5; in general



2.2 Variables, Indices, Sets and Domains 37

xtl , t ∈ T , l ∈ L .

This is an alternative, more general and therefore preferred formulation to

xtl ; t = 1,2, ...,12 , l = 1,2, ...,5.

If it is clear that all elements of an index set are meant, we write this with the
universal quantifier∀ (for all) and demand for example

xtl ≥ 10 , ∀t ∈ T , ∀l ∈ L ,

xtl ≥ 10 , ∀t , ∀l ,

or, if no confusion is possible,

xtl ≥ 10 , ∀{tl}.

The symbol∈ is read as “is an element of” while the symbol∀ means “for all”. Thus
t ∈ T is read as “t is an element of setT ”, and ∀l means “for alll ”. If we refer,
for instance, to a previous time period, it is safer to separate the indices by comma,
e.g., xt−1,l .

The set of index values which a particular variable can take will be referred to
as itsdomain, e.g., {2,3,4}. Integers used as subscripts are typical for time pe-
riods or hours during the day,e.g., in energy models. However, when using in-
dex sets it is not necessary to restrict the elements of the domain to integers,
names of products or cities are also valid. So, instead of a ofnumeric index sets
like L = {1,2, ...,5}, we could have an index set for locations which appears as
l ∈ {Athen,Rom,Paris,London,Bonn} with alphanumeric or string-valued index
quantities. That results in much more flexibility and readability.

Index sets make it possible to easily create model instancesof small size for
test purposes, by only creating a part of the indices to be used, e.g., instead of
t = 1,2, . . . ,12 only t = 1,2,3. Another advantage is the extension of index sets
to subsets explained below. The use of discrete time slices (hours, days, weeks,
months, quarters, or years) leads to so-calleddiscrete-time models. In scheduling
problems, especially, in the process industry, alsocontinuous-time model formula-
tionsare promising alternatives;cf. the examples in [290], [289], [291], [261], [377]
and [379] by Floudas and his collaborators. In these models,the start and end times
can take any values on the continuous timeline.

Sometimes the conventionx(t, l) is used to avoid the need for subscripts because
most computer languages do not use subscripts, but frequently the modeler uses
the subscripted notation as a shorthand way of writing. Perhaps in the future two-
dimensional formula input and output,e.g., x2 or yi j , will become the standard as is
already the case inMaple2 andMathCAD.3

2 Maple is a registered trademark of Waterloo Maple Inc.
3 MathCAD is a registered trademark of MathSoft, Inc.



38 From the Problem to its Mathematical Formulation

In Section 2 the use of scaled down models was advocated. Thiscan be handled
easily when indices are used. The ranges over which the indices are allowed to vary
are scaled down for the prototype model and then ranges can beextended later.
More than two indices can be associated with a variable, but it is often found that
notation becomes very cumbersome when more than four subscripts and associated
indices are used, particularly by a non-expert modeler. As an upper limit on indices
is approached it may be beneficial to rethink the nature of thevariables. In any model
the choice of which variables to use (not simply the choice ofnames or characters
to use to denote them) will not be unique and may depend on personal style.

2.2.2 Summation

In Section 2.2.1 indices were introduced. Indices are used to reference a variable,
e.g., x14. Indices also allow sets and subsets of variables to be addedtogether and
their sum to be referenced. To do this the summation symbol∑ is introduced, where
∑ means “sum of”. For example, if we have defined the variablesyi (i = 1,2, ...,6)
or i ∈ I = {1,2, ...,6}, then the expression

6

∑
i=1

yi or ∑
i∈I

yi or ∑
i

yi (2.2.5)

means the sum

y1+y2+y3+y4+y5+y6.

In the∑ expression the part “i = 1” under the∑ is the starting value of the indexi
to be used in the sum and the part “6” above the∑ is the ending value of that index,
and

6

∑
i=1

or ∑
i∈I

or ∑
i

(2.2.6)

means “add all values which have subscripts between 1 and 6, inclusive” or “add all
values which have subscripts contained in index setI ”. Thus

3

∑
i=1

yi (2.2.7)

means

y1+y2+y3

and

6

∑
i=4

yi (2.2.8)



2.2 Variables, Indices, Sets and Domains 39

means

y4+y5+y6.

We may use further sophistication,e.g.,

6

∑
i=1∧i 6=3

yi (2.2.9)

means

y1+y2+y4+y5+y6

and

3

∑
i=1

y2∗i (2.2.10)

means

y2+y4+y6.

In an gAML the notation∑ could be replaced bySUM( ) and the expressions
(2.2.5), (2.2.7), (2.2.8), (2.2.9), and (2.2.10) are written, respectively, as

SUM (i = 1 : 6) y(i) or SUM {i in I , y(i)}

SUM (i = 1 : 3) y(i)

SUM( i = 4 : 6) y(i)

SUM (i = 1 : 6 | i.NE.3) y(i)

SUM (i = 1 : 3) y(2∗ i).

The summation notation provides a convenient shorthand forcomplex expressions
and is particularly useful when we want to express somethinglike

A1y1+A2y2+A3y3+A4y4+A5y5+A6y6

which can be written as

6

∑
i=1

Aiyi or ∑
i∈I

Aiyi

and could be implemented in an gAML as



40 From the Problem to its Mathematical Formulation

SUM (i = 1 : 6) A(i)∗y(i) or SUM {i in I , A(i)∗y(i)}.
A more complex summation such as

12

∑
t=1

5

∑
l=1

Atl xtl

is handled as
SUM (t = 1 : 12, l = 1 : 5) B(t, l)∗x(t, l),

or
SUM {(t in T ,l in L ), B(t, l)∗x(t, l)}.

The benefit of using sets becomes even more obvious when the models contain vari-
ables depending on several indices. As a simple example, consider a variableshc

representing the amounts of shipment from pairs of countries C ={Jamaica, Haiti,
Guyana,Brazil,Germany} and harborsH ={Kingston, SanDomingo, Georgetown,
Belem, Bremen, Hamburg}. The complete tuple setH ×C would contain 30 ele-
ments, but in reality, only the six combinations

H C (h,c) = {(Kingston,Jamaica);(SanDomingo,Haiti);

(Georgetown,Guyana);(Belem,Brazil);

(Bremen,Germany);(Hamburg,Germany)}

really exists in this harbor-country relationship; note that a country can have more
than one harbor, but each harbor is uniquely assigned to a country. Most AMLs
would allow to write a sum over such a tuple – also called subset – as

SUM {H C (h,c),s(h,c)},

which means that the loop within the SUM runs only over six index combinations
and that this term contains only six variables sent to the solver instead of 30 for
the full combination set. For this small example, the difference in time for model
generation is small. But if we talk about problems with millions of variables, it
makes a great difference. This handling of indices, by the way, is also one of the
strong arguments for AMLs as they do index and set handling very efficiently. Free
approaches such asPyomo,JuMP, etc. may have long running times when problems
reach this size.

2.3 Constraints

The model developed in Section 1.4.1 illustrated some typesof constraints,e.g.,
4p+3s≤ 1400. In general, constraints take the form

(left-hand side) “relation” (right-hand side) (2.3.1)



2.3 Constraints 41

The left-hand side must be a linear expression in the variables of the model. By this
we mean it must take the form

2x+3.5y−8.1w. . . (2.3.2)

with each variable being multiplied by a positive, negativeor zero constant (coeffi-
cient)4 and the constant·variable items added together. Products or powers (e.g., xy
or x4) of variables, or even functions of variables such as exp(x) are not permitted
in linear models [but see Chapter 6].

The relation can be≤, = or ≥ . The relations< , > cannot be used because of
mathematical restrictions arising from the solution approach to problems. Recall, as
mentioned earlier,< and> are used in software coding of models, as≤ and≥ are
not on keyboards.

Thus typical constraints include

x+y+w= 10, (2.3.3)

2x−3y+4.2w≥ 5.6, (2.3.4)

x+2y−z≤ 1, (2.3.5)

or also
x+2y≤ 1+z. (2.3.6)

In the last constraint it is not necessary to collect together all the non-constant terms
on to the left-hand side of the constraint for input into the optimization software. In
fact it is often convenient to use this style of constraint toclarify modeling,e.g., in
the constraint

new stock = old stock + purchases− sales (2.3.7)

What about other constraints? Using binary variables it is possible to model some
very sophisticated relations as linear constraints. This will be discussed in Section
6.5. In particular, it becomes possible to model the absolute value function|x|, i.e.,
to handle expressions of the form|r1− r2| wherer1 andr2 may refer to output rates
of plants in consecutive time intervals.

2.3.1 Types of Constraints

As in the small problem, constraints can be used to model a variety of sets of circum-
stances. Constraints will now be considered according to type and several different
types introduced and discussed. Identification of the type of constraint will help the
modeler to formulate the problem. We have tried to make the list as comprehensive
as possible, but inevitably it is not possible to cover everysingle type of constraint.

4 Conventionally variables with zero coefficients are omittedfrom the expression, so not all vari-
ables are necessarily present in the expression. Also a coefficientof 1.0 is conventionally not shown
next to its associated variable,i.e., 1x is written asx.



42 From the Problem to its Mathematical Formulation

Once the reader has seen a variety of different types of conditions that can be formu-
lated as constraints then it becomes easier for them to identify different conditions
that will be required in a model. Knowing how to formulate such conditions aids the
modeling process and avoids mistakes.

One of the most frequently occurring sets of conditions gives rise to the type of
constraints known asavailability constraints. Such constraints may be used when
modeling purchase of raw materials needed for production. Often raw materials are
available only in limited amounts. To illustrate this type,let r1 andr2 represent two
raw materials needed and let there be a total limit of 20 unitsover all periods. This
is modeled as

r1+ r2 ≤ 20. (2.3.1)

Quite similar to availability constraints arecapacity constraints. They are more re-
lated to the capacity of machine for processing raw materials and producing prod-
ucts. Letx andy be quantities produced, and 3 and 8 their unit requirements [kg/kg]
of raw materials. It is required to model the fact that 200 units is the maximum
amount of raw material available. The constraint is:

3x+8y≤ 200. (2.3.2)

Although capacity and availability look mathematically alike there is a difference
regarding the business process. Capacity constraints are subject to changes or im-
provements within the company. If it turns out (by inspection of marginal effects)
in a machining problem that a certain constraint has a strongeffect on the solution,
it might be possible to tune the machine differently and thusincrease the capacity.
Availability constraints related to the purchase of raw material are not that easy to
change because often it is not possible to buy more material on the market. Avail-
able work hours per week, people available for working during nights or weekends,
hiring personal are further examples of even harder business constraints.

Other typical restrictions are flow or massbalance constraints. They may appear
in several disguises as we will see below. Letr1, r2, r3 indicate flows into a process
andy1 andy2 represent flows out. A constraint is required to model the fact that flow
must be conserved in the sense that total flow out cannot exceed total flow in. The
constraint is:

r1+ r2+ r3 ≥ y1+y2 (2.3.3)

A tighter form of (2.3.3) and flow conservation is of course

r1+ r2+ r3 = y1+y2, (2.3.4)

which ensures that flow out and flow in are exactly equal to eachother. Even if
(2.3.4) is the correct formulation of flow conservation there is an advantage using
(2.3.3) discussed in Chapter 9, on page 277.

Some models also includecapacity balances. It may be required to generalize
the flows of a balance constraint into other expressions thatbalance. This may give



2.3 Constraints 43

rise to a constraint to be associated with constraint (2.3.3). Let 2, 4, 10, 3, and 8
be the unit costs for raw materialsr1, r2, r3,y1 and y2, respectively. Consider the
requirement that the total cost of items flowing into the process must not exceed the
total cost of items flowing out. The required constraint is:

2r1+4r2+10r3 ≤ 3y1+8y2. (2.3.5)

In many practical problems we needquality constraints.5 Consider the following
example. A process consists of mixing two ingredients, X andY, without loss of
volume. Let the quantities of the two ingredients bex andy. Let X and Y contain
5% and 4% of alcohol, respectively. Then 5x+4y is the total contribution to quality,
i.e., alcohol in mass units, from mixing the ingredients. Let 4.8be the minimum
quality level (in percent) required in the mixture of the ingredient. The required
constraint (the left-hand side measures alcohol concentration) on quality is:

5x+4y
x+y

≥ 4.8 (2.3.6)

which, assumingx,y≥ 0 andx+y> 0, may be rewritten as

5x+4y≥ 4.8x+4.8y (2.3.7)

after cross-multiplication and may be further rearranged as

0.2x−0.8y≥ 0. (2.3.8)

In models where there are quality constraints there are often recipe constraints. Such
constraints occur when there are rigid requirements in the composition of a product
that is composed of raw materials blended or mixed together.Let us assume that in
a chemical process two liquids, Xyrene and Zilcene, are blended together without
loss of volume to form the liquid Ailene. Ailene must comprise exactly 60% Xyrene
and 40% Zilcene. Letx andz represent the quantities used of Xyrene and Zilcene
respectively and leta represent the quantity of Ailene produced. Then we require
the recipe constraints

0.6a= x, 0.4a= z. (2.3.9)

Another group of constraints ensuresrequirements satisfaction. Let x, y, andw be
quantities produced of three products; 85.3 a revenue target which must be met and
2, 3.5 and 8.9 the unit contributions to the revenue. The revenue requirement is
modeled as:

2x+3.5y+8.9w≥ 85.3. (2.3.10)

In multi-period modeling [see Section 8.2] we need additional multi-period flow
constraints. These constraints connect adjacent time intervals and ensure that stocks

5 Modelers in the refinery industry call these constraintsquality constraints. Quality constraints
describe concentrations, sulphur content in streams and similar quantities. These constraints, which
are always related to properties of streams or material, might also be calledproperty constraints.



44 From the Problem to its Mathematical Formulation

and production balance the way they should. We must ensure that in each period
final stock comprises previous stock plus stock acquired less stock used. If the index
t denotes times such a constraint typically appears as

st = st−1+bt −ut −wt , (2.3.11)

wheres represents stock,b some purchase of raw material,u what we use in pro-
duction,w what we sell or ship. When formulating multi-period flow constraints
attention has to be paid to the correct connection between initial and final stock.

Finally, we encounter a simple group of constraints calledbounds. These con-
straints contain only one variable and a right-hand side. Their simple structure al-
lows more efficient numerical treatment. For instance, we may have a direct limita-
tion placed on variables such as stock levels, e.g., smust be at least 10 units (stock
security level) and at most 20 units (stock capacity),i.e.,

s≥ 10 (2.3.12)

and

s≤ 20. (2.3.13)

Constraint (2.3.12) is called alower boundand constraint (2.3.13) anupper bound.
A further type of constraint, alogical constraint, will be discussed in Chapter 6,

together with the use of discrete variables for formulationpurposes. Another type
of constraints used for tightening the model formulation are cuts, sometimes also
calledvalid inequalities; see Chapter 3 and examples in Chapter 10.

2.3.2 Example

A timber company has resources of two types of wood, pine and birch. These woods
can be used to manufacture two products, ply or board. To produce 100m2 of ply
requires 300m of pine and 300m of birch, while to produce 100m2 of board requires
100m of pine and 500m of birch. The company has access to 5,000m of pine and
6,000m of birch each working period. Costs and revenues can be estimated for the
different raw materials and products and the company wishesto build an LP model
to maximize net revenue per period. The company wants to produce at least 500m2of
each product per period.

First we identify the decision variablespy and pd to represent the quantities (in
m2) of ply and board produced, respectively, and the variablesupy,upd,uby,ubd (in
units of m) to represent the quantities of pine and birch used, respectively. We need
to “subdivide” the quantities of pine and birch used for eachtype of product in order
to organize the recipes correctly.

Now we identify constraints. There are two simple bounds given by the require-
ments which are modeled as



2.4 Objectives 45

py ≥ 500 , pd ≥ 500. (2.3.14)

There are then two availabilities of raw materials modeled as

upy+upd ≤ 5000 (2.3.15)

uby+ubd ≤ 6000.

There are also recipe constraints

3py = upy, 3py = uby (2.3.16)

pd = upd, 5pd = ubd.

The model would now be completed by an objective function.
In this example we have seen how we can identify structure in aproblem and turn

conditions into known types of constraints. Initially it would have been tempting to
have single variables to represent pine and birch, but as soon as we try to model
the recipe aspects we notice that it will be impossible to ensure correct proportions
of raw materials required by the products unless we associate separate raw material
variables with each product.

2.4 Objectives

In practical problems it is not always clear how to choose theobjective function
associated with a model. Profit maximization or cost minimization may be appro-
priate, but may be over-simplistic or too difficult to measure. More sophisticated
accountancy measures such as “return on capital employed” may have to be used as
objective functions. A client may in fact have a number of objectives in mind, each
of which could lead to the formulation of an objective function. Some of these may
involve maximization and some minimization and are likely to conflict,e.g., sales
maximization and stock minimization may be desirable in a retailing environment
but are in direct conflict. It will be best to elicit from a client some principal objec-
tives and test how the solution to a model impinges on other objectives. Attempts at
combining objectives and handling multi-objective problems have been made and
will be discussed in Chapter 4. However, in LP or MILP models,ultimately an ob-
jective function must be a linear expression in variables and must be maximized or
minimized.

Two particular types of objective functions deserve special consideration:Mini-
maxandMaximin. To construct a typical Minimax expression, let

ti , i ∈ I (2.4.1)

represent times by which events numberedi ∈ I must be completed. Eachti may
have been defined in a linear expression. If it is required to minimize the timet by
which all eventsi ∈ I will have been completed,i.e.,



46 From the Problem to its Mathematical Formulation

min

{
max

i
{ti}

}
(2.4.2)

this may be modeled using the constraints

ti ≤ t , i ∈ I (2.4.3)

and minimizing the objective function

min t. (2.4.4)

The objective function and the constraints will have the effect of ensuring thatt
is larger than the completion time of all events, but is the minimal time value that
satisfies that requirement.

In another problem we may wish to have an objective function which is, loosely
speaking, the opposite of the Minimax objective just introduced. Assume that we
want to maximize the time available before any of the events are completed (Max-
imin). This may be modeled, in the notation just introduced,by the constraints

t ≤ ti , i ∈ I (2.4.5)

and the objective function

max t, (2.4.6)

which is equivalent to

max

{
min

i
{ti}

}
. (2.4.7)

We now consider in detail how to model variables, constraints and objectives.

2.5 Building More Sophisticated Models

We shall consider two further models, one in this section andone in Section 2.7.
They are a little more complex than the ones we have already introduced but will
illustrate some of the more powerful features of algebraic modeling languages. It
should be noted that when a model is entered into an AMS and then saved, it can
be modified later. This saves having to re-type a model when itis changed and is
fundamental to any model management scheme.

In this simple production planning example we build up a model piece by piece
in preparation for saving it to a model file (a.modfile in a generic AML). We also
illustrate the use of data tables and how to enter data directly into these tables. We
then generate the problem matrix, input it to the solver and solve the problem.



2.5 Building More Sophisticated Models 47

2.5.1 A Simple Production Planning Problem – The Background

A firm is processing three products A, B and C on two machinesM1 andM2. Each
day there are 8 hours available onM1, and 10 onM2. The machine hours required
per 100 units of the products are given in the following table:

A B C

M1 2.2 1.8 1.9
M2 2.4 2.0 2.1

.

Currently the profit contributions per 100 units of the products are:

A B C
24.722.419.7

.

Letting a represent the number (in hundreds) of units of product A to bemade, and
b andc similarly, our LP maximizing profit is:

max 24.7a+22.4b+19.7c (2.5.1)

subject to
2.2a + 1.8b + 1.9c ≤ 8
2.4a + 2.0b + 2.1c ≤ 10

(2.5.2)

anda,b,c are non-negative.

2.5.2 Developing the Model

We require three decision variablesa, b andc to represent the quantity of the prod-
ucts A, B and C, respectively, to produce. The following input to gAML will define
the variables required.

VARIABLES
a
b
c

Now we define data tables REQ(2,3) to store the machine time requirements for each
product-machine combination and PC(3) to store the profit contributions from each
product. These data tables are just like matrices or arrays in mathematics. When we
define REQ(2,3) in a TABLES section we create a 2-dimensionalarray with 2 rows
and 3 columns. Defining PC(3) we create a 1-dimensional arraywith 3 entries. If
we wish to refer to the entry in the second row and first column of REQ(2,3) then
we specify REQ(2,1).

In gAML we create tables, which initially have all zero entries, by the lines:



48 From the Problem to its Mathematical Formulation

TABLES
REQ(2,3)
PC(3)

We can put some data into these tables using the simplest of the methods available.
More flexible and powerful techniques will be considered later. First we handle the
machine requirements. We can enter these row-by-row as:

DATA
REQ(1,1) = 2.2, 1.8, 1.9
REQ(2,1) = 2.4, 2.0, 2.1

The DATA section lets you specify a starting position in a table, and then a stream of
numbers which will be put into the table starting at the specified position and carry-
ing on into cells to the right. The lines starting with REQ(1,1)=. . . and REQ(2,1)=. . .
have the following effect on the elements of the array REQ:

REQ(1,1) gets the value 2.2,
REQ(1,2) gets the value 1.8,
REQ(1,3) gets the value 1.9,
REQ(2,1) gets the value 2.4,
REQ(2,2) gets the value 2.0,
REQ(2,3) finally gets the value 2.1.

Similarly for the profit contributions table. To initializethis we have:

PC = 24.7, 22.4, 19.7

If the coefficient of the starting position in a table is not specified it is assumed to
be the first row and column in the table.

We have now defined the required decision variables whose values are to be
decided by the optimization process and seen the commands toenter the required
data into tables. The constraints can now be defined as follows:

CONSTRAINTS
PROFIT: PC (1) *a + PC (2) *b + PC (3) *c
M1 : REQ(1,1)*a + REQ(1,2)*b + REQ(1,3)*c < 8
M2 : REQ(2,1)*a + REQ(2,2)*b + REQ(2,3)*c < 10

Models are usually assembled in files with an extension of.mod, where the first part
of the file name can be selected by the user to reflect the problem being modeled.
You should now assemble all the input items together, in the order that we have
developed them, and save the model in a fileprdx.mod. Here is the text:

VARIABLES
a
b
c

TABLES
REQ(2,3)



2.6 Mixed Integer Programming 49

PC(3)

DATA
REQ(1,1) = 2.2, 1.8, 1.9
REQ(2,1) = 2.4, 2.0, 2.1
PC = 24.7, 22.4, 19.7

CONSTRAINTS
PROFIT: PC (1) *a + PC (2) *b + PC (3) *c
M1 : REQ(1,1)*a + REQ(1,2)*b + REQ(1,3)*c < 8
M2 : REQ(2,1)*a + REQ(2,2)*b + REQ(2,3)*c < 10

Now we run this model. If you made any errors typing in the model, gAML will
return an error message; correct any errors and resubmit thecorrected problem. You
should be able to obtain the optimal objective value 99.5556.

2.6 Mixed Integer Programming

Let us now introduce a new feature which has very significant consequences: vari-
ables which are restricted to discrete values. When an optimization problem contains
integer variables, or certain other types of variables, it becomes amixed integer pro-
gramming(MIP) problem, usually containing both integer and continuous variables.
The special case in which only integer variables occur is IP.In Section 12.6 we refer
briefly to mixed integer nonlinear programming (MINLP) but in most parts of the
book we just concentrate on linear problems.

When an LP contains integer variables, this leads us to a mixedinteger linear
programming problem (abbreviated as an MILP problem). Of course, the structure
of MILP problems retains the linear objective and constraints but adds an integrality
attribute to the non-negativity requirement on some, or all, of the variables. The
term integer linear programming problem (ILP) is normally used to denote an LP
problem where all variables are required to take integer values, sometimes called a
pure integer linear programming problem, but the term ILP issometimes also used
as an all-embracing term to describe both pure integer linear programming problems
and MILPs. Thus an ILP may look like the problems introduced in the previous
sections, with an additional requirement on the nature of the variables. While the
differences between an LP problem and an MILP problem may look to be minor,
they turn out to be major in terms of the difficulty of solving,with MILP being
substantially more difficult.

One might try to solve an MILP problem by solving the LP problem neglecting
the integrality on the variables and then fixing those variables to nearby integer
variables. Sometimes this technique may work but the following example shows
why rounding does not really help. Consider



50 From the Problem to its Mathematical Formulation

max x1+x2 (2.6.1)

subject to

−x1+x2 ≥ 0.5 , −0.8x1+x2 ≤ 1.3 , x1,x2 ∈ IN0. (2.6.2)

In Section 1.4.1 we saw how we can solve this problem graphically. The straight
lines

S1 : x2 = x1+0.5 , S2 : x2 = 0.8x1+1.3 (2.6.3)

and thex1- andx2-axes establish the feasible region (draw this as an exercise). If we
neglect the integrality conditions the solution is

x1 = 4 , x2 = 4.5 , ZLP = 8.5 (2.6.4)

However, the best integer feasible solution is

x1 = 1 , x2 = 2 , ZIP = 3. (2.6.5)

This example shows that the best integer solution may be far away from the solution
in which the integrality condition is not forced. Thus simple rounding techniques
are not sufficient.

Because ILP and MILP introduce the idea of a variable which takes a discrete
set of values, they also allow for the possibility of using the values of variables to
denote decisions which are not strictly quantitative. Problems using this idea are
frequently termed discrete optimization or discrete programming problems and will
be discussed later in the book [see Chapter 7 for a systematicoverview on types
of such problems]. Here we just briefly list some features andproperties in models
which can be formulated using MILP:

• counting [e.g., Sections 2.6.1 and 7.1.2]
• representation of states and yes-no decisions [Chapters 7and 10]
• logical implications [Sections 6.1 and 6.2]
• simple nonlinear functions [Sections 6.5, 6.7 and 6.8]

The next section provides an MILP example which will later inSection 3.3.1 also
serve to illustrate a solution method for MILP problems.

2.6.1 Example: A Farmer Buying Calves and Pigs

Tom, a British farmer keeping calves (baby cows) and pigs wants to increase his
animal stock. Tom has the chance to buy calves at the price of 1,000 £ per animal
and young pigs at the same price. Unfortunately, at the moment, Tom can only invest
3,500 £. Keeping calves and pigs for two years, the anticipated net profit is 3,000
£ per cow and 2,000 £ per pig. As Tom is already a fairly successful farmer his
farm can only take another two calves and two pigs. It is not possible to enlarge the



2.6 Mixed Integer Programming 51

animal housing. Of course, the farmer wants to increase his total profit. The question
is how many calves and pigs Tom should buy.

Obviously, the best solution is to buy two calves and one pig resulting in a total
profit of 8,000 £. In this simple case it was easy to guess the solution. But imagine if
the farmer could also have chickens and horses, more money toinvest and so on. In
that case mathematical optimization could help. Let us try to translate the problem
into mathematics and to solve it as a mixed integer programming problem.

The task of the model builder is to transform the real-world problem into a math-
ematically suitable form. As we learned in Section 2.2, the modeler first identifies
variables which allow him to formulate constraints and the objective function. The
variables are usually chosen in a natural way such that the basic questions are an-
swered. In the present case it seems appropriate to introduce variablesc and p to
represent the number of calves and pigs, respectively, to bepurchased. Our choice
of the set of valid solutions must reflect the fact that it is not possible to buy living
animals in fractions. Our model builder, experienced in farm optimization, chooses
1,000 £ (k£) as the basic unit for money in this model.

The advantage of doing so is related to scaling: to have a model which behaves
numerically well, all quantities, data and variables should ideally be within a range
of 0.1 and 10. This is not always possible but it is desirable,and therefore one should
pay some attention to this issue. Scaling is discussed in Section 9.2.2.

Using this unit the objective function takes the form

max Z = 3c+2p. (2.6.6)

The constraints are
0≤ c≤ 2 , c integer (2.6.7)

0≤ p≤ 2 , p integer (2.6.8)

c+ p≤ 3.5, (2.6.9)

where we will refer to the constraints (2.6.7) and (2.6.8) asintegrality conditions.
In Section 3.3.1 we show how this problem can be solved. At this stage, we can

already use an AMS,e.g., AMPL, GAMS, Mosel, orSAS/OR to answer our farmer’s
questions. We input the model as shown in Fig. 2.2. A model implementation of this
problem is contained ascalvesin MCOL coming with this book.

Now weRun and solve the model, remembering to maximize. In Section 3.3.1
we learn how to use a Branch & Bound algorithm to solve this problem exploiting
nodesof a tree. In Fig. 3.3 we see that an integer solution was obtained at node
3 and a total of 5 nodes were explored; in Section 3.3.1 it willbecome clear what
nodesare. The objective function value obtained at node 3 was 8.0 and this was
never bettered subsequently. So 8 is the best objective function value we can get,
and the decision variables take the valuesc= 2 andp= 1 telling our farmer to buy
two calves and one pig with an expected profit of 8,000 £.



52 From the Problem to its Mathematical Formulation

Fig. 2.2 Integer model coded inGAMS. This screenshot is just to get the flavor of how a model
could look like in an AML. No need to understand the syntax in detail.

2.6.2 A Formal Definition of Mixed-Integer Optimization

With the introduced terms we are now able to give a formal definition of an in-
teger or mixed integer optimization problem. The optimization problem class we
have in mind are mixed integer programming (MIP) problems specified by the aug-
mented vectorxT

⊕ = xT ⊕ yT established by vectorsxT = (x1, ...,xnc) ∈ X ⊆ IRnc

andyT = (y1, ...,ynd) ∈V ⊆ ZZnd of nc continuous andnd discrete variables, a con-
tiguous subsetX ⊆ IRnc, and a discrete and restricted subsetV ⊆ ZZnd , an objective
function f (x,y), ne equality constraintsh(x,y) andni inequality constraintsg(x,y).
The problem6

min

{
f (x,y)

∣∣∣∣
h(x,y) = 0,
g(x,y)≥ 0,

h : X×U → IRne,
g : X×U → IRni ,

x ∈ X ⊆ IRnc

y ∈U ⊆ ZZnd

}
(2.6.1)

is calledMixed Integer Nonlinear Programming(MINLP) problem, if at least one
of the functionsf , g or h is nonlinear. The vector inequality,g(x,y) ≥ 0, is to be
read component-wise. If instead ofy ∈V ⊆ ZZnd the basic areay ∈Y is any set with
discrete elements,e.g., Y = {−3,0,+0.25,+1,+17.1}, then (2.6.1) is a discrete
optimization problem, which can be formulated as an integeroptimization problem
with the help of binary variables like on page 35. Any vectorxT

⊕ satisfying the
constraints of (2.6.1) is called afeasible pointof (2.6.1).7 The set of all feasible

6 A minimization problem has been chosen as the standard form; since any maximization problem
can be formulated as a minimization problem, this is not a limitation.
7 Often afeasible pointis also calledfeasible solution. We do not want to do this in this book,
because the aim of optimization is to determine the optimal point, or in case of ambiguity also
optimal points, and therefore only those can be regarded as a solution.



2.6 Mixed Integer Programming 53

points forms the feasible setS. Any feasible point, whose objective function value
is less or equal than that of all other feasible points is called anoptimal solution,
or more formally: The vector pair(x,y) is calledoptimal solution, if it is allowed
and applies to all allowed points(x′,y′) ∈ S: f (x,y)≤ f (x′,y′). It follows from this
definition that a problem may have several, not uniquely defined optimal solutions.
In addition, a typical difficulty in the nonlinear non-convex optimization is that it
is usually only possible to determine local optima, but it ismuch more difficult to
prove that a global optimum has been determined. In simple terms, a global optimum
is the point whose objective function value is no worse than any other valid point,
while a local optimum(x∗,y∗) has this property only in a neighborhood of that point
(x∗,y∗). The formal definition for this is: In a given minimization problem, a point
(x∗,y∗) ∈ S is a local minimum with respect to the environmentU of (x∗,y∗) (or
simply local minimum) if

f (x∗,y∗)≤ f (x,y), ∀ (x,y) ∈U(x∗,y∗)

applies. IfU(x∗,y∗) = S, then(x∗,y∗) is calledglobal minimum.
Now an example: The integer optimization problem in the variablesy1 andy2

min
y1,y2

{
3y1+2y2

2

∣∣∣∣
y4

1−y2−15= 0
y1+y2−3≥ 0

, y1,y2 ∈V = IN0 = {0,1,2,3, ...}
}

has, for example, the feasible point(y1,y2)= (3,66) and the unique optimal solution
y∗ = (y1,y2)

∗ = (2,1) mit f (y∗) = 8.
Depending on the functionsf , g, andh in (2.6.1) we get the problems types

acronym type of optimization f (x,y) h(x,y) g(x,y) nd

LP Linear Programming cTx Ax−b x 0
QP Quadratic Programming xTQx+cTx Ax−b x 0
QCQP Quadratically Constrained QPxTQx+cTx Gx− r xTPx+dTx+q 0
SOCP Second Order Cone Program. cTx ‖Aix+bi‖2 ≤

(
qT

i x+di
)

NLP Nonlinear Programming 0

MILP Mixed Integer LP cTx⊕ Ax⊕−b x⊕ ≥ 1

MIQP Mixed Integer QP xT
⊕Qx⊕+cTx⊕ Ax⊕−b x⊕ ≥ 1

MINLP Mixed Integer NLP ≥ 1

with a matrixA ∈ M (m×n, IR) of m rows andn columns, a matrixQ ∈ M (n×
n, IR) of n rows andn columns,b ∈ IRm, c ∈ IRn, andn = nc+nd. MIP problems
without continuous variables are integer programs (IPs). Sometimes, the problems
can be equivalently formulated in several classes. A binaryvariableδ in a MILP
problem can also be used as a continuous variable in the equality constraint

δ (1−δ ) = 0



54 From the Problem to its Mathematical Formulation

in an NLP problem; unfortunately, this is numerically not efficient. Another example
for several classes is found,e.g., Rebennacket al. (2009,[468]) who derive an exact
algorithm from a continuous, bilinear formulation of the fixed charge network flow
problem. The authors reformulate this classical MILP problem with a continuous
QP programming formulation. In LP and MILP one usually writes the constants on
the right side,i.e., instead ofAx−b = 0, one writesAx = b. Since some of these
optimization problems listed above occur as subproblems when solving others, it is
very important to understand the solution algorithms well and to implement them as
efficiently as possible.

2.6.3 Difficult Optimization Problems

While LP problems can be solved relatively easily (the numberof iterations, and
thus the effort to solve LP problems withm constraints grows approximately lin-
early inm), the computational complexity of MILP and MINLP grows exponentially
with nd but depends strongly on the structure of the problem. Numerical methods to
solve NLP problems work iteratively and the computational problems are related to
questions of convergence, multiple local optima and availability of good initial so-
lutions. Global optimization techniques,cf. Horst & Pardalos (1995,[280]), Floudas
(2000,[197]), or Floudas & Gounaris (2009,[199]), can be applied to both NLP and
MINLP problems and their complexity increases exponentially in the number of all
variables entering nonlinearly into the model.

From a practical point of view, we call optimization problems difficult when
they cannot be solved to optimality, or within a reasonable integrality gap or any
guaranteed bound by any standard solver within a reasonabletime limit. Problem
structure, size, or both can produce difficult problems. From a theoretical point of
view it is relevant to observe that solving MILP problems andthe problem of find-
ing appropriate bounds is oftenN P-hard, which makes these problems hard to
solve. A consequence of this structural property is that these problems scale badly;
we must fear the worst. Even if we can still solve a certain problem instance well,
slightly changed input data that only slightly increases the problem can lead to the
fact that we can no longer solve the problem at all in a reasonable time. But these
classification are based on worst case behavior: For instance, knapsack problems are
(weakly)N P-hard but not really hard to solve for 100 items.Dynamic program-
ming is suitable for such problems. EvenN P-hard problems can be computation-
ally tractable. A good example is the cutting stock problem in Section 14.2.1 when
usingcolumn generationfollowing the ideas from Gilmore & Gomory (1961,[228]).
They exploit the problem-specific structure of the cutting stock problem leading to a
decomposition into a column-generating model (also calledpricing model), a master
model generating the input data for the continuous pricing model, and a partition-
ing model solving the original MILP problem with all columnsdynamically gener-
ated. A recommended overview on column generation is by Lübbecke & Desrosiers
(2005,[388]). The meaning of what are columns varies from problem to problem:



2.7 Interfaces - Spreadsheets and Databases 55

1

2

3

4

A B C D

Fig. 2.3 Simple spreadsheet.

1. In the cutting stock problem the columns are patterns generated by solving knap-
sack problems,i.e., in this case, the pricing model is a knapsack problem.

2. In vehicle routing problems,cf. [388], the columns are tours in a network gener-
ated by solving shortest path problems, and

3. in a multiple container loading problem, Eley (2003,[178]) provides a set parti-
tioning approach to minimize the number of containers used to host a given set
of rectangular items (boxes) by using box packing to individual containers – gen-
erated by a heuristic – as columns; as the pricing problem is solved by a heuristic
no optimality is guaranteed though.

2.7 Interfaces - Spreadsheets and Databases

The use of spreadsheets has become a very popular way for managers to model prob-
lems, store data, model variables and investigate scenarios. In many ways spread-
sheets such asLOTUS 1-2-38 in the older days andEXCEL9 nowadays have re-
placed the use of certain programming languages for the morecasual user. Famil-
iarity with spreadsheets has led many modelers to expect to use the row and column
matrix layout shown in Fig. 2.3 as a standard for data input.

An existing modeling application may exist as model and datain a spreadsheet.
The modeler may now intend to move on to optimization of the model which is
contained in the spreadsheet, or parts of that model. Hence the modeler is moving

8 LOTUS 1-2-3 is a registered trademark of Lotus Development Corp.
9 EXCEL is a registered trademark of Microsoft Corp.



56 From the Problem to its Mathematical Formulation

from “what if” modeling, for which the spreadsheet is very useful, to “what is ideal,
and what are the means to achieve it”. Many spreadsheet systems offer limited op-
timization facilities, but this may not be suitable for realistic models. The system
What’s Best?10 was able to amalgamate spreadsheet style modeling with opti-
mization capability, making use of the establishedLINDO11 optimization system.
EXCEL12 even includes nonlinear programming and mixed integer nonlinear pro-
gramming features for small problems. These systems use very simple algorithms
to solve the problems and they are thus restricted by memory and computing time,
and sometimes they lack stability and robustness. The UT Austin “Paul Jensen Ex-
cel Add-ins” (found athttps://pypi.org/project/ormm/) can be a good source for
“robustifying” Excel.

The more useful form of incorporating spreadsheets into optimization processes
is to use the spreadsheet to store data and then to draw on thisdata for a model
built by the modeling facility of optimization software. Thus the data is held in the
spreadsheet, but the logic model is held by the optimizationsoftware. The spread-
sheet provides a simple to use interface, particularly for the less experienced user,
and helps the user to organize the data or to produce plots.

A model will now be developed which makes use of spreadsheet interfacing. A
feature of this example is the use of data tables. These contain the data to be used
with a model. Data for these tables can be entered from a variety of sources such
as text files and many spreadsheets and databases. In the following example a more
advanced model is described which uses data input from thesesources. It assumes
that you are familiar with the use ofLOTUS 1-2-3 to the extent that you can
create and save a new spreadsheet and name ranges within it. Readers who are less
familiar with these areas may wish to postpone the rest of this section until later.

2.7.1 Example: A Blending Problem

This example illustrates how data may be read into tables from a text file and a
LOTUS 1-2-3 spreadsheet. It also shows how we can create arrays of variables,
i.e., subscripted variables. It assumes that you are able to set up named ranges and
edit tables withinLOTUS 1-2-3. Let us first set up the model background.

A mining company has two types of ore available; Ore 1 and Ore 2. Denote the
amounts of these ores to be used byo1 ando2, and introduce an index setO(2) to in-
dicate that there are two different types of ore: the set itself readsO = {Ore1,Ore2}.
These ores can be mixed in varying proportions to produce a final product of vary-
ing quality. For the product we are interested in the “grade”(a measure of quality)
of the final product must be between the laid-down limits ofL1 = 4 andL2 = 5.
The grades of the ores are given byG j , j ∈ O. The final product sells forS= £125

10 What’s Best? is a registered trademark of Lindo Systems Inc.
11 LINDO is a registered trademark of Lindo Systems Inc.
12 MS-EXCEL is a registered trademark of Microsoft Corp.



2.7 Interfaces - Spreadsheets and Databases 57

per tonne. The costsCj of the two ores vary, as do their availabilitiesA j , j ∈ O.
Maximizing net profitz (i.e., sales revenue less cost of raw material) gives us the
objective function:

z= ∑
j∈O

(S−Cj)o j . (2.7.1)

We then have to ensure that the grade of the final ore is within certain limits. The
type of constraint required was shown in (2.3.6) to (2.3.8).Assuming the grades of
the ores combine linearly, the grade of the final product is

∑
j∈O

G jo j

/

∑
j∈O

o j . (2.7.2)

This must be greater or equal toL1, so, cross-multiplying and collecting terms, we
obtain the constraint:

∑
j∈O

(G j −L1)o j ≥ 0. (2.7.3)

Similarly the grade must not exceedL2, so we have the further constraint:

∑
j∈O

(L2−G j)o j ≥ 0. (2.7.4)

Finally there is a limit to the availability of each of the ores. We model this with the
constraints:

o j ≤ A j , ∀ j ∈ O. (2.7.5)

As we have seen before, these constraints explicitly bound exactly one variable and
are called bounds.

2.7.2 Developing the Model

The problem description above sets out the relationships which exist between vari-
ables but contains few explicit numbers. Focusing on relationships rather than fig-
ures makes the model much more flexible. In this example only the selling price and
the upper/lower limits on the grade of the final product are fixed.

In developing the model we assume that grades of the ores are available in a
data file calledquality.dat. Using a text editor, create a data file calledquality.dat
and insert a single line representing the grades of ores 1 and2. Assuming that these
values are 2.1 and 6.3 we just type:
2.1,6.3

We will also assume that the varying costs and availabilities are in aLOTUS spread-
sheet, the costs being held in a named range calledCOSTS. We shall access the
availabilities directly - they will be stored in cells A7 .. B7. Now set up aLOTUS
1-2-3 version 3 spreadsheet and call it:ore data.wk3.



58 From the Problem to its Mathematical Formulation

Enter the costs 85.00 and 93.00 in adjacent cells of the spreadsheet and give
a nameCOSTS to the range containing these two cells, using/ Range Name
Create. In cells A7 and B7 enter the ore availabilities (in tons) forthe coming
week. We have specified 60 tons of ore 1 and 45 tons of ore 2, but you may wish to
experiment with different values. Save the data and exitLOTUS.

The next step is to rewrite the algebraic model we began with aformat which
gAML can interpret. Note that comments can be included if preceded by an excla-
mation mark “!”.

Enter the following model script13 into a model file (blendx.modcontains a ver-
sion in MCOL):

INDICES
oretype(2)

VARIABLES
o(oretype) ! Quantity of each ore to purchase

TABLES
COST (oretype) ! Cost per tonne of ores
AVAIL(oretype) ! Availability of ores
GRADE(oretype) ! Quality of ores

DATA
oretype = "t1", "t2"

DISKDATA
GRADE = quality.dat ! Input grades from file

DISKDATA -l ! Input from Lotus 1-2-3
COST = ore_data.wk3 (costs) ! costs from a named range
AVAIL = ore_data.wk3 (A7 .. B7) ! availability from range

! description

CONSTRAINTS

! Maximize (Revenue - Costs)
Max: SUM(j = oretype) ( 125.0 - COST(j) ) * o(j) $

! Grade < upper limit
QualMax: SUM(j = oretype) ( 5.0 - GRADE(j) ) * o(j) > 0

! Grade > lower limit
QualMin: SUM(j = oretype) (GRADE(j) - 4.0) * o(j) > 0

13 TheDISKDATA command for reading text data is supported bymp-model’s successorFICO
Xpress Mosel by FICO. JustLOTUS is probably not much used these days.



2.7 Interfaces - Spreadsheets and Databases 59

! limit on oresl < avail
Limit(j = oretype): o(j) < AVAIL(j)

In this model file, the two ore variables have not been identified uniquely by name.
Instead we have defined a table, or array, where the variablescan be found. This
makes the model more general and means that it can be applied to problems involv-
ing many types of ore if required. The array is written:

VARIABLES
o(2)

This creates a one-dimensional array of variables,o1 ando2. An array written as:

VARIABLES
y(5,8)

would create a five row by eight column array ofy variables. The variable in the
second row, third column would be referred to asy23.

When data are input from a spreadsheet file thengAML must be told the filename
using the appropriate syntax. We shall call the modelblendx.mod. Having set up the
data files as required we can run, and the ore costs, availabilities and qualities will
be extracted from the various input files as necessary bygAML. The model can now
be maximized and the optimal objective value 3618.947 obtained.

2.7.3 Re-running the Model with New Data

Now suppose you want to run the model again with different costs and availabilities
associated with the two ores. Simply call up the spreadsheetsoftware and make the
required changes to the appropriate cells. Make sure you save the new spreadsheet,
then re-startgAML.
gAML will extract the revised data from the spreadsheet. It will then generate a

new matrix file and you can go on to optimize the new model, justas before.
By now you should be able to see the advantages of storing the model in a text

file - there is no need to type in the model each time you wish to run it. As long
as the model’s structure does not change, the model can be used again and again
to obtain a new optimal solution whenever the data producinga particular model
instance change.

As well as using a spreadsheet to provide the data for an optimization model, we
would expect results from runs of the model to be returned to the spreadsheet and
stored. This can be accomplished and details are available from the manual for the
AML at hand. Similarly, a proprietary database system may beused to provide the
data for the model and results returned to be stored in the database. Most commercial



60 From the Problem to its Mathematical Formulation

mathematical programming systems offer the capability to interface with database
systems.

2.8 Creating a Production System

In the previous section the idea of using links between mathematical programming
modeling and spreadsheets and databases was introduced, but this only touched
upon the one important part of delivering a friendly production system to the end
user.

Once a large practical model has been developed and is presenting sensible and
useful results it will frequently be developed into a production system. It is quite
likely that the user of this production system will be someone who is not versed
in mathematical programming and will expect to see a system that uses terms and
concepts that are comprehensible to him or her. The typical output of a modeling
or optimization system will not be acceptable to this sort ofend user. The detailed
design of such a system is beyond the scope of this book but it is worthwhile pausing
to see what facilities are provided by modern modelers and optimizers that will aid
in the construction of friendly, easy to use systems.

It is an absolute prerequisite that the modeling system supports reading from
and writing to spreadsheet and database systems. Such data repositories may reside
not only on the end user’s machine but may also be part of the corporate database,
living on departmental servers or perhaps even on the company’s mainframes. Usu-
ally, the modeling system must be able to gather data from several data sources,
some local, some from within the user’s department, and someperhaps from dis-
tant machines. In a planning model it is likely that data willbe required from many
different sources, including the Production, Purchasing and Sales departments. It is
imperative that the data are up-to-date and are reliable, orelse the results will not be
believed. Getting the data directly from their source is theonly way to guarantee its
freshness.

The requirement for outputting data, including all sorts ofsolution values and
possibly numbers derived from them, is important as the report writing facilities
in mathematical programming systems are very poor comparedto those cheaply
available in spreadsheets, databases and commercial report generating packages. It
is almost certain that the end user will either be to able write reports in the preferred
package, or will have access to someone with data processingskills to do this.

The important questions of data verification and validity are probably best an-
swered in the data repository, rather than in the modeling system. They have richer
facilities for inspecting data and it is likely that the end user will have some famil-
iarity with using them anyway.

We shall now briefly consider various aspects of integratingmodeling and op-
timization into a complete system. The easiest and most obvious one is to use the
modeler and optimizer in a batch system (for instance, on a PCwe might create a
.bat file with a set of commands that include a call to a stand-alonemodeler and a



2.9 Collecting Data 61

stand-alone optimizer). For various aesthetic reasons this is now considered to be
inelegant as it does not give the end user the idea of an integrated system.

Modern optimization systems now also come in the form of a library of subrou-
tines, which can be linked into the data capturing/result presentation software so
that the modeling and optimization process is effectively hidden from the end user.

Under Windows subroutine libraries generally take the formof Dynamic Link
Libraries (DLLs) which can be called from a variety of different languages. The
system integrator can choose the language for developing the software that interacts
with the end user. 1990s’ favorites includedVisual Basic andDelphi, as it
was very easy to put together a pleasing and familiar interface in a relatively short
time. These programs then call the DLLs to perform modeling and optimization,
check for correct data, and display results.

It is important to note that though the core of the application is the optimizer, the
end user only sees the surrounding software and the acceptability of the system is
very often dominated by his or her perspective of this. Thus it is a (perhaps unfor-
tunate) fact that the optimization modeler must be aware of the rapid developments
taking place in graphical user interfaces and whatever happens to be the current
fashionable fad as a development system, because the credibility of the model may
lie not in the results themselves but in the way they are presented.

Various forms of presentation software may be employed, ranging from simple
report writing programs through to animations and even videos of the results.

2.9 Collecting Data

This section contains some fundamental remarks. So far it has been assumed that
data are readily available, accurate and reliable, for the models to be built. If data are
to be drawn from an existing database then it may not be possible to scrutinize their
origins, however, it is advisable not to take too much on trust. A number of elements
of good practice exist, which are in fact part of good practice within operational
research, of which mathematical programming may be considered a subset. Details
of the practice of operational research may be found in Mitchell (1993,[418]). Some
suggested procedures are the following.

1. The origins of data should be checked where possible and itshould be established
if data are appropriate.

2. The accuracy levels to which data have been measured should be established and
it should be decided if these were appropriate for the model.

3. The limitations of data collected should be noted.
4. Assumptions made when the data were collected should be established and these

should be checked against what is required for the model.
5. Limitations such as the timeliness of the data should be established and these

should be checked against what is required for the model.
6. The extent to which estimation was used in data collectionshould be established.



62 From the Problem to its Mathematical Formulation

In addition to the above checks and balances whose level needs to be decided upon,
if data are to be collected specifically for a new model then the following consider-
ations should be made. Note that the points listed above and also below are both the
modeler’s and the client’s responsibility.

1. It should be established with the client what definitions of terms such as “cost”
and “revenue” are to be used and data should be collected in accordance with
these definitions.

2. The level of accuracy required by the client should be agreed upon and data
should be collected to support this level.

3. The client should agree upon assumptions and simplifications (e.g.,aggregation
of data) which may be used with data.

4. The delegation of responsibilities for data collection and subsequent supply of
data when the model is used in the future should be established.

5. Procedures should be laid down as to how data should be collected in the future
in accordance with practice developed for the development of the model.

While in this section we gave a recipe how to collect data, in Section 5.5.5 we
discuss the problem of consistent and obtainable data when modeling real-world
problems. In Section 14.1.2.3 we provide a technical approach for data consistency
checks.

2.10 Modeling Logic

When a model of a problem is produced it may “work” and produce answers, but
that will not necessarily mean that the model is an accurate representation of the
original problem. The ideas which the modeler has tried to convey may not be what
was intended.

To illustrate this point, consider the following example: in a beer production plan-
ning model it may be intended to include the following relationship into a model:
producing one pint of beer requires eight pints of water. It is easy to translate this re-
lationship incorrectly within the model into the form that eight pints of beer require
one pint of water in the production process. With this erroneous relationship present
the model may have nothing apparently wrong with it, but the answers it produces
may be very suspect.

Hence two types of checks are necessary in modeling logic. The first is to ensure
that the modeler has correctly appreciated the client’s problem and is modeling the
agreed problem. The second is to ensure that once the model has been produced,
what it contains stands up to scrutiny as a valid representation of reality as it applies
to the client. Thus the problem both implies the model and is implied by it.

It will often be difficult to capture the logic of a problem from discussions with
a client. A structured approach similar to a flow chart in computer programming or
the approach computer scientists take in producing pseudo-code will be useful. This



2.11 Practical Solution of LP Models 63

allows the problem to be broken up into manageable portions,each connected logi-
cally in some way to the rest. Thus the model will be broken down into sub-models
and then each sub-model may be more directly transferable into mathematical pro-
gramming constraints and variables. Each sub-model must stand up to scrutiny. Thus
a carefully structured approach to modeling is to be recommended.

2.11 Practical Solution of LP Models

The smaller examples of LP do not illustrate many of the features of the problems
that are solved in practice. Therefore, we summarize some fundamental facts which
the modeler should have in mind when trying to solve real-world problems.

LP models are typically large, involving hundreds or thousands of constraints
(rows) and thousands or tens of thousands of variables (columns). Such problems
are solved by software in times that are often less than one minute. It is usual that
the problem has many more variables than constraints. It is quite common that there
are ten times more variables than constraints. Some commercial problems involve
1.5 million variables. We now address the twin problems of: Why are LP problems
so large? Why are LP problems comparatively easy to solve?

2.11.1 Problem Size

A typical model will incorporate a number of dimensions,e.g.,a production prob-
lem may have products, factories and time periods. Thus an organization may be
interested in production planning over several products that it makes at several loca-
tions and production varies in each time period. If there are50 products, 5 locations
and 10 periods and we require decision variables of the form:“how much of product
A is to be produced at factory Z in period 4?”.

In order to compute the number of variables we have to multiply the number of
products times the number of factories times the number of time periods. Thus, we
require 50·5 ·10= 2,500 variables. We can see immediately why a problem will
easily have many variables. A similar argument applies to the number of constraints.

2.11.2 Ease of Solution

Four particular reasons allow the Simplex algorithm to perform well on problems,
even when the numbers of variables and constraints are substantial, and allow them
to be solved in a routine and reliable way. The reasons concern the algebra of the
problems as well as their structure.



64 From the Problem to its Mathematical Formulation

1. As LP problems increase in size, the time taken to solve them will be expected
to increase. There is a class of mathematical problems, known asN P-hard
problems [see the remarks on complexity theory on page 521] that are problems
where the difficulty of solving rises exponentially (i.e., faster than any simple
power such as squared, cubed etc.) as problem size grows. It turns out that al-
though some optimization problems similar to LP are in this category, LP is in
an easier category. Instead of a precise definition of problem size,cf. Padberg
(1996,[441]), we might take the sum of rows and columns,n+m, as a measure.
LP is known to be solvable by a polynomial algorithm [Khachian (1979,[343])
and later Karmarkar (1984,[336])],i.e., one which requires computation time in
proportion to a power of problem size. However, the Simplex algorithm, the com-
monly used algorithm for LP, in the worst case has behavior which is exponential
in problem size; Klee & Minty (1972, [345]). Thus there wouldseem to be some
loose justification why LP problems are known to be solvable in polynomial time
but when being solved by an algorithm which is not polynomialrarely encounter
their worst case behavior. Thus it is not so surprising that the Simplex algorithm
of Dantzig (1963,[150]) should have stood the test of time.

2. Most LP problems aresparsealthough that may be not so obvious from the ex-
amples and smaller case studies in the book. This means that if we draw a table of
the constraints as rows and the variables as columns markingdown the values of
the coefficients of each variable, then this matrix has few non-zero coefficients.
Typically in a large problem each variable only occurs in 5-10 constraints and
each constraint only contains 5-10 variables. There will becommon constraints
in which many variables are present,e.g.,financial or resource base, but most
constraints will be localized. Hence vast sections of the coefficient matrix will be
empty,i.e., have zero coefficients. As far as computation is concerned,calcula-
tions that involve zero can be conducted easily, so the Simplex algorithm moves
rapidly on a sparse problem. Can we understand these features? Why should this
be so? If we think back to the production problem considered earlier we will
find that many constraints will be special for each product, each factory, and
each time period and will not interact as each block of constraints represents a
sub-model for local production of certain products in a certain period. So, for
example, a variable that refers to London in June does not appear in a constraint
which restricts Amsterdam in May.

3. Some LP problems are evensupersparse. Not only are there few non-zeros in the
matrix of LP coefficients but the non-zeros tend to come from asmall set of dis-
tinct numbers,e.g.,1,2,2.5,8 may appear in many places and few other numbers.
This is called supersparsity. Because of supersparsity [307] it is easier to pack
the problem into the main memory of the computer and avoid slow disk transfer
operations during the running of the software. The set of distinct non-zeros is
called the element pool. Computer operations on coefficients are performed by
using pointers that point to an element in the pool, rather than actual coefficients.
Efficiency arises when many pointers point to the same pool element. Best ex-
amples of exploiting supersparsity are the huge set covering problems with 10
million variables occurring when modeling airline problems. Every entry in the



2.13 Exercises 65

matrix is 1 so there is just one distinct element (with value 1.0). Since we know
a non-zero is 1, we don’t even have to store the value or pointers to this value,
truly a supersparse representation.
(With computer memory becoming cheaper all the time, supersparsity is becom-
ing less of an issue and most vendors have removed this feature from their soft-
ware.)

4. A further reason that makes the Simplex algorithm performwell when successive
problems are being solved is that it can make advantageous use of the previous
optimal solution when starting to solve the next problem.

2.12 Summary & Recommended Bibliography

In this chapter we started with a very simple problem and showed how to model
it by identifying variables, constraints and an objective function. We investigated
how to solve such a model using software and then we moved on toconsider more
complicated models. We saw how models might require variables which were not
continuous. Later in the chapter we investigated the care required when we model,
formulate, collect data, and present results. Thus by the end of the chapter the reader
should be able to:

• model more complex LP problems by combining together logicand data;
• be able to identify different types of variables and to makeuse of sets of variables;
• be able to identify different types of constraints and objectives;
• be able to formulate and solve more complex LP problems involving indices and

files of data;
• be aware of the need for mixed integer linear programming (MILP);
• be aware of issues affecting the size of practical LP problems and the ability to

solve them.

For modeling problems in Operations Management we stronglyrecommend the hu-
morous book by Helber (2014,[270]). The book by Suhl & Melluoili (2007,[550])
is for readers interested in optimization systems, models,methods, software and
applications.

2.13 Exercises

1. Consider the example given in Section 2.3.2.

If it is also required that at least twice as much ply as board is required, show
how this can be modeled as a constraint.
In addition, revenue is 10 units per m2 of ply produced and 8 units per m2

of board produced. The cost per m of pine is 4 and for birch is 10. If it is



66 From the Problem to its Mathematical Formulation

required that the ratio between revenue and cost must be at least 1.5, show
how this may be modeled as a constraint.

2. A company is able to manufacture 4 products. The profit margin on product X is
DM3, on product Y is DM2, on product Z is DM5, and on product W isDM4. Let
w,x,y,andz be the quantities manufactured of the respective products.The com-
pany sets up the problem of manufacture under limited resources and establishes
the following three constraints

2w + x + 2y + z≤ 500
2w + 3x + + 2z≤ 460

x + 4y ≤ 420
(2.13.1)

(a) Use an AMS to solve the problem of finding the maximum profitthat can
be made by manufacturing quantities of the products.
(b) By comparingz with w in the constraints establish why the values in your
solution occurred.
(c) An additional constraint is added to the problem

w+2x+y+z≤ 340

Re-run AMS to see what effect this will have on the problem.
(d) Investigations on the model reveal that two coefficientswere inaccurate.
These are: the coefficient in the second constraint forx should be 2 rather
than 3, and the coefficient forw in the second constraint should be 1.5 rather
than 2. Re-run AMS to see what effect these changes will have on the optimal
solution.

3. Using AMS solve the following linear programming problem, where all variables
are non-negative.

max 15x1+6x2+9x3+2x4

subject to
10x1 + 5x2 + 25x3 + 3x4 ≤ 100
12x1 + 4x2 + 12x3 + x4 ≤ 96
7x1 + x4 ≤ 70

(2.13.2)

(a) In formulating the problem your advisers were uncertainabout the coeffi-
cient of 25 attached tox3. What analysis can you perform on this from your
answer?
(b) A new variablex5 is to be considered. This will have coefficients of 10
in the objective function and 4 and 1 in the first and second constraints, re-
spectively. Using AMS, establish what will be the maximum coefficient the
variable could have in the third constraint and still resultin a non-zero value
for the variable.



Chapter 3
Mathematical Solution Techniques

This chapter provides some of the mathematical and algorithmic background to
solving LP and MILP problems.

3.1 Introduction

In Section 1.4.1 the simple “Boat Renting” problem gave riseto the model

max 800p+600s (3.1.1)

subject to
p + s≤ 350
p ≤ 200
p − s≥ 0

4p + 3s≤ 1400

(3.1.2)

with the additional implicit conditions that bothp ands are non-negative variables.

3.1.1 Standard Formulation of Linear Programming Problems

How would such a problem be solved by the software? General mathematical solu-
tion methods exist for such LP problems and for the extensionto the case of MILP
problems. Since algorithms and software usually require some standard notation we

67



68 Mathematical Solution Techniques

will also formulate LP problems using the standard notation1

max c1x1+c2x2+ . . .+cnxn (3.1.3)

subject to

a11x1+a12x2+ . . .+a1nxn = b1 (3.1.4)

a21x1+a22x2+ . . .+a2nxn = b2 (3.1.5)
... (3.1.6)

am1x1+am2x2+ . . .+amnxn = bm (3.1.7)

x1,x2, . . . ,xn ≥ 0 (3.1.8)

or in matrix-vector notation (see Appendix C for precise definitions of vectors and
matrices)

max cTx
s.t. Ax = b , x ≥ 0.

(3.1.9)

Note thatx andb are column vectors whilecT is a row vector, the product of a row
and column vector is the scalar product

cTx :=
n

∑
j=1

c jx j (3.1.10)

and the matrix-vector productAx follows the usual rules known in linear algebra;
see also Appendix C.3.

Let us illustrate the matrix notation by inspecting the “Boat Renting” problem
[eqns. (3.1.1) and (3.1.2)] and identifying

x =

(
p
s

)
. (3.1.11)

The objective function then appears as

max (800,600)

(
p
s

)
. (3.1.12)

The left hand side of (3.1.2) is



1 1
1 0
1 −1
4 3



(

p
s

)
(3.1.13)

1 Other standard notations are possible. One which is also used veryoften is maxcTx subject to:
Ax = b, l ≤ x ≤ u. Note that instead of the non-negativity constraints we have lower and upper
bounds on the variables. See Section 3.8.3 for how this case is treated.



3.1 Introduction 69

and the right hand side is just the vector



350
200

0
1400


 . (3.1.14)

Note that we have expressed the left and right side of the constraints in vector no-
tation but we have not yet said anything about the relation between both sides. The
original problem is not yet in the standard form as it still has less than or equal and
greater than or equal constraints being present.

Although in Chapter 2 different types of constraints and objectives were intro-
duced, we will see that every LP problem can be written in the standard form.

An objective function which is “minimize” can be converted to one which is
“maximize” because

min f (x) =−max(− f (x)). (3.1.15)

What can we do about inequalities? That question is answered in the next section.

3.1.2 Slack and Surplus Variables

Inequality constraints can all be converted into equality constraints by introducing
additional variables. For instance, the berthing inequality (1.4.2)

p+s≤ 350 (3.1.16)

will be converted into an equation

p+s+ t = 350 (3.1.17)

In the equation the variablet is called aslack variable. Note that from (3.1.16) we
have

t = 350− p−s≥ 0, (3.1.18)

i.e., the slack variablet is chosen such that it is a non-negative variable. Sometimes
the slack variable has no physical meaning and it merely accounts for any difference
between the left and right hand side of the inequality. But often, as in our case, it
accounts for unused resources, unused capacities, unsatisfied demands and so on.
In our caset models the amount of spare (or slack) berthing capacity available.
Slack variables are always introduced in such a way that theybecome non-negative
variables. Thust conforms to the same rule for variables asp ands.

In an inequality which is of the “≥” type, asurplus variable, rather than a slack
variable, may be inserted to lead to a new non-negative variable,e.g.,



70 Mathematical Solution Techniques

3x+2y≥ 500 (3.1.19)

becomes

3x+2y−u= 500, (3.1.20)

whereu is a non-negative surplus variable. Again, the new variableindicates the
difference, if any, between the left hand side and the right hand side of an inequality.
Note that a different slack or surplus variable would be required for each inequality.
If slack and surplus variables are inserted into each inequality then all constraints of
the problem take the form of equations as in the LP standard form (3.1.9).

3.1.3 Underdetermined Linear Equations and Optimization

The linear equation part of LP problems usually isunderdetermined, i.e., has more
variables (degrees of freedom) than equations or has redundant2 equations [see ex-
ample below]; this enables optimization. Equation (3.2.2), which describes the boat
problem in the standard notation and already makes use of slack and surplus vari-
ables, is an example with more variables than equations. Thelinear system

2x+3y= 1
4x+6y= 2
6x+9y= 3

(3.1.21)

is an example with 2 variables and 3 equations but in which twoequations are re-
dundant. Although the equations look different they just carry the same information:

y=
1
3
− 2

3
x. (3.1.22)

The reason for the redundancy in this case is that the equations depend linearly on
each other. If we multiply the first equation by 2 we get the second one, and if we
multiply the first equation by 3 we get the third one.

Let us first consider a simple system which is not underdetermined:

x+y= 4
8x−y= 5

(3.1.23)

and which involves only two equations and also only two variables. Adding the
equations gives

9x= 9 (3.1.24)

2 We call a certain equationfi(x) = 0 of a systemf(x) = 0 of equationsredundantif it does not
provide any further information with respect to the solution ofthat system. All information carried
by fi(x) = 0 is already contained in the other equations.



3.2 Linear Programming 71

which shows uniquelyx= 1 and consequentlyy= 3. Thus, here two equations allow
us to determine two variables uniquely.

In underdetermined systems the given equations do not allowus to determine all
variables uniquely. That gives us the freedom to chose a solution which maximizes
the objective function, rather than just find the unique solution which satisfies the
constraints.

We may thus think of methods which solve LP problems as procedures which
solve equations with the goal of optimizing an objective function. Such methods
involve a sequence of steps which get repeated and are termedalgorithms. It should
be noted that the algorithm of solving LP problems will be different from the more
familiar process of solving a set of simultaneous equations. However, the algorithm
is related to the concepts of solving systems of linear equations. The principal dif-
ference between solving LP problems and solving sets of equations comes from the
fact that LP problems have in most cases more variables than constraints. Letn and
m denote the number of variables and constraints. Since thereare too many vari-
ables,n−m of them can be treated asindependent(we can fix these variables to
zero, or in the case of general bounds [see Section 3.8.3] on the variables: to one
of their bounds) while the otherm variables aredependentvariables derived from a
linear system withm constraints.

3.2 Linear Programming

In this section we will consider two algorithms for solving LP problems: the Simplex
algorithm and interior-point methods.

3.2.1 Simplex Algorithm — A Brief Overview

One of the best known algorithms for solving LP problems is theSimplex algorithm
developed by George B. Dantzig in 1947 and described in Dantzig (1963,[150]) or,
e.g., Padberg (1996,[441]). We illustrate the key ideas of this algorithm at an ele-
mentary level in Section 3.2.2. The first step is to compute aninitial feasible solution
[see Section 3.8.2] as a starting point, possibly by using another LP model which
is a variant of the original model but allows us easily to determine an initial fea-
sible solution. The Simplex or the revised Simplex (a more practical and efficient
form for computer implementation) algorithm finds an optimal solution of an LP
problem after a finite number of iterations, but in the worst case the running time
may grow exponentially,i.e., for large problems we should be prepared that running
time is an exponential function of the number of variables and constraints. Never-
theless on many real-world problems it performs better thanso-called polynomial
time algorithms developed in the 1980s,e.g., by Karmarkar (1984).



72 Mathematical Solution Techniques

In most commercially available software systems the Simplex algorithm provides
the foundation of a method which will comfortably produce rapid solutions to prob-
lems involving 10,000s of variables and 1,000s of constraints. When a problem is
formulated as an LP, the formulation will not be unique,e.g., some modelers may
prefer to introduce certain variables to represent intermediate stages in operations
while others will avoid these concepts. However, provided the models are valid rep-
resentations of the problem then the resulting LP problems will all be essentially
equally easy to solve and will provide equivalent solutions.

3.2.2 Solving the Boat Problem with the Simplex Algorithm

In order to demonstrate how the Simplex algorithm works let us express the boat
problem introduced in previous chapters in the standard formulation. Since we want
to reserve the symbols for slack variables we rename the original variables,p and
s, to x1 andx2. Then the problem reads as follows:

max 800x1+600x2 (3.2.1)

subject to
x1 + x2 + s1 = 350
x1 + s2 = 200

−x1 + x2 + s3 = 0
4x1 + 3x2 + s4 = 1400

. (3.2.2)

Note that in addition to the non-negative variablesx1 andx2 denoting the number
of Premier and Standard boats we have introduced the non-negative slack or surplus
variabless1, . . .s4. The third equation is derived fromx1 − x2 ≥ 0 leading tox1 −
x2 − s3 = 0. In order to have the auxiliary variables (slack or surplusvariables)
appearing with coefficient +1 [we see below why that is an advantage] we multiplied
the equation by−1.

Let us for a moment neglect the objective function. Then we are facing the prob-
lem of finding a solution of a system of linear equations. How can we solve the
(underdetermined) system of equations (3.2.2)? You can easily check that

x1 = x2 = 0, s1 = 350, s2 = 200, s3 = 0, s4 = 1400 (3.2.3)

is a solution. How could we obtain this solution? In this caseit is easy as each slack
or surplus variable appears in exactly one equation with coefficient +1, and each
row contains exactly one slack or surplus variable. We will call variables with this
property (appearing in only one equation, having coefficient +1, each equation has
only one of them)canonical variables. Canonical variables are a special case of
basic variables3 and allow us to apply the following heuristic: assign the value 0

3 To readers with a background in linear algebra: the concept of basic variables stems from linear
algebra. Consider the constraint matrixA and a collection ofm columns,A j . If these columns are



3.2 Linear Programming 73

to all other variables; these are so-callednon-basicvariables. Then the right-hand
side of the equations gives the values of the basic variables. The solution is called a
basic solution, and afeasible basic solutionif all basic variables have non-negative
values. However, the value of the objective function associated with this solution
[which we refer to asx0 = (0,0,350,200,0,1400;0)] is 0 which will not keep our
boat owner too happy.

Our solutionx0 suggests that we should not lease any boats. How about slightly
increasing the non-basic variables from 0 to 1? We do not wantto lose feasibility.
Let us further introduce a quantity,d j ,

d j := Znew−Zold, (3.2.4)

which measures, for each non-basic variable the effect on the objective function
when that variable is increased from 0 to 1 while consideringthe system of linear
equations. Note thatZnew and Zold are the values of the objective function after
and before the increase of a non-basic variable. To give an example we considerd1

associated withx1 :

Znew= 800+0·(350−1)+0·(200−1)+0·(0+1)+0·(1400−4) = 800 (3.2.5)

andZold = 0 and sod1 = 800.
Let us derive a general formula from this computation: the first term is obviously

the objective function coefficient,c j , of the non-basic variable with indexj that we
are interested in. The coefficients in front of the brackets are the objective function
coefficients of the current basic variables. The terms in thebrackets are the values
of the current basic variables minus the coefficient of the non-basic variable in the
corresponding row. Using the standard form (3.1.9) with matrix A and vectorsb and
c, as well as a little knowledge of linear algebra we can simplify the expression by
introducing the scalar products and get a simple formula which helps us to compute
the quantitiesd j in general:

d j :=
[
c j +cT

B (xB−A j)
]
−cT

BxB, (3.2.6)

wherecT
B is a row vector containing those coefficients in the objective function as-

sociated with the basic variables,xB is a column vector containing the values of all
basic variables,A j is a column vector established by thej ’th column of the current4

matrixA. Simplifying (3.2.6) we get the expression for therelative profit dj

linearly independent then the corresponding variablesx j are calledbasic variables. Since there
may exist different sets ofm linearly independent column vectors we also have different sets of
basic variables. Thus, to say a variable is a basic variable makes sense only if this variable is seen
as a member of an ensemble of variables. The situation with canonical variables is different. It
can easily be seen whether a variable is a canonical one or not. If we inspect the columns ofA
associated with a set ofm canonical variables we see that, after ordering the columns, weget the
identity matrix which is a very special example of a set of linearly independent columns.
4 In the original Simplex algorithm the matrixA is updated in every iteration.



74 Mathematical Solution Techniques

d j = c j −cT
BA j . (3.2.7)

In the example above we have

cT
B = (0,0,0,0) , c1 = 800 , A1 =




1
1

−1
4


 (3.2.8)

and thus

d1 = 800− (0,0,0,0)




1
1

−1
4


= 800 (3.2.9)

again.
The term relative profit reflects the fact that it describes a profit per unit increase

of a non-basic variable and mutual decrease of a basic variable [the termxB−A j

accounts for that in (3.2.6)]. If we were solving a minimization problem we would
use the termrelative costor reduced cost. For an economic interpretation of the
reduced cost see also Section 3.4.4.

Applying (3.2.7) to the non-basic variablex2 we findd2 = 600.
What about the value ofd j if x j is a basic variable? In that case we haved j = 0

as the columnA j corresponding tox j is, by definition of a basic variable, a column
vector containing exactly one entry equal to unity while allother entries are zero.
Thus the scalar productcT

BA j gives just the coefficient of the objective function
corresponding tox j and that is of coursec j , i.e., cT

BA j = c j and thusd j = 0.
What are thed j useful for? We can use them to aid selection of which variable

to put into the basis,i.e., increase from zero to a positive value. Becaused1 > d2 we
considerx1 as the candidate for becoming a basic variable. The procedure leading to
this decision is calledpricing or pricing-outthe variables where thed j are the prices.
Choosing the non-basic variable with biggestd j is a heuristic procedure, and other
procedures exist. Any non-basic variable withd j > 0 would suffice. Concerning
numerical performance we would of course pick the one guaranteeing the fastest
solution. Unfortunately, there is no rule for that.

From the definition of basic variables, or especially canonical variables, we con-
clude that we can have at mostm basic variables, wherem denotes the number of
constraints,i.e., linear equations. Thus, if we select a new basic variable from the
set of non-basic variables we need to eliminate one of the existing basic variables.
How can we determine which one to eliminate? In order to take this decision let us
inspect equation (3.2.2) once more. We consider only the basic variabless1, . . . ,s4

and the new basic variablex1, i.e., x2 is zero throughout. Then (3.2.2) reduces to

x1 + s1 = 350
x1 + s2 = 200

−x1 + s3 = 0
4x1 + s4 = 1400

. (3.2.10)



3.2 Linear Programming 75

The question of which basic variables we are going to eliminate is answered by
determining by how much we can increasex1. The requirementss1, . . . ,s4 ≥ 0 lead
to the inequalities

350− x1 ≥ 0
200− x1 ≥ 0

0 + x1 ≥ 0
1400− 4x1 ≥ 0

⇔
x1 ≤ 350
x1 ≤ 200
x1 ≥ 0
x1 ≤ 325

. (3.2.11)

The second inequality becomes active5 first, namely when the value ofx1 increases
to 200. The third inequality never becomes active and is always fulfilled; it is an
empty condition. We are now able to select the variable to be eliminated from the
basis.x1 = 200 impliess2 = 0 which means that we want to eliminates2 from
the basis. The so-calledminimum ratio rulefollowing from our example reads as
follows: eliminate that basic variablexe for which the minimum value

be

Ae j
= min

i

{
bi

Ai j

∣∣∣∣Ai j > 0

}
(3.2.12)

is taken (the corresponding constrainte for which the minimum ratio is realized, is
the first one which becomes active and would become infeasible if the new basic
variables is further increased); note thatj is the entering variable index. The symbol
| starts defining a logical condition,i.e., it can be read “for which”. If all column
entries,Ai j , corresponding to the new basic variablex j are non-positive, the LP
problem is unbounded.

While we already know the value of the new basic variablex1 we do not yet know
the modified values of the other ones. In addition we also wantto see the fact that
x1 is a basic variable (in our case even a canonical variable) inthe system of linear
equations,i.e., x1 appears in only one equation and with unit coefficient.

In order to achieve this goal we borrow some knowledge from linear algebra.
Two systems,A1x = b1 andA2x = b2, of linear equations areequivalentif they
have the same set of solutions. To illustrate this property consider the systems

x1 − 2x2 + x3 − 4x4 + 2x5 = 2
x1 − x2 + x3 − 3x4 − x5 = 4

(3.2.13)

and
x1 + x3 − 2x4 − 4x5 = 6

x2 + x4 − 3x5 = 2
. (3.2.14)

Instead of checking whether both systems have the same solutions we can show
that they are connected by so-calledelementary row operations. These operations
include multiplication of rows by a non-zero factor, and addition and subtraction
of rows; they do not change the set of solutions. In the example above the second
system is derived from the first one, by applying the following elementary row op-

5 An inequality is said to beactivefor some values of the variables, if the left- and right-hand sides
are equal,i.e., for these values the inequality is fulfilled as an equality. Example:x+y≤ 5 becomes
active forx= 3 andy= 2.



76 Mathematical Solution Techniques

erations to (3.2.13): subtract the first row from the second one, then add twice the
second row to the first one.

Let us now apply this technique to (3.2.2) and remember thatx1 replacess2 as a
basic variable. This decision was based on the minimum ratiorule which considered
the rows of the system. Thus the indexe is used to refer to the row in which an
existing basic variable is to be eliminated. This row is transformed according to the
following formula:

Aec→ A′
ec=

Aec

Ae j
; c= 1, . . . ,n+1, (3.2.15)

whereAe j is the coefficient of the new basic variable in that row, and column n+1
is the right hand side,i.e.,

Ar,n+1 = b , A′
r,n+1 = b′. (3.2.16)

The other rows,r 6= e, are transformed according to the slightly more difficult rule

Arc → A′
rc = Arc −

Ar j

Ae j
·Aec ;

r = 1, . . . ,m
r 6= e

; c= 1, . . . ,n+1. (3.2.17)

If we apply the formulas (3.2.15) and (3.2.17) to (3.2.2) we get the system of equa-
tions again in canonical form,i.e., each equation contains exactly one canonical
variable:

x2 + s1 − s2 = 150
x1 + s2 = 200

x2 + s2 + s3 = 200
3x2 − 4s2 + s4 = 600

(3.2.18)

and

xB =




s1

x1

s3

s4


=




150
200
200
600


 , cT

B = (0,800,0,0). (3.2.19)

Now our boat owner is much happier because the objective function, i.e., profit has
increased to £160,000. The questions remain: Is that all we can get? Is this the best
solution? How can we know answers to the questions posed here? To answer this
question let us do the pricing again, yielding

d = (0,600,0,0,0,0) (3.2.20)

There is a candidate to improve the solution, namelyx2. According to the mini-
mum ratio rule (3.2.12) we need to eliminate the variable corresponding to the first
equation in (3.2.18),i.e., s1. Transforming the linear equations again yields



3.2 Linear Programming 77

x2 + s1 − s2 = 150
x1 + s2 = 200

− s1 + 2s2 + s3 = 50
− 3s1 − s2 + s4 = 150

(3.2.21)

and

xB =




x2

x1

s3

s4


=




150
200
50

250


 , cT

B = (600,800,0,0) (3.2.22)

and a profit of £250,000. The boat owner gets excited about optimization. But are
we finished now? Let us do pricing again. We get

d = (0,0,−600,−800,0,0). (3.2.23)

This result implies that we cannot improve the objective function any more. This
is quite fundamental and therefore let us be clear about how we could derive this
conclusion fromd. The vectord is actually referring to changing the non-basic
variables. The basic variables cannot be altered without altering the non-basic vari-
ables. By non-negativity, the non-basic variables are onlyallowed to increase. The
reduced pricesd listed above show that this can only reduce the optimum value.
Thus we have proved thatx1 = 200 andx2 = 150 is the optimal solution, and we
learn that pricing is good for two things:proof of optimalityandselecting a new
basic variable.

Let us summarize what characterizes the complete output of the Simplex al-
gorithm: the values of the variables, evaluation of the constraints, their slacks if
present, the value of the objective function, the reduced costs and a proof of opti-
mality. There is one further piece of relevant information:the shadow prices or dual
variables discussed in Sections 3.4.3 and 3.5 and in Appendix 3.8.1.

Further geometrical and algebraic properties of the Simplex and revised Simplex
algorithm, as well questions related to degeneracy are reviewed in Appendix 3.8.1
to this chapter.

3.2.3 Interior-Point Methods — A Brief Overview

The region defined by linear constraints gives rise to a feasible region which is
a polyhedron. While the feasible region can be easily visualized if there are only
two variables present, and even possibly in the case of threevariables, it is not
possible in a problem involving hundreds of variables. The Simplex algorithm, in
the nondegenerate case,i.e., no optimal solutions on a line connecting two vertices,
can be thought of as an algorithm which moves from one corner (vertex) of the
polyhedron to a “new” corner by advancing along one edge at a time [see Fig. 3.1
a)].



78 Mathematical Solution Techniques

x
2

x
2

x
1

x
1

1

2

3 4

a) Simplex algorithm b) Interior-point method

optimal solution

initial feasible solution

initial
interior
point

Fig. 3.1 Illustration of the Simplex algorithm compared to interior-point methods.

In contrast to the idea of a vertex-following method to solvean LP problem,
more recently developed methods have concentrated on moving through the interior
of the polyhedron [see Fig. 3.1 b)]. Such methods are calledinterior-point methods
and first received widespread attention after work by Karmarkar (1984,[336]). Since
then, about 2,000 papers have been written on the subject andresearch in optimiza-
tion experienced the largest boom since the development of the Simplex algorithm;
cf. Freund & Mizuno (1996,[209]). The idea of interior-point methods is intuitively
simple if we take a naive geometric view of the problem. However, first, it should
be noted that in fact the optimal solution to an LP problem will always lie on a ver-
tex, i.e., on an extreme point of the boundary of the feasible region. Secondly the
shape of the feasible region is not like, say, a multi-faceted precious stone stretched
out equally into many dimensions but more likely to resemblea very thin pencil
stretched out into many dimensions. Hence, an algorithm which moves through the
interior of a region must pay attention to the fact that it does not leave the feasible
region. Approaching the boundary of the feasible region is penalized. The penalty
is dynamically decreased in order to find a solution on the boundary. Interior-point
methods will in general return an approximately optimal solution which is strictly
in the interior of the feasible region. Unlike the Simplex algorithm no optimal basic
solution is produced. Thus, “purification” pivoting procedures from an interior point
to a vertex having an objective value no worse have been proposed and cross-over
schemes to switch from interior-point algorithm to the Simplex method have been
developed [24].

The commercially available solvers are so-calledlogarithmic barriertype solvers
[see appendix to Chapter 3] but the trend is towardshomogeneousand self-dual
solvers.6 The barrier method is usually attributed to Frisch (1955,[210]) and is for-
mally studied in Fiacco & McCormick (1968,[187]) in the context of nonlinear opti-
mization,i.e., well before Karmarkar. Gillet al. (1986,[226]) have shown that there

6 Such solvers are discussed in the review article by Freund & Mizuno (1996,[209]). Further details
are found in Andersen & Ye (1995,[25]) and Vanderbei (1996[572],2014[573]).



3.2 Linear Programming 79

exists a formal relationship between Karmarkar’s new interior-point method and the
classical logarithmic barrier method.

Since interior-point methods contain complicated mathematics and use advanced
mathematical concepts we postpone the description of thesemethods to Appendix
3.8.5.

3.2.4 LP as a Subroutine

The solution of LP problems is also relevant for solving other optimization prob-
lems. LP problems occur as subproblems in

abbrev. optimization problem type using ...
NLP nonlinear programming sequential LP
ILP (pure) integer LP LP relaxations (Section 3.3.1)
MILP mixed integer LP LP relaxations (Section 3.3.1)
MINLP mixed integer NLP MILP master problems (Section 12.6.3)

For all these problems the LP algorithms are used as subroutines and called several
thousands or millions of times. In this book we will concentrate on MILP problems
and their formulation, but whatever we do in order to solve MILP problems we
should have a clear concept in mind of what is needed to solve the subproblem,i.e.,
the LP problems. By now, we already have an idea of how the Simplex algorithm
works and what are the main ideas:

• pricing-out
• eliminating a basic variable, and
• linear algebra aspects (pivoting).

The model building process can influence these tasks enormously. Here we will
briefly mention a few key ideas one should have in mind:

• efficient pricing is supported by a strong driving force in the objective function
• equations with many zero right-hand side entries can create difficulties when

applying the minimum ratio rule
• sparsity and density of the model; to exploit sparsity aidsthe linear algebra.

Most commercial solvers also provide presolvers (i.e., systems for analyzing the
model before attempting optimization). Such systems eliminate fixed variables, at-
tempt to tighten bounds on variables, and try to perform other operations which
enable the solvers to operate more efficiently. Pre-solvingis considered in more
detail in Section 9.1.1.

The advances in state-of-the-art hardware and software have enabled the inex-
pensive, efficient solution of many large-scale linear programs previously consid-
ered intractable. Still large LPs can require hours, or evendays, of run time and
are not guaranteed to yield an optimal (or near-optimal) solution. Klotz & Newman



80 Mathematical Solution Techniques

(2013,[349]) present practical guidelines for solving difficult LPs and suggestions
for diagnosing and removing performance problems in state-of-the-art linear pro-
gramming solvers, and guidelines for careful model formulation, both of which can
vastly improve performance.

3.3 Mixed Integer Linear Programming

A mixed-integer linear programming(MILP) problem is an LP problem, where
some variables are enforced to be integers. In other words, MILP problems include
both integer and continuous variables.

Neither ILP (a MILP problem without continuous variables) nor MILP prob-
lems can be solved by the same approach as LP problems (exceptin certain unusual
circumstances), but the LP solution technique does form thefoundation of most al-
gorithms for solving the IP or MILP. An intuitive idea for solving MILP problems
leads toexplicit enumerationas demonstrated in Section 3.3.1; our farmer from Sec-
tion 2.6.1 has used this approach. All combinations of binary or discrete variables
are noted down. That yields LP problems in which the discretevariables have fixed
values. If we solve all LP problems (some might be infeasible, of course) we will
pick out the best solution, which is also the optimal solution to our original MILP
problem. However, as the number of combinations grows exponentially,7 this ap-
proach is not practical and animplicit enumerationmethod (where all combinations
are considered without enumerating them one by one) is preferable. Surely, there
are also methods which are neither based on explicit nor implicit enumeration.

3.3.1 Solving the Farmer’s Problem using Branch & Bound

Recall the farmer’s problem,i.e., the relations (2.6.6) to (2.6.9) from Section 2.6.1:

max Z = 3c+2p (3.3.1)

subject to
c+ p≤ 3.5 (3.3.2)

0≤ c≤ 2 , c integer (3.3.3)

0≤ p≤ 2 , p integer. (3.3.4)

Our farmer, ill-educated in optimization, tries to solve the problem byexplicit enu-
meration, i.e., by identifying all the budget- and housing-compatible combinations

7 Imagine the case, that we haven binary variables,δ i . Then we have 2n possible combinations.
While 23 = 8, 210 = 1024, 250 is already a number which starts with leading figure 1 and then
has 15 zeros. Note that we have approximately 2n ≈ 100.3n, or to be precise 2n ≈ 10M·n with
M = ln(2)/ ln(10)≈ 0.30103. . .



3.3 Mixed Integer Linear Programming 81

Fig. 3.2 LP relaxation and the first two subproblems of a B&B tree.

LP-1

LP-2 LP-3

p2 < 1 p2 > 2

LP relaxation at node LP-1 and the
first two subproblems of a B&B tree.

of calves and pigs, computing the value of the objective function, Z, and finally,
selecting the pair(c, p) with the highest value ofZ. As c ≤ 2 and p ≤ 2 , only
pairs in{0,1,2}, i.e., at most 32 = 9 combinations. The values ofZ are given in the
following table:

p\c 0 1 2
0 0 3 6
1 2 5 8
2 4 7 -

.

The combination(2,2) is infeasible because it violates the constraint (3.3.2). As
expected the result is (c= 2, p= 1) andZ = 8. For small-sized problems8 this enu-
meration method can be successful. If the farmer had enough investment money to
buy 9 calves or pigs instead of only 2, then we would have 102 = 100 pairs out
of {0,1,2,3,4,5,6,7,8,9}. A more complicated situation would arise, if the farmer
had additional kinds of animals on the farm [Exercise 3.8]. For that reason, it would
be desirable to have an optimization algorithm available, capable of determining the
optimal solution without using complete enumeration.

Our general method, which is calledBranch-and-Bound(B&B) with LP relax-
ation, is the most common method used for solving integer programming problems
originated by Land & Doig (1960,[362]). The method proceedsas follows: we first
solve the LP relaxationLP-1 of the original problem given above by ignoring the
integrality conditions. Obviously,LP-1 is an LP problem as there are no integer
variables. In Sections 1.5 and 3.2.2 we have learned how to solve such problems.

8 Theproblem sizeof a model may be expressed by the number of variables and constraints.



82 Mathematical Solution Techniques

Fig. 3.3 B&B tree for the cows and pigs problem. Five nodes suffice to proveglobal optimality.
Node 3 shows the maximal profit solution.

The result is

LP−1 : c= 2 , p= 1.5 , Z = Z1 = 9. (3.3.5)

Although this solution includes fractional values and doesnot provide an optimal
solution to the original MILP problem, it will still providesome useful information
for us. Since we relaxed the original problem and gave more freedom to it, the
solutionZ1 puts an upper limit on what we can anticipate. We have formally proven
that the profit cannot be larger than 9 kGBP. In the formal description of the B&B
algorithm we will keep track of the upper bound denoted byzLP, initialized atzLP =
Z1 = 9. We will also consider a lower boundzIP which is initialized atzIP = −∞;
we will see below how this bound is improved. The bounds restrict the objective
function value,z∗, of the optimal solution to the range

zLP ≥ z∗ ≥ zIP. (3.3.6)

What can we do now about the integrality condition? We producetwo new problems
(we will call themsubproblems) as shown in Fig. 3.2

LP−2 : LP−1 with p≤ 1
LP−3 : LP−1 with p≥ 2

(3.3.7)

by taking the original (relaxed) problem and adding some bounds to it. These are
again linear programming problems but using the additionalconstraints we exclude
the set of values between 1 and 2 for the variablep. Note thatp= 1 andp= 2 are not
excluded. Can you figure out graphically how these constraints change the feasible
region? We leave that as an exercise! The subproblems are also calledbranches,
and we have to decide on which problem to branch first. Let us solve LP-2 first. The
solution is



3.3 Mixed Integer Linear Programming 83

LP−2 : c= 2 , p= 1 , Z = Z2 = 8. (3.3.8)

This solution satisfies all the constraints (3.3.3-3.3.2) and it gives the optimal answer
which becomes obvious from our farmer’s table.

But without the table, how can we be sure that this is the optimal answer? We
have a solution withZ = 8, thus we updatezIP = 8, and we know that we cannot
do better thanzLP = 9. In order to prove the optimality ofZ = 8 we investigate the
other subproblem (or node):

LP−3 : c= 1.5 , p= 2 , Z = Z3 = 8.5. (3.3.9)

If we are going to investigate this branch we know that we cannot obtain a solution
better thanZ = 8.5. Proceeding as above we generate two subproblems

LP−4 : LP−3 with c≤ 1 (3.3.10)

and
LP−5 : LP−3 with c≥ 2. (3.3.11)

The whole B&B tree is depicted in Fig. 3.3. Now the solution ofLP-4 follows as

LP−4 : c= 1 , p= 2 , Z = Z4 = 7 (3.3.12)

is integral but smaller than our current bestZ = 8. The other subproblem,LP-5 is
obviously an infeasible problem, as it originates fromLP-3 and adds the new bound
c≥ 2 which cannot be satisfied simultaneously withp≥ 2. So we are done. This ex-
ample shares another nice property with other mixed integerproblems. Sometimes
it is possible to tighten the bounds9 and produce a solution much faster. The key
is the constraint (3.3.2),i.e., c+ p ≤ 3.5. Due to the integrality ofc and p we can
replace this constraint by

c+ p≤ 3. (3.3.13)

As adding two integer values gives an integer and if an integer value has to be no
more than 3.5, then it has to be no more than 3. If we then compute the LP relaxation
we get at once the solutionc= 2 andp= 1 and the optimal valueZ = 8. This nice
case in which the LP relaxation gives the optimal integral solution is said to have
zero integrality gap [a concept to be discussed in Section 6.9].

Another remark is useful. After we have inspected the solution LP-3, we could
have taken the objective function values ofLP-2 andLP-3 concluding

zLP = max{z(LP−2),z(LP−3)}= 8.5. (3.3.14)

At this stage we also hadzIP = 8 available and thus according to (3.3.6) the chain

8≤ z∗ ≤ 8.5 (3.3.15)

9 Tightening of bounds and other presolving operations are further described in Section 9.1.1.2.



84 Mathematical Solution Techniques

As in the original MILP problem the variablesc andp can take only integer values
and the objective function has only integer coefficients, the objective function value
is always integral. Since there are no further integral values between 8 and 8.5,
(3.3.15) proves already the optimality of the solution found at nodeLP-2. Thus, it
is not necessary to evaluate the nodesLP-3 andLP-4. So, we can see how bounds
can be used to reduce the B&B tree.

3.3.2 Solving Mixed Integer Linear Programming Problems

A great variety of algorithms to solve mixed integer optimization problems has
arisen during the last decades. Following methodologies are well-known exact al-
gorithms for solving ILP and MILP problems:

• explicit enumerative algorithms,
• implicit enumerative algorithms,
• cutting-plane algorithms,
• Branch-and-Cut (B&C) algorithms,
• dynamic programming.

Only small MILP problem can be solved byexplicit enumeration: we make a list of
all combinations of values the integer variables could have, solve the corresponding
continuous LP problems, and select the best one with the bestobjective function.
If the problem size growths, the prohibitively large numberof combinations makes
this approach impossible for solving most real-world problems.

The most common algorithm used by software for IP and MILP is the Branch&-
Bound (B&B) algorithm, originated by Land & Doig (1960,[362]) and described in
its implemented form by Dakin (1965,[143]). It is the most important representation
of implicit enumerative algorithms. Such algorithms includepruning criteriaso that
not all feasible solutions have to be tested for finding the optimal solution and for
proving optimality.

In Section 3.3.1 we have already outlined the concept of a B&Balgorithm based
on LP relaxation. The key idea in B&B is that the relaxation leads to easier prob-
lems, which can be solved in a relatively short time and provide useful bounds for
the original problem. These bounds reduce the size of the search tree significantly.
In general, relaxation means we are weakening some restrictions of the problem.
Assuming that our original problem is feasible the relaxed problem always has a
feasible set of solutions,SR, of which the original feasible set,S, is a subset,i.e.,
S⊆ SR. The relaxation mostly used in MILP solvers is variable domain relaxation,
i.e., binary variablesδ ∈ {0,1} are relaxed toδ ∈ [0,1], and integer variablesα ∈ IN
are relaxed toα ∈ IR+

0 . Other relaxations are such that some constraints are weak-
ened, moved into the objective function for penalization [cf. Lagrange relaxation
in Section 14.1.3.3 orBenders decompositionin Section 14.1.3.2.1], or removed
completely. The B&B algorithm with LP relaxation is discussed in more detail in
Appendix 3.8.6.



3.3 Mixed Integer Linear Programming 85

Fig. 3.4 LP relaxation (green: vertices A, B, C, D) and convex hull (blue: vertices P, Q, R, S, T,
U, V) for a problem with two variables (left figure). A B&B tree for a maximization problem with
nine binary variablesx1 to x9 (right figure). The first integer feasible solution is found at node 5,
the optimal is node 9.

While the B&B algorithm works efficiently to solve integer programming mod-
els, it still requires solving many subproblems using certain branching and node
selection schemes. Therefore, solving an ILP or MILP is still not as easy as solving
an LP model because of subtleties within the mathematics of MILP models and solu-
tions. Typically, two problems of identical size in terms ofconstraints and variables
where one is LP and the other is MILP may differ by a factor of upto 2n (n denotes
the number of binary variables in the problem) in computer time needed to solve
the MILP compared to computer time taken to solve the LP. Similarly, when data
changes are made to models, but the numbers of constraints and variables remain
the same, the time taken to solve an LP will remain fairly constant but the MILP
solution time may be subject to dramatic fluctuations. Fortunately, real-world prob-
lems are not always such worst-case scenarios which necessarily show this strong
increase in computing time. Thus the preceding does not imply that MILP models
should never be built, but rather that caution should be exercised as regards their
ease of solution.

What are the points a novice modeler should pay attention to? It is difficult to
answer this question without some mathematical background. Technically speaking,
the model formulation should be based on wisely chosen variables such that the LP
relaxation should be as close as possible to theconvex hull. At several places in the
book we refer back to the concept of the convex hull. Theconvex hullof an MILP is
shown in Fig. 3.4. It is the polyhedron with smallest volume which still contains all
MILP feasible solutions. It can be mathematically shown that the convex hull can
always be described by a set of linear constraints. Unfortunately, in most cases it is
not possible to write down the system of constraints explicitly. In cases in which it
is possible, the LP relaxation of the original problem restricted to the convex hull as
the feasible region gives the solution of the original MILP problem.

The remark made about equivalent LP models at the end of Section 3.2.1 is not
appropriate for MILP models. Although equivalent MILP models will give rise to
equivalent solutions, the ease of achieving these solutions may vary dramatically.
Thus modeling using MILP is very much an art and a number of “tricks of the



86 Mathematical Solution Techniques

trade” exist. These include the choice of which decisions tomodel as variables and
certain additional constraints, which though apparently superfluous, may make a
substantial difference to the ease of solving the MILP. These and other related issues
are discussed in Chapter 6.

The reader should be aware that pre-solving already mentioned in Section 3.2.4
becomes even more important in the context of MILP. In some circumstances it is
possible that a simple analysis of the problem before using B&B, i.e., in the root
node, may result in improvements that hold throughout the search. For example,
using presolve immediately strengthened a constraint 1.62≤ x≤ 3.73 by converting
it into 2≤ x≤ 3 for an integerx variable. Further details on MILP pre-solving can
be found in Section 9.1.1.

There are two further methods for solving MILP problems which are also based
on solving LP problems as a fundamental building block. The first is theCutting-
plane method, the second isBranch-and-Cut(B&C).

A number of other methods exist for solving ILP problems which contain no con-
tinuous variables, particularly problems with binary variables, which are not based
on solving LP problems as an integral part. One of the oldest methods is theadditive
algorithmdue to Balas (1965,[45]). Other methods are those of Granot &Hammer
(1972,[242]) and Wolsey (1971,[599]). These methods rarely feature in commercial
software systems but ideas from these specialist algorithms are sometimes incorpo-
rated as subsidiary steps in methods such as B&B.

Dynamic programmingas described in Nemhauser & Wolsey (1988,[431]) or
Ravindranet al. (1987,[464]) is not a general-purpose algorithm but originally was
developed for the optimization of sequential decision processes. This technique for
multi-stage problem solving may be applied to linear and nonlinear optimization
problems which can be described as a nested family of subproblems. The original
problem is solved recursively from the solutions of the subproblems. Examples can
be found in Nemhauser & Wolsey (1988,[431]).

Finally, there existheuristic methods, local and global search algorithms,e.g.,
simulated annealingandtabu search. However, these methods do not provide any
proof of optimality or give an estimation of the quality of a feasible point found.

3.3.3 Cutting-Planes and Branch-and-Cut (B&C)

Cutting-planemethods operate by starting in the same way as B&B but then moving
towards a solution by restricting the feasible region defined by the constraints of the
relaxed problem. The optimal solution is normally found before the end of the pro-
cess which has to establish if any better solution exists. The cutting-plane method
was introduced by Gomory (1958,[239]) and further refined byGlover (1968,[233])
and Young (1968,[605]). With the B&B algorithm a number of unfruitful paths to-
wards a solution is normally explored and abandoned subsequently. In contrast to
B&B, the cutting-plane algorithm moves gradually towards the optimal solution by
a route that ensures that at the last step in the process the optimal solution is found.



3.3 Mixed Integer Linear Programming 87

Fig. 3.5 Illustrating the idea of Branch & Cut.

The B&C algorithm combines features from both the B&B algorithm and the
cutting-plane approach. In each iteration, constraints (cuts) are added in order to ex-
clude fractional solutions. B&C algorithm still branches on a variable (as in B&B)
but also adds a set of cuts to tighten the bound. These cuts, also calledvalid inequal-
ities, cut off parts of the LP feasible region without cutting off any valid integer
solution [see Fig. 3.5]. An early introduction to the subject appeared in Padberg &
Rinaldi (1987,[442]). B&C may operate in two main ways:

a) only cuts which are always valid for the problem may be generated;
b) cuts which are only valid at particular nodes (because of branching already
conducted) may be generated.

The reasons for the difference may not seem apparent at first.The difficulty is that
in an IP problem many cuts will be available but it will be tedious to try to generate
them all, and if they were all generated the resulting LP problem would be very
large in terms of the number of constraints. Thus although aninteger solution would
be guaranteed, it would be difficult to obtain it. Hence the subtlety of B&C lies in
generating violated cuts,i.e., ones which are violated by the current LP solution.
Thus in a) violated cuts can be added progressively, while inb) only violated cuts
valid at a particular node need to be added. It may also be possible to drop cuts
progressively in either approach. Research is currently active in the field of B&C,
but some early successes have been reported in Padberg & Rinaldi (1987,[442]) and
Savelsberghet al. (1994,[499]).



88 Mathematical Solution Techniques

Although in 1997, B&C was promising and used in some commercial softwares,
B&B remained as the most popular choice for commercial software systems in those
days. While B&B required certainly a well-experienced modeler B&C asked for
even more mathematical insight because the construction ofcuts (valid inequalities)
was very difficult [see Section 10.6.3.2 for an example how valid inequalities are
established].

Cutting plane algorithms and B&C are standard nowadays! Commercial solvers
such asCPLEX, GUROBI, or XPRESS-OPTIMIZER support B&C by checking auto-
matically whether the model allows certainstandard cuts. Compared to the 1990s,
the current state-of-the-art optimizers outperform the user when it comes to tuning
solver parameters. Nevertheless, it may happen that for a given problem the lower
or upper bound may not change at all, or may not even find a feasible solution. For
such cases, Klotz & Newman (2013,[350]) propose suggestions for appropriate use
of solvers and guidelines for careful formulation, both of which can vastly improve
performance. Overall, as stressed by Klotz (2014,[348]) , the numerics of solving
MILP problems is by far not trivial and always challenging.

3.3.4 Branch&Price: Optimization with Column Generation

Branch-and-Price (B&P) methodology is a different form of aB&B algorithm,
where at each node, the LP relaxation is solved bycolumn generationas briefly
introduced in Section 2.6.3. B&P is a useful extension of B&Bfor large-size MILP
problems with many,i.e., several million variables as in Vanderbeck & Wolsey
([571]). Because of this large number of variables, most variables are not taken into
account during the LP relaxation; this can be a good start heuristic, because most
variables in large problems assume the value zero anyway. Toprove the optimality,
a pricing optimization problem is solved by identifying newvariables to be included
in the base and recalculating the LP relaxation if necessary. Branching is performed
if the LP relaxation does not meet all integer conditions. Column generation as in-
troduced in Chapter 2 finally takes place in every node of the B&B tree. Once you
have a method available that can handle a large number of variables, this can be very
useful, because the following is often observed in practical problems:

1. Compact formulations of MILP problems, such as in scheduling and in vehicle
routing problems, often have weak LP relaxations. Often theefficiency of the
model can be enhanced considerably by reformulating the model.

2. Compact formulations of MILP problems often contain symmetrical structures
that lead to inefficient performance in standard B&B procedures; a much larger
number of variables or reformulations in general can tacklethis symmetry.

3. Column generation decomposes the original problem into amain and a subprob-
lem, which in some cases leads to significant improvements interms of solution
quality and computing time. Column generation provides theoptimal solution
for the LP problems only, while it solves the LP relaxation for integer models. Its
is usually followed by solving the master problem as a MILP problem.



3.4 Interpreting the Results 89

The basic idea of B&P as outlined, for instance, by Barnhartet al.(1998,[51]) – see
also Section 14.1.3.2.3 – seems simple, especially if the problem is classically de-
composed according to Dantzig & Wolfe (1960,[145]). Technical difficulties,e.g.,
compatible branching rules, often only occur if the problemis not decomposed and
the model formulation,e.g., set-partioning problems, has many integer variables.
Desrosierset al. (1995,[164]) explain this for route planning and scheduling prob-
lems, Savelsbergh (1997,[497]) applies B&P to the Generalized Assignment Prob-
lem, which we solve in Section 14.1.3.3.2 by means of Lagrange relaxation.

3.4 Interpreting the Results

In Chapter 2 any LP-solver could have been used to solve a number of LP models.
In this section we shall consider in further detail the kind of information with which
a solved LP or MILP can provide us and how that information maybe interpreted.
It will be helpful if you refer back to Chapter 2 or examine a run of on LP-solver on
the boats problem of that chapter.

3.4.1 LP Solution

When a LP-solver solves an LP problem it often invokes the revised Simplex algo-
rithm. Some summary information is produced, as the algorithm progresses, which
can be examined in thelog by invoking some kind of aView Log command. Each
complete operation of the steps of the algorithm, which thenrepeat, is called an iter-
ation (’Its’ in the log) and after a group of iterations some information on progress
towards solution is given. Four columns will be particularly useful to observe:

Its this tells us the total number of iterations performed so far;
Ninf the number of infeasibilities, this tells us how many of the

constraints are not satisfied by the trial solution;Ninf
needs to fall to zero before the optimal solution can even
be reached; however, it does not decrease monotonically;

Obj Value this tells us the objective value of the current trial solution
and we can observe this value growing as the iterations
progress if we are maximizing the objective function
(and declining if the problem is minimize); ifNinf≥ 0
it shows the value of the penalty objective function;

Time this tells us how much time has elapsed.

The section commences with some information about thecrash basis. Crashing is
a heuristic method which the software uses to try to make sensible mathematical
“guesses” about which variables will be important in the optimal solution and is akin



90 Mathematical Solution Techniques

to the idea of a “hot start”. Crashing is discussed by Maros & Mitra (1996,[397])
and in Chapter 9.

When we are experimenting with a new model we may get one of two trouble-
some occurrences which give rise to unexpected solutions and to messages in the
log:

• an infeasible problem
meaning that there is no solution possible to the problem. This may come as a sur-
prise and may be remedied by checking the formulation for errors,e.g., ≤ and≥
confused or + and− confused, or more fundamental difficulties;

• an unbounded problem
meaning that the optimal solution to the problem will give aninfinitely large (or
negatively infinitely large) value to the objective function, i.e., in this case there is
no optimal solution. Again this will probably not be what is desired and should be
remedied in a similar way to “an infeasible problem”. Usually, in this case one or
more constraints have been omitted,e.g., a restriction on the machine capacity.

3.4.2 Outputing Results and Report Writing

All AMLs provide a function to retrieve the ”Status” after a solve statement has
been executed. When an acceptable solution has been reached (or even an infeasible
problem, as we may get useful information about why it seems infeasible) we can
display the details of the solution. After some initial statistics on size of problem and
number of iterations required, the optimal objective function value will be given.
Then follows the tables where variable and constraint information can be viewed.
The constraint value tells us the value of the left hand side of a constraint. Since the
objective function is included under this section, the objective function “constraint”
gives us the optimal value of the objective function. In the variables section we
find details of values of variables and their reduced costs. For constraints, we find
their (left-hand side) values and shadow prices; reduced costs and shadow prices
are discussed in the next two sections. Note that the conceptof shadow prices and
reduced costs strictly holds only for LP but not for MILP problems.

Although this paragraph might seem to be out of place in a chapter on solution
techniques, it is worth making a few comments on report writing as it also helps to
interpret the solution. Users of a model want to see the results from the model being
solved expressed in the context of their world, with its associated jargon, styles
and symbols. For them it will be far preferable to see “increase James’s target to
1,000” as a solution value, rather than the bareXJAMES(1)=1000. Thus it will be
incumbent on modelers to make good use of report writing facilities.

At the same time as one set of results from a model is being produced, the user
may wish to vary the conditions under which the results were produced and explore
the model further. This will also be performed under the umbrella of the report
writing commands.



3.4 Interpreting the Results 91

Beyonds textual reports, nowadays in 2019, reporting toolshave become such a
standard that you should refer to them as well. Plain numbersdon’t tell much. Users
want to get aggregated numbers and drill down into the specific details – this can be
accomplished with nowadays Business Intelligence (BI) tools that apply automatic
filtering upon selection and can be highly customized to the need of the application.

3.4.3 Dual Value (Shadow Price)

In a constraint the optimal values of the variables will be such that the left- and right-
hand sides of the constraint are either equal or unequal. Foran equality constraint (or
for the objective function) equality will be guaranteed. Iffor a≤ constraint the left
hand side of the constraint is strictly less than the right hand side, then the resources
to which the constraint refers are not restrictive and so there is no inherent value
in obtaining additional resources. Thedual valueof a constraint is the increase,
for a maximization problem, obtainable by a one unit increase in the right hand
side of that constraint. Thus for the constraint “berthing”(1.4.2), a unit increase in
berthing capacity will yield an increase of 600 units to the objective function. Note
that the units of increase are unit of objective function over unit of the constraint.
The dual value can also be interpreted as the unit decrease inthe objective function
caused by a unit decrease in the right hand side of a constraint. As can be shown
mathematically, the shadow price is the partial derivativeof the objective function
with respect to the right hand side of a constraint evaluatedat the solution.

The dual values can be computed with the help of formula (3.8.8), and for our
“Boat Renting” problem they turn out to be £600/boat, £200/boat, £0/boat and
£0/hour for the four constraints [this is left as Exercise 3.7 for the reader].

The dual value of themaintenance constraint is zero, indicating that the re-
striction is not “binding” or active,i.e., it is not restricting values of variables be-
cause there is some slack (100 units) available.

For a≥ constraint, the dual value for a minimization problem is theunit increase
in the objective function achieved by a unit increase (decrease) in the right hand side
value of the constraint. A positive dual value would mean that the objective would
be increased,i.e., worsened, by that amount per unit increase of the right handside.
For a maximization problem the interpretation needs to be adjusted accordingly.

It should be noted that gains which dual values suggest are achievable by increas-
ing right hand sides of constraints may be more limited than dual values indicate.
As dual values are marginal values, their extent may be curtailed by other factors in
the problem, so 1 extra unit of .... may give 10 units more to the maximum output,
but 2 extra units of .... may only give 10.5 units more to the maximum output. Thus
the shadow price is only a local property.

Dual values can be interpreted as values of resources and through LP a mathe-
matical explanation of some aspects of the economics of scarcity can be achieved.
This work is discussed further in Young & Baumol (1960,[606]).



92 Mathematical Solution Techniques

3.4.4 Reduced Costs

If a variable takes a positive value in the optimal solution it is apparent that it can
make a useful contribution in a maximization problem. If a variable takes the value
zero in the optimal solution, its contribution to the optimal solution could be re-
garded, in some sense, as unsatisfactory.

If a variable has solution value zero in a problem, itsreduced costintroduced
in Section 3.2.2 tells us by how much (additively) its objective function coefficient
must be increased for it to achieve a non-zero value in the optimal solution. Al-
ternatively, the reduced cost may be viewed as telling us by how much a variable
is “underpriced” (maximization problem) or “overpriced” (minimization problem)
compared to other variables. In a production problem, underpricing will mean that
revenue is less than production cost, caused by the constraints of the problem.

Reduced cost is a marginal concept and the caveats regardingmarginal values
indicated in the previous section apply.

An interesting description of many aspects of investigating the solution to prob-
lems is contained in four articles by Greenberg (1993a[243],b[244], c[245]; 1994
[246]). The reader is referred to these useful articles for further detail.

3.5 Duality ⊖

The existence of shadow prices and reduced costs suggests that when we solve an
LP problem using the Simplex algorithm we are not simply interested in the val-
ues of variables. The marginal values we investigated in theprevious sections are
evidently values of other varying quantities, in an algebraic sense. To find out their
origins we have to introduce a second LP problem (thedual LP problem) which is
directly associated with any given LP problem. Knowledge ofthe behavior of this
problem also aids our understanding of the concept of optimality of an LP problem
and provides some reasons why an optimal solution can be found and identified.

The formal mathematical foundations addressing the topicsabove are related to
the concept ofduality. Duality is a fruitful concept for theoretical considerations
and improving numerical properties of algorithms for nonlinear, linear and also dis-
crete optimization. A dual version of the Simplex algorithmis essential when using
B&B techniques based on LP relaxations. Efficient interior-point algorithms [see
Appendix 3.8.5] cannot be understood without the concept ofduality.

Finally, duality allows us to performsensitivity analyses, i.e., to investigate how
small changes in our input data affect the solution. In particular, it becomes possible
to consider how the constraints affect our solution in an optimization problem and
which financial implications they cause.



3.5 Duality⊖ 93

3.5.1 Constructing the Dual Problem

If we just consider LP problems it is very simple to get to the dual problem. Consider
an LP problem (there is no need to do this in standard form)

LP : max 2x1+3x2+x3 (3.5.1)

subject to
2x1 + x2 + x3 ≤ 20
x1 + 2x2 ≤ 30

, x1,x2,x3 ≥ 0. (3.5.2)

The problem,DP,

DP : min 20y1+30y2 (3.5.3)

subject to
2y1 + y2 ≥ 2
y1 + 2y2 ≥ 3
y1 ≥ 1

, y1 ≥ 0 , y2 ≥ 0 (3.5.4)

associated with the problemLP above is called thedual of LP, which is itself re-
ferred to as theprimal problem. Both problems are related to each other according
to a few properties which can easily be seen:

1. LP is maximize and all constraints are of the≤ type. DP is minimize and all
constraints are of the≥ type.

2. The coefficients in the objective function ofLP (in order) are the same as the
right hand sides of the constraints ofDP.

3. The right hand sides of the constraints ofLP (in order) are the same as the coef-
ficients in the objective function ofDP.

4. The coefficients of the left hand sides of the constraints of LP, read horizontally
in order, are the same as the coefficients of the left hand sides of DP, read ver-
tically in order. Readers familiar with linear algebra willrecognize this as the
transposed matrix; otherwise see Appendix C.

5. LP has 2 constraints and 3 variables;DP has 3 constraints and 2 variables. This
follows of course from property 4 above. The variables of thedual problem, the
dual variables, are the shadow prices we encountered already in Section 3.4.3.

It should be noted that the optimal values ofx1, x2 andx3 in anLP problem do not
correspond to the optimal values ofy1 andy2 in the DP problem. This is perhaps
not surprising as an LP problem and its dual usually have verydifferent numbers
of variables. If theLP hadm constraints andn variables, then theDP will have n
constraints andm variables.

An LP problem and its dual problem,DP, are closely connected. A very im-
portant result [see Section 3.5.3] is that, if optimal solutions exist, then the optimal
values of the objective function of both problems are the same.10 This concept of

10 Note that this property is not valid in MILP problems.



94 Mathematical Solution Techniques

relationship between the problems is known asdualityand is expressed in thestrong
duality theorem.

It should be further noted thatDP can be rewritten in any standard form of choice.
If we then “take the dual ofDP” we will obtain a problem which is equivalent to
LP. Hence,DP is the dual ofLP andLP is the dual ofDP. Thus we may consider
the operations of “take the dual” as those required to move from LP to DP or those
required to move fromDP to LP.

Let us consider the following examples to get familiar with the construction of
dual problems. The first example is

primal problem dual problem 1 dual problem 2

max cTx min bTy min yTb
s.t. Ax ≤ b ←→ s.t. ATy ≥ c ⇐⇒ s.t. yTA≥ cT

x ≥ 0 y ≥ 0 yT ≥ 0.

(3.5.5)

Some care is necessary with the multiplication of row and column vectors. Vectors
like cT andyT are row vectors whilec=

(
cT
)T

is a column vector. The dual problem
is sometimes formulated in two different but equivalent ways.11

In the first version of the dual problem the vector of dual variables,y, is treated
as a column vector and some data of the primal problem are transposed to formulate
the dual problem in the column vector space (primal vector space); see Appendix
C.4 for a precise definition of a vector space. The second version keeps the vector
of dual variables and all relations in the row vector space (dual vector space) and
leaves the original data unchanged.

The next example is the primal-dual formulation for the standard form introduced
in Section 3.1.1

primal problem dual problem 1 dual problem 2

max cTx min bTy min yTb
s.t. Ax = b ←→ s.t. ATy+s= c ⇐⇒ s.t. yTA+sT = cT

x ≥ 0 s≥ 0 sT ≥ 0.

(3.5.6)

Note that the dual variabley is a free variable,i.e., it is unrestricted in sign. The dual
problem contains the surplus variables so that the dual problem also appears in the
standard form (only equality constraints).

After having seen some examples of primal-dual pairs we can summarize the
rules for constructing the dual from the primal problem:

11 Using the resultsuTv =
(
uTv

)T
= vTu and

(
yT

A
)T

= A
Ty from linear algebra it is easy to see

that both formulations of the dual problem are equivalent.



3.5 Duality⊖ 95

primal (maximize) ←→ dual (minimize)

A coefficient matrix ↔ AT transposed matrix
b right-hand side vector ↔ c price vector
cT price vector ↔ bT transposed rhs vector
ith constraint is an equation↔ yi yi is a free variable
ith constraint is an≤ ineq. ↔ yi yi is non-negative
ith constraint is an≥ ineq. ↔ yi is non-positive
x j is a free variable ↔ j th dual constraint is an eq.
x j is a non-negative variable↔ j th dual constraint is a≥ ineq.
x j is a non-positive variable↔ j th dual constraint is a≤ ineq.

3.5.2 Interpreting the Dual Problem

To illustrate the idea of duality and to interpret its meaning let us consider the dual
of the “Boat Renting” problem [see (3.1.1) and (3.1.2)]:

min 350y1+200y2+1400y4 (3.5.7)

subject to
y1 + y2 − y3 + 4y4 ≥ 800
y1 + y3 + 3y4 ≥ 600

; y1,y2,y3,y4 ≥ 0. (3.5.8)

Note that we changed the third relation in (3.1.2) to−p+s≤ 0 to get all≤ inequal-
ities and to apply the rule expressed in (3.5.5). Further note that the third relation
in (3.1.2) has a zero right-hand side which explains whyy3 does not appear in the
objective function. Let us now try to interpret the meaning of the dual problem. The
inequalities (3.5.8) tell us thaty1,y2 andy3 have the unitsmoney/boat. If we want to
find out abouty4 we have to keep in mind that the coefficients 4 and 3 in the original
(primal) problem had the unit hours/boat. Thus the unit ofy4 is clearlymoney/boat.
Let us also remember that the values 350, 200, 0 and 1400 had the unitsboat, boat,
boatandhours. The conclusion is: while the primal problem involved maximizing
revenue, the dual is a problem of minimizing costs; the objective function of the
dual problem has the unitmoney. What sort of costs we are minimizing in the dual
problem? The cost terms in the dual objective function are given by the right-hand
side of original constraint. The strong duality theorem [inan optimal solution both
primal and dual objective function take the same value, see Section 3.5.3] tells us
that if we relax our original constraints, say from 350 to 351, the costs in the dual
problem increase byy1, and so does the revenue in the primal problem. Thus the
dual variablesyi carry the information on what constrainti is going to cost us. They
are the shadow prices introduced earlier. We can also learn that if a constraint in
the primal problem is not active then the associated dual variables are zero. Other-
wise the dual value can be different from zero. This is known as thecomplementary



96 Mathematical Solution Techniques

slackness condition[see Section 3.5.3]

yi ·si = 0, (3.5.9)

whereyi andsi are the dual value and slack variable of constrainti. The comple-
mentary slackness condition [see also Section 3.5.3] we encounter here in linear
programming is a special case of nonlinear programming where a similar relation
holds. In nonlinear programming the dual values are usuallycalled theLagrange
multipliers.

If we briefly refer to Appendix 3.8.1 we can also try to interpret the constraints
in the dual problem above. The sufficient conditions (3.8.10) in a maximization
problem in vector notation read

πTA≥ c. (3.5.10)

Thus, if we identifyy = π the constraints in the dual problem just represent the
sufficient condition for the optimality of the primal solution.

Eventually, let us consider the solution of the dual problem: if we solve we find
out thaty1 = £600/boat andy2 = £200/boat,y3 = £0/boat andy4 = £0/hour which
leads to the objective function value£250,000 which is, and should be the same, as
the objective function value of the primal problem.

3.5.3 Duality Gap and Complementarity

To consider the connection between the primal and the dual problem in more detail
let us consider the difference of their objective functions. We take the primal-dual
pair constructed in example (3.5.5) to derive some important result from duality
theory.

If x andy are feasible points of the primal and dual problem, the quantity

∆(x,y) = bTy−cTx = yTb−cTx (3.5.11)

is calledduality gap. If the primal problem is a maximization problem then we can
state theweak duality theoremas

∆(x,y)≥ 0. (3.5.12)

To see this let us choose the second formulation of the dual problem in example 2
and letx ≥ 0 andyT ≥ 0 denote feasible points of the primal and the dual problem.
The chains of inequalities

Ax ≤ b =⇒ yTAx ≤ yTb (3.5.13)

and
yTA≥ cT =⇒ yTAx ≥ cTx (3.5.14)



3.5 Duality⊖ 97

leads directly tocTx ≤ yTb which proves∆(x,y)≥ 0.
We can exploit the weak duality theorem in the following sense. If the primal

problem is a maximization problem, the dual problem provides an upper bound for
the primal problem. Vice versa, the primal problem providesa lower bound for the
dual problem. This property again leads to the following conclusion: if the primal
problem is feasible and unbounded then the dual problem is infeasible. Vice versa,
if the dual problem is feasible and unbounded then the primalis infeasible.

Thestrong duality theoremstates that if the primal and the dual problem are both
feasible then optimal solutionsx∗ andy∗ exist and the duality gap in the optimal
solution vanishes,i.e.,

∆ = ∆(x∗,y∗) = 0. (3.5.15)

The existence of the optimal solution follows from the compactness of the feasible
region and that continuous functions take the optimal valueon compact sets. To
show that∆(x∗,y∗) = 0 is more difficult to prove;cf. Padberg (1996, [441], p.87).

Vice versa, if∆(x′,y′) = 0 for some feasible pointsx′ andy′ then these points
are the optimal solution,i.e., x∗ = x′ andy∗ = y′. This direction of the strong duality
theorem is more difficult to prove but it has an important consequence for interior-
point algorithms. Feasible pointsx′ andy′ with non-zero duality gap are interior
points (points not on the boundary or at a vertex) and the value of∆(x′,y′) provides
a measure for how far we are away from the optimal solution. Thus∆(x′,y′) or some
related quantities can be used as a termination criterion ininterior-point algorithms.

Another property, that of complementary slackness, follows easily from duality.
If we define the primal and dual slack variablessandw

s= b−Ax , wT = yTA−cT (3.5.16)

then for feasible pointsx andy we have the following complementary slackness
property:

wTx+sTy = 0 ⇐⇒ ∆(x,y) = 0 (3.5.17)

which relates the complementary slackness condition

wTx+sTy = 0 (3.5.18)

and the zero-duality gap at an optimal point with each other.
Let us interpret (3.5.17). If the complementary slackness condition (3.5.18) holds

for a feasible primal-dual pairx andy then these points are the optimal solution
because zero duality gap implies optimality according to the strong duality theorem.
Vice versa, zero duality gap implies that the complementaryslackness condition
holds.

Since all variables involved are non-negativewTx+sTy = 0 further implies

wTx = 0 , sTy = 0 (3.5.19)

and this again implies the component-wise complementary slackness property



98 Mathematical Solution Techniques

w jx j = 0 , ∀ j (3.5.20)

and
siyi = 0 , ∀i, (3.5.21)

which we encountered already in Section 3.5.2.
The proof of (3.5.17) is easy as by inserting all terms we see that we

wTx+sTy =
(
yTA−cT)x+(b−Ax)T y = yTb−cTx =∆(x,y) (3.5.22)

and thus the following useful property between thecomplementarity gap, g(x,y),

g(x,y) = wTx+sTy (3.5.23)

and the duality gap∆(x,y) for any feasible points

g(x,y) = ∆(x,y). (3.5.24)

3.6 Summary & Recommended Bibliography

In this chapter we have considered the different ways of solving LP problems and
have investigated certain aspects of software which will solve such problems. Mov-
ing on from LP problems, we considered MILP problems and how they could be
difficult to solve. Techniques used in software systems for solving MILP problems
were then considered. Thus the reader should now be familiarwith:

• a standard form of an LP problem;
• the use of slack and surplus variables;
• how the Simplex algorithm works and some very general principles of interior-

point methods;
• how B&B works for solving MILP problems and some very general principles

of B&C;
• solution information from LP solvers and the basic conceptof dual values and

reduced costs; and
• the basics of duality theory.

For further reading on LP, MILP, and polyhedral theory we refer the reader to
Nemhauser & Wolsey (1988,[431]), Vanderbei (2014,[573]),Lancia & Serafini
(2018,[361]). Combinatorial optimization is well coveredby Schrijver (2003,[505])
or Korte & Vygen (2018,[352]).Algorithms for Convex Optimizationby Vishnoi
(2021,[578]) is strongly recommended for convex optimization.



3.8 Appendix to Chapter 3⊖ 99

3.7 Exercises

1. Solve the problemsLP andDP from Section 3.5, page 93, and show that they
have the same optimal objective value.

2. Construct the dual ofDP from Section 3.5, page 93, using the rules given in
(3.5.5) and show that this dual problem is equivalent toLP after a simple rear-
rangement.

3. Solve the dual of the “Boat Renting” problem given on page 95 and compare its
solution with the solution of the primal ”Boat Renting” problem.

4. When a free variablex occurs in an LP model it is replaced byx+− x− where
x+,x− ≥ 0. Inspection of the solution shows that at most one ofx+ andx− is
non-zero in the optimal solution to the problem. This resultis expected. Can you
explain this feature and prove it?

5. Consider the production planning problem in Section 2.5.1. How many products
will there be at most in the optimal portfolio yielding maximum profit? Answer
this question without solving the problem explicitly. Sections 3.2.2 and 3.8.1
might help you to do so.

6. How many basic solutions and basic feasible solutions canat most exist in the
boats problem (1.4.8,1.4.9) described in Chapter 1? Deriveall basic solutions,
i.e., give the basic variables, their values and the basic matrices. Hint: Fig. 1.4
and (3.2.2) might help. Note that you should have read Appendix 3.8.1 before
you tackle this exercise.

7. Calculate the shadow prices involved in the boat problem.Appendix 3.8.1 might
help you to do so.

8. Investigate the complexity of the “Calves and Pigs” problem in Section 3.3.1.
Assume that the farmer hasn different kinds of animals, and enough investment
money and space to purchasemi animals of each kind.

a) How many combinations would the farmer have to check when using ex-
plicit enumeration to solve the problem?
b) What is the solution if there is no money constraint?

3.8 Appendix to Chapter 3⊖

3.8.1 Linear Programming — A Detailed Description

Consider the linear program in standard form

LP : max
{

cTx | Ax = b, x ≥ 0, x ∈ IRn, b ∈ IRm} , (3.8.1)

where IRn denotes the vector space of real vectors withn components.
In Section 3.2.2 we introduced the concept of basic variables collected into the

basic vectorxB. The algebraic platform is the concept of the basisB of A, i.e.,



100 Mathematical Solution Techniques

Fig. 3.6 Feasible region of an LP problem.

a linearly independent collectionB={A j1,...,A jm} of columns ofA. Sometimes,
just the set of indicesJ = { j1, ..., jm} referring to the basic variables or linearly
independent columns ofA is referred to as the basis. The inverseB−1 gives abasic
solutionx̄ ∈ IRn which is given by

x̄T=
(
xT

B,x
T
N

)
, (3.8.2)

wherexB is a vector containing the basic variables computed according to

xB = B−1b, (3.8.3)

andxN is an(n−m)-dimensional vector containing the non-basic variables:

xN = 0 , xN ∈ IRn−m. (3.8.4)

If x̄ is in the set of feasible pointsS= {x : Ax = b, x ≥ 0} , thenx̄ is called abasic
feasible solutionor basic feasible point. If

1. the matrixA hasm linearly independent columnsA j ,
2. the setS is not empty and
3. the set{cTx : x ∈ S} is bounded from above,

then the setS defines a convex polyhedronP and each basic feasible solution cor-
responds to a vertex ofP. Assumptions(2) and (3) ensure that the LP is neither
infeasible nor unbounded,i.e., it has a finite optimum.

It can be shown that in order to find the optimal solution it is sufficient to consider
all basic solutions (sets ofm linearly independent columns ofA), check whether they



3.8 Appendix to Chapter 3⊖ 101

are feasible, compute the associated objective function, and pick out the best one. In
this sense finding an optimal solution for an LP is a combinatorial problem. In the
worst case there are

f1(n,m) :=

(
n
m

)
=

n!
m! · (n−m)!

(3.8.5)

basic solutions. If the problem is not degenerate [this termwill be explained below]
the optimal solution is among the finite set of basic feasiblesolutions. Therefore,
an LP problem can have at mostm positive variables in the solution. At leastn−m
variables, these are the non-basic variables, must take thevalue zero. McMullen
(1970,[402]) has shown that there can exist at most12

f2(n,m) :=

(
n−

⌊
m+1

2

⌋

n−m

)
+

(
n−

⌊
m+2

2

⌋

n−m

)
(3.8.6)

basic feasible solutions. Let us consider an example withn= 16 andm= 8. In that
case we havef1(16,8) = 12870 andf2(16,8) = 660. Although f2 gives a much
smaller number thanf1 we get a feeling that this purely combinatorial approach is
not attractive in practice.

Geometrically the (primal) Simplex algorithm can be understood as anedge-
following algorithm that moves on the boundary of a polyhedron representing the
feasible set,i.e., from vertex to vertex of the polyhedron [see Fig. 3.6]. In each
move corresponding to a linear algebra step (technically, aPivot step) the objective
function value is either improved or does not change. Klee & Minty (1972,[345])
provide a set of examples of LP problems with 2n vertices which all need to be
investigated,i.e., in which the algorithm requires exponentially many steps.Alge-
braically, in each iteration, one column of the current basis is modified, according
to this exchange of basic variables, matrixA, and vectorsb andc are transformed
to matrixA′, and vectorsb′ andc′. Technically, this procedure is called apivot or
pivot operationor pivot step.

Now we can also understand degenerate cases in LP. A purely algebraic concept
is to call an LP problem degenerate if the optimal solution contains basic variables
with value zero. If we combine the algebraic and geometric aspects we can interpret
a degenerate problem as one in which a certain vertex (usually we are considering
the one leading to optimal objective function) has different algebraic representa-
tions,i.e., two vertices are co-incident with an edge of zero length between them.

Instead of keeping and computing the complete matrixA based on the previous
iteration, the revised Simplex algorithm is based on the initial dataA,b andcT, and
on the current basis inverseB−1. Let us now summarize the computational steps of
the revised Simplex algorithm [see also Fig. 3.7]:

The first step is to find a feasible basisB as described in Section 3.8.2. Note that
this problem is, in theory, as difficult as solving the optimization problem itself.

12 This result is only true if no upper bounds [see Section 3.8.3] are present.



102 Mathematical Solution Techniques

Ä

Revised Simplex Algorithm
(primal algorithm)

  max cTx

subject to : Ax ===== b  ;    x ≥≥≥≥≥ 0

find initial feasible solution

compute dual value: πππππT = cT B-1 ,   pricing out d
j
 = c

j
 - πππππT A

j

full pricing or partial pricing

∀ ∀ ∀ ∀ ∀ d
j
<<<<< 0

goto Ä

select new basic variable

find max  d
j
ß j ß x

j

goto Â

j|d
j
>0

elimination of basic variable (minimum ratio rule)

check if problem is bounded and eliminate x
e

such that

  = min          | A
ij
 >0

linear algebra step

- transform system of linear equations such that x
j

appears in only one row, with coefficient +1 in that row

- recomputation of basis inverse (eta-factorisation)

solution output

- print status (optimal solution found, infeasible unbounded)

- print out solution

- stop

no

yes

b
e

A
ej

b
r

A
iji

À

Á

Â

Ã

B

if

{ }

Fig. 3.7 The revised Simplex algorithm.

Once the basis is known we can compute13 the inverse,B−1, of the basis, the
values of the basic variables

xB = B−1b (3.8.7)

and the dual values,πT,
πT := cT

BB−1. (3.8.8)

Note thatπT is a row vector. Now we are in the position to compute the reduced
costs,d j ,

d j = c j −πTA j (3.8.9)

for the non-basic variables [the reduced cost of the basic variables are all equal to
zerod(xB) = 0]. Note that formula (3.8.9) computes the reduced costs by using only

13 As further pointed out on page 104 the basis inverse is only rarely inverted explicitly.



3.8 Appendix to Chapter 3⊖ 103

the original14 datac j andA j , and the current basisB. If any of thed j are positive,
we can improve the objective function by increasing the correspondingx j . So, the
problem is not optimal. The choice of which positived j to select is partly heuristic:
conventially, one chooses the largestd j but commercial solvers are different from
textbook implementations. They use so-calledpartial pricing and alsodevex pricing
[264]. The term partial pricing indicates that the reduced costs are not computed
for all non-basic variables. Sometimes, the first reduced cost with positive15 sign
gives the variable to become the new basic variable. Other heuristics choose one of
the non-basic variables with positive sign randomly. And there must be a heuristic
device which tells the algorithm when to switch from partialto full pricing. Only
full pricing can do the optimality test. A sufficient optimality criterion for an optimal
solution of a maximization problem is

d j = c j −πTA j ≤ 0 , ∀ j (3.8.10)

In a minimization problem the criterion is

d j = c j −πTA j ≥ 0 , ∀ j.

Note that we said a sufficient but not necessary condition. The reason is that in
the case ofdegeneracyseveral bases define the same basic feasible solution and
some can violate the criterion. If non-degenerate, alternative optimal solutions exist
(this case is calleddual degeneracy) then necessarily the reduced cost for some of
the non-basic variables are equal to zero. Ifd j < 0 for all non-basic variables in a
maximization problem then the optimal solution is unique.

If we have not yet reached optimality we check whether the problem is un-
bounded. If the problem is bounded we use the minimum ratio rule to eliminate
a basic variable. Both steps are actually performed simultaneously: the minimum
ratio rule fails precisely when the incoming vector gives infinite improvement. The
data needed for applying the minimum ratio rule are also derived directly fromB−1

A′
j = B−1A j . (3.8.11)

After the minimum ratio rule has been applied we have the new basis,i.e., a set of
indices or linearly independent columns.

What needs to be done is to get the current basis inverseB−1. There are sev-
eral formulas to do this, but all of them are equivalent to computing the new basis
inverse although the inverse is never computed explicitly.To be correct, the basis
is only rarely inverted explicitly. Elementary row operations carry over the existing
basis inverse to the next iteration.16 However, every, say 100 iterations, the basis

14 From now onA j denotes the columns of the original matrixA corresponding to the variablex j .
15 In this case we are solving a maximization problem.
16 The “Boat Renting” problem shows this property very well. Letus inspect the system of linear
equations in each iteration. The columns associated with the variabless1, . . . ,s4 the original basic
variables give the basis inverse associated with the current basis. The reason is that elementary row
operations are equivalent to a multiplication of the matrix representing the equations by another



104 Mathematical Solution Techniques

inverse is refreshed by inverting the basis matrix taken from the original matrixA.
Through this procedure, rounding errors do not accumulate.In addition, in most
practical applicationsA is very sparse whereas after several iterations the trans-
formed matrixA′ becomes denser so that, especially for large problems, the revised
Simplex algorithm usually needs far less operations.

The algorithm continues by computing the values of the basicvariables, dual
values, and so on until optimality is detected.

Let us come back to the basis inverse. Modern software implementations of the
revised Simplex algorithms do not calculateB−1 explicitly. Instead commercial
software uses the product form

Bk = B0η1η2 . . .ηk (3.8.12)

of the basis to express the basis afterk iteration as a function of the initial basisB0

(usually a unit matrix) and the so-called rather theeta-matricesor eta-factorsη i .
Theη i-matrices arem×mmatrices

η = 1l+uvT (3.8.13)

derived from the dyadic product of two vectorsu andv leading to a very simple
structure (“1” on the diagonal, and just non-zeros in one column). To store theη-
matrices it is sufficient to store theη-vectorsu andv. Computing equations such as
BxB = b yieldingxB = B−1b are then solved by

xB = η−1
k η−1

k−1 . . .η
−1
1 b. (3.8.14)

The inverse of theη-matrices (under appropriate assumptions) can be computed
very easily according to the formula

η−1 = 1l− 1
1+vTu

uvT. (3.8.15)

Note that we need to store allη i-vectors. As the iterations proceed, the amount
of storage for the factors increases. So are-inversionof the basis occurs not only
for reasons of numerical accuracy but also due to a “storage versus computation”
trade off. Readers more interested in the details of the linear algebra computa-
tions, LU factorizations,η-vectors and conserving sparsity may benefit from read-
ing Gill et al.(1981, [227], p.192), Padberg (1996, [441], Section 5.4) and Vanderbei
(1996,[572] & 2014,[573]).

matrix, sayM. If we inspect the first iteration we can understand how the methodworks. The initial
matrix, and in particular the columns corresponding to the new basic variables are multiplied byM
and obviously giveB·M= 1l, where 1l is the unit matrix. Thus we haveM= B−1. Since we have
multiplied all columns ofA byM, and in particular also the unit matrix associated with the original
basic variables, these columns just give the columns of the basis inverseB−1. In each iterationk
we multiply our original matrix by such a matrixMk, so the original basic columns represent the
product of all matricesMk which then is the basis inverse of the current matrix.



3.8 Appendix to Chapter 3⊖ 105

Let us illustrate some of the new things we learned in this section and apply
them to the “Boat Renting” problem. Some care is needed with the correct use of
the indices. The list of basic variables in the solution on page 77 is(x2,x1,s3,s4),
and thus we have

cT
B = (600,800,0,0) , B =




1 1 0 0
0 1 0 0
1 −1 1 0
3 4 0 1


 . (3.8.16)

Note that the columns of the basis matrixB need to coincidence with the sequence
of basic variables and that it is taken from the original equation (3.2.2). Applying
the formalism known in linear algebra we can compute the basis inverse as

B−1 =




1 −1 0 0
0 1 0 0

−1 2 1 0
−3 −1 0 1


 , (3.8.17)

which gives us the shadow prices

πT = (600,200,0,0). (3.8.18)

If we have a look on page 77 again we can see that the basis inverse can be read off
immediately from the final system of linear equations [the columns corresponding
to the first basic feasible solution,i.e., the columns 3 to 6 associated with the slack
variabless1 to s4, contain the current basis inverse].

Earlier in Section 3.5 we introduced the idea of the dual problem and its corre-
sponding primal problem. When the dual problem is solved, theoptimal values of
its variables (and slacks) correspond to the values of the reduced costs and shadow
prices of the primal problem. Thus the operation of the Simplex algorithm on the pri-
mal problem is governed by the updating of the solution values of the dual problem
which provides current values of the reduced costs on variables. Thus the Simplex
algorithm is an algorithm which is implicitly moving between the primal and dual
problems, updating solution and reduced cost values respectively.

Understanding the concept of dual values and shadow prices we can also give
another interpretation of the reduced costs in terms of shadow prices. While the dual
values, or Lagrange multipliers, give the cost for active constraints, the reduced cost
of a non-basic variable is the shadow price for moving it awayfrom zero, or, in the
presence of bounds on the variable, to move the non-basic variable fixed to one of
its bounds away from that bound. That also explains why basicvariables have zero
reduced costs: in non-degenerate cases, basic variables are not at their bounds.



106 Mathematical Solution Techniques

3.8.2 Computing Initial Feasible LP Solutions

The Simplex algorithm explained so far always starts with aninitial feasible basis
and iterates it to optimality. We have not yet said how we could provide an initial so-
lution. There are several methods, but the best known arebig-M methodsandphase
I and phase IIapproaches. Less familiar are heuristic methods usually referred to
ascrash methods. To discuss the first two methods consider the LP problem withn
variables andm constraints in standard form [here it is advantageous to consider a
minimization problem]

min cTx (3.8.19)

subject to
Ax = b , x ≥ 0. (3.8.20)

By multiplying the equationsAx = b by −1 where necessary we can assume that
b ≥ 0. That enables us to introduce non-negativeviolation variablesv= (v1, . . . ,vm)
and to modify the original problem to

min cTx+M ·
m

∑
j=1

v j (3.8.21)

subject to
Ax+v = b , x ≥ 0 , v ≥ 0. (3.8.22)

M is a “big” number, say 105, but it is very problem dependent as to what big means.
The idea of the big-M method is as follows. It is easy to find an initial feasible
solution. Can you see this? Check that

v = b , x = 0 (3.8.23)

is an initial feasible solution. Now we are able to start the Simplex algorithm. If we
chooseM to be sufficiently large, we hope that we get a solution in which none of
our violation variables is basic,i.e., v = 0. What if we find a solution with some
positive variablesv j? In that case eitherM was too small, or our original problem
is infeasible. How do we know the right size ofM? One could start with small
values, and check whether all violation variables are zero.If not, one increasesM.
Ultimately,M must become very large if the problem appears infeasible andone is
essentially doing the two-phase method described in the next paragraph.

There is an alternative approach which does not depend on a scaling parame-
ter such asM: the two-phase method. The idea is the same but it uses a different
objective function, namely

min
m

∑
j=1

v j , (3.8.24)

i.e., just the sum of the violation variables. In this case we are certain that if the
objective function has a value different from zero our original problem is infeasible.
Actions to be taken in that case are discussed in Section 8.5.1.



3.8 Appendix to Chapter 3⊖ 107

Why do we have two methods? Would not one be enough? If you inspect both
methods carefully you will notice that they have different advantages or disadvan-
tages. If one takes the limitM → ∞ the big-M methods becomes the two-phase
method. Using the big-M method the software designer has to ensure and to worry
thatM is big enough. OftenM is adapted dynamically when trying to find an initial
solution. It is just good enough to find a solution withv = 0. Keeping the original
variables in the objective function may provide an initial solution which is closer
to the optimal solution. In practice the number of artificialvariables is kept to a
minimum. If a certain row already has a slack or surplus variable there is no need
to introduce an additional one. Mixtures of big-M and two-phase methods are also
used.

In addition, commercial LP software employs so-called crash methods [see Sec-
tion 9.2]. These are heuristic methods aiming at finding an extremely good initial
solution very close to the optimal solution.

Although it has only marginally to do with initial feasible LP solutions it is worth
mentioning the re-use of a basis saved from a previous related run. This approach
produces good initial feasible solutions quickly if the model data have only changed
a bit, or if only a few variables or constraints have been added.

New methods for computing initial solutions or good starting candidates arehy-
brid methods. Such methods, combining the Simplex algorithm and interior-point
method, are described in the Section 3.8.5.

3.8.3 LP Problems with Upper Bounds

So far we have considered the LP problem withn variables andm constraints in
standard form [it is not really important whether we consider a minimization or
maximization problem]

min cTx (3.8.25)

subject to
Ax = b , x ≥ 0. (3.8.26)

In many large real-world problems it is advantageous to exploit another structure
which occurs frequently, upper and lower bounds on the variables. This is formu-
lated as

min cTx′ (3.8.27)

subject to
Ax′ = b′ , l′≤ x′≤ u′. (3.8.28)

Since we always can perform a variable substitutionx = x′−l′ and observing that
the new variables have the bounds0≤ x ≤ u′−l′ = u, it is sufficient to consider the
problem

min cTx (3.8.29)



108 Mathematical Solution Techniques

subject to
Ax = b , 0≤ x ≤ u. (3.8.30)

Of course we could reformulate this problem by introducing some slack variables
s≥ 0 in the standard way

min cTx (3.8.31)

subject to
Ax = b

x+s= u
, x ≥ 0 , s≥ 0. (3.8.32)

Since in many large real-world problems we haven≫ m (there are often between
three and ten times as many variables as rows) a straightforward application of the
Simplex algorithm would lead to a very large basis of size(m+n)× (m+n). Ex-
ploiting the presence of the upper bounds will lead to a modified Simplex algorithm
which still is based on a basis of sizem×monly.

The idea is to distinguish between nonbasic variables,x j , j ∈J0, that are at their
lower bound of zero (the concept we are familiar with) and thosex j , j ∈ Ju, that
are at their upper bound (the new concept). With the new concept no explicit slack
variables are necessary. Let us now try to see how the Simplexalgorithm works
when performing a basis exchange. Pricing now tells us that acurrent basis is not
optimal if one of these two situations occurs:

1) there exist indicesj ∈ J0 with d j < 0
2) there exist indicesj ∈ Ju with d j > 0.

In case 1) we could increase a nonbasic variable, in case 2) wecould decrease it,
and in both cases the effect would be a decreased value of the objective function.
A new consideration, when increasing or decreasing a nonbasic variable, is that we
need to calculate whether it could reach its upper (respectively lower) bound.

In Section 3.2.2 we learned that the minimum ratio rule controlled how we could
change a nonbasic variable. We had to stop increasing a nonbasic variable when one
of the basic variables became zero. The minimum ratio rule inthe presence of upper
bounds on variables gets a little bit more complicated because variables might hit
their upper bounds.

Case 1) leads to two sub-cases:

1a) the nonbasic variablex j can be increased to its upper bound while no basic
variables reaches zero or its upper bound, or
1b) while increasing the nonbasic variablex j a basic variable reaches zero, or a
basic variable reaches its upper bound.

Case 1a), called a flip for obvious reasons, is easy to handle:one just moves the
index j into the new setJu. Reaching zero in 1b) is handled as in the standard
Simplex algorithm: variablex j enters the basis and the index of the variable leaving
the basis is added to the new setJ0. When an upper bound is hit in 1b) the variable
x j enters the basis and the index of the variable leaving the basis is added to the new
setJu.



3.8 Appendix to Chapter 3⊖ 109

Case 2) can be analyzed by considering the slacksj = u j − x j . If the nonbasic
variablex j is at its upper bound thensj is at its lower bound (zero).sj plays the
same role (note that its upper bound isu j ) as the nonbasic variablex j considered in
1a) and 1b) and thus the argument is the same.

The linear algebra involved in the iteration is similar to the standard Simplex,
and essentially no extra computations are required. Readers more interested in the
subject are referred to Padberg (1996, [441], pp.75-80).

We have now seen why exploiting bounds on variables explicitly leads to better,
i.e., faster numerical, performance: there is a little more testing and logic required
in the algorithm but no additional computations. This has significant consequences
for the B&B algorithm which adds only new bounds to the existing problem.

Note that as the bounds are treated explicitly and not as constraints no shadow
prices are available on these “constraints”. But the shadowprices can be derived
from the reduced costs of the nonbasic variables fixed at their upper bounds. The
idea is as follows: the shadow prices are the change in objective function per unit
change in the right-hand side. For a particular constraintx+ s= u, changing the
right-hand side is the same as changing the slack variables (or, x) by the same
amount. Thus, we haved j = π. To see this in more detail let us start with the example

problem (constraint) standard formulation

min −x−y min −x−y
s.t. 2x+y≤ 3 ⇐⇒ s.t. 2x+y+s1 = 3

x+2y≤ 3 x+2y+s2 = 3
x≤ 0.5 x+s3 = 0.5

x≥ 0 , y≥ 0 x≥ 0 , y≥ 0.

(3.8.33)

This problem gives the solution

(
x
y

)
=

(
0.5
1.25

)
,




s1

s2

s3


=




0.75
0
0


 , (3.8.34)

and17

(
dx

dy

)
=

(
0
0

)
,




π1

π2

π3


=




0
−0.5
−0.5


 (3.8.35)

Note that bothx, y, s1 ands4 are basic variables. The second and third constraint are
active. The problem (3.8.33) can be formulated with the third constraint as a bound
leading to

17 Note that LP solvers may have a different sign convention for theshadow prices and may print
out π2 = π3 =+0.5.



110 Mathematical Solution Techniques

problem (bound) standard formulation

min −x−y min −x−y
s.t. 2x+y≤ 3 ⇐⇒ s.t. 2x+y+s1 = 3

x+2y≤ 3 x+2y+s2 = 3
0≤ x≤ 0.5 , y≥ 0 0≤ x≤ 0.5 , y≥ 0.

(3.8.36)

Of course we get the same solution with respect tox andy but only y is a basic
variable,x is a nonbasic variable at its upper limit, and the reduced costs and shadow
prices (formally, there are only two of them) are different (note, the we use the
superscriptB to refer to the formulation using bounds)

(
x
y

)
=

(
0.5
1.25

)
,

(
dB

x
dB

y

)
=

(
−0.5

0

)
,

(
πB

1
πB

2

)
=

(
0

−0.5

)
. (3.8.37)

However, note that in the example we haveπ3 = dB
x . If we could show that this

relation holds in general then we could solve LP problems exploiting explicit upper
bounds and then derive the shadow prices associated with those bounds. Let us do
a little algebra to show that such a relation indeed is valid.Below we formulate the
same problem withmconstraint (not counting the bounds) andn variables once with
constraints considering the upper bound and once treating the bounds explicitly.

problem (constraint) problem (bounds)

min cTx min cTx
s.t. Ax+s= b ←→ s.t. Ax+s= b

x+s= u
x ≥ 0 0≤ x ≤ u

. (3.8.38)

Let us assume that the solution has the firstnu variables at their upper limits (by
appropriate change of columns in matrices involved this is always possible). In the
formulation using the constraint the basis can be written asthe block matrix

B=

(
U B
1l 0

)
, (3.8.39)

where is an(nu+m)(nu+m) matrix,U is anm×nu matrix, 1l is thenu×nu unit
matrix, 0 is annu ×m matrix of zeros, andB is (under appropriate assumptions)
anm×m regular matrix, which at the same time is the basis of the solution of the
problem in which bounds are treated explicitly. In our little example above we have
m= 2 andnu = 1 and

B=




2 1 1
1 2 0
1 0 0


 , U=

(
2
1

)
, 1l = (1) , B =

(
1 1
2 0

)
.



3.8 Appendix to Chapter 3⊖ 111

To show thatπT
U , the shadow prices corresponding the upper bounds formulated as

constraints, equals the reduced costs,dT
U , of the nonbasic variables fixed at their

upper limits, we invert the matrixB to deriveπT
U and computedT

U based onB.
The inverseB−1 can be written down explicitly

B−1 =

(
0 1l

B−11l −B−1U

)
. (3.8.40)

The shadow pricesπT
U follows from evaluation of

πT =
(
cT
U ,c

T
B

)( 0 1l
B−11l −B−1U

)
=
(
cT

BB−11l,cT
U −cT

BB−1U
)

and gives
πT

U = cT
U −cT

BB−1U. (3.8.41)

The reduced costs of the nonbasic variablesxU which are at their upper bounds (in
the formulation exploiting explicit upper bounds) is exactly [cf. formula (3.8.9)]

dT
U = cT

U −cT
BB−1U (3.8.42)

So we have shown thatπT
U = dT

U .

3.8.4 Dual Simplex Algorithm

The (primal) Simplex algorithmconcentrates on improving the objective function
value of an existing basic feasible solution. In contrast, there is also thedual Simplex
algorithmwhich solves an LP problem by taking a dual optimal basic solution which
is optimal in the sense that the reduced costs computed according to (3.8.9) have the
correct sign, but are not basic feasible. The dual Simplex algorithm tries to achieve
feasibility of the solution while retaining its optimal properties. The two approaches
can be seen as “dual” to each other in the sense introduced in Section 3.5 while the
primal algorithm makes the choice of the new basic variable first, and then decides
on which existing basic variable should be eliminated, the dual algorithm eliminates
first an existing basic variable, and then selects a new basicvariable.

The dual Simplex algorithm is often used within the B&B algorithm. When a
branch is made the subproblem just differs from the originalproblem in having a
different bound on the branching variable; remember from Section 3.8.3 that bounds
can be treated very efficiently in the Simplex algorithm. So the LP solution obtained
at the parent node could now be considered optimal but not feasible. In most cases,
the dual Simplex algorithm restores feasibility quickly tothe solution, say, within a
few iterations. By using the dual Simplex algorithm we are able to take advantage
of the earlier work done by the Simplex algorithm and then move to a new optimal
solution quickly. However, there is no guarantee that this will always happen. If the



112 Mathematical Solution Techniques

(primal) Simplex algorithm was used after each branch the problem would need to
be solved from the start again and this would be burdensome.

3.8.5 Interior-Point Methods — A Detailed Description

As has already been said in Section 3.2.3, initiated by the work of Karmarkar
(1984,[336]), a large variety ofinterior-point methods(IPMs) has been developed
[cf. Gonzaga (1992,[240], Lustiget al. (1992,[391])], and Mehrotra’s so called
primal-dual second-order predictor-corrector methods, Mehrotra (1992,[404]), have
already been integrated into some LP-solvers. In linear programming, IPMs are well
suited especially for large, sparse problems or those, which are highly degenerate.
Here considerable computing-time gains can be achieved. With respect to the solu-
tion strategy most of these algorithms can be classified asaffine scaling methods18,
potential reduction methods19, central trajectory methods20; cf. Freund & Mizuno
(1996,[209]).

The idea of IPMs is to proceed from an initial interior pointx ∈ S satisfying
x > 0, towards an optimal solution without touching the boundary of the feasible set
S. The conditionx > 0 is (in the second and third method) guaranteed by adding a
penalty term to the objective function.

To explain the essential characteristics of central trajectory interior-point meth-
ods, let us consider thelogarithmic barrier methodin detail when applied to the
primal-dual pair

primal problem←→ dual problem

min cTx max bTy
s.t. Ax = b s.t. ATy+w = c

x ≥ 0 w ≥ 0

(3.8.43)

with free, dual variabley, the dual slack variablew and the solution vectorsx∗, y∗

andw∗. A feasible pointx of the primal problem is called strictly feasible ifx > 0,

18 Affine scaling methodsare based on a series of strictly feasible points (see definition below) of
the primal problem. Around these points the feasible region of the primal problem is locally ap-
proximated by the so-calledDikin ellipsoid. This procedure leads to a convex optimization problem
which is in most parts linear except for one convex quadratic constraint.
19 Potential reduction methods are those which have been introduced in Karmarkar’s famous 1984
paper. The objective function is the potential functionqln

(
cTx−bTy

)
−∑n

j=1 lnx j built up by
the logarithm of the duality gap and a logarithmic term designed to repel feasible points from
the boundary of the feasible region. The constraints are the linear constraints for primal and dual
feasibility.
20 Central trajectory methodsare primal-dual methods based on the concept of thecentral path
or central trajectory. They are discussed in detail below. In there primal-dual predictor-corrector
version they are the most efficient ones, and according to Freund &Mizuno (1996) they have the
most aesthetic qualities.



3.8 Appendix to Chapter 3⊖ 113

Fig. 3.8 Logarithmic penalty term fory = −µ lnx with µ = 0.0125. Note that for constantµ,
limx→0− y(x) = +∞.

a feasible pointw of the dual problem is called strictly feasible ifw > 0. The primal
problem is mapped to a sequence of nonlinear programming problems

P(k) : min

{
cTx−µ

n

∑
j=1

ln x j

∣∣∣∣
Ax = b
x > 0

, µ = µ(k)

}
(3.8.44)

with homotopy parameterµ where we replaced the non-negativity constraint on
the variables with the logarithmic penalty term; instead ofusingx j in the penalty
term we could have considered the inequalityA ix ≤ bi through terms of the form
ln(bi −A ix).

At every iteration stepk, µ is newly chosen as described in Subsection 3.8.5.4. As
shown in Fig. 3.8 the penalty term, and therefore the objective function, increases to
infinity. By suitable reduction of the parameterµ > 0, the weight of the penalty term,
which gives the name logarithmic barrier problem to this methods, is successively
reduced and the sequence of points obtained by solving the perturbed problems,
converges to the optimal solution of the original problem. So, through the choice of
µ(k) a sequenceP(k) of minimization problems is constructed, where the relation

lim
k→∞

(
µ(k)

n

∑
j=1

ln x j

)
= 0 (3.8.45)

has to be valid, viz.

lim
k→∞

argmin(P(k)) = argmin(LP) = x∗, (3.8.46)

where the functionargminreturns an optimal solution vector of the problem.
We have replaced one optimization problem, namely (3.8.43), by several more

complex NLP problems. So, it is not a surprise to learn that interior-point meth-
ods are special homotopy algorithms for the solution of general nonlinear con-



114 Mathematical Solution Techniques

strained optimization problems. Applying the Karush-Kuhn-Tucker (KKT) condi-
tions [Karush (1939,[340]) and Kuhn & Tucker (1951,[358])], these are the nec-
essary or the sufficient conditions for the existence of local optima in NLP prob-
lems, we get a system of nonlinear equations which can be solved with the Newton-
Raphson algorithm as shown below. The good news is that the problemsP(k) or
systems of nonlinear equations they produce need not to be solved exactly in prac-
tice, but one is satisfied with the solution achieved after one single iteration in the
Newton-Raphson algorithm.

3.8.5.1 A Primal-Dual Interior-Point Method

So far we have considered the primal problem. To get to the dual and finally the
primal-dual21 version of interior-point solvers (motivation will be given below), the
Karush-Kuhn-Tucker (KKT) conditions are derived from the Lagrangian function
(a common concept in NLP)

L = L(x,y) = cTx−µ
n

∑
j=1

ln x j −yT(Ax−b). (3.8.47)

Note that the constraints are multiplied by the dual value (Lagrange multipliers),
yT, and then are added to the original primal objective function. If we introduce the
abbreviations22

e= [1, ...,1]T ∈ IRn , X= diag(x1, ...,xn) , X
−1 = diag(x−1

1 , ...,x−1
n ), (3.8.48)

wheree is then-vector of all ones, andX is a diagonal matrix with the elementsx j ,
the KKT conditions read:

∂L
∂x

= c−µX−1e−ATy = 0 (3.8.49)

∂L
∂y

= Ax−b = 0 (3.8.50)

x≥ 0. (3.8.51)

The system (3.8.49-3.8.50) can be rewritten as the primal feasibility constraint

Ax = b, (3.8.52)

and in addition the pair of the dual feasibility constraint

21 The reason for using this expression is that the method will include both the primal and dual
variables.
22 diag(x1, . . . ,xn) denotes a diagonal matrix with diagonal elementsx1, . . . ,xn and zeros at all
other entries.



3.8 Appendix to Chapter 3⊖ 115

ATy+w = c, (3.8.53)

and aperturbedcomplementary slackness condition

XWe= µe , W :=diag(w1, ...,wn). (3.8.54)

So, the KKT conditions derived from the Lagrangian function(3.8.47) which repro-
duces our original equations of the primal-dual pair (3.8.43) and gives us in addition
the nonlinear equation (3.8.54) depending on the barrier parameter.

Let us try to interpret these equations: the system of equations (3.8.52)-(3.8.53)
is identical to the KKT system for the original LP problem in which the complemen-
tary slackness conditions are perturbed byµ. A non-negative solution of (3.8.52)-
(3.8.53) is called ananalytic centerand depends on the barrier parameter. The set of
solutions[x(µ),y(µ),w(µ)] defines a trajectory of centers for the primal and dual
problem, respectively and is called acentral pathor central trajectory.

For points on the central path and barrier parameterµ we note the property

wTx =g(µ) = ∆(x,y) = 2µeTe= 2nµ . (3.8.55)

The equation (3.8.55) shows that in the absence of the barrier problem the duality
gap vanishes. Ifµ approaches zero the complementarity gap and duality gap also
approach zero which implies according to the strong dualitytheorem that we are
approaching the optimal point of the LP problem (3.8.43).

The relation (3.8.55) enables us by inserting into (3.8.54)to derive a non-
parameterized representation of the central path. The central path is the set of all
points satisfying the system of equations

Ax = b , ATy+w = c , XWe=
wTx
2n

e ,
x > 0
w > 0

. (3.8.56)

Let us now concentrate on how we can solve the system of equations (3.8.52)-
(3.8.54). Such systemsf(z∗) = 0 are solved by Newton-Raphson algorithm based
on an initial pointz, Jacobian matrixJ, and the linearization

0= f(z∗) = f(z+∆z) = f(z)+J(z)∆z ; J(z) =
∂ f
∂z

(z) (3.8.57)

eventually, yielding
∆z=−J−1f(z) (3.8.58)

and
z∗ = z+∆z. (3.8.59)

In (3.8.59) the pointz∗ used in next iteration is computed from the current pointz
by adding the full step size∆z. In practice, one often uses a factor,δ , 0< δ ≤ 1,
which may cut-down the step-size in order to prevent the new point from leaving
the feasible region, and computes the new point according to



116 Mathematical Solution Techniques

z∗ = z+δ∆z (3.8.60)

Applying the Newton-Raphson method to (3.8.52)-(3.8.53) leads to the system of
linear equations




0 A 1l
AT 0 0
W 0 X


 ·




∆ x
∆ y
∆ w


=




c−ATy−w
b−Ax

µ ·e−XWe


 , (3.8.61)

which is called Newton equations system; note that 1l denotes the unit matrix of
appropriate dimension. The third equation can be eliminated leading to

∆ w = X−1 · (µ ·e−XWe−W·∆ x) (3.8.62)

and the reduced Newton equations system
(
−X−1W A

AT 0

)
·
(

∆ x
∆ y

)
=

(
c−ATy−µX−1 · (µe−XWe)

b−Ax

)
. (3.8.63)

Now it is also possible to eliminate∆ x yielding

ATW−1XA∆ y = b−Ax+ATW−1X·
[
c−ATy−µX−1 · (µe−XWe)−A∆ y

]

(3.8.64)
and

∆ x =−W−1X·
[
c−ATy−µX−1 · (µe−XWe)−A∆ y

]
. (3.8.65)

Solving (3.8.63) or (3.8.64) is the major computational effort within the iterations
of interior-point methods. Note that the matrixATW−1XA in (3.8.64) is positive
definite, which would allow us to use a Cholesky solver. However, the disadvantage
is that by doing so we would destroy sparsity to some extent. Solving (3.8.63) we
would conserve sparsity but the linear algebra is less efficient. Nevertheless, for
most problems this is the most efficient approach.

Once (3.8.64) has been solved,∆ x is computed by (3.8.65), and finally,∆ x is
computed by (3.8.62). Then, the maximum step sizes are computed such that the
non-negativity of the variables is conserved. In practice the primal and dual step
sizes are computed separately:

x(k+1) = x(k)+δ P ·∆ x ,

(
y
w

)(k+1)

=

(
y
w

)(k)

+δ D ·
(

∆ y
∆ w

)
. (3.8.66)

Here the damping factorsδ P and δ D are computed according to the following
heuristic

δ P = min
{

1,(1− ε) ·δ ′
P

}
, δ P = min

{
1,(1− ε) ·δ ′

D

}
(3.8.67)

with



3.8 Appendix to Chapter 3⊖ 117

δ
′
P := min

i

{
xi

−∆xi

∣∣∣∣∆xi < 0

}
, δ

′
D := min

i

{
si

−∆wi

∣∣∣∣∆wi < 0

}
. (3.8.68)

The step sizes are slightly reduced by the factor 1−ε to prevent hitting the boundary,
with a small positive parameter,ε, say,ε ≈ 10−4.

3.8.5.2 Predictor-Corrector Step

What needs to be explained is the predictor-corrector part involved in most interior-
point solvers. Predictor-corrector techniques belong to the class of higher-order
methods used to solve nonlinear systems of equations. As we have already pointed
out the most expensive computational step is the solution of(3.8.63) or (3.8.64) re-
quiring a matrix inversion or factorization of the matrix. If we factorize the matrix
ATW−1XA we can solve for∆y and∆x if the right-hand side of the terms is known.
The idea of predictor-corrector techniques is to re-use thefactorization and to solve
for different right-hand sides with the objective to find a better “search direction”.
Mehrotra’s second-order predictor-corrector strategy [404] solves the Newton equa-
tions in the first step forµ = 0 yielding theaffine scaling (predictor)search direc-
tion ∆α . If a step of sizeδ is taken in that direction the complementary gap is used
to estimate the new barrier parameterµe. Next, the higher-order component of the
predictor-corrector direction is computed and based on therequirement that the next
iteration is perfectly centred,i.e.,

(X+∆X)(w+∆w) = µee (3.8.69)

or equivalent equation

W∆x+X∆w =−Xw+µee−∆X∆w. (3.8.70)

Instead of setting the second order term on the right-hand side equal to zero, Mehro-
tra proposes to estimate∆X∆w using the affine-scaling direction∆Xα ∆wα . It is
the equation (3.8.70) with the estimated barrier parameterµe which defines the
predictor-corrector direction.

3.8.5.3 Computing Initial Points

By definition interior-point methods operate within the interior of the feasible region
and thus need strictly positive initial guesses for the vectorsx andw. How can such
feasible points be obtained? This is a very difficult task in IPM research. The method
described in Section 3.8.2 does not help this time because wedo not want to use the
Simplex algorithm. Since interior-point methods are path-following methods one
would like to have an initial point as close as possible to thecentral path and to be
as close to primal and dual feasibility as possible. How thatgoal is reached can be
read in Andersenet al. (1996,[23]).



118 Mathematical Solution Techniques

The reader interested in this topic might find it astonishingthat so called “primal-
dual infeasible-interior-point methods” proved to be successful. These methods start
with initial points x(0) andw(0) but do not require that primal and dual feasibility
is satisfied. This is quite typical for nonlinear problems which use Newton type
algorithms. Feasibility is attained during the process as optimality is approached23.
Therefore, a primal and dual feasibility test is part of the termination criterion [see
Section 3.8.5.5]. It needs to be mentioned that the primal-dual infeasible methods
have difficulties to detect possible primal or dual infeasibility of the LP problem.
This problem also promoted the development of homogeneous self-dual methods.

3.8.5.4 Updating the Homotopy Parameter

The control of the homotopy parameterµ determines how efficient the interior-point
method works. If one wants to stay close to the central path then small changes ofµ
are recommended (short step methods). However, this might result in slow conver-
gence. The opposite,large step methods, might leave the vicinity of the central part
and provide numerical difficulties, or require several Newton steps in each iteration.

The relation (3.8.55), which is valid for the central path, suggests that the barrier
parameter should be connected to the complementarity gap orthe duality gap. Note
that because the method does not require primal and dual feasibility, the comple-
mentarity gap might be different from the duality gap.

A common choice of theµ(k) is the heuristic given in Lustiget al. (1991,[390])

µ =
bTy−cTx

ϕ(n)
, (3.8.71)

wheren represents the number of the variables andϕ(n) is an auxiliary function

ϕ(n) =
{

n , n≤ 5000
n3 , n≥ 5000

. (3.8.72)

In Mehrotra’s predictor-corrector method [404] the barrier parameter is chosen as

µ =

(
ga

g

)2 ga

n
, (3.8.73)

wherega is the predicted complementarity gap used in that method. Another ap-
proach which is particularly useful in parallel IPMs determinesµ(k) by exploiting
extrapolation techniques (Bock & Zillober, 1995,[93]) known from the theory of
differential equations.

23 The screen output of an interior-point solver may thus contain the number of the current iter-
ation, quantities measuring the violation of primal and dual feasibility, the values of the primal
and the dual objective function (or the duality gap) and possibly the barrier parameter as valuable
information on each iteration.



3.8 Appendix to Chapter 3⊖ 119

3.8.5.5 Termination Criterion

For the givenµ viz. µk the algorithm proceeds until relative primal feasibility

∆ P(x) :=

∥∥∥Ax(k)−b
∥∥∥

max
{

1,
∥∥Ax(0)−b

∥∥} < εP (3.8.74)

and relative dual feasibility

∆ D(y) :=

∥∥∥ATy(k)+w(k)−c
∥∥∥

max
{

1,
∥∥ATy(0)+w(0)−c

∥∥} < εD (3.8.75)

are achieved up to some specified accuracy and the relativeduality gap∆ R(x,y) is
such that

∆ R(x,y) :=
cTx−bTy
1+ | bTy | < εG. (3.8.76)

Typical values for the accuracies areεP = εD = 10−10 andεG= 10−8. It was already
mentioned in Section 3.5.3 that the size of the duality gap gives a measure of how
far a feasible point is away from being an optimal point. Thuswe are not surprised
to see∆ R(x,y) as a part of a termination criterion.

3.8.5.6 Basis Identification and Cross-Over

Interior-point methods produce an approximation to the optimal solution of an LP
but no optimal basic and non-basic partition of the variables. Since the optimal so-
lution produced by the interior-point method is strictly inthe interior of the feasible
solution there are many more variables not fixed at their bounds than we would
expect in a Simplex solution. The concept of basic solutionsis, however, very im-
portant for sensitivity analyses and the use of LP problems as subproblems in B&B
algorithms. The availability of a basis facilitates warm-starts.

Therefore, in many cases it is advantageous to be able to purify an optimal
interior-point solution into a basic solution. Such procedures are calledbasis identi-
fications procedures. Such procedures derive a basis from any feasible solution of an
LP problem such that this basic solution gives the same objective function value as
the feasible point it is derived from. Details on these methods are found in Andersen
& Ye (1994,[24]) and Andersen (1996,[21]).

Commercial implementations of interior-point methods usecross-over tech-
niques, i.e.,at some time controlled by the termination criterion described in Section
3.8.5.5 the algorithm switches from the interior-point method to the Simplex algo-
rithm. Crossing-over starts with the basis identification providing a good feasible
initial guess for the Simplex algorithm to proceed. The Simplex algorithm improves
this guess quickly and produces an optimal basic solution.



120 Mathematical Solution Techniques

Let us conclude with the remark that cross-over is not a trivial task and the expe-
rience of software developers may greatly influence the efficiency.

3.8.5.7 Interior-Point versus Simplex Methods

At the moment the best Simplex algorithms and the best interior-point methods are
comparable. It depends on the problem which procedure is themore efficient. For
some benchmarks and test runs both with interior-point methods and sophisticated
Simplex algorithms we refer the reader to Arbel (1994,[32]). Some general charac-
teristics can be given, Nemhauser (1994,[430]) in the following points:

The Simplex algorithm needs many iterations, but these are very fast. The number
of the iterations grows approximately linearly with the number of constraints and
logarithmically in the number of variables.

While for the Simplex algorithm there is a theory and a clear understanding of the
complexity of the method, there is no clear concept on the worst-case complexity of
interior-point methods. A theoretical bound for the numberof iterations,

O

(√
nln

1
ε

)
(3.8.77)

is not in good agreement with the number

O (lnn) or O
(
n4) (3.8.78)

observed in practice. Interior-point methods usually needabout 20 to 50 iterations;
this number grows weakly with the problem size as described by (3.8.78). Every
iteration requires the solution of ann · n system of nonlinear equations which is
quite costly. This system is linearized. Thus the central computing consumption for
a problem withn variables is the solution of an ·n linear equation system. That is
why it is essential for the success of the IPM, thatthissystem matrix is sparse.

Although problem dependence plays an essential role for thevaluation of the
efficiency of Simplex algorithms and IPMs, the IPMs seem to have advantages for
large, sparse problems.

Especially for big systems hybrid algorithms seem to be veryefficient. In the
first phase these determine a nearly optimal solution with the help of an IPM, viz.
determine a solution near the polyhedra edge. In the second phase, “purification”
pivoting procedures are used to create a basis. Finally, theSimplex algorithm uses
this basis as an initial guess and finally iterates to the optimal basis.

As with the B&B method, IPMs still have a disadvantage, because they do not
allow an efficient warm-start [see Section 9.2.1 for definition] iterating in a few
steps from an initially infeasible point to an optimal feasible one. So for that reason
their use is also limited to hybrid techniques in which they are used to provide good
initial points and then cross-over to the Simplex algorithm.



3.8 Appendix to Chapter 3⊖ 121

Branch & Bound
(with LP relaxation)

Initialization

k = m = 0  ,   zIP
= −∞  ,    zLP

= +∞  ,    node-list = {0}

Define LP relaxation (call this node 0)

as  V but y is relaxed: y continuous

Node selection

if node-list = { } goto Å
if node-list ≠≠≠≠≠ { } apply heuristic to select node n

Solve LP problem associated with node n

    →    →    →    →    → check status, zn, xn, yn

if status = "infeasible" then remove node from node-list; goto Â
if status = "feasible" then

if yn integral then

if zn
>>>>> zIP

+ α   then z
k+1

= zn , set k = k+1

remove node from node-list, goto Â

end if

if zn
<<<<< zIP

+ α then remove node from node-list ; goto Â

update zLP : if m = 0  then zLP = zn  , m = 1

if m > 0  then zLP
= max z (LP | LP ∈∈∈∈∈ node-list)

goto Ä

Variable selection

- inspect current LP solution and choose a fractional y
j

- generate two subproblems (nodes)

LP
current

 + y
j
≤≤≤≤≤ int (y

j
) and  LP

current
 + y

j
≥≥≥≥≥ int (y

j
) + 1

- goto Â

Solution Output

- no integer solution found

- or print-out the solution

- stop

max cTx +++++ dTy x  continuous

s.t. Ax +++++ By ===== b  ;    x, y ≥≥≥≥≥ 0  ; y integer

V

À

Á

Â

Ã

Ä

Å

k m

k

m 1

IP
k

m+1

set m = m+1

Fig. 3.9 The Branch & Bound algorithm.

3.8.6 Branch & Bound with LP-Relaxation

Although the idea of the Branch-and-Bound (B&B) algorithm first developed by
Land & Doig (1960,[362]) has already been briefly sketched atseveral places in
this book in this appendix we summarize the method and present a more technical
approach explaining some relevant strategies and control parameters being used in
B&B.

The branch in B&B hints at the partitioning process used to produce solutions
or to prove the optimality of a solution. Lower and upperboundsare used during
this process to avoid an exhaustive search in the solution space. The B&B idea or
implicit enumerationcharacterizes a wide class of algorithms which can be applied
to discrete optimization in general.



122 Mathematical Solution Techniques

Fig. 3.9 summarizes the computational steps of the B&B algorithm. After some
initialization the LP relaxation —that is that LP problem which results if we relax
all integer variables to continuous ones— establishes the first node. The node selec-
tion is obvious in the first step (just take the LP relaxation), but later on it is based
on some heuristics [see Section 9.4.2.2]. A B&B algorithm ofDakin (1965,[143])
with LP relaxations uses threepruning criteria: infeasibility, optimality and value
dominance relation. In a maximization problem the integer solutions found lead
to an increasing sequence of lower bounds,zIP, while the LP problems in the tree
decrease the upper bound,zLP. Note thatα denotes anaddcutwhich causes the
algorithm to accept a new integer solution only if it is better by at least the value
of α. If the pruning criteria fail branching starts: the branching in this algorithm is
done by variable dichotomy: for a fractionaly∗j two child nodes are created with the
additional constrainty j ≤ [y∗j ] resp.y j ≥ [y∗j ]+1. Other possibilities for dividing the
search space are, for instance, generalized upper bound dichotomy or enumeration
of all possible values, if the domain of a variable is finite [[109], [431]]. The advan-
tage of variable dichotomy is that only simple lower and upper bounds are added
to the problem. In Section 3.8.3 we have shown why bounds can be treated much
easier than general constraints.

The selection of nodesplays an important role in implicit enumeration; widely
used is thedepth-firstplus backtracking rule as presented above. If a node is not
pruned, one of its two sons is considered. If a node is pruned,the algorithm goes
back to the last node with a son which has not yet been considered (backtracking).
In linear programming only lower and upper bounds are added,and in most cases
the dual Simplex algorithm [see Section 3.8.4] can re-optimize the problem directly
without data transfer or basis re-inversion [431]. Experience has shown [109], that
it is more likely that feasible solutions are found deep in the tree. Nevertheless, in
some cases the use of the opposite strategy, breadth-first search, may be advanta-
geous.

Another important point is theselection of the branching variable. A common
way of choosing a branching variable is by user-specified priorities, because no ro-
bust general strategy is known. Degradations or penalties may also be used to choose
the branching variables, both methods estimate or calculate the increase of the ob-
jective function value if a variable is required to be integral, especially penalties are
costly to compute in relation to the gained information so that they are used quite
rarely [431].

The B&B algorithm terminates after a finite number of steps. Termination occurs
when the node list becomes empty. In that case the result is either the optimal integer
feasible solution or the message that the problem does not have any integer feasible
solution. In practice, it happens very often that the user does not want to wait until
the node list becomes empty but wants to stop after one, or several integer solutions
have been found. If an integer feasible solution has been found the upper and lower
bounds mentioned above may be used to estimate the quality ofthe solution. Let us
see how that works: during the B&B for a maximization problemwe know that

zLP ≥ z∗ ≥ zIP, (3.8.79)



3.8 Appendix to Chapter 3⊖ 123

Fig. 3.10 Branch & Bound tree: Updating the value of the LP relaxation.The number beside each
node denotes the value of the LP relaxation; open circles represent active nodes. The nodes of the
tree are evaluated in the sequence 8.2-8.1-7.4-6.3-4.2-7.9(node A). The absolute integrality gap
δ before evaluating node A is∆ = 8.2−4.2 = 4 (left part of the figure). Once node A has been
evaluated (right part) we get∆ = 7.9−4.2= 3.7.

wherez∗ is the (unknown) value of the best integer solution,zIP (possibly−∞) is
the value of the best integer solution found so far in the search andzLP = maxi{zLP

i }
wherezLP

i is the optimal value of the LP relaxation atactive node i (nodes that
have been fathomed are not considered). For example, in Fig.3.10 (left part) when
an integer feasible solutions has been found,zIP = 4.2, andzLP = 8.2, and thus
∆ = 8.2−4.2. Once the value of the LP relaxation of node A is known (rightpart
of Fig. 3.10), the maximum of all LP relaxations at active nodes is 7.9, yielding a
reduced gap of∆ = 3.7.

We have found the optimal solution to our MILP problem if∆ = zLP−zIP ≤ ∆ a,
with some tolerance∆ a on the absolute gap. So it can be seen that a criterion for
node selection in B&B is to reduce the integrality gap∆ . One way to do this is to
select a node which has a good chance of yielding a new integerfeasible solution
better than the currentzIP. Another way is to branch on the node having the largest
zLP
i on the grounds that a descendant of this node will certainly have no higher a

value ofzLP
i , and probably will have a lower value, in which casezLP will be smaller.





Chapter 4
Problems Solvable Using Linear Programming

In this chapter a number of standard LP problems will be formulated. These are
problems which occur frequently and may provide ways of formulating parts of the
users’ problems, to which other conditions,e.g., integrality conditions or nonlinear
terms, will be added, and secondly they will give an indication as to the ease or
difficulty of solving a particular problem when it becomes apparent that it is similar
to some standard problem. For some of the problem types a casestudy is also pro-
vided and a model relating to the case is supplied with the software included with
the book.

4.1 Cutting Stock – Trimloss Problems

Cutting stock or trimloss problems in various industries consist of cutting a fixed
number of patterns defined by the length and width of certain materials from contin-
uous, finitely long rolls or finitely long pallets of paper, textile, glass, wood or metal
of known width at right angles, and thereby minimizing the unusable and super-
fluous material. Models for solving trimloss problems were developed by Gilmore
& Gomory (1961,[229]) and subsequently by numerous authors, especially Dyson
& Gregory (1974,[173]). Applications in the paper industryare,e.g., described by
Vajda (1961,[569]) or Kallrathet al.(2014,[330]), applications in the glass industry
in Dyson & Gregory (1974,[173]). In Farley (1991,[182]) a model for cutting photo
paper is described; finally in Section 13.2 an example can be found in which not
only the number of patterns but also the design of the patterns is determined by the
optimization model.

125



126 Problems Solvable Using Linear Programming

Cutting from a continuous roll

(wastage is shown shaded)

total width

width

5 5 4

le
n

g
th

Fig. 4.1 Geometry of a trimloss problem. The length of the rolls is assumed to be infinite. The
figure shows two pattern cut from the master roll of width 17 dm.

4.1.1 Example: A Trimloss Problem in the Paper Industry

A paper roll of infinite length and a width of 20 meters is givenas well as customer
demand of 30x5, 30x7 and 20x9 meters as defined byL×B. With regard to length,
no interruptions are possible, with regard to width, very well.

To model this problem, it must first be decided which combinations can be cut
from the roll. For example, it would be possible to cut two layers of width 7m and
one layer of width 5m at the same time; the rest of width 1m cannot be used any
further. The determination of the set of all combinations isa problem in itself and
should not be described here; all permissible combinationsc have in common that
they contain a wasteWp which cannot be used further. In the present case the six
patterns result to be read column-wise (permutations of these patterns –e.g., 7,5,7
– are not listed):

p 1 2 3 4 5 6
5 5 5 5 7 9
5 5 5 7 9 9
5 7 9 7
5

Wp 0 3 1 1 4 2

.

The occurring widths 5, 7 and 9 are indicated below withw (w = 1,2,3), the pat-
terns withp (p= 1,2, ...,6). First of all, we introduce the non-negative, continuous
variables

xp ≥ 0 : Length of roll to be cut when using patternp
sw ≥ 0 : Excess length of cut when using widthw.



4.1 Cutting Stock – Trimloss Problems 127

The objective function is the minimization of the total waste

min (3x2+x3+x4+4x5+2x6)+(5s1+7s2+9s3). (4.1.1)

The terms in the first parenthesis describe the direct cut given by the combination,
the terms in the second parenthesis the cut resulting from the excess length; the first
two combinations must be cut with a length of 30,000 m, combinationc= 3 with a
length of 20,000 m.

As the first condition we note: The total length of the 5m wide cuts (these are
only possible in the first four combinations) must be at least30,000 m. Since some
combinations result in several pieces of a certain length and surplus lengths may
occur, this is expressed by the equality

4x1+2x2+2x3+x4 = 30000+s1.

Analogously, the conditions regarding the total length of the 7m widths (here also
30000m are required) and the 9m widths (here 20000m are required) are as follows

x2+2x4+x5 = 30000+s2

and
x3+x5+2x6 = 20000+s3.

This model formulation is suitable for the current, relatively small problem with
solutionz= 35000,x1 = 3750,x4 = 15000 andx6 = 10000 or alsox3 = 7500,x4 =
15000 andx6 = 6250; however, it leads to difficulties in real industrial applications
if the number of combinations and thus the number of variables becomes very large.

Instead of (4.1.1), we could also minimize the total cut length

x1+x2+x3+x4+x5+x6 ; (4.1.2)

this leads to the same solution. The reason for this is the observation that the total
cut length must cover the demand plus the waste. Since the required quantity is
fixed, minimizing the total cut length of all patterns is equivalent to minimizing the
waste; in the next section we show this algebraically for a similar situation.

4.1.2 Example: An Integer Trimloss Problem

This chapter is dedicated to issues that can be addressed within the framework of
the LP. However, as the integer problem at hand is very similar to the one in Section
4.1.1, we allow an exception and treat it here; it also shows how quickly an LP
problem can become a MILP problem. In the present case, 70 cm wide paper rolls
in three widths of 12, 20 and 22 cm are to be cut; permitted patterns are known
again. The following weekly demand for rolls is to be satisfied:



128 Problems Solvable Using Linear Programming

w 1 2 3
Bw width [cm] 12 20 22
Dw demand 10 13 8

.

How should the master roll be cut if one wants to minimize waste? In the model, the
indices are

w∈ W , W = {1(12 cm),2(20 cm),3(22 cm)} : set of width
p∈ P , P = {1,2, ...,P} : set of patterns

are used. The model requires the following input data

Dw : demand for rolls of widthw
Wp : trimloss [in cm] of patternp
Nwp : number of rolls of widthw, we obtain from a single 70cm roll

master roll when cut to patternp
Bw : width [in cm] of roll w

.

How should the master roll be cut if you want to minimize waste? In the model, the
indices are

p 1 2 3 4 5 6 7 8 9 10 Dw

Bw w
12 1 5 4 4 2 2 2 0 0 0 0 10
20 2 0 1 0 2 1 0 3 2 1 0 13
22 3 0 0 1 0 1 2 0 1 2 3 8
Wp 10 2 0 6 4 2 10 8 6 4

.

The patterns – they are constructed that way – fulfill the condition

∑
w∈W

NwpBw ≤ BMR , ∀p,

whereBMR denotes the width of the stock rolls; in this case 70 cm.
Now two formulations seem reasonable: A) If unused widths can be returned to

the warehouse (this is usually the case for standard sizes that are frequently used),
the waste to be minimized is∑p∈P Wpα p, and the requests are to be fulfilled

∑
p∈P

Nwpα p ≥ Dw , ∀w

with the integer variablesα p ∈ {0,1,2, . . .} which describe how many rolls are cut
according to patternp.

B) If unused widths cannot be reused, they shall also be considered as waste and
the objective function to be minimized may be reduced simplyto the number

z= ∑
p∈P

α p.

The master rolls to be used follow as



4.2 The Food Mix Problem 129

∑
p∈P

Wpα p+ ∑
w∈W

Bb

[

∑
p∈P

Nwpα p−Db

]
= ∑

p∈P

(
Wp+ ∑

w∈W

BwNwp

)
α p−C

= ∑
p∈P

BMRα p−C

= BMR ∑
p∈P

α p−C.

The constants –BMR, the width of the master roll, andC := ∑w∈W BwDw – can
be neglected as they lead to the same optimal solution. This has the advantage
that the objective function value is integer-valued which allows us to select a
minimal improvement ofα = 1 as described in Section 10.2.2, which accelerates
the B&B algorithm significantly. For this problem and the data specified above,
we obtain the objective function valuez= 9 and, for instance, the pattern multi-
plicities(α1,α7,α9) = (2,3,4), (α1,α7,α9,α10) = (2,4,1,2), (α1,α7,α8,α10) =
(2,1,5,1), or (α3,α4,α7,α10) = (2,1,4,2). The solution is not unique. From a
practical point of view, the first solution with only three patterns is preferable be-
cause it minimizes wasteand the number of pattern changes (resulting in less work
in changing the knife positions).

4.2 The Food Mix Problem

The food mix problem concerns the blending together of quantities of ingredients
to make a final blend. Restrictions are placed on the relativecomposition of the
ingredients in the final product. Let us illustrate this by the Manufacturing Foods
model based on Williams & Redwood (1974,[594]) who describean LP model used
to optimize the production of foods by blending oils. Each food type is required to be
no more than a certain proportion of the total of all foods produced. The following
formulation of the constraints was used with indices

i = 1,2, ...,n : the set of ingredients
f = 1,2, ...,m : the set of food constituents

data

Af i : proportion of ingredienti that provides food constituentf
Bf : maximum proportion of the total food which can

be food constituentf

and continuous variables

xi ≥ 0 : the quantity (volume) of ingredienti used
y ≥ 0 : the total quantity of food produced.



130 Problems Solvable Using Linear Programming

The formulation is then expressed in the two following constraints: for each type of
food constituent, the requirements must be satisfied by adding together the available
ingredients

n

∑
i=1

Af ixi −Bf y≤ 0 , f = 1,2, ...,m,

and because there is no loss of mass in the blending process, the final product com-
prises the sum of the ingredients by volume

n

∑
i=1

xi −y= 0.

4.3 Transportation and Assignment Problems

4.3.1 The Transportation Problem

The transportation problem is the problem of sending quantities of identical goods
from n different origins, such as factories, tomdifferent destinations such as storage
warehouses or customers. Let us use the indices

f = 1,2, ...,n : the set of factories
w = 1,2, ...,m : the set of warehouses

Let the quantity of the goods required at each warehouse beDw (the demands) and
the quantity of the goods available at each factory beSf (the supplies) and letCf w

be the cost of sending one unit of the good from factoryf to warehousew. The total
cost of transporting goods is to be minimized. Each ofD, S, andC is assumed to be
non-negative. Initially we shall assume that total supply and total demand exactly
match,i.e.,

n

∑
f=1

Sf =
m

∑
w=1

Dw.

The main decisions must be how much of the good is sent from a particular factory
to a particular warehouse, so we introduce the decision variablexf w ≥ 0 to represent
the amount to be sent from factoryf to warehousew.

The objective function

min
n

∑
f=1

m

∑
w=1

Cf wxf w (4.3.1)

is built up by multiplying each unit delivery cost by the quantity of the good incur-
ring that cost, and summing over all goods. The model has to obey the constraints



4.3 Transportation and Assignment Problems 131

n

∑
f=1

xf w = Dw , w= 1,2, ...,m, (4.3.2)

i.e., the total quantity sent from all factories to warehousew must match its require-
mentDw ; and

m

∑
w=1

xf w = Sf , f = 1,2, ...,n, (4.3.3)

i.e., the total quantity sent to all warehouses from factoryf must match its supply
Sf .

Note that in (4.3.2) we may replace = by≥, as we know it will be uneconomical
for the optimal solution to supply too much, and in (4.3.3) wemay replace = by≤ as
we know that in the optimal solution as much will be supplied as is demanded. These
changes to inequalities rather than equations become more appropriate when total
supply and total demand are not equal. Then the problem becomes one of supplying
as much as possible, at minimum cost, of what has been demanded, or not using all
the supplies that are available.

The basic transportation problem was introduced by Kantorovich (1939,[333]),
Hitchcock (1941,[278]) and Koopmans (1947,[351]) and solved by the Simplex al-
gorithm by Dantzig (1951,[148]). It was later solved by thestepping-stone algorithm
of Charnes and Cooper (1954,[119]), later improved on by Dennis (1958,[161])
and Reinfield & Vogel (1958,[471]). As with the assignment problem [see Section
4.3.3], the transportation problem does not need to be solved by LP methods, and
the algorithm of Charnes & Cooper (1954,[119]) solves largeproblems easily. If
the problem is posed as an LP problem and solved by LP softwarewithout recourse
to ILP software, the optimal solution will again provide allvariables with integer
values providedD andS are integers. The reason for this is that the set of coeffi-
cients, which are all 0s or 1s, form what is termed a totally unimodular coefficient
matrix, which guarantees that an LP solution is an ILP solution. Unimodularity will
be discussed further in Section 4.5.

Many variations on the basic structure of the transportation problem exist, as the
following examples indicate.

1. The objective function may be maximize, for instance if the problem concerned
maximizing the total satisfaction of groups of people who are being supplied
with some service. In this type of problem,Cf w is no longer a cost but instead
measures gain, contribution or satisfaction;

2. By replacing = in the matching of total supply to demand, and in (4.3.2) and
(4.3.3) by using any possible combinations of≤,≥ or =, and by varying the ob-
jective function, Appa (1973,[29]) produced 54 variationson the basic structure
of the transportation problem. Most of these have obvious practical application.
All variations of the basic structure lead to totally unimodular coefficient matri-
ces, as before.

3. Routes for delivery from one particular factory to one particular warehouse may
be disallowed by associating a large cost with that route, when the problem in-



132 Problems Solvable Using Linear Programming

volves the minimisation of total cost, or by omitting the appropriate variable from
the formulation. (For a maximisation problem a zero gain canbe associated with
a particular route to discourage it. In order to ensure that aparticular route is
used maximally cost/gain should be set to encourage this route. Such artificial
cost/gain values can later be removed when an optimal solution has been found
and the value of that solution calculated after reinstatingthe true cost/gain val-
ues.)

Three problems which can be formulated as transportation problems, described by
Appa (1973,[29]) but attributed by him to others, are now summarized.

1. Purchase/storage problem. Goods needed in specified amounts in each of a series
of time periods at lowest total cost can be provided by purchase or from quantities
obtained and stored earlier. The amount purchased and the amount stored, in each
period, represent the sources of supply. The amount used directly and the amount
put into storage, in each period, represent the demands. Storage is an additional
cost and is added cumulatively to supplies of goods which areto be used, or could
be used, in later periods. As goods obtained or stored in a later period cannot be
supplied or put into store in an earlier period many routes have to be barred.

2. Catering/laundry problem. A caterer wishes to supply fresh napkins at cheapest
total cost for use at functions over a series of days. Different numbers of napkins
are required on each day. Napkins can be purchased, at known cost, as required,
but, in addition, soiled napkins can be laundered and provide a source of sup-
ply for later days. Napkins can either be laundered, at knowncost, and returned
within 48 hours or within 24 hours, at higher cost. In this problem there are three
types of source of supply in each period - new napkins, quickly washed napkins,
and slowly washed napkins, the last two options not always being available. The
demand in each period has three dimensions - demand for direct use, demand for
24 hour laundering for later use and demand for 48 hour laundering for later use.
Clearly napkins cannot go backwards in time, so certain routes will be barred.
The problem is related to the previous one, but has the new variation that the
same napkins may possibly be used as both a source of supply and a demand
many times over.

3. Rota problem. Personnel providing 24 hour coverage can start shifts at points
spaced equally throughout the day,e.g., at 4-hourly intervals. Shifts last an in-
teger multiple of these intervals,e.g., 8 hours. Different numbers of personnel
are required at different times of the day. The problem is to use the minimum
total number of personnel over a 24 hour period to provide complete coverage.
In each interval, the sources of supply will be the number of personnel starting
in that interval and those available from an earlier interval. As in the other two
problems time must not be allowed to run backwards, so appropriate routes will
be barred.



4.3 Transportation and Assignment Problems 133

4.3.2 The Transshipment Problem

The transshipment problem may be regarded as a 2-stage transportation problem
with goods being shipped from source to an intermediate destination before reaching
the final destination. Let us assume that each item must be shipped from a factory
to a distribution center and then from a distribution centerto a warehouse. As with
the transportation problem, this problem can be solved by a special-purpose method
and is a totally unimodular problem when supplies and demands are integers, so
produces integer solutions when solved by LP methods.

A typical problem may be stated and formulated as follows. Let us extend the
problem given by (4.3.1)-(4.3.3) by introducing an index

d = 1,2, ..., r : the set of distribution centers (4.3.4)

Now we redefine our variables as

xf d = quantity of the good sent from factoryf to distribution centerd (4.3.5)

and we introduce the variables

ydw ≥ 0
quantity of the good sent from distribution centerd
to warehousew.

(4.3.6)

We require the constraints

r

∑
d=1

xf d = Sf , ∀ f (4.3.7)

r

∑
d=1

ydw = Dw , ∀w (4.3.8)

n

∑
f=1

xf d =
m

∑
w=1

ydw , ∀d. (4.3.9)

Let Cf d be the cost of sending one unit of the good from factoryf to distribution
point d andC′

dw be the cost of sending one unit of the good from distribution point
d to warehousew. The objective function is

min
n

∑
f=1

r

∑
d=1

Cf dxf d +
r

∑
d=1

m

∑
w=1

C′
dwydw. (4.3.10)

Fig. 4.2 shows routes on a transportation network and on a transshipment network.



134 Problems Solvable Using Linear Programming

Fig. 4.2 Routes on transportation network (left) and transshipment network (right).

4.3.3 The Assignment Problem

Theassignment problemis the problem of assigning a number of tasks to a number
of persons to maximum advantage. In the problem the (tasks, persons) pair may be
replaced by (objects, locations) and a variety of other pairs, and the order within the
pair is not important. In addition, the notion of “maximum advantage” may in fact
be to minimize cost or some other objective. Thus the assignment problem has some
similarities to the transportation problem, but differs principally for the reason that
the flows from source to destination are replaced by a single item or person. The
formulation of a typical problem will now be given.

Let there bem tasks andn persons,n≥ m, indexed by

t = 1,2, ...,m : the set of tasks
p = 1,2, ...,n : the set of persons.

(4.3.11)

Let Rt p be the profit if taskt is assigned to personp. The main decisions must refer
to how the tasks are assigned to persons, so we introduce a binary decision variable,
δ t p,

δ t p :=

{
1 , if taskt is assigned to personp
0 , otherwise.

(4.3.12)

If we want to relax the integrality condition we would incorporate these variables
into an LP model by requiring

0≤ δ t p ≤ 1 , ∀{t p}. (4.3.13)



4.3 Transportation and Assignment Problems 135

Then we require two types of constraints (a) to assign each task to a person and (b)
to ensure each person is assigned at most one task. These constraints are modeled
as follows

m

∑
t=1

δ t p ≤ 1 , ∀p (4.3.14)

ensuring that for personp the number of all the possible tasks assigned must be at
most one. Conversely, the equations

n

∑
p=1

δ t p = 1 , ∀t (4.3.15)

ensure that for a taskt the number of all the possible people to whom it is assigned
must be exactly one. This constraint actually ensures that taskt is assigned. Since
we assumed thatn≥ m , it is possible to do so.

The objective function is

max
m

∑
t=1

n

∑
p=1

Rt pδ t p.

Clearly eachδ t p variable will be meaningless unless it takes on a value of 0 (the
task is not assigned) or 1 (the task is assigned).

The assignment problem is a special case of the transportation problem where
all supplies and demand are equal to one, and so can be solved as if it were
an LP. The assignment problem was first solved by theHungarian algorithmof
Kuhn (1955,[357]) which was improved on by Jonker & Volgenat(1986,[303]) and
Wright (1990,[602]). An alternative method for solving the problem is presented in
Hung & Rom (1980,[285]). Further methods of solving the problem are discussed
in Burkard & Derigs (1980,[110]) and computer codes are contained in Carpaneto
et al. (1988,[115]). In fact, the assignment problem is normally solved by special
purpose software, but clearly there is no harm, other than relative slowness, in using
a general purpose LP solver.

More complex problems of allocation eventually lead to models which are not
solvable by LP approaches. A typical example is a model to allocate school bus
contracts described by Letchford (1996,[372]).

4.3.4 Transportation & Assignment Problems as Subproblems

When considering efficient problem solving it is important tonote that if an MILP
model is formed from an assignment, transportation or transshipment problem plus
only a few other conditions then it should solve rapidly, andpossibly produce integer
solutions to appropriate variables without recourse to B&B. But the problem types
tend not to occur in isolation as they are too simplistic, butoccur in conjunction



136 Problems Solvable Using Linear Programming

with other model features. They have been discussed in detail to develop principles
of modeling rather than to illustrate complete practical models.

4.3.5 Matching Problems

The perfect matching problemis a variation of the assignment problem. It occurs
when tasks have to be assigned to individuals, with two individuals being assigned
to each task. The objective of the problem is to create the teams of two people
assigned to each task in such a way as to maximize some gain, such as speed of
completion of tasks or a monetary gain. The problem may be formulated as follows.

Suppose 2n peoplep must be assigned ton tasks, with exactly two people as-
signed to each task. LetGpp′ be the gain if personp is assigned to the same task
as personp′ and assumep < p′. This restriction on the index combination avoids
counting the same people assigned to one task twice because otherwise we would
haveGpp′ = Gp′p.

We introduce the following binary variables:

δ pp′ :=

{
1 , if personp is assigned to the same task as personp′

0 , otherwise

for the following combination of indices

p< p′

p= 1,2, ...,2n−1
p′ = 2,3, ...,2n.

The formulation is then to maximize total gain provided by the assignment of people
to tasks, given by

max
2n−1

∑
p=1

2n

∑
p′=p+1

Gpp′δ pp′

subject to

∑
k<l

δ kl +∑
j>l

δ l j = 1 , l = 1,2, ...,2n−1. (4.3.16)

These constraints ensure that for each personl one other person,k if the person has
a lower number thanl in the numbering sequence orj if the person has a higher
number thanl in the numbering sequence, is assigned to the same task asl .

If the equality constraints (4.3.16) are replaced by≤ constraints, the problem
is described as thematching problem. An application of matching problems occur
embedded within a larger model in a vehicle and manpower scheduling model in
Blais et al. (1990,[89]).



4.4 Network Flow Problems 137

4.4 Network Flow Problems

A network flow problemis a problem which may be modeled as agraphconsisting
of nodesandarcs connecting pairs of nodes; the terms graph, nodes and arc are
explained below; sometimes, people also refer to nodes asvertices. Many problems
can be modeled as network flow problems. Network problems areamong the easiest
models to solve and they are easy to describe with a graph or a picture. Their ba-
sic concepts are arc or edges and nodes representing for instance railway lines and
stations. In network flow problems the basic model can be thought of as comprising
flows (of material, for instance) between points (e.g., flows from warehouse to cus-
tomer). They can be solved by simple or by specialized Simplex algorithms. Gen-
eral network flow problems may be solved by special purpose codes as described
in Bradleyet al. (1977,[102]) or Mulvey (1978,[421]). Such codes solve problems
many times more rapidly than the Simplex algorithm would on the equivalent LP
problem.

4.4.1 Illustrating a Network Flow Problem

A node is defined to be a point on a graph and an arc to be a directed line segment
joining two nodes. The arcs are considered to have a “direction”, but it is not nec-
essary for every pair of nodes to be directly connected. Material can flow along an
arc and there is an associated unit cost for the flow. At all nodes material balance is
preserved,i.e., the amount of material flowing in balances the amount of material
flowing out. At some nodes, calledsources, there is a specified flow-in, and at some
nodes, calledsinks, there is a specified flow-out. For example, in the transportation
problem a supplier could represent a source and a customer could represent a sink.
The network flow problem is then the problem of satisfying material flow require-
ments at each node such that total cost of material flow is minimized. Fig. 4.3 shows
a typical small problem with 10 nodes and 15 directed arcs.

The problem would be formulated in LP terminology as:

min 2x13+2x14+3x24+5x25+2x34

+5x38+4x45+2x47+3x5,10+3x63 (4.4.1)

+5x68+2x69+3x76+2x79+5x7,10

subject to material flow conservation at all the nodes, whichis given, node by node,
by



138 Problems Solvable Using Linear Programming

1 : x13+x14 = 10
2 : x24+x25 = 10
3 : x34+x38 = x13+x63

4 : x45+x47 = x14+x24+x34

5 : x5,10 = x25+x45

6 : x63+x68+x69 = x76

7 : x76+x79+x7,10 = x47

8 : x38+x68 = 5
9 : x69+x79 = 10

10 : x7,10+x5,10 = 5

. (4.4.2)

It is recommended that the reader now tries to solve the aboveproblem [see Exercise
4.7.3].

4.4.2 The Structure and Importance of Network Flow Models

Network flow problems are important for another reason: Depending on the con-
straints and coefficients in the constraints, they form a totally unimodular matrix
and then they belong to the class ofunimodular1 problems. These problems have
the property that although they are apparently ILP or MILP problems they can in
fact be solved without recourse to algorithms other than LP,i.e., when solved as LP
problems they produce integer solutions. Typical network flow problems such as the
assignmentproblem or thetransportationproblem are unimodular. These problems
may occur as substructures in models; they are described in Section 4.3.

It will be useful to be aware of when models have the network flow structure
or if they can be turned into network flow models. Apart from problems such as
the assignment, transportation and transshipment, a wide class of LP problems are

1+10

2+10

3

4

5

6

7

8 -5

9 -10

10 -5

2

2

3

5

5

2

2

4

3

2

5

3

2

5

3

1

Fig. 4.3 Flows between nodes of a network. Costs are shown on the directed arcs connecting nodes
(numbers in circles). Supplies are indicated to the left (+10,+10) as inflows to nodes 1 and 2, and
demands to the right (-5,-10,-5) as outflows to nodes 8,9, and 10.

1 See Section 4.5 for further details.



4.4 Network Flow Problems 139

convertible to network flow problems. Work by Bixby and Cunningham (1980,[87])
and Bastonet al. (1991,[53]) describes methods of determining if an LP problem
may be converted into a network flow problem and provide methods to do so. It
is also worthwhile to check whether a model is similar to a network flow model,
perhaps with a small number of extra conditions. This will also be discussed further
in Chapter 4.

4.4.3 Case Study: A Telephone Betting Scheduling Problem

Wilson & Willis (1983,[595]) provide an example of a telephone betting scheduling
problem which is convertible to a network flow problem. Theirproblem and its for-
mulation will now be discussed in more detail. They describethe essential problem
as “How should telephone operators be assigned to shifts on each race day so that
customer demand is met, the operating requirements are satisfied and the total cost
to the Totalizer Agency Board (Victoria, Australia) is a minimum?”. Let us provide
a structured model formulation starting with the indices

s= 1,2, ...,m : the set of shifts
t = 1,2, ...,n : the set of time periods.

(4.4.3)

The data are given by

Ast : 1 if shift s covers time periodt , 0 otherwise
Dt : operator demand for 15 minute periodt
Cs : cost per operator of shifts
Mt : maximum number of operators available for periodt
Qst : 1 if shift s starts or finishes at the beginning of periodt ,

0 otherwise
St : maximum number of staff permitted to commence

or end a shift in time periodt.

(4.4.4)

We introduce integer variables,σs, denoting the number of operators on shifts. Now
we are able to formulate the model starting with the objective function, which is to
minimize total cost over all shifts,

min
m

∑
s=1

Csσs (4.4.5)

subject to the three sets of constraints:

m

∑
s=1

Astσs ≥ Dt , t = 1,2, ...,n (4.4.6)

ensuring that there are sufficient operators available to cover a time period,



140 Problems Solvable Using Linear Programming

 !"# #$  !"$%#%  &"  #'  &"(%#)  &"# #!  &"$%#& ( "  $ ( "(%$( ( "# $* ( "$%$# (("  $$ (("(%$% (("# $' (("$%$) (*"  $! (*"(%$& (*"# % (*"$%%(

(

Fig. 4.4 A time expanded network. Backward arc (48,35) represents a shift [from Wilson & Willis
(1983)].

m

∑
s=1

Astσs ≤ Mt , t = 1,2, ...,n (4.4.7)

guaranteeing that the number of operators used in a time period does not exceed the
prescribed limit, and

m

∑
s=1

Qstσ t ≤ St , t = 1,2, ...,n (4.4.8)

ensuring that the number of staff commencing or ending a shift is within a maximum
limit (otherwise there is congestion at hand over).

This formulation was quite slow to solve. As the constraint matrix comprises 0s
and 1s the authors suspected that a network model might be achievable, and, in fact,
established that it was. This reformulation is given below.

The concept of double indexed time periods(t, t ′) is now introduced. Such a time
period runs from periodt to periodt ′, inclusively. Note that both indices now have
the same domain,i.e., t = 1,2, ...,n andt ′ = 1,2, .... ,n. In terms of a network flow
problem,t represents the source node andt ′ is the sink node. The data are now given
as

Dtt ′ : minimum number of operators required in period(t, t ′), t 6= t ′

Ctt ′ : cost of employing an operator in period(t, t ′), t 6= t ′

Mtt ′ : maximum number of operators available in period(t, t ′), t 6= t ′.
(4.4.9)

Again we introduce integer variables,σ tt ′ , but this time they count the number of
operators assigned in period(t, t ′), t 6= t ′. In this formulation a forward arc (t < t ′)
represents the progression of time and a backward arc (t > t ′) represents a shift [see
Fig. 4.4].

The new model is

min
n

∑
t=1

n

∑
t ′=1
t 6=t ′

Ctt ′σ tt ′ (4.4.10)

subject to conservation of flow at source and sink

n

∑
t ′=1

(σ0t ′ −σ t ′0)+
n

∑
t ′=1

(σnt′ −σ t ′n) = 0, (4.4.11)



4.5 Unimodularity⊖ 141

and conservation of flow at each node

n

∑
t ′=1
t 6=t ′

(σ tt ′ −σ t ′t) = 0 , t = 2,3, ...,n−1, (4.4.12)

and upper and lower limits on the number of operators allocated to any period

0≤ Dtt ′ ≤ σ tt ′ ≤ Mtt ′ . (4.4.13)

This formulation was solved rapidly by a network algorithm.This was found to be
very useful for the client to allow many variations of the problem to be considered.
The restriction that a shift must have a minimum size can be incorporated into the
network algorithm, rather than by using constraints.

4.4.4 Other Applications of Network Modeling Technique

Further applications of the network modeling technique andthe development of the
approach appear in Gloveret al. (1990,[234]). A complex network design problem
is discussed in Section 10.6.

4.5 Unimodularity ⊖

A matrix A is calledtotally unimodularif the determinant of each square subma-
trix of A is±1 or 0. For LP this will mean that if a problem is such that all the right
hand sides are integers and the coefficient matrix is unimodular, then the value given
to the variable will be an integer. Hence problems such as network problems [Sec-
tion 4.4], assignment problems [Section 4.3.3] and transportation problems [Section
4.3.1] and many variants of these problems will have integersolutions once the prob-
lem has been solved as an LP. Thus there will be no need to specify the requirement
that all the variables are integer in such problems when theyare being solved by an
LP algorithm as the requirement will be satisfied automatically. It should be noted
that it is a non-trivial task to check a matrix for unimodularity, as can be seen below,
and it is therefore useful to know which classes of problem will result in unimodu-
lar coefficient matrices. For further theoretical details on unimodular matrices and
integral polyhedra the reader is referred to Nemhauser & Wolsey (1988,[431]).

For understanding the concept, let us consider a unimodulartransportation ma-
trix in a transportation problem with two sources and three destinations, and the
constraint matrixA and submatricesS1

3, S2
3, andS2:



142 Problems Solvable Using Linear Programming

A=




1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




; S1
3 =




0 1 0
0 0 1
1 0 0


 , S2

3 =




1 1 1
1 0 0
0 1 0


 , S2 =

(
0 1
0 0

)
.

It is required to check that each submatrix has determinant equal to+1, −1, or 0.
Consider three such submatricesS1

3, S2
3, andS2 arising from rows 3,4,5 and columns

3,4,5; rows 2,3,4 and columns 4,5,6; and rows 2,4 and columns3,4 (resp.). The de-
terminant of each submatrix is, in order, 1, 1 and 0. Gradually the whole set of sub-
matrices can be checked and this becomes easier as patterns emerge, and we estab-
lish that the whole matrix is unimodular. Although this was aparticular transporta-
tion problem, we find that larger transportation problems have a similar structure
and the checking of submatrices can be done by induction fromsimpler patterns.
Gradually it can be established that all transportation matrices are unimodular.

4.6 Summary & Recommended Bibliography

In this chapter we have investigated different types of problem that can be solved
by an LP approach. We have seen that certain classes of problem will be easy to
solve as approaches simpler than standard LP are applicable. We have seen how LP
may be used to compare efficiency and how multiple objective problems may be
structured with a view to solving them as straightforward LPproblems. Thus the
reader should now be familiar with the modeling and formulation of the following
types of problems:

• trimloss;
• food mix;
• transportation, assignment and transshipment;
• network flow;
• problems with a unimodular structure.

For network flow problems and algorithms to solve them we refer the reader to
Bazaraa et al. (2010,[54]) and Jungnickel (2012,[306]).

4.7 Exercises

1. Solve the trimloss problem given in Section 4.1.1 using a modeling system and
solver of your choice.

2. Solve the trimloss problem given in Section 4.1.2 using a modeling system and
solver of your choice.

3. Solve the 10 node, 15 arc network flow problem given in Section 4.4.



Chapter 5
How Optimization is Used in Practice: Case
Studies in Linear Programming

This chapter contains several case studies in linear programming. The case studies
arise from real-world problems now successfully being solved in industry. In the
first case we look at optimization in the chemical industry. Then a blending problem
is discussed that is apparently nonlinear, but can be converted to a linear problem.
We then consider the techniques known as data envelopment analysis and goal pro-
gramming, a special technique for multi-criteria optimization problems. Finally, we
summarize and discuss some limitations of linear programming.

5.1 Optimizing the Production of a Chemical Reactor

A chemical company runs a reactor which can be operated inM = 4 different modes.
Depending on the modes the reactor producesP= 4 different productsp with given
yield coefficientsYmp listed in the recipe table below:

m\p 1 2 3 4
1 61.0 12.1 9.5 4.3
2 61.0 17.0 9.0 7.6
3 61.0 8.0 6.0 3.2
4 61.0 10.0 6.0 2.3

.

The units in the table are tons/day. The production is linkedin the following sense:
if for instancem= 1 then the plant produces 9.5 tons/day of product 3, 12.1 tons/day
of product 2, and so on.

143



144 How Optimization is Used in Practice: Case Studies in LinearProgramming

For each of the productsp there is a demand,Dp, given in tons per year in the
following table:

p 1 2 3 4
Dp [tons] 20,0005,8004,5003,000

.

Partial demand fulfillment is allowed, but it is not possibleto sell more tons than
specified byDp. For each reactor modem there is a net profitPm per day summarized
in the table [units are k£/day]

m 1 2 3 4
Pm [k£/day] 258160191208

.

Note that net profit per day for each mode is calculated in advance based on the
cost of operation in that mode, the recipe table listed above, and the specific costs1

and selling prices for all the products. The question posed by the production planner
is: on how many days should the reactor be operated in the different modes. The
maximum operating time of the reactor is 330 days/year.

In order to answer this question, we introduce variablesdm ≥ 0 denoting the
number of days the reactor operates in modem. Strictly speaking,dm should be
integral numbers but here we argue that it is sufficiently accurate to approximate it
by real numbers. The production manager in the factory knowshow to interpret, say,
d2 = 118.1. In addition it is worthwhile to introduce variablesxp describing the total
amount of productp produced during a year. Thus, we have a total of 8 variables

dm ≥ 0 , m∈ {1,2, ...,M} , xp ≥ 0 , p∈ {1,2, ...,P}. (5.1.1)

Let us first write down the restriction limiting reactor operating time:

M

∑
m=1

dm ≤ 330. (5.1.2)

The total amount of productp produced during a year is

xp =
M

∑
m=1

Ympdm , ∀p. (5.1.3)

Since the demand need not be satisfied exactly, it is sufficient to require to

xp ≤ Dp , ∀p. (5.1.4)

Finally, we have the objective function

max z=
M

∑
m=1

Pmdm. (5.1.5)

1 The specific costs include the costs for raw material, energy, utilities, machines and so on. Thus
our model is highly simplified.



5.2 An Apparently Nonlinear Blending Problem 145

Note that in our model we could eliminate the variablesxp completely by combining
(5.1.3) and (5.1.4). All the information needed could be derived from thedm; they
are the real decision variables. Thus (5.1.3) and (5.1.4) could be replaced by

M

∑
m=1

Ympdm ≤ Dp , ∀p, (5.1.6)

but it may be more convenient also to have thexp variables in the model because
they tell us immediately how much is produced.

What can be learned from this example? The reader might be disappointed by
this example and might consider this an insubstantial case.But the point is there
are problems out in the world which are simple from a mathematical point of view
but nevertheless may have a huge financial impact. Another point which is not so
obvious is that the simple problem described in this sectionis the result of intensive
discussion with the client. There are simplifications from the original problem but
the problem presented reflects the structure of the businessand the model helps to
improve the profitability of the business.

5.2 An Apparently Nonlinear Blending Problem

The case study discussed in this section is an example of how real-world problems
appear, and how they can be solved, where the modeling aspects turns out to be
crucial. In the beginning, when the customer presented the problem it was not even
clear that in the end we would have an optimization problem. It sounded more likely
that an expert system would be required, which would use rules to design feasible
blends. This project also showed how important it is for modeling to involve several
people with different backgrounds cooperating and being able to communicate with
each other: the modeler capable of formulating a mathematical programming prob-
lem, the customer not deeply in touch with mathematics, but providing physical and
chemical background and know-how for the project.

The objective of this project was the design and production of “recipes” for
blending fluids at minimum cost, observing several product properties and re-
quirements. Such properties were, for instance, viscosities, boiling points and con-
centrations of alcohol. In addition, some logistic constraints had to be satisfied,
e.g., all the content of some tanks of fluids had to be used, or that some mate-
rials were only available in limited amounts. The client’s customers typically re-
quiredL tons of blended liquid and specified some bounds for viscosity (η−,η+),
boiling point (TB

− ,T
B
+ ), and alcohol concentration(CA

−,C
A
+). We were further pro-

vided with the specific costsKi [£/ton] to be paid for the components or materials
i ∈ J := {1,2, ...,n}, and the physical and chemical properties of these materials.



146 How Optimization is Used in Practice: Case Studies in LinearProgramming

5.2.1 Formulating the Direct Problem

In terms of good practice it is often helpful to have the concept of direct andinverse
problems in mind. If the values of all our decision variablesare at hand then we
could derive all dependent information. The direct problemperforms exactly this
task: deriving all required information for a specified set of values of the decisions
variables. People usingsimulationtake the direct problem approach. Optimization
problems are inverse problems. Optimization algorithms compute the values of the
decision variables such that one of the derived pieces of information of the direct
problem, the objective function, becomes optimal while allconstraints are obeyed.
In this sense, each optimization problem contains a direct problem. The optimization
model is easily formulated provided we can identify the direct problem..

So let us ask: what is the direct problem in our customer’s blending problem?
Assuming we knew the design of the blending could we derive all required infor-
mation from it, or alternatively, what would be required to derive this information?
How could we characterize the blending? One way to do this is to use the relative
mass proportions [kg/kg],xi ≥ 0, of the components in the blended fluid. Then
components have to observe the mass conservation

n

∑
i=1

xi = 1. (5.2.1)

A chemist would be more likely to characterize a fluid blend interms of molecular
weight fractions,wi , i.e., mol/mol. The customer, a chemist himself, fortunately told
us that these quantitiesxi andwi are coupled by the relations

wi =
xi

µ i

/(
n

∑
k=1

xk

µk

)
, ∀i, (5.2.2)

whereµ i denotes molecular weight. The sum of thewi ’s is normalized as

n

∑
i=1

wi = 1. (5.2.3)

So, thexi ≥ 0 andwi ≥ 0 are our decisions variables, at least for the moment. Once
we have characterized our blend, can we derive all relevant information? The answer
is: only if we are able to compute the properties of the blend based on the proper-
ties of the components. Obviously, we need some physics and chemistry telling us
how we could derive relevant blending properties. We ask thechemist for ideas or
remember what we learned in high school. So, the next step of the modeling is to
formulate relations which enable us to compute the properties of the mixture from
the properties of the separate components. Viscosity blending follows the exponen-
tial relation

η =
n

∏
i=1

ηwi
i , (5.2.4)



5.2 An Apparently Nonlinear Blending Problem 147

while alcohol blending is linear in mass fractions,i.e., the alcohol contentCA is

CA =
n

∑
i=1

CA
i xi . (5.2.5)

The boiling pointTB of the blend is more difficult to compute because it can only
be derived from the implicit condition

P(TB) = 1, (5.2.6)

which states that the vapor pressureP is equal to 1 atm at the boiling temperature
TB. At a given temperatureT the vapor pressureP(T) is a linear combination of the
partial vapor pressures:

P(T) =
n

∑
i=1

Pi(T)wi , (5.2.7)

where the partial vapor pressuresPi(T) can be computed by the Antoine equation

Pi(T) = eAi+Bi/(Ci+T), (5.2.8)

where the constantsAi ,Bi andCi are material parameters.
For formulating some logistic constraints on tank content or availability we also

need to know the absolute amount of components in the blend, which can easily be
computed from

Xi = Lxi , ∀i, (5.2.9)

whereL is the amount [tons] of blended liquid required. Finally, the objective func-
tion to be minimized is

min Z =
n

∑
i=1

(KiL)xi , (5.2.10)

whereKi [£/ton] are the specific costs to be paid for the components.

5.2.2 Formulating the Inverse Problem

Having formulated the direct problem we are able to formulate the inverse or opti-
mization problem easily:

min Z =
n

∑
i=1

(KiL)xi (5.2.11)

subject to

n

∑
i=1

xi = 1 ,
n

∑
i=1

wi = 1, (5.2.12)



148 How Optimization is Used in Practice: Case Studies in LinearProgramming

and the bounds

η− ≤ η ≤ η+

CA
− ≤ CA ≤ CA

+

TB
− ≤ TB ≤ TB

+

, (5.2.13)

i.e., we have bounds on the viscosity, alcohol concentration andboiling point of the
blend. The system of constraints derived so far is completedby (5.2.1), and possibly
the additional inequalities

xi ≥ XMIN , i ∈ J1 (5.2.14)

xi ≤ XMAX , i ∈ J2 (5.2.15)

or fixed bounds for some of the components

xi = XFIX
i , i ∈ J3 (5.2.16)

representing the logistic requirements for appropriate subsetsJ1,J2 andJ3 of
J .

5.2.3 Analyzing and Reformulating the Model

As a consequence of (5.2.4) and (5.2.7) which enter into (5.2.13), the problem ap-
peared as a nonlinear, constrained optimization problem. However, a closer inspec-
tion shows that it can be transformed to a linear programmingproblem.

The objective function is linear in the mass fraction variables. The alcohol con-
centration is also linear in the variablesxi . Combining (5.2.5) and (5.2.13) yields

CA
− ≤

n

∑
i=1

CA
i xi ≤CA

+. (5.2.17)

Now we have to find some linear relation involving the viscosity. Remember that
the logarithm is a (strictly) monotonically increasing function, i.e.,

x1 < x2 ⇔ ln(x1)< ln(x2) (5.2.18)

For our purposes it is sufficient to consider monotonically increasing functionsf (x),
i.e., functions which have the property

x1 ≤ x2 ⇔ f (x1)≤ f (x2). (5.2.19)

The logarithm function has the property (5.2.19), so the viscosity condition and ex-
pression (5.2.4) can be transformed into a linear expression by taking the logarithm
of both sides of (5.2.4) and (5.2.13) yielding



5.2 An Apparently Nonlinear Blending Problem 149

ln(η−)≤
n

∑
i=1

ln(η i)wi ≤ ln(η+). (5.2.20)

Eventually, we found a linear relation, namely (5.2.20) involving the viscosity, and
now we see why monotony is important. Our model will only guarantee that its
solution satisfies (5.2.20). Exploiting (5.2.18) enables us to conclude safely from
(5.2.20) thatη− ≤ η ≤ η+. The boiling temperature of the mixture is bounded
by the temperature limitsTB

− andTB
+ . Again, monotonicity can help us. Exploiting

some physics, the boundsTB
− and TB

+ on boiling temperatureTB imply that the
vapor pressure at temperatureTB

− is smaller than 1 bar,P(TB
− ) < 1, and atTB

+ it is
larger than 1 bar,P(TB

+ )> 1. To model the> or < condition, we introduce a small
parameterε > 0, sayε ≈ 10−6. Then we get

P(TB
− )≤ 1− ε < 1< 1+ ε ≤ P(TB

+ ) (5.2.21)

or, exploiting (5.2.7)

n

∑
i=1

Pi(T
B
− )wi ≤ 1− ε ,

n

∑
i=1

Pi(T
B
+ )wi ≥ 1+ ε. (5.2.22)

The only remaining minor task is to eliminate thewi and to formulate the model
only in terms of thexi . Let ◦ denote one of the relations{≤,≥,=}. A constraint of
the form

n

∑
i=1

Fiwi ◦F∗ (5.2.23)

can, by use of (5.2.2), be transformed to the equivalent form

n

∑
i=1

Fi −F∗

µ i
xi ◦0. (5.2.24)

Now the model is a linear programming problem in thexi appearing as

min Z =
n

∑
i=1

(KiT)xi (5.2.25)

subject to

xi ≥ 0 , ∀i (5.2.26)

n

∑
i=1

xi = 1 (5.2.27)

n

∑
i=1

ln(η i)− ln(η−)
µ i

xi ≥ 0 ,
n

∑
i=1

ln(η i)− ln(η+)

µ i
xi ≤ 0 (5.2.28)



150 How Optimization is Used in Practice: Case Studies in LinearProgramming

n

∑
i=1

Pi(TB
+ )− (1+ ε)

µ i
xi ≥ 0 ,

n

∑
i=1

Pi(TB
− )− (1− ε)

µ i
xi ≤ 0 (5.2.29)

CA
− ≤

n

∑
i=1

CA
i xi ≤CA

+. (5.2.30)

The system of constraints is completed by the logistic constraints

Mxi ≥ XMIN , i ∈ J1 (5.2.31)

Mxi ≤ XMAX , i ∈ J2

or fixed bounds for some of the components

Mxi = XFIX
i , i ∈ J3. (5.2.32)

Modeling can be improved by transforming the constraints (5.2.31)-(5.2.32) to
bounds (which are treated more effectively in the Simplex algorithm). The bounds
would be the inequality bounds (lower and upper bounds):

xi ≥ XMIN/L , i ∈ J1 (5.2.33)

xi ≤ XMAX/L , i ∈ J2, (5.2.34)

or the fixed bounds (for some of the components):

xi = XFIX
i /L , i ∈ J3. (5.2.35)

Note, that from matrix algebra we can derive the maximum number of blends we
can expect to have in the blend. If|Ji | gives the number of products contained in
the index setJi then the number,nP, of products in the blend is bounded by

nP ≤ m= 7+ |J1|+ |J2|+ |J3| , (5.2.36)

wherem is the total number of constraints in the problem. The reasonis that we
cannot have more basic (which implies non-zero) variables than constraints; see
also Exercise 5 in Chapter 3. It is useful to know this becauseit enables us to tell
the client in advance that all optimal solutions involve at mostnP of products in the
blend.

5.3 Data Envelopment Analysis (DEA)

In this section a modeling approach to performance measurement will be introduced.
The technique is calledData Envelopment Analysis(DEA) and has become popular
for use in a variety of contexts. DEA provides a complete approach to performance
appraisal and, in contrast to material in other sections in this chapter, is not simply



5.3 Data Envelopment Analysis (DEA) 151

a problem to be modeled using LP. The technique of DEA involves the use of LP to
solve a set of inter-related problems to determine the relative efficiency of a group
of decision making units(DMU) such as hospitals, universities, bank branches, re-
tail outlets as in the example treated in Section 5.3.1, production plants of a larger
company, libraries, local government offices or projects toinvest in. The technique
is based on ideas dating back to Farrell (1957,[183]) which were later developed
into an LP approach by Charneset al. (1978,[121]). The special feature of DEA
is to measure performance in a way that tries to avoid subjectivity creeping into
the evaluation of relative efficiency. The analysis will measure output(s) (e.g., turn
over or quality levels) achieved from the input(s) – this canbe costs, manpower re-
quired, raw materials and utilities used, etc. – provided and will compare the group
of DMU by their strength in turning input into output. At the end of the analysis the
DEA technique will be able to say which units are (relatively) efficient and which
are (relatively) inefficient.

In DEA first decision makers need to determine which input(s)need to be used in
the decision making and assessment process. For example a firm deciding between
two projects to invest in might choose overall cost as the most important input;
usually only one input is used. Following this, decision makers need to determine
which factors have a large impact on the input (cost in this case). Then a set of
outputs is chosen, perhaps 5 - 10 of these,e.g., number of customers served, sales
value and so on. The outputs are chosen which have principal effect on cost, if that
were the chosen input, when it is transformed in the running of the business.

Once the set of inputs has been agreed, the analysis is no longer subjective. A
mathematical model is used to determine sets of weights (weighting factors) to be
attached to the input(s) and outputs of each DMU, which couldbe a department,
section or an outlet, to let it appear as efficient as possible. Thus each DMU has its
own set of weights calculated for it to allow it to look its best relative to all other
DMU. Clearly mathematical derivation of optimal efficiencyavoids bias and estab-
lishes that DMU could not make themselves any more efficient by some other choice
of weights (as these would not be optimal). Another feature of the modeling is that
it does not matter in what units inputs are measured (provided there is consistency
across all DMU) because DEA looks at trade-offs.

5.3.1 Example Illustrating DEA

An electrical retailer has outlets in Paris, London and Bonnand identifies the major
economic input at each branch to be the cost of running the branch for three major
outputs with sales of type A, B or C goods. Table 5.1 gives the values of these
inputs and outputs in consistent units. Clearly it is difficult to say which branch is
most efficient overall. Thus we shall construct a model for each outlet to determine
its efficiency on a scale of zero to one, where “one” means completely efficient,
relative to all other branches. First we consider the Paris model and formulate it as
an LP problem.



152 How Optimization is Used in Practice: Case Studies in LinearProgramming

ParisLondonBonn Amsterdamaverage
Cost 110 150 200 180 153
Sales ’A’ 50 50 100 67 67
Sales ’B’ 50 100 90 80 80
Sales ’C’ 50 40 60 50 50

Table 5.1 Inputs (costs) and outputs (sales of type A, B or C goods) used in theDEA of an
electrical retailer’s outlets Paris, London and Bonn used in this section. As discussed in Section
5.3.3, the table also contains the additional outlet Amsterdamand the average of the original three
outlets.

Let p1, p2, p3 ≥ 0 represent weights to be attached to the three Paris sales values.
These will be the variables whose value we wish to determine.

We will regard the overall output from Paris as

50p1+50p2+50p3. (5.3.1)

We now construct the Paris model (with weight variables denoted byp) as:

max
output of Paris
input of Paris

= max
50p1+50p2+50p3

110
(5.3.2)

maximizing the efficiency of the Paris outlet subject to the efficiency inequalities

( 50p1+ 50p2+ 50p3)/110 ≤ 1
( 50p1+100p2+ 40p3)/150≤ 1
(100p1+90p2+ 60p3)/200 ≤ 1

(5.3.3)

p1 ≥ ε > 0, p2 ≥ ε > 0, p3 ≥ ε > 0, (5.3.4)

whereε is some small positive number avoiding that the variables just takes the
value zero. Note that the efficiency inequalities require usto measure output (nom-
inator) and input (denominator) in the same units. This can be achieved by dimen-
sionless weights or by allowing the weights to make the unitsof nominator and
denominator compatible.

The origin of the objective function and constraints is as follows. The objective
function is to maximize weighted output divided by input (the efficiency). Thus, the
model is trying to find three weights that will show Paris off to best advantage as
far as output per input is concerned. The idea behind this is to make the model non-
subjective so that efficiency is chosen mathematically and the highest possible value
for efficiency for Paris is selected. The Paris managers are essentially choosing, via
the model, weight values forp1, p2 and p3 so that they appear in the best light
(and London and Bonn managers are able to do the same for theirset of weights).
This is in line with the premise “if you cannot look efficient under your own chosen
weights, then you are not efficient.” This avoids “wriggling” by managers who are
now unable to say that the reason one outlet appears to be inefficient is because
undue attention is being paid to some aspect. The solution tothe LP problem is



5.3 Data Envelopment Analysis (DEA) 153

the maximum efficiency available. However, to avoid nonsensical results we have
constraints on the choice of weights for Paris, as follows. We apply these weights
to the outputs achieved at London and Bonn on their data and then ensure that their
efficiency is not permitted to be larger than 1. In short: the efficiency for the best
site is at most 1. Thus we have two constraints which construct the weighted output
per input for London and Bonn, but using the weights from Paris, and constrain
these quantities to be less than or equal to 1. By solving thismodel we obtain an
objective function value (the efficiency) and three weights. The constraints of form
p≥ ε ensure that each output plays some part in the process.

Next we construct two more models beginning with the London model. Letl1,
l2, l3 ≥ 0 be weights to be attached to the three London sales values. The model is:

max
50l1+100l2+40l3

150
(5.3.5)

subject to
(50l1+50l2+50l3)/110≤ 1

(50l1+100l2+40l3)/150≤ 1
(100l1+90l2+60l3)/200≤ 1

(5.3.6)

and

l1 ≥ ε > 0, l2 ≥ ε > 0, l3 ≥ ε > 0. (5.3.7)

Finally, we have the Bonn model with weightsb1,b2,b3 ≥ 0 to be attached to the
three Bonn sales values. The model is:

max
100b1+90b2+60b3

200
(5.3.8)

subject to
(50b1+50b2+50b3)/110 ≤ 1
(50b1+100b2+40b3)/150≤ 1
(100b1+90b2+60b3)/200≤ 1

(5.3.9)

and

b1 ≥ ε > 0, b2 ≥ ε > 0, b3 ≥ ε > 0. (5.3.10)

Thus we solve three independent but similarly structured LPproblems to obtain
efficiency values for each outlet and three weights that permit the efficiency values
to be achieved.

5.3.2 Efficiency

It turns out that all three outlets have a relative efficiencyof 1. It is recommended
that the reader tries to establish this (see Exercise 5.2). This is perhaps unhelpful



154 How Optimization is Used in Practice: Case Studies in LinearProgramming

information but occurs because our example involved only a few outlets. Typically
we might expect to have 5-10 outputs and 40-50 decision making units (outlets in
the case of our example). If we have too many outputs we find that a large proportion
of the decision making units turns out to be efficient (i.e., have relative efficiency of
1).

In fact it is usually appropriate in business terms to avoid having too many out-
puts for the following reason. Each output will represent a major dimension of the
activity of the decision making unit. Research from the fieldof psychology has
established that people find it difficult to handle more than about 5-6 concepts si-
multaneously. Thus to expect a manager to consider results with many dimensions
involved may be unreasonable - it may destroy any intuitive “feel” for the problem.
Thus, DEA will often deal with aggregate quantities as outputs and these should not
be regarded as a gross simplification of reality but rather a nod towards practicality.
The mathematical model could handle hundreds of outputs butthe decision maker
might be overwhelmed.

5.3.3 Inefficiency

If the calculated efficiency of a decision making unit turns out to be less than 1
(output< input), then that unit is inefficient. The analysis will indicate that some
linear combination of efficient units could undertake the same total activity as this
unit (in terms of outputs) and do so for a smaller value of the input.

As an example, say there was another outlet at Amsterdam which had costs of
180 and sales of A, B, C of 67, 80, 50, respectively; see Table 5.1. This example has
been contrived so that if we take the mean of Cost, Sales ’A’, Sales ’B’, and Sales
’C’ across the London and Bonn branches we get 460/3, 200/3, 240/3, and 150/3
respectively or 153, 67, 80, and 50. Hence we can see that thiscomposite branch
outperforms the Amsterdam branch by achieving the same output for an input of
153,i.e., 85% of the input of the Amsterdam branch.

When the analysis yields the above information the efficient units which com-
prise the composite branch are termed thepeer groupfor Amsterdam. This infor-
mation is helpful in convincing managers of the sense of the analysis. One more
feature should be noted. DEA will only highlight information that could have been
acquired in other ways. We do not need to use LP to show that Paris, London and
Bonn are better than Amsterdam once we know to look at them. However, the DEA
approach pinpoints where to look and then common sense can beused to convince
clients of the hard truths (under-performing at inefficientoutlets) of our analysis. Al-
ternatively, if the analysis is discredited in any way (e.g., disagreement over choice
of outputs used) we have encouraged the start of a debate. These last few remarks
are typical of much OR work - we use clever ideas to establish basic truths and then
subsequently we can sometimes get to the heart of the problemwithout the clutter
of technology.



5.3 Data Envelopment Analysis (DEA) 155

5.3.4 More than one Input

It may be desirable to include more than one input in the analysis. The inputs will be
weighted in an analogous way to the outputs. Thus if we had a second input which
had values of 50, 60, and 70 for the three cities Paris, London, Bonn, respectively,
all the divisors of 110, 150, 200 in the model would be replaced by, say

110w1 + 50w2

150w1 + 60w2

200w1 + 70w2

. (5.3.11)

The Paris model would become

max
50p1+50p2+50p3

110w1+50w2
(5.3.12)

subject to
1

110w1+50w2
( 50p1+ 50p2+ 50p3) ≤ 1

1
150w1+60w2

( 50p1+100p2+ 40p3) ≤ 1
1

200w1+70w2
(100p1+90p2+ 60p3) ≤ 1.

(5.3.13)

After some cross-multiplication these constraints can be turned into conventional LP
form. More than two inputs would require further weights andeach of the above ex-
pressions would be extended. It is unlikely that we would require more than a small
set of inputs (much fewer than the number of outputs) becauseof the conceptual
problems referred to earlier.

5.3.5 Small Weights

In any analysis a unit may appear to be efficient if it is allowed (by the model) to
give high weight to some outputs and low or nominal weight to others. This may
be felt to lead to misleading results and over-reporting of efficiency when major
dimensions of activity appear to be almost totally ignored.For example it might be
unreasonable for a high street store to claim to be 100% efficient by virtue of having
a good staff canteen, which was one input, and ignoring all other inputs including
those concerned with sales.

One way to build more realism into the analysis will be to insist on more appro-
priate values for the constantε which was included in the model. In the relations
(5.3.7)ε is a lower bound. A realistic lower bound in an analysis mightbe 50%
of the mean value of an output or input. Thus we are saying thatwe can regard a
weight as measuring (loosely speaking) marginal cost or marginal revenue in eco-
nomic terms. It is therefore reasonable to force this value not to be unrealistically
small. It is probably preferable when efficient units take ona “rounded profile”,i.e.,
receiving some apparent contribution to their efficiency from most of their outputs.



156 How Optimization is Used in Practice: Case Studies in LinearProgramming

Placing lower bounds on weights will assist this. Note that for technical reasons if
we put lower bounds on weights then only one input can be used in the DEA model.
Further discussion of the technicalities of DEA is contained in Thanassouliset al.
(1987,[556]) and Dyson & Thanassoulis (1988,[174]); see also the implemented
example MCOL/GAMSLIB/dea.gmsbased on a tutorial by the same authors.

5.3.6 Applications of DEA

DEA has been used in measuring efficiency of bank and buildingsociety branches;
cf. Ferrier & Lovell (1990, [185]), public houses; Athanassopoulos & Thanassoulis
(1995,[41]), school bus services;cf. Sextonet al. (1994, [511]), public sector de-
partments;cf. Smith & Mayston (1987, [527]), university departments; Jessonet al.
(1987, [300]), and electricity distribution; Miliotis (1992, [409]). The technique is
appropriate when an organization conducts similar activities at a variety of outlets,
and thus financial services is an obvious candidate.

In the studies cited there is not always an obvious “saving” indicated by the DEA
study. The benefits are likely to be longer term when a policy of rationalization or
quality improvement is initiated as a result of deficiencieshighlighted by the DEA
study. The study by Sextonet al. (1994,[511]) did, however, indicate savings in
US$millions. The technique is applicable in both large scale and relatively smaller
scale enterprises.

5.3.7 A General Model for DEA

The usual DEA model withn decision making units,s outputs andm inputs has
indices

i ∈ {1,2, ...,m} : the set of inputs
j ∈ {1,2, ...,n} : the set of decision making units
r ∈ {1,2, ...,s} : the set of outputs,

(5.3.14)

data
Ni j : the amount of inputi to unit j
Pr j : the amount of outputr from unit j,

(5.3.15)

real variables
ur j ≥ 0 : the weight of outputr for unit j
vi j ≥ 0 : the weight of inputi for unit j,

(5.3.16)

and so the model is stated as: maximize efficiency of unitk, i.e.,

max

(
s

∑
r=1

Prkurk

)/(
m

∑
i=1

Nikvik

)
(5.3.17)



5.4 Vector Minimization and Goal Programming 157

subject to the efficiency of all units being no more than 1,i.e.,
(

s

∑
r=1

Pr j urk

)/(
m

∑
i=1

Ni j vi j

)
≤ 1 , j = 1,2, ...,n (5.3.18)

and
ur j ,vi j ≥ ε , ∀{ri j }. (5.3.19)

Herek is the decision making unit under discussion andε is a small constant.
This formulation has ratios in both the objective function and main constraints,

which put it beyond LP. However, using the Charnes-Cooper transformation, this
can easily be remedied as follows.

First we define a constraint

m

∑
i=1

Nikvik = 1 (5.3.20)

to restrict the denominator of the objective (5.3.17) to be equal to one.
Then the objective can be simply rewritten as

max
s

∑
r=1

Prkurk, (5.3.21)

i.e., we are maximizing the numerator of the old objective function subject to the
denominator being equal to one. We can think of the transformation as simply ad-
justing (scaling) the units in which the objective functionis measured. In the main
constraints (5.3.18) of the original formulation we can cross-multiply, bringing the
denominator over to the right hand side and giving

s

∑
r=1

Pr j urk ≤
m

∑
i=1

Ni j vi j , j = 1,2, ...,n. (5.3.22)

This operation is legitimate as the expression

m

∑
i=1

Ni j vi j , j = 1,2, ...,n (5.3.23)

is non-zero.
A useful discussion on demystifying DEA is contained in Belton & Vickers

(1993,[65]).

5.4 Vector Minimization and Goal Programming

One perceived limitation of LP and MILP is that models can only have a single
objective function. We might feel this is unrealistic and itcould be hard to articulate
one objective. A chemical company might want to maximize theproduction output



158 How Optimization is Used in Practice: Case Studies in LinearProgramming

rate and simultaneously minimize the size of the chemical reactor to be built and
maximize some parameters related to safety. The quality of the solution may be
judged according to three criteria. This example shows thatwe may be interested
in more than just maximizing profit; instead we may wish to optimize on profit,
contribution, labor turnover, return on capital, return onstock, return per employee
and so on. Clearly some of these objectives may be contradictory, e.g., maximize
profits versus minimize operating costs, or minimize risk versus maximize return
on investment.

Optimization problems with more than one quantity to be maximized or min-
imized are calledmulti-criteria optimizationor vector optimizationproblems. In
Section 5.4.1 we explain and illustrate methods for solvingthem before considering
an example in Section 5.4.2.

5.4.1 Solution Approaches for Multi-Criteria Optimization
Problems

One approach to solving multi-criteria problems,i.e., vector minimization problems,
is to express all objectives in terms of a common measure of goodness,e.g., money,
but that is very often not possible. Consider again the reactor example above: it
is not obvious how the objective related to the safety parameter could be converted
into money. The problem really is how to compare different objectives on a common
scale. When minimizing several objective functions simultaneously the concept of
Pareto optimal solutionsturns out to be useful. In a multi-criteria optimization prob-
lem a solution is said to bePareto optimalif there exists no other solution that is at
least as good according to every objective, and is strictly better according to at least
one objective.

A special solution approach to multiple objective problemsis to require that all
the objectives should come close to some targets,e.g., the output rate should come
as close as possible to 50 tons per hour and the reactor shouldfit in an area of 50m
by 50m. The targets we set for a number of objectives are called goals. Our overall
objective can then be regarded as to minimize the deviation overall of our goals from
their target levels. The solutions derived are Pareto optimal.

Goal programming can be considered as an extension of linearprogramming in
which targets are specified for a set of constraints. There are two basic approaches
for goal programming: thepreemptive (lexicographic)approach and theArchime-
dianapproach.

In preemptive goal programming goals are ordered accordingto importance and
priorities. The goals at a certain priority level are considered to be infinitely2 more
important than the goals in the next lower level. Our reactorexample above might
have the ranking: reactor size, safety issues, and eventually production output-rate.

2 It would also be possible to define weights which express how much the ith objective is more
important than the(i +1)th objective.



5.4 Vector Minimization and Goal Programming 159

Preemptive goal programming is recommended if there is a ranking between incom-
mensurate objectives available.

In the Archimedian approach weights or penalties are applied for not achieving
targets. The following example illustrates this. Let

2x+3y (5.4.1)

represent profit, and

y+8z (5.4.2)

represent return on capital in a simple LP model where there are a number of con-
straints involving the variablesx, y, andz and other variables. In addition, letP be
the desired level of profit andC the desired level of return on capital.P andC might
be obtained from last year’s figures plus some percentage to give targets for this
year.

We now adjoin four non-negative variablesd1,d2,d3,d4 ≥ 0 as well as two new
goal attainment constraints to our model

2x +3y +d1−d2 = P goal 1
y +8z +d3−d4 = C goal 2.

(5.4.3)

The objective function is to minimize deviation from target

min d1+d2+d3+d4. (5.4.4)

Any objective function attempted previously in the formulation would have to be
expressed as a goal constraint. The problem is now an ordinary LP problem. (IP
problems may be modified similarly.) Note the use of twod’s in each constraint
(with opposite signs) and the presence of alld’s in the objective function (with
the same sign). Note also how thed’s perform a role to represent a free variable,
namely the deviation from target. The technique for two goals can be extended to
handle three or more goals.

One feature of goal programming is that every goal is treatedas being equally
important, and consequently an excess of 100 units in one goal would be compen-
sated by a shortfall of 100 in another, or would be equivalentto excesses of 10 units
in each of 10 goals. Neither of these sets of circumstances might be desirable, so
two strategies may be introduced:

(a) place upper limits on the values ofd variables,e.g.,

d1 ≤ 10 , d2 ≤ 10 , d3 ≤ 5 , d4 ≤ 5, (5.4.5)

which will keep deviation from a goal within reasonable bounds;
(b) in the objective function coefficients other than 1 may beused to indicate the

relative importance of goals. For example the objective

d1+d2+10d3+10d4 (5.4.6)



160 How Optimization is Used in Practice: Case Studies in LinearProgramming

may be considered appropriate if one can reason that a unit deviation in return is ten
times as important as a unit deviation in “profit”.

Goal programming offers an alternative approach but shouldnot be seen as with-
out defects. The specific goal levels selected greatly determine the answer. There-
fore, care is needed when selecting the targets. It is also important in which units
the targets are measured. Therefore, some modelers still prefer to work with one ob-
jective function and then re-run the model with variations in the objective function
coefficients.

Detailed treatment of goal programming appears in such books as Ignizio (1976,[292])
and Romero (1991,[483]) who introduce many variations on the basic idea.

A technique similar to goal programming may also be used to model soft con-
straints. Soft constraints are constraints which may be broken provided a penalty is
paid. The way to do this is to let each constraint include a surplus variable which
will also appear in the objective. For example, letx andy denote amounts to be pro-
duced of two quantities where the overall amount produced islimited to 100. Thus
we have the constraint

x+y≤ 100. (5.4.7)

If it is also possible to raise the limit of 100 to 110 provideda cost of $20.00 is paid
for each unit used above the limit then this may be modeled as

x+y−s≤ 100 (5.4.8)

s≤ 10 (5.4.9)

ands will appear in the objective function (which is minimize total cost) as

...+20s. (5.4.10)

LP solvers may have special goal programming features. Goals can be constructed
from either constraints or objective functions. If constraints are used, the goals are
to minimize the violation of the constraints. These are met when the constraints
are satisfied. In the preemptive case as many goals as possible are met in priority
order. (It should be remembered that someone has to subjectively set weights to
achieve this.) In the Archimedian case a weighted sum of penalties is minimized.
If the goals are constructed from an objective function, then in the preemptive case
a target for each objective function is calculated from the optimal value of that ob-
jective function (by percentage or absolute deviation). Inthe Archimedian case a
multi-objective optimization problem is obtained, in which a weighted sum of the
objective functions is minimized; here all goals are measured in the same unit.



5.4 Vector Minimization and Goal Programming 161

5.4.2 A Case Study Involving Soft Constraints

A paper by Mitraet al. (1995,[419]) describes the use of a goal programming to
model soft constraints to provide schedules for the coastguard operations of cutters.
A simplified version of the problem appears below.

A number,NC, of cutters have to be scheduled using a series ofNS possible
schedules over a set of time periods,NT , to satisfy a set, say,NR, of schedule re-
quirements. It is unlikely that all requirements could be satisfied, so what is wanted
are schedules which satisfy requirements as best as they can. Thus scheduling con-
straints can be treated as soft constraints. It is desired tokeep the schedules as close
as possible to the requirements.

The problem may be formulated as follows, beginning with theindices

i ∈ {1,2, ...,NR} : schedule requirements that must be satisfied
k ∈ {1,2, ...,NC} : cutters
l ∈ {1,2, ...,NS} : possible schedules for cutterk
t ∈ {1,2, ...,NT} : time periods.

The data of the problem are given by

Aitkl : = 1 if possible cutter schedulel for cutterk contributes
to schedule requirementi in periodt, 0 otherwise

Git : gain for each unit of over-achievement of schedulei in
periodt

Pit : penalty for each unit of under-achievement of schedulei
in periodt

Rit : schedule requirement for schedulei in periodt.

We will need continuous variables

oit ≥ 0 : measure of the amount of over-achievement of
schedule requirementi in time periodt

uit ≥ 0 : measure of the amount of under-achievement of schedule
requirementi in time periodt.

(5.4.11)

and binary variables,δ kl ∈ {0,1},

δ kl :=

{
1 , if cutterk is used in schedulel
0 , if otherwise

, ∀{kl}. (5.4.12)

The formulation is then

min
NR

∑
i=1

NT

∑
t=1

(Pit uit +Git oit ) (5.4.13)

subject to



162 How Optimization is Used in Practice: Case Studies in LinearProgramming

NC

∑
k=1

NS
k

∑
l=1

Aitkl δ kl +uit −oit = Rit , ∀{it}, (5.4.14)

NS
k

∑
l=1

δ kl = 1 , k∈ {1,2, ...,NC}. (5.4.15)

The principal constraint (5.4.14) requires that the contribution made to each sched-
ule should be as close to the requirements as possible, and asit may not be possible
to match these requirements exactly, relaxing variables are included to model the
over- or under-achievement of the requirement. These variables then appear in the
objective function multiplied by appropriate weights which will give priority to the
achievement of certain requirements by weighting such requirements more heavily
than others. When the objective function is minimized such measures of over- or
under-achievement will be driven to zero where possible anda trade-off will take
place among those achievements which cannot be met exactly.The final constraint
(5.4.15) models the fact that each cutter must be assigned tosome schedule. In some
of the constraintsRit will represent a generous limit, while in others it will represent
a tight limit.

When the model is solved schedules are provided. The mathematical formulation
is not able to mimic all the rules that the schedulers will require. Once schedules are
obtained they can then be further analyzed outside of the mathematical program-
ming software system and some diagnostics used to partiallymodify schedules.
This last statement is not meant to be read as an opt-out, but rather to reflect the
fact that modeling all schedule requirements would lead to alarge MILP problem
which would be very difficult to solve; using the given model provides preliminary
schedules of good quality which formerly had not been available to the schedulers
who had been using various heuristic rules. Thus the mathematical programming
model is providing a support system from which decisions maybe negotiated.

5.4.3 A Case Study exploiting a Hierarchy of Goals

Let us illustrate how lexicographic goal programming worksby considering the
following example with two variablesx andy s.t.the inequality 42x+13y≤ 100 as
well as the trivial boundsx≥ 0 andy≥ 0. We are given three goals

name criterion type A/P∆
goal 1 (OBJ1) – profit : 5x+2y−20 max P 10
goal 2 (OBJ2 – waste):−3x+15y−48 min A 4
goal 3 (OBJ2 – bonus): 1.5x+21y−3.8 max P 20

.

The multi-criteria LP or MILP problem is converted to a sequence of LP or MILP
problems. The basic idea is to work down the list of goals according to the priority



5.4 Vector Minimization and Goal Programming 163

list given. Thus we start by maximizing the LP w.r.t. the firstgoal. Usinggoalprog
from MCOL, gives us the objective function valuez∗1 =−4.615385. Using this value
z∗1 enables us to convert goal 1 into the target constraint

5x+2y−20≥ Z1 = z∗1−
10
100

|z∗1| . (5.4.16)

Note how we have constructed the targetZ1 for this goal (P indicates that we work
percentage wise). In the example we have three goals with theoptimization sense
{max,min,max}. Two times we apply a percentage wise relaxation, one time abso-
lute. Inserting the valuez∗1 =−4.615385 we get the target constraint

z∗1 =−4.615385 ⇒ 5x+2y−20≥−4.615385−0.1· |−4.615385| . (5.4.17)

Now we minimize w.r.t. goal 2 adding (5.4.17) as an additional inequality. We obtain
z∗2 and a the next target constraint

z∗2 = 51.133603 ⇒ −3x+15y−48≤ 51.133603+4. (5.4.18)

Similar as the first goal, we have converted the second goal into a constraint (5.4.18)
(here we allow an absolute deviation of 4) and maximize according to goal 3. Fi-
nally, we getz∗3 = 141.943995 and the solutionx= 0.238062 andy= 6.923186. To
be complete, we could also convert the third goal into a target constraint giving

1.5x+21y−3.8≥ 141.943995−0.2·141.943995= 113.555196.

The summary of the computations and results ordered in rows are

x y z1 Z1 z2 Z2 z3 Z3

0.000000 7.692308 -4.615385 -5.076923
0.315789 6.672065 -5.076923 -5.076923 51.133603 55.133603
0.238062 6.923186 -4.963321 -5.076923 55.133603 55.133603 141.943995 113.555196

.

Note that lexicographic goal programming based on objective functions provides a
useful techniques to tackle multi-criteria optimization problems. However, we have
to keep in mind that the sequence of the goals,i.e., the hierarchy of goals, influ-
ences the solution strongly. Therefore, the absolute or percentage deviations have
to be chosen with care. The whole story of multi-criteria optimization is about the
challenge of trade-offs between goals measured in possiblyincompatible units, or
units which are difficult to compare. In the example, it was just about costs and
waste (lower costs imply more waste, less waste implies higher costs). In extreme
cases, it could be a trade-offs between costs and lives as in the current COVID-19
situation; people do not like putting a cost on a life. This case has two conflicting
goals which cannot be transformed to a common unit.

In addition to the lexicographic goal programming variant based on a hierarchy
of objective functions, we could also use lexicographic ordered constraints, in which
the overall goal is to minimize the violation of constraints. In the ideals case all con-
straints are fulfilled. Otherwise, we try to fulfill the constraints ordered by priorities



164 How Optimization is Used in Practice: Case Studies in LinearProgramming

as good as possible. Unfortunately, this also leads to some sorts of weights. We thus
summarize that the absolute or percentage-wise deviationsused in lexicographic
goal programming based on objectives are much easier to interpret.

Finally, we mention that some MILP solvers,e.g., CPLEX or GUROBI, intrinsi-
cally support hierarchical solution approaches of multi-criteria optimization prob-
lems. For some implementations see MCOL/GAMSLIB/epscm.gmsand epscm-
mip.gms.

5.5 Limitations of Linear Programming

As with other types of mathematical techniques used to solvereal-world problems
we have to accept that linear programming has limitations. Some of these limita-
tions might have come into the reader’s mind while studying the case studies in this
chapter. Below we discuss these limitations and provide ideas on what we can do
about them.

5.5.1 Single Objective

The LP problem can only handle a single objective which may beunsatisfactory. It
may also be difficult for users to agree on a single objective for the purposes of the
model developer. One way round this is to use the technique ofgoal programming
as in Section 5.4, but even that approach is not without restrictions. It may have to
be accepted that the single objective is a compromise and that the results coming
from the constraints will be the most useful information. Thus early results from
a model with a compromise objective may be regarded as preliminary only. Within
mathematical programming software systems the facility exists to rerun the problem
using a series of different objective functions, either with small variations changing
individual coefficients, or with more major differences between objectives. Results
can then be compared, discussed and argued over. This may then help users agree
on a single objective function for the future.

5.5.2 Assumption of Linearity

In the constraints and objective function of an LP (and lateralso MILP) problem the
assumption has to be made that all modeling can be made linear. Exceptions are the
use of SOS2 and the modeling of logical expressions (which are discrete but can be
made linear). The assumption of linearity may be thought of as unnaturally restric-
tive. However, we have to keep in mind that many real-world problems are indeed
linear, or are at least linear in great parts. The case studies discussed in Section 5.2



5.5 Limitations of Linear Programming 165

show that certain problems can even be transformed into linear problems. In addi-
tion, several possibilities exist to get round this difficulty. Firstly SOS2 are helpful in
modeling certain nonlinearities. Secondly, an LP or MILP model may be thought of
as an approximation to a more realistic nonlinear model and may still provide useful
results. As with arguments about multiple objectives, users can still benefit from a
broad-brush approach to their problem and the linear model will be the subject of
debate. Nonlinear models may be much more difficult or even impossible to solve
and the users have to accept a compromise. This argument may be hard to accept,
but the modeler can appeal to practical considerations using the knowledge that LP
and MILP technology is very advanced and may be useful in solving approximate
versions of more complex problems than could ever be solved using a nonlinear ap-
proach. The LP or MILP software will allow the user to solve many models rapidly
and thereby build up a set of scenarios approximating the nonlinear model. Such an
approach is feasible and may be very useful.

Nevertheless, if a problem is really nonlinear then there exist methods [see Sec-
tion 12.6] to tackle them. However, these methods require a strong mathematical
background on the modeler’s side.

5.5.3 Satisfaction of Constraints

This section holds for general optimization problems, not only LP or MILP. Op-
timization models are built on the assumption that all constraints must be strictly
satisfied at optimality.3 This means that, in a sense, all constraints are treated as
being of equal importance. This may not be a totally realistic assumption as some
constraints may represent restrictions,e.g., satisfying due dates, that a client might
like to be satisfied, but if the model is being applied to several scenarios it might be
unrealistic to expect every constraint to be satisfiable in every scenario. In a manner
analogous to what is done in the model of the satisfiability problem [see Chapter 7],
it may be necessary to introduce extraviolation variablesinto certain constraints to
represent exceptional shortfalls or surpluses. These willact similarly to slack vari-
ables, but a “cost” will be associated with such variables - the cost of not satisfying
a constraint. Such constraints were referred to in Section 5.4 assoft constraints,
while constraints which must not be broken were referred to as hard constraints. A
collection of cases to be considered as scenarios based on different combinations of
soft constraints will doubtless prove useful in convincinga client.

Ranging over right-hand side values may also provide a way ofallowing con-
straints to be weakened as required. The model may be solved initially with larger
than necessary right-hand side values and then smaller thannecessary right-hand
side values in constraints. Right-hand sides can be progressively tightened in subse-
quent runs of the model to test if the optimal solution remains feasible. This process
will be particularly useful where an existing set of constraints is being expected to

3 Of course, there are certain constraints, whichmustbe fulfilled strictly. Constraints representing
mass balances or other physical laws are examples of such constraints.



166 How Optimization is Used in Practice: Case Studies in LinearProgramming

be satisfied in a new situation,e.g., a model from an old factory being applied to a
new one. In such cases it might not be expected that all constraints could be satisfied,
but the client wants to try to keep the model as similar to the old one as possible.

5.5.4 Structured Situations

Mathematical optimization models are assumed to be only applicable in highly
structured situations. It would seem hard to design a model that would be useful
for the organization of games involving prizes at a children’s party! As many in-
dustrial or commercial environments are unstructured or volatile, mathematical pro-
gramming would seem to be inappropriate. However, this viewwould be extreme.
Structure can often be imposed on unstructured situations and even if this is slightly
artificial it will usually lead to a better understanding of the unstructured situation.
It may also be possible to isolate parts of an unstructured system which are highly
structured. By modeling these advantageously, the remaining efforts can be devoted
to the unstructured parts.

5.5.5 Consistent and Available Data

Mathematical optimization models rely on data of consistent quality being readily
available. This will not always be so. Indeed, collecting data is one of the most
critical problems involved in solving large scale optimization problems. It may be
glib to assume that we can obtain information on the costs of each of 20 stages of
a production process. People we ask for information may not even be able to agree
on a definition of cost let alone quantify aspects of it. Thus what we do will be a
compromise. This may lead to a lack of user confidence in the model.

What we must do is to devise the best procedures we can for data collection
and see that procedures are adhered to if the model is going tobe used repeatedly on
data which may change over time. New data must be collected under the same terms
as the old, until a major overhaul of the model is undertaken.We must then make
it clear to users of the model that results were obtained under certain assumptions
and stress that results should still be helpful in providingdecision support provided
appropriate caution is maintained.

It is possible for model users to vary data by making use ofsensitivity, post-
optimalityandranginganalyses which may go a considerable way to getting round
data deficiencies; see also the comments onrobust solutionsin Section 17.2.6; pp.
522. Finally, a technical approach for detecting data inconsistencies is provided in
Section 14.1.2.3.



5.7 Exercises 167

5.6 Summary

At the end of this chapter the reader should be able to:

• appreciate the formulation of more complex LP problems;
• formulate certain more awkward LP problems such as blending problems;
• perform efficiency modeling using DEA;
• handle goal programming and problems requiring “soft” constraints;
• be aware of ways of avoiding apparent nonlinearities in problems so that they

may be formulated as LP models;
• be aware of some of the limitations of linear programming and mathematical

optimization in general.

5.7 Exercises

1. Lim is a company which manufactures two end-products, P1 and P2, for sale,
using two scarce resources, R1 and R2, and two intermediate products, I1 and I2,
which are only used in the manufacturing of the end-products. Lim is about to
plan its manufacture for the next 4 months and wants to make asmuch profit as
possible. It knows its manufacturing technology well, and has produced a table
showing the requirements per unit for the end-products:

End-ProductR1 R2 I1 I2
P1 8 10 4 2
P2 6 12 3 3

so, for example, making 1 unit of end-product 1 requires 8 units of resource 1, 10
units of resource 2, 4 units of intermediate product 1 and 2 units of intermediate
product 2. Lim has to make the intermediate products using the same scarce
resources. Here is the requirements table.

IntermediateR1 R2
I1 1.0 0.7
I2 0.6 1.2

.

Both intermediate and end-products can be stored from monthto month. To store
1 unit of an end-product for one month costs£3, while to store a unit of interme-
diate product costs£1. The selling prices (in£) of the end-products vary month
by month:

ProductMonth 1Month 2Month 3Month 4
P1 100 105 107 90
P2 90 100 110 115

.



168 How Optimization is Used in Practice: Case Studies in LinearProgramming

No more than 30 units of any end-product can be sold in any month. The manu-
facturing costs /unit of end-products and intermediate products are (in£):

End-ProductMonth 1Month 2Month 3Month 4
P1 40 42 55 35
P2 38 35 44 40

and
IntermediateMonth 1Month 2Month 3Month 4

I1 6 6.2 5.3 4.8
I2 5.1 5.2 5.0 5.1

.

The availabilities of scarce resources vary widely from month to month:

ResourceMonth 1Month 2Month 3Month 4
R1 200 300 100 200
R2 250 400 50 240

.

Stocks currently stand at
P1P2 I1 I2

Level 40 38 60 50

and must be the same at the end of the 4th month.

a) Formulate Lim’s problem, identifying clearly the variables you use and the
constraints that you construct.
b) Construct a computer model of the problem that could be extended to deal
with more end-products, intermediates and time periods.
c) Solve the problem and report upon your results.

2. Solve the three separate DEA problems (for Paris, London and Bonn) given in
Section 5.3.



Chapter 6
Modeling Structures Using Mixed Integer
Programming

In this chapter we shall look at ways in which problems may be formulated using a
series of devices mainly involving integer variables for counting indivisible entities
(people, living animals, air planes, etc.), and particularly binary variables. Among
other things, binary variables can be used to model

1. states,
2. logical conditions and logical expressions, and
3. special nonlinear terms and expressions.

In particular, we shall concentrate on the use of binary variables to model simple
nonlinear features. Such features can be handled because binary variables allow us
to model logical conditions. These approaches will then be illustrated by examples
and later many of the approaches will appear in a series of short case studies.

6.1 Using Binary Variables to Model Logical Conditions

It is often convenient to express parts of a model using symbols from mathematical
logic as a way of describing conditions within the model which must subsequently
be converted into constraints in the model. The symbols are the connectives: dis-
junctionor (∨), conjunctionand (∧), not or negation(¬), implication(or if ) (=⇒),
andequivalence(⇐⇒). Many logical expressions,Li , can be built from linking to-
gether statements using logical connectives,e.g.,

L1∨L2 ⇒ L3. (6.1.1)

To demonstrate the need for such concepts, consider the example of a two-stage
chemical production plant producing pre-products and sales products. The produc-

169



170 Modeling Structures Using Mixed Integer Programming

tion follows the rule: if any of the sales productsS1, S2 andS3 is produced, then at
least one of the pre-productsP1 or P2 must be produced. We could now introduce the
logical variables1 LS

1, LS
2, LS

3, LP
1andLP

2 representing the decision that the product
considered is produced. Then, our production rule is expressed as

(LS
1∨LS

2∨LS
3) =⇒ (LP

1 ∨LP
2). (6.1.2)

When dealing with logical expressions, it is helpful to use rules to transform logical
terms into equivalent ones.2 For instance, there are De Morgan’s laws:

¬(L1∨L2)⇔¬L1∧¬L2 , ¬(L1∧L2)⇔¬L1∨¬L2. (6.1.3)

Further useful relations are the distributive laws

L1∨ (L2∧L3) ⇔ (L1∨L2)∧ (L1∨L3) (6.1.4)

L1∧ (L2∨L3) ⇔ (L1∧L2)∨ (L1∧L3) (6.1.5)

and
(L1∨L2) =⇒ L3 ⇔ (L1 =⇒ L3)∧ (L2 =⇒ L3). (6.1.6)

6.1.1 General Integer Variables and Logical Conditions

If a machine is always set to exactly one of six modes numbered1-6 then it might
be expected that we could model this by introducing an integer variableα such that
0≤ α ≤ 5, and ifα = i it is taken to mean that modei+1 is selected. However, this
rarely turns out to be practical because we usually also wantto model some event
like “if mode 3 or 5 is selected then .....”. The implication must then take the form

α = 2=⇒ . . . , α 6= 2=⇒ . . . , α = 4=⇒ . . . , α 6= 4=⇒ . . . (6.1.7)

This turns out to be difficult, although not totally impossible, to model and requires
the introduction of binary variables. Instead of a general integer variable it is better
to introduce only a set of binary variables to model the machine modes as follows.
Let us introduce the variables

δ i =

{
1 , if the machine modei is selected
0 , otherwise

, i = 1,2, ...,6 (6.1.8)

and the constraint, to ensure that the machine is in exactly one mode,

6

∑
i=1

δ i = 1. (6.1.9)

1 Note that logical variables can only take the valuestrueandfalse, or T and F, for short.
2 We use the symbol⇔ to mean “is equivalent to”.



6.1 Using Binary Variables to Model Logical Conditions 171

The implications can more easily be derived from

δ 3 = 1=⇒ . . . , δ 3 = 0=⇒ . . . (6.1.10)

δ 5 = 1=⇒ . . . , δ 5 = 0=⇒ . . . (6.1.11)

For instance, as we will see later, if we want to have the condition

δ 3 = 1=⇒ “extra raw materials are required” (6.1.12)

then this is easy to model. Thus, general integer variables are rarely used to represent
logical relations, but rather they are used to represent actual quantities,e.g., num-
ber of supervisors on a shift. When the constraint (6.1.9) is introduced, the current
setting of the state can be modeled by the variableα where

α =
6

∑
i=1

(i −1)δ i (6.1.13)

andα is an integer variable with upper bound 5.

6.1.2 Transforming Logical into Arithmetical Expressions

In what follows, let us assume that any or all ofn products can be produced. Let us
further introduce logical variablesLp taking the valuetrue if we decide to produce
productp (positive decision), andf alseif we decide not to produce productp (neg-
ative decision). Production of individual products may or may not be interrelated.
In addition, we will use binary variablesδ 1,δ 2, . . . ,δ n such that

δ p :=

{
1 , if positive decision concerningp is taken,i.e.,Lp = true
0 , if negative decision concerningp is taken,i.e., Lp = f alse.

(6.1.14)

Logical expressions or variables can have the two valuestrue and false,and these
correspond naturally to the values 1 and 0 that the binary variables can take. How-
ever, binary variables allow us to do arithmetic which is often an advantage. When
we use a collection of binary variables, information concerning the collection can
be handled easily in constraints by adding variables,e.g.,

δ 1+δ 2+δ 3+δ 4 (6.1.15)

will represent a quantity which can take a value between 0 and4 and will represent
the total number of positive decisions,i.e., the number of products being produced
from the four that are possible.

In what follows we will give a translation between several logical and arithmetic
expressions. If we introduce the binary variableδ to represent a logical decision (or
variable)L, then the opposite of that decision¬L, is given by



172 Modeling Structures Using Mixed Integer Programming

δ ′ = 1−δ . (6.1.16)

We can see this in the table
δ 1−δ
1 0
0 1

. (6.1.17)

Sometimes we might want to apply thefalseoperator to a logical variableL. Such
requirements can be expressed as

δ = 0. (6.1.18)

6.1.3 Logical Expressions with Two Arguments

Let us now concentrate on logical expressions involving twological variablesL1

andL2 which can assume the valuestrue and false. Then we have the following
transformations between logical operators and constraints

Logical operator Constraint
or L1∨L2 δ 1+δ 2 ≥ 1
and L1∧L2 δ 1+δ 2 = 2
not ¬(L1∧L2) δ 1+δ 2 ≤ 1
not ¬(L1∨L2) δ 1 = 0,δ 2 = 0
implication L1 =⇒ L2 δ 1 ≤ δ 2

equivalence L1 ⇐⇒ L2 δ 1 = δ 2.

(6.1.19)

We can check that a constraint logically performs the task required of it by consid-
ering all the possible values that theδ variables may take and the effect of these on
the constraint. This is called constructing atruth table, an example of which for one
constraint is shown below.

L1 L2 L1∨L2 δ 1 δ 2 δ 1+δ 2 ≥ 1
T F T 1 0 satisfied
T T T 1 1 satisfied
F T T 0 1 satisfied
F F F 0 0 violated.

(6.1.20)

The truth table enables us to establish that the logic is correctly modeled just as we
saw in (6.1.17).

In the constraint representing the disjunction ofL1 and L2, L1 ∨ L2, meaning
“L1 = T or L2 = T”, at least one of the twoδ variables will be forced to take
the value 1 and hence the inequalityδ 1 + δ 2 ≥ 1 implies that at least one logical
variable takes the valuetrue. Note that both variables could take the value 1, in
which case bothL1 andL2 aretrue. It was not explicit in the original requirements
on the decisions that only one positive decision could be taken at a time. Thus, the



6.1 Using Binary Variables to Model Logical Conditions 173

possibility has been included that both decisions could be taken simultaneously. If
we had wanted to modelexclusive oror exactly one ofin the above then the equality
constraint

δ 1+δ 2 = 1 (6.1.21)

would have been used.
This aspect of modeling logical conditions is a gentle reminder as to how im-

portant it is to obtain precise information from a client forwhom a model is being
produced. The wordor may meanat least one ofor may meanexactly one of. The
differences between the logical conditions here may seem marginal when a model is
being built initially, but may turn out to have major impact when a proposed solution
is being evaluated – and it even affect feasibility.

The conjunction ofL1 andL2, L1∧L2 (meaning “L1 = T and L2 = T”) leads to

δ 1 = 1 (6.1.22)

and
δ 2 = 1 (6.1.23)

or, in short,
δ 1+δ 2 = 2. (6.1.24)

This may seem a somewhat pointless condition to include as itwill clearly forceδ 1

andδ 2 to take the values 1, and it might have been better to exclude them from being
variables in the first place. However, it is included for the sake of completeness.

As can be seen from the development of∧ and∨, the sum of several binary
variables gives us a quantity which tells us how many positive decisions have been
taken. Subsets of{1,2, ...,n} can be selected so that particular groups of decisions
are constrained. For example,

δ 3+δ 6 (6.1.25)

provides an expression relating to two particular decisions.
The reverse conditions to∨ and∧, ¬(L1∨L2) and¬(L1∧L2) can be modeled

after applying De Morgan’s laws (6.1.3). As¬(L1∧L2) =¬L1∨¬L2, then using the
expression foror given in (6.1.19) we have

1−δ 1+1−δ 2 ≥ 1, (6.1.26)

which can be rearranged as
δ 1+δ 2 ≤ 1. (6.1.27)

¬(L1∨L2) = ¬L1∧¬L2 is handled in a corresponding way.
Using the relations now developed, we can build up complicated examples from

easier ones. It is usually best to introduce a variable to represent¬L, if such is
required,e.g., δ ′. Later the substitutionδ ′ = 1− δ can be made in the constraints.



174 Modeling Structures Using Mixed Integer Programming

For example, the statement that “if decision 1 is positive then decision 2 is negative”,
i.e., L1 =⇒¬L2, can be modeled as

δ 1 ≤ δ ′
2, (6.1.28)

whereδ ′
2 corresponds to¬L2. Then (6.1.28) can be rearranged as

δ 1 ≤ 1−δ 2 or δ 1+δ 2 ≤ 1. (6.1.29)

Notice that this expression is the same as that used for modeling ¬(L1 ∧L2) which
is an equivalent expression for¬L1∨¬L2. That these should be equivalent logically
can be seen as follows:δ 1 = 1 requiresδ 2 = 0. However, ifδ 2 = 1 then it follows
from the constraint (6.1.28) thatδ 1 will be zero, suggesting that we are also model-
ing that “if decision 2 is taken then decision 1 cannot be taken”. This is quite logical,
because if decision 2 were taken then we must bar decision 1 from also being taken;
otherwise, a contradiction results, namely that decision 2could not be taken. We
could also check this by examining the appropriate truth table.

6.1.4 Logical Expressions with More than Two Arguments

The basic method used to transform logical expressions withmore than two argu-
ments into arithmetic ones is to apply the transformations such as (6.1.4) in order to
connect logical expressions by∧. Each term connected by∧ then corresponds to a
constraint.

The statementL1 ∧ (L2∨L3) is represented by the constraints

δ 1 = 1 , δ 2+δ 3 ≥ 1. (6.1.30)

To model the statementL1 ∨ (L2∧ L3), we first apply (6.1.4) and get(L1∨ L2)∧
(L1∨L3). That leads us immediately to

δ 1+δ 2 ≥ 1 , δ 1+δ 3 ≥ 1. (6.1.31)

From these inequalities we could derive (by addition of inequalities) the inequality

2δ 1+δ 2+δ 3 ≥ 2, (6.1.32)

which also provides an exact model for the original logical expressionL1 ∨ (L2∧
L3). This shows us that in general there is no unique mapping. However, note that
(6.1.31) is “tighter” than (6.1.32),i.e., all integer solutions to (6.1.32) are valid in
(6.1.31) and vice versa, but there may be fractional solutions to (6.1.31) that are not
valid for (6.1.32). To see this consider the LP relaxation ofboth the cases (6.1.31)
and (6.1.32). While(δ 1,δ 2,δ 3) = (0.8,0.3,0.1) fulfills (6.1.32) it violates the sec-
ond inequality of (6.1.31). So we see that (6.1.31) cuts off more fractional combi-
nations.



6.1 Using Binary Variables to Model Logical Conditions 175

We are now in a position to formulate the logical expression (6.1.2) in the two-
stage chemical production example. At first we apply (6.1.6)getting

(LS
1 =⇒ L)∧ (LS

2 =⇒ L)∧ (LS
3 =⇒ L), (6.1.33)

where we replaceLP
1 ∨ LP

2 by L whereL =⇒ LP
1 ∨ LP

2 . Let us associate a binary
variableδ with L. Then, from Table (6.1.19), we derive the constraints

δ ≤ δ P
1 +δ P

2 (6.1.34)

and
δ S

1 ≤ δ , δ S
2 ≤ δ , δ S

3 ≤ δ . (6.1.35)

To conclude this section we list some useful relations involving three variables:

Relations Constraint(s)
L1 =⇒ (L2∧L3) δ 1 ≤ δ 2 , δ 1 ≤ δ 3

L1 =⇒ (L2∨L3) δ 1 ≤ δ 2+δ 3

(L1∧L2) =⇒ L3 δ 1+δ 2 ≤ 1+δ 3

(L1∨L2) =⇒ L3 δ 1 ≤ δ 3 , δ 2 ≤ δ 3

L1∧ (L2∨L3) δ 1 = 1 , δ 2+δ 3 ≥ 1
L1∨ (L2∧L3) δ 1+δ 2 ≥ 1 , δ 1+δ 3 ≥ 1.

(6.1.36)

For convenience we also list some more general logical expressions involvingn
variables but still leading to one constraint. Let us introduce the convenient notation

n∨

i=1

Li := L1∨L2∨ ...∨Ln ,
n∧

i=1

Li := L1∧L2∧ ...∧Ln. (6.1.37)

Some useful results which the reader might confirm in exercises are

disjunction
∨n

i=1Li : ∑n
i=1 δ i ≥ 1

conjunction
∧n

i=1Li : ∑n
i=1 δ i = n

implication
∧k

i=1Li =⇒
∨n

i=k+1Li : ∑n
i=k+1 δ i −∑k

i=1 δ i ≥ 1−k
at leastk out ofn : ∑n

i=1 δ i ≥ k
exactlyk out ofn : ∑n

i=1 δ i = k
at mostk out ofn : ∑n

i=1 δ i ≤ k.

(6.1.38)

Finally we generalize some relations containing the equivalence operator⇐⇒ and
n+1 variables. To model the statementLn+1 ⇐⇒ ∨n

i=1Li we use the constraints

n

∑
i=1

δ i ≥ δ n+1 , δ n+1 ≥ δ k , k= 1, . . . ,n. (6.1.39)

The statementLn+1 ⇐⇒ ∧n
i=1Li is modeled by the constraints

−
n

∑
i=1

δ i +δ n+1 ≥ 1−n , δ n+1 ≤ δ k , k= 1, . . . ,n. (6.1.40)



176 Modeling Structures Using Mixed Integer Programming

Notice that when we model logic we organize what has to be modeled into the form

A and B and C . . . , (6.1.41)

because we will model such an expression by a series of ILP constraintsall of which
must be satisfied. Thus our model transforms to

constraint′A′ and constraint′B′ and constraint′C′ ..... (6.1.42)

6.2 Logical Restrictions on Constraints

In order to handle logical restrictions placed on expressions which are themselves
constraints it is helpful and necessary to find out which values the left-hand side
of these constraints can take. Therefore, we first calculatethe largest and smallest
values the left hand side of a constraint can take [see for instance Brearleyet al.
(1975,[103]) or McKinnon and Williams (1989,[401]) for further discussion]. Con-
sider the following example:

Suppose we wish to place restrictions on the expression

A1x1+A2x2+ ...+Anxn◦B, (6.2.1)

which should be rewritten as

A1x1+A2x2+ ...+Anxn−B◦0, (6.2.2)

where◦ represents one of =,≤, or≥ , and the variablesx1,x2, . . . ,xn are continuous
or integer, but each variable has a lower limit (is bounded below) and has an up-
per limit (is bounded above); in mathematical programming one usually calls these
limits bounds. Let L1,L2, . . . ,Ln represent the lower bounds of each variable (which
will usually be zero but need not be, and must be finite) andU1,U2, . . . ,Un represent
the upper bounds on each variable (which must be finite). Thenthe largest (smallest)
value,U(L), the expression (6.2.1) can take is

U =
n

∑
i=1

AiUi −B , L =
n

∑
i=1

AiLi −B, (6.2.3)

unless anyAi is negative in which case the correspondingUi should be replaced by
Li .

Now we can derive several logical restrictions on these constraints.



6.2 Logical Restrictions on Constraints 177

6.2.1 Bound Implications on Single Variables

The statements “if decision 1 is taken then variablex must be larger than some
positive constantC” and “if decision 1 is not taken then variablex is zero” are
modeled as

x≥Cδ 1 , x≤Uδ 1. (6.2.4)

In the first statement we are assuming thatC > L, otherwise the lower bound has
no effect. Let us illustrate the upper bound implication considering the following
example:

Example: If production ofXyreneis started in a shift, there is a set-up cost of
£1,000 irrespective of how muchXyreneis produced. The maximum quantity of
Xyrenethat can be produced in a shift is 500 tons. The (variable) cost of production
of each tonne ofXyreneis £100. To model production costC we introduce a decision
variableδ such that

δ =

{
1 , if production Xyrene is started in a shift
0 , otherwise,

(6.2.5)

and a variablex to represent the amount ofXyreneproduced, which may be zero.
Then we require

x≤ 500δ , C= 100x+1000δ .

6.2.2 Bound Implications on Constraints

The statements “if decision 1 is taken then∑n
i=1Aixi ≤ B must hold” is modeled as

n

∑
i=1

Aixi −B≤U(1−δ 1). (6.2.6)

Similarly, the statement “if decision 1 is taken then∑n
i=1Aixi ≥ B must hold” is

modeled as

n

∑
i=1

Aixi −B≥ L(1−δ 1). (6.2.7)

By contrast, the statement “if decision 1 is taken then∑n
i=1Aixi = B must hold” is

modeled by simultaneously requiring the constraints

n

∑
i=1

Aixi −B≤U(1−δ 1) ,
n

∑
i=1

Aixi −B≥ L(1−δ 1).

Note that ifδ 1 = 1 we have



178 Modeling Structures Using Mixed Integer Programming

n

∑
i=1

Aixi −B≤ 0 ,
n

∑
i=1

Aixi −B≥ 0, (6.2.8)

which is equivalent to∑n
i=1Aixi = B as required.δ 1 = 0 leads to

n

∑
i=1

Aixi −B≤U ,
n

∑
i=1

Aixi −B≥ L, (6.2.9)

which, according to the definition ofL andU as upper and lower bounds, is always
fulfilled. Following this argumentation and inspecting (6.2.6) and (6.2.7), we un-
derstand now, why in the beginning it was important to derivethe lower and upper
bounds.

Example: A petroleum company is investigating a new region for likely drilling
sites. The region is divided into six plots, each of which is equally likely to contain
oil. Seismological information will provide the company with one of the following
indications in the next month: the region is a good prospect,the region is a medium
prospect, or the region is a poor prospect.

If the indication is that the region is a poor prospect, the company will take up
drilling options on at least one and at most two of the plots; if the indication is that
the region is a medium prospect, the company will take up drilling options on at
least two and at most four of the plots, while if the indication is that the region is
a good prospect, the company will take up drilling options onat least three and at
most five of the plots.

The problem may be modeled as follows. Letδ 1,δ 2 and δ 3 decide on poor,
medium and good prospect,i.e.,

δ 1(2,3) =

{
1 , if the region is a poor (medium, good) prospect
0 , otherwise,

(6.2.10)

and fori = 1,2, ...,6

α i =

{
1 , if the option is taken up on ploti
0 , otherwise.

(6.2.11)

The constraints are then

δ 1+δ 2+δ 3 = 1 (6.2.12)

saying that exactly one indication will be given. Let us now model that at least one
drilling option is taken up if prospects are poor:

6

∑
i=1

α i ≥ δ 1. (6.2.13)

We see that if the indication is poor thenδ 1 = 1, and at least one option is taken up;
otherwise, the constraint is not binding as the minimum number of options taken up
could be zero. The upper bound (at most two out of six) is modeled as



6.2 Logical Restrictions on Constraints 179

6

∑
i=1

α i −2≤ 4(1−δ 1), (6.2.14)

which can be rewritten as

6

∑
i=1

α i ≤ 6−4δ 1. (6.2.15)

If δ 1 = 1 then the number of options taken up is at most two; otherwise, the con-
straint is not binding as the maximum number of options takenup could be six.

Modeling the other prospects proceeds similarly:

6

∑
i=1

α i ≥ 2δ 2. (6.2.16)

If the indication is medium thenδ 2 = 1, and at least two options are taken up;
otherwise, the constraint is not binding as the minimum number of options taken up
could be zero.

6

∑
i=1

α i ≤ 6−2δ 2. (6.2.17)

If δ 2 = 1 then the number of options taken up is at most four; otherwise, the con-
straint is not binding as the maximum number of options takenup could be six.

6

∑
i=1

α i ≥ 3δ 3. (6.2.18)

If the indication is good thenδ 3 = 1, and at least three options are taken up; oth-
erwise, the constraint is not binding as the minimum number of options taken up
could be zero.

6

∑
i=1

α i ≤ 6−δ 3. (6.2.19)

If δ 3 = 1, then the number of options taken up is at most five; otherwise, the con-
straint is not binding as the maximum number of options takenup could be six.

6.2.3 Disjunctive Sets of Implications

The logical condition “if decision 3 is not taken then decisions 1 and 2 cannot be
taken”, could be modeled as

δ 1+δ 2 ≤ 2δ 3. (6.2.20)

However, it turns out that it is better to model the relationship as



180 Modeling Structures Using Mixed Integer Programming

δ 1 ≤ δ 3 , δ 2 ≤ δ 3. (6.2.21)

The second formulation is such that more fractional values of the variables are ex-
cluded. This type of formulation is known as asharp formulationwhich is more
fully discussed in Jeroslow & Lowe (1984,[298] & 1985, [299]). Some indication
of the strength of (6.2.21) compared to (6.2.20) can be seen from the fact that no
integer solution in the variablesδ 1,δ 2 is permitted by a non-integer solution forδ 3

in (6.2.21), butδ 3 = 0.5 allowsδ 1 = 1,δ 2 = 0 in (6.2.20). The idea for developing
such formulations is to avoid the LP relaxation of an ILP formulation taking cer-
tain easily avoidable values for variables. Another more sophisticated example is
the following.

If exactly one of a set ofm constraints must hold, then this can be modeled by
extending (6.2.6) above. Let the constraints be

n

∑
j=1

Ai j x j ≤ Bi , i = 1,2, ...,m. (6.2.22)

Then the requirement that exactly one must hold can be modeled by introducing the
{0,1} variablesδ 1,δ 2, ...,δ m and the constraints

δ 1+δ 2+ ...+δ m = 1 (6.2.23)

n

∑
j=1

Ai j x j −Bi ≤Ui(1−δ i) , i = 1,2, ...,m, (6.2.24)

whereUi is an upper bound on

n

∑
j=1

Ai j x j −Bi . (6.2.25)

There is an alternative way to formulate the above. The alternative formulation was
developed by Jeroslow & Lowe (1984,[298]) and performs better on large problems
because the LP relaxation of the constraints gives the convex hull of ILP solutions.
As the formulation results in a larger model in terms of numbers of constraints
and variables, the overhead associated with this when the model is solved implies
that this formulation is not efficient for small problems. The alternative formulation
requires the introduction of additional variablesxi j ≥ 0 such that

x j =
m

∑
i=1

xi j , j = 1,2, ...,n. (6.2.26)

Assuming
Ai j ≥ 0, i = 1,2, ...,m, j = 1,2, ...,n, (6.2.27)

the formulation then has the constraints



6.3 Modeling Non-Zero Variables 181

n

∑
j=1

Ai j xi j −Biδ i ≤ 0 , i = 1,2, ...,m (6.2.28)

m

∑
i=1

δ i = 1, (6.2.29)

where, as before,δ 1,δ 2, . . . ,δ m are binary variables.
The constraint (6.2.29) requires that exactly oneδ variable takes the value 1,δ r

say. Since we assumed thatAi j ≥ 0 this then forces to zero allxi j variables except
xr j ( j = 1,2, ...,n). Let us inspect (6.2.28) in more detail:

n

∑
j=1

Ai j xi j = 0 , ∀i 6= r (6.2.30)

leading toxi j = 0 for all i 6= r, and

n

∑
j=1

Ar j xr j ≤ Br (6.2.31)

ensuring that exactly one constraint of (6.2.22) holds, butwith modifiedx variables.
Note that due toxi j = 0 for all i 6= r, (6.2.26) takes the simple form

x j = xr j , j = 1,2, ...,n, (6.2.32)

which enables us to replacexr j in (6.2.31).
The topic briefly touched in this section finds it natural extension in disjunc-

tive programming, a technique and discipline initiated by Egon Balas (2018,[46]) in
the early 1970s, which has become a central tool for solving non-convex optimiza-
tion problems like pure or mixed integer programs, through convexification (cutting
plane) procedures combined with enumeration. It has playeda major role in the
revolution in the state of the art of integer programming that took place roughly dur-
ing the period 1990-2010. Grossmann &Trespalacios (2013,[251]) describe system-
atic modeling of discrete-continuous optimization (both,MILP or MINLP) models
through generalized disjunctive programming.

6.3 Modeling Non-Zero Variables

Let us consider the case in which we have a countable quantityσ which can take all
integral values between 0 and 10 but for some reason not the value 4. Such a quantity
σ could be represented if we first introduce a (continuous or integral) variable,ς ,
not restricted in sign with the bounds

−Z1 ≤ ς ≤ Z2 , ς 6= 0 , 0< Z1 = 4 , 0< Z2 = 6 (6.3.1)



182 Modeling Structures Using Mixed Integer Programming

and then include the constraint
σ −4= ς . (6.3.2)

We can represent such non-zero variables in both continuousand integral cases by
using a small non-negative parameterε and two binary variablesδ 1,δ 2 ∈ {0,1}.
Then we apply the ideas of Section 6.2.3 for the casem= 2, n= 1 to the disjunctive
set of inequalities

ς ≤−ε ∨ ς ≥ ε (6.3.3)

or, if we want to use only≤ inequalities to apply (6.2.24)

ς ≤−ε ∨ −ς ≤−ε. (6.3.4)

If we apply (6.2.24) to this pair of inequalities we get the two inequalities

ς +∆ ≤U1(1−δ 1) , −ς +∆ ≤U2(1−δ 2) (6.3.5)

with upper boundsU1 = Z2+∆ andU2 = Z1+∆ . This leads to the constraints

ς +(Z2+∆)δ 1 ≤ Z2 , ς − (Z1+∆)δ 2 ≥−Z1 , δ 1+δ 2 = 1 (6.3.6)

or the equivalent form,

ς +∆δ 1 ≤ δ 2Z2 , ς −∆δ 2 ≥−δ 1Z1 , δ 1+δ 2 = 1. (6.3.7)

If we inspect either (6.3.6) or (6.3.7) we see that the following implications hold:

δ 1 = 1 =⇒ δ 2 = 0 , −Z1 ≤ ς ≤−∆ (6.3.8)

and
δ 1 = 2 =⇒ δ 1 = 0 , ∆ ≤ ς ≤ Z2, (6.3.9)

which is exactly what we expected for our non-zero variableς . (6.3.6) or (6.3.7)
are algebraically equivalent so they might lead to different performance in the B&B
algorithm. Therefore, in applications one should try both formulations.

To give a practical example of how non-zero variables may enter a model, con-
sider the situation in which a variable representing a temperature occurs. Let the
temperatures be measured in degrees Celsius. The physical constraints in the model
might be such that some device cannot operate if the temperature is close to or
around the freezing point of water. In that case, we might represent the temperature
as a non-zero variable and choose∆ = 1◦C.

6.4 Modeling Sets of All-Different Elements

A simple example of modeling theall-different relationis given by a group of sales-
men, where each of them has to visit a different city. (We do not assume that every



6.5 Modeling Absolute Value Terms⊖ 183

city has to be visited by a salesman; there may be more cities than salesmen. This
problem can be modeled by the conventional approach using binary variablesδ i j

expressing whether salesmani travels to cityj and then adding the constraints

∑
i

δ i j ≤ 1 , ∀ j, (6.4.1)

which expresses that no city can be visited by more than one salesman, and

∑
j

δ i j = 1 , ∀i, (6.4.2)

which ensures that each salesman visits exactly one city.
This case was easy because we could introduce a binary variable which imple-

mented theall-different relationby the inequality (6.4.1).
A more complicated situation arises when we are facing a problem in which a set

of continuous variablesxi ≥ 0 is given together with the requirement that for each
pair of indicesi 6= j we have to fulfilxi 6= x j . However, with the concept of non-zero
variables introduced in Section 6.3, we can represent theall-different relationby
introducing non-zero variablesς i j , the constraints

ς i j = xi −x j , ∀i, j | i 6= j (6.4.3)

and the constraints (6.3.6) or (6.3.7). Let us consider the following example to il-
lustrate the use of modeling sets with all-different elements. A company wants to
produce some electronic devices. These devices have, besides others, three variables
representing frequenciesf1, f2 and f3, which need to be chosen in order to describe
the functionality of the devices. For reasons physicists and electricians are well able
to explain, low order resonances, say up to order 4, have to beavoided for the fre-
quencies. That gives us the following relations between thecontinuous variables
fi :

fi 6= n f j , ∀i, j | i 6= j , n= 1,2,3,4. (6.4.4)

In order to describe this situation we would introduce the following non-zero vari-
ablesς i j :

ς i j = fi −n f j , ∀i, j | i 6= j , n= 1,2,3,4. (6.4.5)

6.5 Modeling Absolute Value Terms⊖

Sometimes in our model there appear expressions of the form|x1−x2|. For instance,
if on a machine the output rate of a certain product is calledx1 in the first time
interval andx2 in the second, then|x1−x2| represents the change of output rates
between the time periods disregarding whether it is an increase or decrease of output
rates,i.e.,



184 Modeling Structures Using Mixed Integer Programming

|x1−x2|=
{

x1−x2 , if x1 ≥ x2

x2−x1 , if x1 < x2
. (6.5.1)

While x1 andx2 are non-negative variables, the differencex1−x2 could be positive
or negative, but|x1−x2| is non-negative. We can interpret|x1−x2| as a nonlinear
function, or alternatively, due to the presence of the if-statement, as a logical expres-
sion. Let us approach it here from a mathematical point of view. Let

l(x) = l1x1+ . . .+ lkxk (6.5.2)

be any linear expression which appears as|l(x)| in our model. In that case we in-
troduce two non-negative variablesa+ ≥ 0 anda− ≥ 0. Then we can replace each
instance of|l(x)| with

|l(x)|= a++a− (6.5.3)

and each instance ofl(x) with a+−a− provided that the constraint

l(x) = a+−a− (6.5.4)

is appended. The expressions (6.5.3) will represent the absolute value|l(x)| with the
additional constraint, namely if at most one of the variables a+ anda− is non-zero,
i.e.,

a+a− = 0. (6.5.5)

If we are explicitly interested in the absolute value term|l(x)| we could introduce
an additional non-negative variable, saya≥ 0, and the constraint

a= a++a−. (6.5.6)

The appearance ofa+−a− may remind us of the use of free variables introduced
in Chapter 2. In one of the exercises at the end of Chapter 3 thereader has seen
that at most one of the variablesa+ anda− could take a positive value. However, in
the present situation this is not the case. Since the expression a++a− also occurs
the columns associated witha+ and a− are linearly independent,i.e. both could
become basic variables. The nonlinear condition (6.5.5) can either be modeled by
special ordered sets of type 1 [see Section 6.8], or explicitly by introducing a binary
variableδ , and the following constraints

a+ ≤ Aδ
a− ≤ A(1−δ ), (6.5.7)

whereA is an upper bound for|l(x)|. Note thatδ = 0 leads toa+ = 0 while δ = 1
leads toa− = 0. So, in either case at least one ofa+ anda− is zero as required.

There remains the question of how to choose the upper bound constantA. In
terms of efficient MILP modeling we should try to choose boundA as small as
possible [cf. Section 9.1.1.2] as that results in a tighter formulation. On the other
hand boundA must not become too small as then we would not correctly modelthe
absolute value term. A first, general, observation is the chain of inequalities



6.6 Nonlinear Terms and Equivalent MILP Formulations 185

a+ ≤ |l(x)| ≤ |l1| ·maxx1+ . . .+ |lk| ·maxxk

a− ≤ |l(x)| ≤ |l1| ·maxx1+ . . .+ |lk| ·maxxk,
(6.5.8)

which makes use of the fact thatx j are non-negative variables. A better upper bound
can be derived if we distinguish the variables inl(x)with positive and negative co-
efficients. LetL1 andL2 be the index sets of variables with positive and negative
coefficientsl j , respectively. That gives us

|l(x)| ≤ max

{

∑
j∈L1

∣∣l j
∣∣ ·maxx j , ∑

j∈L2

∣∣l j
∣∣ ·maxx j

}
. (6.5.9)

Let us illustrate the procedure with the following example

max Z = |x1−2x2| (6.5.10)

subject to
x1 ≤ 3 , x2 ≤ 4. (6.5.11)

Proceeding as described above we would get

max Z = a++a− (6.5.12)

subject to
x1 ≤ 3 , x2 ≤ 4 (6.5.13)

x1−2x2 = a+−a− (6.5.14)

and
a+ ≤ Aδ
a− ≤ A(1−δ ). (6.5.15)

By applying (6.5.9) we obtain an appropriate value forA

A= max{|1| ·3, |−2| ·4}= 8. (6.5.16)

This example is contained in the model collection under the problem nameabsval.
The result is:x1 = 0, x2 = 4, Z = 8, δ = 0, a+ = 0 anda− = 8. In that case our
boundA= 8 was as tight as possible.

6.6 Nonlinear Terms and Equivalent MILP Formulations

In this section, we show how to represent or replace certain nonlinear or discon-
tinuous functions by equivalent3 MILP formulations. These formulations usually

3 Sometimes, these equivalent MILP formulations are also calledlinearization. However, we avoid
this term in this context, as we feel it is more appropriate to Taylor series expansions stopping after
the linear term.



186 Modeling Structures Using Mixed Integer Programming

contain a binary variableδ , and a Big-M coefficientM appearing in carefully
formulated inequalities. We summarize those equivalencesfor various functions
f = f (x,y) depending on two variables in Table 6.1.

function f description inequalities
max(x,y) maximum of two variables f ≥ x ∧ f ≤ x+Mxδ

f ≥ y ∧ f ≤ y+My(1−δ )

IF(δ ,x,y) variable disjunction x−Mx(1−δ )≤ f ≤ x+Mx(1−δ )
y−Myδ ≤ f ≤ y+Myδ

xδ product of two variables x−M(1−δ )≤ f ≤ x+M(1−δ )
f ≤ Mδ

xy= 0 complementarity −Mx(1−δ )≤ x≤ Mx(1−δ )
−Myδ ≤ y≤ Myδ

Table 6.1 For certain functionsf = f (x,y), this table provides the equivalent MILP formulations
and the required inequalities. Note thatf = min(x,y) = −max(−x,−y), the minimum of two
variables, is not modeled as using inequalities, but just relatedthe maximum function.

The reader might be puzzled which values to assign to the Big-M coefficientM. The
answer is: Large enough that we do not lose any feasible solution, and not larger
than necessary,i.e., as small as possible. Ifx, for instance, represents the amount of
production on machine,M could be the production capacity. Ifx is the amount of
money to invest, a good choice ofM could be the available budget. We will explain
below why the Big-M coefficient should be chosen as small as possible.

For the functions and inequalities formulated it is sufficient to set them to the
maximal values the variablesx andy can assume in the problem at hand,i.e.,

M = max{maxx,maxy}.

Let us for f = f (x,y) = max(x,y) show the equivalence in detail. Ify> x, we have
f = max(x,y) = y. In that case, the binary variable can take only the valueδ = 1,
resulting in the inequalities

f ≥ x ∧ f ≤ x+M ∧ f ≥ y ∧ f ≤ y.

We observe thatf = y and thatf is not restricted ifx< y. If x> y, δ can only take
the valueδ = 0 leading to the inequalities

f ≥ x ∧ f ≤ x ∧ f ≥ y ∧ f ≤ y+M

giving us f = x, as expected. In the casex= y the binary variableδ is undetermined;
it can take either the value 0 or 1. In both cases, we getf = max(x,y) = x= y.

Likewise to max(x,y), we translate other bi-variate functions into linear inequal-
ties involving binary, among them



6.6 Nonlinear Terms and Equivalent MILP Formulations 187

f = f (x,y) = IF(δ ,x,y) =
{

x,
y,

δ = 1
δ = 0,

the product of a continuous variablex and a binary variableδ

f = f (x,y) = xδ =

{
x,
0,

δ = 1
δ = 0,

and the complementarity of two arbitrary variables

xy= 0=⇒
{

x= 0,
y= 0,

δ = 1
δ = 0.

We leave it as an exercise to prove these equivalences for these functions.
There may also exist other equivalent MILP formulations fora function; we see

this if we have a second look atf = f (x,y) = xδ , the product of a continuous vari-
ablesx and a binary variableδ . In Table 6.1 we had the two inequlities

x−M(1−δ )≤ f ≤ x+M(1−δ ).

We could also replacexδ by the three equivalent inequalities

f ≤ Mδ
f ≤ x

f ≥ x−M(1−δ ).

Which equivalent formulation is better? The second is probably tighter, but it is not
ideal yet. The reason is that MILP solvers perform extensivepreprocessing, among
them bound tightening. Therefore, a third formulation using an auxiliary variableu
is usually even be better:

f ≤ Mδ
u ≤ M(1−δ )
f = x−u.

Both inequalities are now of type≤ (which have computational benefits for MILP
solvers in this context) followed by a simple equality.

Let us now give a motivation whyM has to be selected as small as possible. For
a natural upper boundX on x, Fig. 6.1 shows from left to right the integer feasible
regionS

S:=
{
(x,δ )|x∈ IR+

0 ∧δ ∈ {0,1}∧x≤ Mδ ∧x≤ X
}

with the point at (0,0) and the vertical line in the left figure, the convex hullSch

Sch :=
{
(x,δ )|x∈ IR+

0 ∧δ ∈ [0,1]∧x≤ Xδ
}
,



188 Modeling Structures Using Mixed Integer Programming

XX X

δδδ

Fig. 6.1 Smallest Big-M coefficient. The figures from left to right show the integer feasible region,
the convex hull and the relaxed feasible region for 0≤ δ ≤ 1.

i.e., the triangle in the figure in the middle, and the LP relaxation or relaxed feasible
regionSLP, resp.,

SLP :=
{
(x,δ )|x∈ IR+

0 ∧δ ∈ [0,1]∧x≤ Mδ ∧x≤ X
}
.

Note that for both,Sch andSLP, the binary variableδ has been relaxed to 0≤ δ ≤ 1.
The convex hullSch is the smallest set containing all integer feasible points but has
the binary variable relaxed. The three sets obey the chain ofinequalities

S⊂ Sch ⊆ SLP.

Now we can also better understand and express what we mean when we discuss
the goodnessor tightnessof a formulation: The closerSLP is to Sch, the better the
formulation. We also note that forM =X, the LP relaxation is identical to the convex
hull. This illustrates why it is a good idea to select the Big-M coefficient as small
as possible. However, we must not make the value forM too small. If we selected
M < X, we would lose some integer feasible points.

Some commercial MILP solvers provideindicator constraintsas an alternative
to Big-M formulations for considering disjunctive constraints as in Section 6.2.3;cf.
Belotti et al. (2016,[63]). Consider an optimization problem P (linear or nonlinear)
with a disjunctive constraintAx ≤ b and its associated binary indicator variable
δ ∈ {0,1}. If δ = 1 the disjunctive constraintAx≤ b has to be satisfied. On the other
hand, ifδ = 0 the constraint may be violated. As the solver handles this relationship
between the disjunctive constraint and the associated indicator variable internally,
a seeming advantage is that the user does not have to think about the choice ofM
– for less experienced modelers this could be helpful. However, a consequence of
not providingM is the loss of a tight connection of the disjunctive constraint to P.
This causes a weakness when branching onδ . The potential advantage of the Big-M
formulations

Ax ≤ b+Mδ

is – even in the worst case with badly selected values ofM – an algebraic coupling
through the domain relaxation (neglecting the integralityof δ ), i.e., LP or NLP re-
laxation of P. We should also keep in mind, that a solver can only base its operations
on the algebra while a user might have intuition about the value ofM.



6.7 Modeling Products of Binary Variables 189

If P is nonlinear, we could also model the disjunction using the complementarity
condition

(Ax−b)(1−δ )≤ 0,

which unfortunately leads to a non-convex problem. Thus, itis better that we do not
follow this approach.

As a summary we recommend: For reasonably sized values ofM, i.e., M is not
much larger than other coefficients in the model and the modeldoes not suffer from
the existence ofM, use the Big-M approach. IfM is very large compared4 to all
other coefficients (in that case, the LP relaxation is weak and numerical instabilities
may arise), or it is even very difficult to construct the Big-Mformulation within the
model, it might be a good idea to resort to indicator constraints.

6.7 Modeling Products of Binary Variables

Certain nonlinear terms involving binary variables can also be treated by MILP
models. The first example of such terms are the squares of binaries. Each time we
encounterδ 2 we can just replace it byδ becauseδ 2 = δ for 0 and 1, the only values
binary variables can assume. This argumentation shows thatwe can also replaceδ k

by δ . Things get more complicated if we want to include products of different binary
variables such asδ 1δ 2. Nevertheless, it can be done at the cost of an extra binary
variable. Models including products ofk binary variablesδ p = ∏k

i=1 δ i , δ i ∈ {0,1}
can be transformed directly into linear integer models according to

δ p ≤ δ i , ∀i ; −δ p+∑k
i=1 δ i ≤ k−1.

For k= 2, the termδ 1δ 2 is thus replaced by the three inequalities

δ p ≤ δ 1 , δ p ≤ δ 2 , −δ p+δ 1+δ 2 ≤ 1.

The first two of them guarantee thatδ p becomes zero if either of the binary variables
in the product term is zero. The third one ensures, that if allof them are one,δ p

becomes also one.

4 It is not easy to define quantitatively what is meant byvery large compared to other coefficients
(e.g., is 1000 very large compared to 1?), without experience or knowledge of a solver’s capabil-
ities. Thus we prefer to give an example: If all values of input data and expected values of the
variables are betweeen 1 and 10,M = 106, is probably very large compared to other coefficients –
it would be a good idea to try smaller values,e.g., M = 100, and see how the solver performs with
that choice.



190 Modeling Structures Using Mixed Integer Programming

6.8 Special Ordered Sets

In Section (6.1.4) the modeling of a set of decisions where atmostk decisions can
be selected was introduced using the constraint

δ 1+δ 2+ ...+δ n ≤ k. (6.8.1)

If the decisions are to be mutually exclusive then the modeling will require that only
one decision can be selected, hence the appropriate constraint is

δ 1+δ 2+ ...+δ n ≤ 1. (6.8.2)

This is a commonly occurring condition. However, if the decisions represented by
the δ variables are ordered in some way, for example if they represented different
levels at which a facility could be opened, then it would be preferable to specify
that theδ variables form aspecial ordered set of type 1. Special ordered sets of type
1 and type 2, or SOS1s and SOS2s for short, appear as special entities in the the-
ory of integer programming problems and the software used tosolve them. SOS1s
were introduced by Beale & Tomlin (1970,[61]), and are further discussed by Hum-
meltenberg (1984,[284]) and Wilson (1990,[597]). They provide an efficient struc-
ture to handle mutual exclusivity constraints [see Section6.8.1].

Another variant of special ordered sets, referred to astype 2, allows us to model
piecewise linear functions, so that we may include certain nonlinear terms in other-
wise linear models [see Section 6.8.2].

6.8.1 Special Ordered Sets of Type 1

A special ordered set of type 1(SOS1) is an ordered set of variables of which at
most one may be non-zero. The variables can be any kind of variables.

In the most common instances of an SOS1 each variable will be abinary variable
δ i . The variation which insists that exactly one variable be non-zero is also common.
This condition could be modeled in ILP terms by what is termedaconvexity row

n

∑
i=1

δ i = 1. (6.8.3)

Declaring the variablesδ 1, . . . ,δ n as an SOS1{δ 1, . . . ,δ n} and adding the convexity
row (6.8.3) ensures that the variablesδ 1, . . . ,δ n will only take the values 0 and 1.
Note that is not necessary to declare the variables explicitly as binary variables.

We have, however, to keep in mind that the concept of special ordered sets has
nothing to do with the convexity conditions. In Section 11.4we will encounter an
example in which there exists no such relation between the elements of SOS1.

As well as the convexity row, we have another definitional condition involved in
the model because we have required that the variables be ordered. It is possible that



6.8 Special Ordered Sets 191

C
1

C
2

C
3

C
4

C
5

1 2 3 4 5
index i

c
a
p

a
c
it

y
 C

C
i

Fig. 6.2 Using SOS1 to select capacity size from a set of possible capacities,Ci .

variables will have a natural order,e.g.,time order or size precedence order, or we
may need to create one. These conditions will be modeled using what is called a
reference rowand its typical form is

x=
n

∑
i=1

Xiδ i , (6.8.4)

where theXi are weights or some form of outputs associated with each decision,δ i

respectively. The reference row and the coefficientsXi establish some order between
the variablesδ i .

Let us now consider a typical example illustrating the idea of SOS1. In a network
design problem, a company wants to determine the optimal topology and capacities
of pipelines connecting the nodes of the network,e.g., plants. The capacity of the
pipelines can only be chosen from a finite set of distinct valuesC1, ...,Cn. Let the
capacities be ordered in the following sense: the larger theindex, the larger the
capacity,i.e.,

j > i ⇒ Cj >Ci . (6.8.5)

Such a situation is illustrated in Fig. 6.2. To determine thecorrect capacity we in-
troducen binary variablesδ i such that

δ i :=

{
1 , if sizeCi is selected for the pipeline
0 , otherwise.

(6.8.6)

These binary variables will form an SOS1 and therefore it is not necessary to declare
them as binary variables any more. Now we also see why the convexity constraint
appears quite naturally: it is really a mutual exclusivity constraint. We need to ensure



192 Modeling Structures Using Mixed Integer Programming

that exactly one capacity size is chosen,i.e.,

n

∑
i=1

δ i = 1. (6.8.7)

The actual size,c, which is chosen can be computed from

c=
n

∑
i=1

Ciδ i . (6.8.8)

The equation (6.8.8) may perfectly serve as the reference row.
In Section 9.4.4 we will see that using an SOS1 solves a problem faster than us-

ing binary variables; the positive effect might be weaker for very strong commercial
MILP solver. The reason is that the integer programming solution process, B&B,
treats each special ordered set as one general integer variable with maximum value
n, rather thann separate binary variables. It should be noted, however, that the con-
cept of “order” which the reference row imposes is importantand every collection
of mutually exclusive decisions should not necessarily be modeled as an SOS1 un-
less the ordering concept is present in a natural way among the members of the set,
e.g., the decisions refer to different time periods, which have anatural order, or to
different sizes or levels of complexity. The benefits of rapid solution provided by
the use of SOS1s may be lost if the sets have no natural order. Integer programming
software normally facilitates the specification of sets of variables as SOS1s and uses
a special purpose algorithm to aid problem solution when SOS1s are present. The
specification of SOS1s – in a generic format – may look as:

VARIABLES
delta(n)
c

CONSTRAINTS
CONVEX: SUM(i = 1:n) delta(i) = 1.0
REFROW: SUM(i = 1:n) C(i)*delta(i) = c $

SETS
SET1: SUM(i = 1:n) delta(i) .S1. REFROW

In the above, theSETS section defines special ordered sets of variables in the model.
Note that theδ i need not to be declared as binary variables and that theSUM com-
mand in theSET1 row is not really a summation but more a synonym forunion.

6.8.2 Special Ordered Sets of Type 2

A special ordered set of type 2(SOS2) is an ordered set of variables usually denoted
as{λ 1,λ 2, ...,λ n} of which at most two may take non-zero values. If two variables
are non-zero, then they must be adjacent in the ordering.



6.8 Special Ordered Sets 193

y

x

y

xx
1

x
2

x
3

x
4

x
5

x
6

Fig. 6.3 Using SOS2 to model a nonlinear function. Left: The original nonlinear function. Right:
Approximation of the nonlinear function by five segments.

Analogously with SOS1, the most common variation will be a set of variables
λ 1,λ 2, . . . ,λ n with the convexity condition (6.8.3). An appropriate solution to the
constraints might beλ 2 = 0.75, λ 3 = 0.25 (with all otherλ variables zero) or, if
only a single variable is non-zero,λ 3 = 1.

An SOS2 is unlikely to be used to model naturally occurring decisions. Instead,
it is used to model certain nonlinear relationships required in models. These nonlin-
ear relationships are replaced by a linearly interpolated one. Consider the example
illustrated in Fig. 6.3.

Here y (cost) is related tox (production level) but the relationship cannot be
modeled by a straight line as cost increases less sharply once production has reached
higher levels. The relationship is modeled by a smooth curve. As LP and MILP only
permit linear relationships between decision variables, we have to devise a way to
incorporate such a curvilinear relationship into an existing LP or MILP model. If
we consider the five straight line segments which have been drawn in the right part
of Fig. 6.3, we could use these to model approximately the nonlinear function or
curved relationship as they are a fairly close approximation to the actual behavior
of the function (and we could improve the standard of approximation by using more
than five segments). Switching to consider only the five segments, rather than the
original function [left part of Fig. 6.3], we find that they can be modeled using SOS2.

Each segment is clearly linear, but we need to have a way of switching from one
segment to another at appropriate points,e.g., at (x2,y2). This is performed by the
“If two variables are non-zero then they must be adjacent in the ordering” part of
the definition of the SOS2. The segments in the right part of Fig. 6.3 are modeled as
the SOS2{λ 1,λ 2, ...,λ 6} with the convexity row

λ 1+λ 2+ ...+λ 6 = 1 (6.8.9)

and the reference row

l = λ 1+2λ 2+ ...+6λ 6 (6.8.10)

establishing a monotonic relation in the problem. Cost willbe defined by the equa-
tion



194 Modeling Structures Using Mixed Integer Programming

y= 100λ 1+300λ 2+450λ 3+ ...+100λ 6. (6.8.11)

Thus, a typical solution might yield

λ 2 = 0.75 , λ 3 = 0.25, (6.8.12)

giving

l = 2·0.75+3·0.25= 2.25 (6.8.13)

and

y= 300·0.75+450·0.25= 337.50. (6.8.14)

Examining the graphs given in Fig. 6.3 show that our solutionis approximate, but
a good approximation. Notice that the (invalid) solutionλ 1 = 0.5,λ 3 = 0.5 gives a
poor approximation, hence the need for non-zero variables to be adjacent. The ap-
proximation could have been improved by using more points inthe SOS2, normally
called grid points on the graph, but the more points used the slower the problem
will be to solve. It should also be noted that the segments will “hug” the curve
closely at certain parts, and be further away at others depending on the curvature
of the curve and the density of the grid points. Where the segments and curve di-
verge we can include more grid points, which need not all be equally spaced. It
should be further noted that we can often approximate a curvefrom either side,
which will either consistently underestimate or overestimate values. The modeler
will need to decide whether it is better to underestimate or overestimate from the
context of the application for which the model is being used.A rather tricky SOS2
application is given in Section 8.4.1. A piecewise linear approximation model to a
transport model with a nonlinear objective is very instructive and implemented in
MCOL/GAMSLIB/trnspwlx.gms.

Let us summarize how SOS2s provide a way of incorporating (approximately)
certain nonlinear relationships within linear models using linear interpolation. As-
sume that we have an arbitrary nonlinear functiony = f (x) occurring somewhere
in our model. Then we define a set ofn grid points or breakpointsXi (see Section
14.2.3 for how to construct optimal breakpoints systems), compute the correspond-
ing function valuesFi = f (Xi), and define an SOS2 consisting ofn variablesλ i . We
substitutef (x) with y in the model and add the constraints

x=
n

∑
i=1

Xiλ i (6.8.15)

interpolating5 in argument, and

5 In generalto interpolatemeans to compute intermediate values of a quantity between a series
of given values. But in our case, since the variablesλ i are elements in an SOS2, we interpolate
between two adjacent values.



6.8 Special Ordered Sets 195

y=
n

∑
i=1

Fiλ i (6.8.16)

interpolating in function value, as well as the convexity constraint

n

∑
i=1

λ i = 1. (6.8.17)

Finally, (6.8.15) serves as the reference row to establish amonotonic relationship in
our model. This is needed for the B&B algorithm. Equality (6.8.16) would also be a
good reference row candidate if the coefficientsFi do establish order or monotonic-
ity, e.g., if f (x) is a monotonic function. It is always worth paying great attention to
the choice of the reference row. The stronger the monotonic relationship, the better.

There is another notion we would like to focus the reader’s attention on: nonlin-
ear functions occurring in the objective function can be easily and safely handled
using SOS2. Great care is, however, necessary when applyingit to equations con-
taining nonlinear functions. Since the nonlinear functions are replaced by linear
interpolants, the problem instance may become infeasible.

Alternative ways to model nonlinear functions exist, but they are not able to take
advantage of LP or MILP software; rather, they use methods which are much slower
and less reliable. As with SOS1s, software has been designedto support modeling
using SOS2s.

In some LP/IP software systems special facilities are available for automatically
modeling commonly occurring nonlinear relationships of a single variable such as
x2,x3,ex without the need to express the conditions more fully using SOS2s.6

Ordered sets are related to the earlier concept ofseparable programmingde-
veloped by Miller (1963,[410]). When the function to be approximated is convex
the straight line segments provide solutions that automatically satisfy the ’non-zero
variables must be adjacent’ condition; theλ i variables need not to be declared as
a SOS2. When the convexity condition does not hold, SOS2s are required. The
branching rules adopted by B&B integer programming methodsto handle SOS2s
are described in Chapter 9. Note that a general IP formulation could be used to
model the relationships of SOS2s, but will not perform as well as a model using the
tailor-made facilities. The branching rules of SOS2s are the key to this.

Other methods may also be used for modeling more complex relationships than
those expressible as a smooth curve interrelating two decision variablesy and x.
Consider the relationship

y= xz (6.8.18)

a simple product of two variablesx andz.
If we use the logarithm function, denoted as log, we can express the simple prod-

uct as

6 SCICONIC is an example.



196 Modeling Structures Using Mixed Integer Programming

logy= logx+ logz, (6.8.19)

which is a linear relationship in the logarithms. Thus, by introducing new variables
to denote logx, and logz, and linking these tox andzby defining SOS2 connections
between the graphs ofx and logx, andz and logz, we can model values of logy
which can later be reconverted toy values. However, ifx andz vary over a fairly
wide range, it is dangerous to have such variables and their logarithms all present
in the same model as it may lead to unreliable results due to scaling difficulties [see
Section 9.2.2]. An alternative approach to handling products is described in the next
subsection.

Finally, with a new continuous variablezand the inequality

z≥ gi(x) := Ai(x−Xi)+Fi , ∀i = 1, . . . ,S−1, (6.8.20)

we can show, that linearly constrained optimization problems with piecewise linear,
convex (concave) objective function as LP problems (only continuous variables)
can be minimized (maximized). In (6.8.20),gi(x) describes theith linear segment
of the objective functionf (x). If f (x) is to be minimized, it can be replaced by
minz. Similarly as the proof of theVertex Theoremof LP, cf. Neumann & Morlock
(1993,[432, Theorem 1.1.5, p.48]), the argument is, that if

z> gi(x) , ∀i = 1, . . . ,S−1

is fulfilled, one can find an indexi∗, so that

z∗ = gi∗(x) := Ai∗(x−Xi)+Fi∗

leads to a better solution (objective function value is on a segment) – here, convex-
ity is required. As there is only a finite number of segments, on each segment the
minimal objective function value is assumed. If one formulates the convex piece-
wise linear functionf (x) with SOS2 variables, theλ variables in the LP relaxation
already automatically fulfill the SOS2 conditions.

To limit the increase of problem size due to number of breakpoints, there are two
interesting approaches. Vielma & Nemhauser (2011,[577]) provide a formulation
for n= 1+2k known breakpoints. Instead ofn SOS2-variables, onlyk binary vari-
ables and 2k linear inequalities are required,i.e., the number of binary variablesand
the number of additional inequalities grow only with the logarithm of the number
of breakpoints. Alternatively, Rebennack & Kallrath (2015,[466]) have developed a
procedure to compute the global minimum of the number of breakpoints subject to
a pre-given approximation accuracy of the function; see Section 14.2.3.



6.8 Special Ordered Sets 197

6.8.3 Linked Ordered Sets

Chainsof linked ordered setswere first introduced by Beale & Forrest (1976,[59])
and are further developed in Beale & Daniel (1980,[58]). They provide a way to
approximate product terms using a pair of linked SOS1s. Say we wish to model a
product term of the form

z= x ·g(y), (6.8.21)

whereg(y) is some known nonlinear function of a continuous variabley, andy can
take only one of then values

Y1,Y2, ...,Yn. (6.8.22)

Furthermore,x is a continuous variable with known (finite) upper and lower bounds
such that

Xmin ≤ x≤ Xmax. (6.8.23)

All combinations of possible values ofx, y andz can be defined by introducing 2n
non-negative variables

λ 11,λ 12, ...,λ 1n (6.8.24)

λ 21,λ 22, ...,λ 2n, (6.8.25)

and the constraints

n

∑
j=1

λ 1 j +
n

∑
j=1

λ 2 j = 1 (6.8.26)

y=
n

∑
j=1

Yj(λ 1 j +λ 2 j), (6.8.27)

and the additional restriction that

λ i j 6= 0⇒ λ rs = 0 ∀s 6= j,
i ∈ {1,2}
r ∈ {1,2} , j ∈ {1,2, ...,n}. (6.8.28)

Thenx is given by

x=
n

∑
j=1

Xminλ 1 j +
n

∑
j=1

Xmaxλ 2 j (6.8.29)

andz is given by

z=
n

∑
j=1

Xmin ·g(Yj) ·λ 1 j +
n

∑
j=1

Xmax·g(Yj) ·λ 2 j . (6.8.30)



198 Modeling Structures Using Mixed Integer Programming

The condition (6.8.28) will be handled by a modification of the branching conditions
in the B&B algorithm [see Section 3.8.6]. Its operation is illustrated in (6.8.31).

Column ... j −2 j −1 j j +1 j +2 j +3
Row
....
i . . . . . .

l l
i +1 . . . . . .

(6.8.31)

The conditions (6.8.26), (6.8.27) and (6.8.28) ensure thaty takes one of then valid
values,e.g., if λ 1k+λ 2k = 1, theny will take the valueYk. The conditions (6.8.26)
and (6.8.29) ensure thatx takes a value lying on a line segmentXmin and Xmax,
because ifλ 1k+λ 2k = 1 thenx will take the valueλ 1kXmin+λ 2kXmax, ensuring that
all possible values ofx are available. Finally the conditions (6.8.26), (6.8.30) and
(6.8.28) ensure that a valid product term is calculated forz. This can be seen more
clearly if the constantg(Yk) is factored out of the expression (all terms corresponding
to j 6= k are zero).

It should be noted that all expressions (6.8.26)-(6.8.30) are now linear, but
(6.8.21) was nonlinear. The following example will illustrate the concept of linked
ordered sets. Letn= 4, Xmin = 3.4, Xmax= 8.5, and let the values ofy be 2.0, 2.5,
3.0, 3.8. Let the function ofy be

g(y) = ey+y2. (6.8.32)

The range ofg consists of the four values 11.39, 18.43, 29.09, 59.14. Introduce the
λ -variables along with the constraint

λ 11+λ 12+λ 13+λ 14+λ 21+λ 22+λ 23+λ 24 = 1. (6.8.33)

We then have

y= 2.0(λ 11+λ 21)+2.5(λ 12+λ 22)+3.0(λ 13+λ 23)+3.8(λ 14+λ 24) (6.8.34)

and

x= 3.4
4

∑
i=1

λ 1i +8.5
4

∑
i=1

λ 2i (6.8.35)

and

z= 3.4(11.39λ 11+18.43λ 12+29.09λ 13+59.14λ 14) (6.8.36)

+8.5(11.39λ 21+18.43λ 22+29.09λ 23+59.14λ 24).

A typical solution might beλ 13 = 0.4,λ 23 = 0.6,with all otherλ variables zero,
which givesy = 3 in equation (6.8.34) andx = 6.46 in equation (6.8.35) andz=
3.4(0.4)29.09+8.5(0.6)29.09= 187.92 in equation (6.8.36).



6.9 Improving Formulations by Adding Logical Inequalities 199

Note: If the variabley occurs in several product terms, we can define two sets of
λ variables for each product term. Hence the section title islinked ordered sets.

6.8.4 Families of Special Ordered Sets

As was described in Section 6.8.3, a model may require several special ordered sets.
Special ordered sets may also be used in families where thereare links between each
set. There are three likely purposes:

1. The sets model a precedence relationship. For example, special ordered sets may
be used to model the times at which events may occur. Let us consider two events
whose timest1 andt2 are given by

t1 = λ 1+2λ 2+ ...+nλ n (6.8.37)

and

t2 = µ1+2µ2+ ...+nµn, (6.8.38)

whereλ 1,λ 2, ...,λ n and µ1,µ2, ...,µn are both special ordered sets of type 1.
Then, if we also require that event 2 is at least one time unit later than event 1,
we have the restriction

t1+1≤ t2, (6.8.39)

which thereby links two special ordered sets.
2. The sets model the prevention of overlap. As in the previous example two special

ordered sets may be used to model the times at which two eventsmay occur. If
it is required that the two times differ by at least one unit, then we require the
linking restriction

t1 6= t2. (6.8.40)

3. The sets model a link between each other set, as in linked ordered sets.

In these three examples, the families may comprise SOS1 or SOS2 in cases (1) or
(2), but only SOS2 in case (3). Additional inequalities may be added to formulations
which use linked sets of special ordered sets in order to helpB&B reach a solution.
For a full discussion on sets of special ordered sets see Wilson (1990,[597]) and Sec-
tion 6.9 for a discussion on improving formulations by the introduction of additional
inequalities.

6.9 Improving Formulations by Adding Logical Inequalities

When an ILP or MILP model is solved using a MILP solver, the firststep is to solve
the LP problem which is obtained from the ILP/MILP problem bysimply ignoring



200 Modeling Structures Using Mixed Integer Programming

the conditions that the variables designated as integer variables must take integer
values. The upper and lower bounds on such variables,e.g., an upper bound of 1
and a lower bound of zero for a binary variable, are retained in the model together
with all the other constraints. The difference between the optimal value of the ob-
jective function of this LP problem and the optimal solutionvalue of the ILP/MILP
problem is called theintegrality gap. It is important to keep this gap as small as pos-
sible as a small gap aids the B&B algorithms. The value of the gap will not be known
in advance, but it is known from previous work on ILP models that certain meth-
ods of formulation consistently help decrease this gap. Such methods may involve
adding additional constraints to the problem, which may appear counterproductive,
but which is done to aid the B&B process with sound mathematical reasoning.

For example, suppose that we want to model the condition “product 1 can only
be produced if products 2,3, . . . ,n have been produced”. The single constraint

(n−1)δ 1 ≤ δ 2+δ 3+ ...+δ n (6.9.1)

is strictly adequate to model the condition, but is computationally inferior to includ-
ing then−1 constraints

δ 1 ≤ δ i , i = 2, . . . ,n. (6.9.2)

In the former case, in an LP relaxationδ 1 may still take the value(n−2)/(n−1) if
one of the remainingδ variables is zero. In contrast, in (6.9.2)δ 1 would have been
forced to zero.

The modeling of logical implications also gives rise to circumstances where for-
mulations may be not fully specified. In (6.1.36), the implication=⇒ was used to
link one decision to another in the formL1 =⇒ (L2∧L3). This was modeled as

δ 1 ≤ δ 2 , δ 1 ≤ δ 3. (6.9.3)

However, it is useful to note that it is still possible to produce product 2andproduct
3, when product 1 is not produced. If we only want that to happen when product 1 is
produced, then recasting the model of=⇒ as⇐⇒ may be appropriate. The model
now requires the addition of the constraint

1+δ 1 ≥ δ 2+δ 3 (6.9.4)

to complete the formulation. It could be that if we do not model ⇐⇒ then there is
the possibility of an error in our logic.

Thus as a general rule, it is useful in an implication(=⇒) to consider what the
modeler will want to happen when the “implying” part doesnot hold and check
whether what is really required is equivalence(⇐⇒). It is desirable to use equiva-
lence(⇐⇒) wherever possible instead of implication(=⇒), and not just to rely on
=⇒ and the objective function jointly giving the effect of⇐⇒ by discouraging any
logical impossibilities. Thus, we can extend our earlier results by reconsidering the
formulations summarized in the “implication” table (6.1.36). Here is the “equiva-
lence” version of (6.1.36):



6.11 Exercises 201

Relations Constraint(s)
L1 ⇐⇒ (L2∧L3) δ 1 ≤ δ 2 , δ 1 ≤ δ 3 , 1+δ 1 ≥ δ 2+δ 3

L1 ⇐⇒ (L2∨L3) δ 2 ≤ δ 1 , δ 3 ≤ δ 1 , δ 1 ≤ δ 2+δ 3

(L1∧L2)⇐⇒ L3 δ 3 ≤ δ 2 , δ 3 ≤ δ 1 , δ 1+δ 2 ≤ 1+δ 3

(L1∨L2)⇐⇒ L3 δ 1 ≤ δ 3 , δ 2 ≤ δ 3 , δ 1+δ 2 ≥ δ 3.

(6.9.5)

The statement
∧k

i=1Li =⇒
∨n

i=k+1Li may make us consider checking if
∧k

i=1Li ⇐⇒∨n
i=k+1Li is what is required. If it is, it will be modeled as

n

∑
i=k+1

δ i −
k

∑
i=1

δ i ≥ 1−k ; δ i ≥ δ j ,
i = 1, . . . ,k
j = k+1, . . . ,n.

(6.9.6)

6.10 Summary

In this chapter we have endeavored to show the types of statement that can be for-
mulated using logical variables. Single statements and linked statements have been
modeled using integer variables. The scope of the techniques involving special or-
dered sets has been considered and it has been shown how this extends the capability
of LP and ILP. It is possible to use binary variables to perform the role that special
ordered sets can take, but it is often better to use the higherlevel modeling objects
provided by the sets. Towards the end of the chapter, we saw how formulations may
be strengthened by adding constraints. Thus, the reader should be able to:

• model decisions using{0,1} variables;
• make use of the logical connectivesand, or, andnot;
• model logical restrictions involving two or more arguments;
• model logical restrictions on constraints;
• model special types of conditions including disjunctive constraints, non-zero

variables and all-different conditions;
• model nonlinearities using special ordered sets;
• appreciate the need to close the integrality gap by favoring certain types of for-

mulations.

6.11 Exercises

1. Read carefully through Section 6.1.3 and transform the following statements into
algebraic formulations.

a)L1 ∨ ¬ L2;
b)¬L1 =⇒ L2.



202 Modeling Structures Using Mixed Integer Programming

2. Read carefully through Section 6.1.4 and derive the constraints listed in Table
(6.1.36) representing the logical expressions involving three variables.

3. Model the two statements

a)L1∨L2∨ ...∨Lk∨¬Lk+1∨¬Lk+2∨ ...∨¬Ln);
b)¬L1∧¬L2∧¬...∧¬Lk =⇒ (Lk+1∨Lk+2∨ ...∨Ln).

4. In the traditional British game of Bickering a team comprises four players. The
British International Bickering squad has the four male players Al Aggressive,
Bill Beastly, Leo Large, Nigel Nasty, and the four female players Edwina Eager,
Patsy Putrid, Sharon Solid and Tina Tall. Four of these players will be selected
to form the mixed sex team. The rules of the game are such that

a) a team must contain at least one man and one woman;
b) if a team has at least two male players, then at least three players in the
team must be right-handed;
c) if a team has at least two female players, then at least three players in the
team must be left-handed.

Leo, Nigel, Sharon and Tina are the only right-handed players.
Represent the logical conditions that must be satisfied by a team using ILP con-
straints.

5. Five married couples each decided to celebrate with a bottle of wine last week.
From the information given, formulate and solve an ILP problem and hence put
together each married couple and say which wine they drank and on which night.
Each couple had wine on a different night. Five different wines were used.

a) Philip is married to Marie. They did not have wine on Wednesday night.
Carl had wine on Wednesday night.
b) The Soave was not drunk on Friday night, nor was this wine drunk by
Simon.
c) Simon and his wife had a bottle of wine the night after the couple who had
the Spumante, but two nights after Margaret and her husband had wine.
d) Kathy did not have wine on Tuesday night, but she was the person who had
the Chianti.
e) Olive and her husband, who is not Ray, enjoyed their wine onFriday.

The men are Carl, Philip, Ray, Roland, and Simon. The women are Kathy, Mar-
garet, Marie, Olive, and Vanessa. The wines are Chianti, Liebfrauenmilch, Ries-
ling, Soave and Spumante. The nights are Monday to Friday.

6. A company has a series of pipelines laid under the factory floor. The floor consists
of a series of heavy square slabs. It is desired to inspect each pipeline and this
can be done if the company liftsone of the slabs directly above each pipeline.
The layout of slabs is as shown:



6.11 Exercises 203

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36

with pipelines lying under the five slab groups{2,3,4}, {7,16,17,18}, {10,11,12},
{13,14}, {25,34,33,32}.
When a slab is lifted it suffers damage, as do all other slabs that touch it (unless
they touch diagonally). The company wishes to minimize the total number of
slabs damaged when all pipelines have been inspected.
Formulate and solve, using a modeling language and a MILP solver, this prob-
lem. (Note: this is quite a difficult problem.)

7. Refer back to the Lim’s problem in Chapter 5.
Lim is now offered the opportunity to purchase I1 under the following condi-
tions: in any month up to 400 units can be bought at a cost comprising a fixed
component of£400, plus£1 per unit. So, for instance, if Lim bought I1 in all four
months it would incur a cost of 4 times£400, plus£1 per unit. If it wishes, Lim
can still manufacture I1 itself.

a) Extend your model to deal with the new opportunity.
b) Solve the problem you formulated.

8. A company wishes to build a corporate model of its operations. The following
conditions must be met by the model.

a) A four year planning period will be considered in the model.
b) Up to five types of investment are available to the company in any year.
The investments can be chosen to commence in any year and any of the in-
vestments may be repeated in any year. Thus up to twenty investments are
available. These investments will be evaluated in terms of their net present
value at the end of the four year planning horizon. The net present value of
cash flows in future yearn is defined as

sum of cash inflows− sum of cash outflows
(1+ r)n

c) The interest rate is 15% per annum,i.e., r = 0.15.
d) In each of the four years the net cash outflow must not exceed£250,000
(maximum amount available for investment).
e) At least one investment must be commenced in each year, to fulfil operating
requirements.

The projects generate the following cash income/payment given in £1,000 units.
(Negative entries represent outflows,i.e., loss.)



204 Modeling Structures Using Mixed Integer Programming

Years 1 2 3 4
Project 1 −100 −50 150150

2 −100 −40 50 200
3 40−100 50 50
4 −200 100100200
5 −150 0 150100

.

Formulate and solve the problem to maximize net present value at the horizon.
9. A manufacturing company produces three products, P1, P2, and P3. Each product

requires the use of certain machines in a specific order. The company has avail-
able the following machines: 2 Finishers, 3 Smoothers, 3 Sprays, 3 Drills, and 1
Beveller. (A product on a machine represents a “job”.) The orders and times for
each job are:

P1 Machine:Smooth Spray Drill FinishSpray
Time: 25 18 27 19 5

P2 Machine: Drill Bevel SmoothFinishSpray
Time: 8 17 19 6 12

P3 Machine: Bevel Smooth Finish Spray Drill
Time: 16 8 19 12 2

.

Formulate and solve the problem as an ILP to minimize the overall time for the
manufacture of one of each of the three products (given that each product must
be machined in the sequence stated).



Chapter 7
Types of Mixed Integer Linear Programming
Problems

In this chapter a number of standard ILP problems will be formulated. As in Chapter
4, we shall look at some straightforward problems that are easy to formulate, and
then consider harder ILP problems. For many of the problem types a case study is
provided and for some of these, a model relating to the case issupplied in MCOL.

7.1 Knapsack and Related Problems

7.1.1 The Knapsack Problem

To understand what knapsack problems are, consider burglarBill planning – see
Fig. 7.1 – to break into the home of a wealthy family. Bill has been watching the
house for some time and knows that it contains many valuable items, some of which
very much interest him. As Bills plans to perform the robberycompletely on his
own, the weights of the items are also important to him. Our well organized burglar
has put together all the information collected intensivelyduring the last 17 weeks.
There are 8 single items of particular interest. The table lists the data related to these
items: their values,Vi , in units of 1,000 USD and their weights,Wi , in kilograms:

i 1 2 3 4 5 6 7 8
Vi 15 10090 60 40 15 10 1
Wi 2 20 20 30 40 30 60 10

.

During the last 3 months Bill has done a tremendous amount of body-building, so
expects to be able to carry (for a short while) a sack with a maximum weight of 102

205



206 Types of Mixed Integer Linear Programming Problems

Fig. 7.1 Knapsack problem supporting a burglar in selecting goods to
steal. He wants to maximize the value of the goods to pack into the
knapsack. Produced for this book by Diana Kallrath, Copyright ©2020.

kg. It becomes quite clear to him that if he can break in only once he cannot steal all
the items. The weight of all items adds up to 212 kg. The question which has kept
him busy for quite a while is which items he should steal in order to maximize the
value of his booty. It so happens that our notorious burglar,in a previous robbery,
acquired a lot of books, and in one of them he found out about so-called “knapsack”
problems. Here is what he has learned:

The knapsack problemis the problem of choosing how many of each of a set
of items of given weights and values to place in a container (knapsack), which can
accommodate a limited total weight of items, such that the total value of the items
placed in the container is maximum. The problem and a way to solve it is described
by Dantzig (1957,[149]). Clearly the major decisions are the quantity of each item
to be included. The problem may be formulated as follows.

Let σ i be the integer number of items of typei which are selected,Wi be the
weight of an item of typei, Vi be the value of an item of typei (i ∈ {1,2, ...,n}), and
C be the capacity of the knapsack. The objective function is

n

∑
i=1

Viσ i , (7.1.1)

which is to be maximized subject to the constraint that the total weight of included
items is no more than the available capacity

n

∑
i=1

Wiσ i ≤C , σ i ∈ IN0. (7.1.2)

This problem is clearly one of the simplest ILP problems to formulate, as it has only
one constraint. Nevertheless, it is not trivial to solve, and asn is growing the time
required to solve the problem increases exponentially. Forlarge problems, methods
other than standard ILP are recommended. A full discussion is contained in the book
devoted to the knapsack problem by Martello & Toth (1990,[398]). Applications of
the problem are discussed in Salkin & de Kluyver (1975,[491]).



7.1 Knapsack and Related Problems 207

A common variation of the problem is to limit the number of items available
of each type to 1. The problem is then termed the{0,1}-Knapsack Problemand
σ i is a binary variable. The problems are of further interest when they occur as
subproblems within complex solution procedures for largerproblems [see Section
7.1.2].

So with this knowledge our burglar is even capable of formulating an optimiza-
tion problem and implementing it in a modeling language. Hisimplementation is
contained in the model collection under the model nameburglar. Note thatσ i is
written asx(i) in the model.

If you solve the problem you will find the following answer:ob jective= 280,
x(1) = 1, x(2) = 1, x(3) = 1, x(4) = 1, x(5) = 0, x(6) = 1, x(7) = 0, x(8) = 0.

7.1.2 Case Study: Float Glass Manufacturing

The trimloss problem was introduced in Section 4.1.1. In thefollowing case, the
authors make use of knapsack problems for pattern selectionwithin the trimloss
problem.

Dyson & Gregory (1974,[173]) discuss the use of the trimloss(or cutting stock)
problem formulation to handle a problem arising in float glass manufacturing
scheduling. The following formulation requires the use of as little glass as possi-
ble so as to meet the list of orders. Let us use the indices

p ∈ {1,2, ...,n} : for the pattern number
o ∈ {1,2, ...,m} : for the order number,

(7.1.3)

the data

No : number of pieces of sizel0 x w0 required,
Aop : number of pieces of sizel0 x w0,

produced by a single application of cutting patternp,
Cp : area of cutting patternp,

(7.1.4)

and finally the integer variable

σ p ≥ 0 : number of times patternp is repeated. (7.1.5)

Then the formulation is

min
n

∑
p=1

Cpσ p (7.1.6)

subject to

n

∑
p=1

Aopσ p ≥ No , ∀o∈ {1,2, ...m}. (7.1.7)



208 Types of Mixed Integer Linear Programming Problems

It turns out that the total number of cutting patterns is about 10,000. Thus, a method
is used to introduce pattern variables into the problem gradually, and drop other
pattern variables, when the problem was being solved by the optimization software.
This technique is calledcolumn generationand makes use of solving intermediate
knapsack problems to determine which patterns should be considered next.

7.1.3 The Generalized Assignment Problem

Continuing the analogy from the knapsack problem, let us assume that the burglar
wishes to divide up the loot into separate containers and sell it (illegally!) to differ-
ent persons. He wants to use three containers at most, each ofwhich has a weight
restriction of 90 kg, but the profit he will receive varies according to the sack in
which an item is placed because the persons to whom each container will be sold,
who are known to our burglar, will place a different value on each item. Clearly the
burglar intends to sell the loot for the highest total profit and also wishes to sell all
the items.

i 1 2 3 4 5 6 7 8
Pi [in k£] container 110 80 50 30 30 10 8 1
Pi [in k£] container 215 70 70 60 35 12 6 2
Pi [in k£] container 3 9 80 60 50 35 8 9 1
Wi [in kg] 2 20 20 30 40 30 60 10

.

The major decision which must be taken is to which container each item should be
allocated. This problem is known as thegeneralized assignment problem(GAP), of
which the above example forms a special case. In the more general case, the weights
of items are also allowed to vary depending on which container they are assigned
to. The GAP can be stated [cf. Martello & Toth (1990,[398])] as:

Givenn items andm containers with indices

c ∈ {1,2, ...,m} : the set of containers
i ∈ {1,2, ...,n} : the set of items

(7.1.8)

and data

Cc : capacity of containerc
Pci : profit of item i if assigned to containerc
Wci : volume of itemi if assigned to containerc

, (7.1.9)

assign each item to exactly one container so as to maximize the total profit, with-
out assigning to any container a total volume greater than its capacity. Note that
the volume of an item can vary according to which container itis assigned to, as
the quantity of protective wrapping required varies from container to container. The
main decisions are thus to which containers particular items are assigned to. Ac-
cordingly we introduce binary variables,δ ci ∈ {0,1} such that



7.1 Knapsack and Related Problems 209

δ ci :=

{
1 , if item i is assigned to containerc,
0 , otherwise.

. (7.1.10)

The model formulation is

max
m

∑
c=1

n

∑
i=1

Pciδ ci (7.1.11)

subject to the constraint that the total volume of a container is limited by capacity

n

∑
i=1

Wciδ ci ≤Cc , ∀c∈ {1,2, ...m} (7.1.12)

and the constraint that each item is assigned to exactly one container

m

∑
c=1

δ ci = 1 , ∀i ∈ {1,2, ...,n}, (7.1.13)

δ ci ∈ {0,1} , c∈ {1,2, ...,m} , i ∈ {1,2, ...,n}. (7.1.14)

Note: In some versions of the problem, ifWc′i′ = 0 for somec′, i′ in the above, then
it is assumed thatδ c′ i′ is not a variable.

The burglar’s GAP should now be solved as an exercise (see Section 7.10.). A
further example of the GAP is solved in Section 14.1.3.3.2 byLagrange relaxation.

7.1.4 The Multiple Binary Knapsack Problem

One further variation will be considered. Themultiple knapsack problem, cf. Martello
& Toth (1990,[398]), has similarities to the generalized assignment problem. In
this problem essentially all conditions of the generalizedassignment problem are
present, except for the fact that not every item needs to be assigned to a container
(or knapsack). Such a variation would be relevant if the sizeof each container was
more restricted and the total size of all the containers was insufficient to contain all
the items.

In formulation, the principal difference from the GAP givenby (7.1.11-7.1.14)
is that the equations (7.1.13) are replaced by the inequalities

m

∑
c=1

δ ci ≤ 1 , ∀i ∈ {1,2, ...,n} (7.1.15)

andWci is replaced byW′
i andPci by P′

c.



210 Types of Mixed Integer Linear Programming Problems

7.2 The Traveling Salesman Problem

In distribution it frequently arises that one or more vehicles or persons must make
a circular trip around a number of locations, collecting or delivering goods at these
locations. Finding the “best” route will be a feature of suchproblems. Thetraveling
salesman problem(TSP) is the problem faced by a traveler wishing to devise one
circuit to visit a series of cities starting from one city, visiting each other cityexactly
once, and returning to the original city. The distances from any city to any other
city are known in advance, and the problem requires that total distance traveled be
minimized.

This problem seems deceptively simple at first. It appears tohave similarities to
the assignment problem as each city must be entered once and left once. However,
the difficulty of the problem lies in obtaining a complete route which passes through
all cities progressively. If there are 4 cities a route which goes from city 1 to city 2
and back to city 1 again together with a route which goes from city 3 to city 4 and
back to city 3 again has the virtue that each city is entered once and left once and all
cities are visited but does not have the property that there is one circuit; there is no
link between the pair of cities 1,2 and the pair of cities 3,4,so this solution would
be regarded as invalid. In a valid solution the single circuit is called a tour and for
invalid solutions circuits which encompass less than the full set of cities are called
subtours. The TSP was first posed and solved by Dantziget al. (1954,[152]) and
further considered by Littleet al. (1963,[382]). Considerable work on the problem
has been generated and a good introduction to advanced work can be found in the
book Lawleret al.(1985,[369]). The problem may be formulated as an ILP problem,
but the formulation is not intuitive in the part that formulates conditions to avoid
subtours.

Clearly the principal decision is the order in which the cities are visited, and each
component of that order will be a route from a particular cityto the next one in the
order. Thus we introduce variables accordingly. Let us introduce binary variables
δ i j ∈ {0,1} such that

δ i j :=

{
1 , if the tour goes directly from cityi to city j
0 , otherwise.

(7.2.1)

Let the total number of cities ben and let Ci j be the distance from cityi to city j
( i ∈ {1,2, ...n}, j ∈ {1,2, ...,n}). The first group of constraints ensure that each
city must be entered once:

n

∑
i=1∧i 6= j

δ i j = 1 , j ∈ {1,2, ...,n}. (7.2.2)

Here the expression on the left is the total number of cities which lead directly to
city j in the chosen route. Next, each city must be left once,i.e., the number of cities
which are visited directly after any city must be 1



7.2 The Traveling Salesman Problem 211

n

∑
j=1∧i 6= j

δ i j = 1 , i ∈ {1,2, ...n}. (7.2.3)

Here the expression on the left is the total number of cities to which city i leads
directly.

The objective function is

min
n

∑
i=1

n

∑
j=1∧i 6= j

Ci j δ i j (7.2.4)

More complex constraints are now introduced to prevent subtours occurring. These
also require the introduction of new variables. We introduce continuous variablesyi

for i > 1. These variables can be interpreted as the sequence numberin which each
city is visited (assuming city 1 is visited first). Finally, we add the inequalities

yi −y j +(n−1)δ i j ≤ n−2 , ∀{i j | i > 1∧ j > 1∧ i 6= j}, (7.2.5)

which ensure that subtours do not occur; see Milleret al. (1960,[411]). These in-
equalities operate in the following way. Consider our earlier four-city example. The
constraints will be

y2−y3+3δ 23 ≤ 2, y3−y2+3δ 32 ≤ 2 (7.2.6)

y2−y4+3δ 24 ≤ 2, y4−y2+3δ 42 ≤ 2

y3−y4+3δ 34 ≤ 2, y4−y3+3δ 43 ≤ 2.

In our invalid solution we haveδ 12,δ 21,δ 34,δ 43 = 1, all other δ variables zero.
Substituting in (7.2.6), we obtain

y2−y3 ≤ 2, y3−y2 ≤ 2 (7.2.7)

y2−y4 ≤ 2, y4−y2 ≤ 2

y3−y4+3 ≤ 2, y4−y3+3≤ 2.

If we add together the fifth and sixth constraints of (7.2.7) we get an inconsistency
viz.6≤ 4. In general, ifδ i j = 1, then

yi −y j +n−1≤ n−2 (7.2.8)

so
y j ≥ yi +1 , (7.2.9)

i.e., ”one more” and ifδ i j = 0,

yi −y j ≤ n−2



212 Types of Mixed Integer Linear Programming Problems

1 2 3 4

1

2

3

4

Invalid solution to 4 city travelling salesman problem

Valid solution to 4 city travelling salesman problem

Fig. 7.2 Traveling salesman problem with four cities.

The biggest difference isn− 2, and theyi are all different, so they must take the
values 2,3, ...,n. This will be impossible for a “solution” involving subtours. See
Fig. 7.2 for valid and invalid solution of a TSP with four cities.

The set of constraints given by (7.2.5) may be replaced by a set of constraints
which have a slightly more realistic interpretation, as follows. As we wish to ensure
subtours do not occur, if we partition the set of cities into two subsets,N1 andN2

(each subset containing at least two cities), then there must exist a link between the
two subset. For every valid partition we can repeat this argument. The constraints
are then given by defining two disjoint sets, each containingat least two cities. So
we introduce the setsN1 andN2 such thatN1∪N2 = {1,2, ...,n}, and the set of
constraints

∑
i∈N1 , j∈N2

δ i j ≥ 1. (7.2.10)

For the casen = 4 the possible partitions are{{1,2},{3,4}}, {{1,3},{2,4}},
{{1,4},{2,3}}, {{2,3},{1,4}}, {{2,4},{1,3}}, and{{3,4},{1,2}} and the con-
straints are

δ 13 + δ 14 + δ 23 + δ 24 ≥ 1
δ 12 + δ 14 + δ 32 + δ 34 ≥ 1
δ 12 + δ 13 + δ 42 + δ 43 ≥ 1
δ 21 + δ 24 + δ 31 + δ 34 ≥ 1
δ 21 + δ 23 + δ 41 + δ 43 ≥ 1
δ 31 + δ 32 + δ 41 + δ 42 ≥ 1.

(7.2.11)

The first and last of these constraints would be violated by the invalid solution de-
scribed earlier (δ 12 = 1, δ 21 = 1, δ 34 = 1, δ 43 = 1).



7.2 The Traveling Salesman Problem 213

Clearly the number of constraints becomes large asn rises. The formulation may
seem tortuous, but it should be noted that even for a problem involving only 12
cities there are almost 40 million different routes to be considered. The TSP is hard
to solve because even for a modest number of cities the numberof variables and
constraints required is large. In contrast to the assignment or transportation prob-
lems, the presence within a problem of elements which resemble the structure of the
TSP will lead the modeler to expect that the problem will be hard to solve. How-
ever, by introducing special techniques larger problems can be solved,cf.Padberg &
Rinaldi (1987,[442], 532-cities) or Applegateet al. (2007,[30], 85,900 cities). Note
the technology increase between 1987 and 2007.

An application which is described in Vasquez-Maeques (1991,[575]) makes use
of a model based on the TSP to allocate arrival slots to aircraft. Bohoris & Thomas
(1995,[95]) describe a routing model which involves collection and depot staffing.

7.2.1 Postman Problems

The problem of finding a single route which covers each road ina network and re-
turns to the starting point (such as might be required for a postal delivery route)
while minimizing the total distance traveled is known as thechinese postman prob-
lem, in tribute to its originator Kwan Mei-Ko (1962,[405]). It turns out that this
problem can be solved without the use of LP or ILP techniques but by using an al-
gorithm of Edmonds & Johnson (1973,[175]). However, if we place a limit on the
number or length of roads that can be covered in a single routeand hence force
the complete network to be covered in several stages, we havea problem known
as thecapacitated chinese postman problem, which is much harder to solve. Eglese
(1994,[176]) describes an application of the capacitated chinese postman problem
to the scheduling of vehicles undertaking winter gritting of roads.

7.2.2 Vehicle Routing Problems

In the TSP one has to compute an optimal sequence of nodes thatminimizes the
costs of visiting all the nodes that make up a path, starting from a default source
node and possibly returning to this node. In vehicle routingproblems (VRPs,cf.
Toth & Vigo (2002,[565]), Laporteet al. (2013,[365]), Toth & Vigo (2014,[566]) or
Cacchianiet al. (2020,[113])) the task is to visit these nodes (depots, cities, locations
of customers, etc.) using one or several fleets of vehicles. This essentially involves
two major subtasks: A subset of nodes has to be allocated to a vehicle establishing
a route or path, and over this subset a TSP has to be solved.

VRPs come in many flavors depending on the practical situation; cf. Irnich et
al. (2014,[293]). Usually, they are subject to resource constraints (vehicle-specific
travel times from one node to another node, weight and volumeassociated with



214 Types of Mixed Integer Linear Programming Problems

Fig. 7.3 Vehicle routing and dispatching. The dispatcher has a difficult life allocating driving des-
tinations to vehicles, constructing tours, and allocating drivers to vehicles. Produced for this book
by Diana Kallrath, Copyright ©2020.

the carrying load as, for instance, in Baldacciet al. (2010,[47])) and time-window
constraints (time intervals for pickup and delivery as, forinstance, in Desaulnierset
al. (2001,[162])). Vehicles can serve only one route or severalroutes.

Exact algorithms as in Toth & Vigo (2002,[564]) or Mingozziet al.(2013,[412]),
or B&B as in Toth & Vigo (2002b,[563]) and B&C [cf. Wenger (2003,[582])] can
work up to a few thousand nodes. Larger problem instances areusually solved by
heuristics and metaheuristics.

While the model formulations are beyond what we want to host inthis section,
we want to stress that they support dispatchers in their difficult job – see Fig. 7.3 –
allocating driving destinations to vehicles, constructing tours, and allocating drivers
to vehicles – and meeting many constraints.

7.2.3 Case Study: Heating Oil Delivery

To illustrate real-world TSP and VRP problems, let us consider the heating oil de-
livery problem presented and formulated by Guéretet al.(2002,[254]). A fuel truck
fills its tank – its capacity isC – at a refinery (the depot) and delivers heating oil to
clients. The total number of kilometers driven must be minimized.



7.2 The Traveling Salesman Problem 215

The depot and the client locations establish the setS = {1, ...,S} of sites. By
definition, we identify site 1 as the depot. The locations of clients are then the subset
C = {2, ...,S} ⊂ S . We introduce binary variablesδ i j that take the value 1 if site
i immediately precedes sitej in a tour, and 0 otherwise. LetDi j be the distance
between two sitesi and j, andRi the requested quantity ordered by clienti with
R1 = 0.

The truck’s finite capacityC puts the problem beyond a TSP problem. Therefore,
we introduce variablesqi representing the total amount of oil delivered on the route
to previous clients and clienti. For example, if client 10 gets its oil delivered by a
truck driving route 1−3−11−10−6−1, thenq10 = R3+R11+R10. If the total
demand∑i∈CRi exceedsC, the truck has to do several tours,i.e., it drives back to the
depot and refills its tank before serving the next client. Thus, a tour is a sequence of
sites starting and ending with the depot.

With these data and variablesδ i j andqi , we formulate the following model. The
objective (7.2.12) of this problem is to minimize the total number of kilometers
driven,i.e.,

min ∑
i∈S

∑
j∈S ,i 6= j

Di j δ i j . (7.2.12)

Every client location has to be served once. This is expressed through the two as-
signment equalities

∑
i∈S ,i 6= j

δ i j = 1 , ∀ j ∈ C ; ∑
j∈S , j 6=i

δ i j = 1 , ∀i ∈ C (7.2.13)

that make the delivery enter and leave every client locationexactly once.
The quantityqi must be at least as large as the quantity ordered by clienti and

within the capacity limitC of the tankers

Ri ≤ qi ≤C , ∀i ∈ C . (7.2.14)

Furthermore, if clienti is the first of a tour, thenqi is equal to the quantity ordered by
this client. This constraint is expressed through the two sets of inequalities (7.2.14)
and

qi ≤C+(Ri −C)δ 1i , ∀i ∈ C . (7.2.15)

Indeed, ifi is the first client of a tour, thenδ 1i = 1 and, after simplification, (7.2.15)
is equivalent to

qi ≤ Ri , ∀i ∈ C . (7.2.16)

From (7.2.16) and (7.2.14) it follows thatqi is equal to the demand of clienti. If i is
not the first of a tour,δ 1i = 0 and (7.2.15) is equivalent to

qi ≤C, (7.2.17)

which is redundant as it is already expressed in constraint (7.2.14). Let us now
consider the case wherei is not the first customer of the tour. Thenqi must equal the
sum of quantities delivered between the depot andi inclusively. This means that if



216 Types of Mixed Integer Linear Programming Problems

client j comes after clienti in a tour,q j must be equal to the quantity delivered on
the tour from the depot toi, plus the quantity ordered byj. This relation is stated by

q j ≥ qi +Rj −C+Cδ i j +(C−Rj −Ri)δ ji , ∀{(i, j) ∈ C ×C |i 6= j}. (7.2.18)

If j is the immediate successor ofi in a tour, thenδ i j = 1 andδ ji = 0, and (7.2.18)
is equivalent to (7.2.19). Indeed, we have

q j ≥ qi +Rj . (7.2.19)

When j does not come immediately afteri, constraint (7.2.18) remains valid. Ifj is
the immediate predecessor ofi, inequality (7.2.18) becomes

q j ≥ qi −Ri . (7.2.20)

This inequality means that the quantity delivered from the refinery up to j is not
less than the quantity delivered between the depot and the successori of j on the
tour, a quantity that needs to be reduced by the delivery ati. If j is the immediate
predecessor ofi, theni is the immediate successor ofj. By swapping the indices in
(7.2.19), in addition to (7.2.20) we obtain the inequality

qi ≥ q j +Ri . (7.2.21)

The combination of inequalities (7.2.20) and (7.2.21) implies

qi = q j +Ri . (7.2.22)

If i and j are not next to each other on a tour, we obtain

q j ≥ qi +Rj −C. (7.2.23)

As the terms on the right hand side of the inequality sign are less than or equal to
Rj , (7.2.23) is redundant as it is subsumed by the constraint (7.2.14) Note that the
assignment of variablesqi to every sitei guarantees that the capacity limits of the
tankers are not exceeded whilst making any tour impossible that does not include
the depot. Finally, the model is completed by

qi ≥ 0 , ∀i ∈ C , (7.2.24)

enforcing that the variablesqi are non-negative, and

δ i j ∈ {0,1} , ∀{(i, j) ∈ S ×S |i 6= j}, (7.2.25)

expressing that theδ i j are binary variables.



7.3 Facility Location Problems 217

MCOL containsvehRoute.mos, an implementation of this problem for some ex-
ample data1 with order demandsR= 1000·(0,14,3,6,16,15,5) liters for six clients,
distances (symmetric in this example) between sites

s/s 1 2 3 4 5 6 7
1 0 148 55 32 70 140 73
2 148 0 93 180 99 12 72
3 55 93 0 85 20 83 28
4 32 180 85 0 100 174 99
5 70 99 20 100 0 85 49
6 140 12 83 174 85 0 73
7 73 72 28 99 49 73 0

,

and the truck capacityC = 39,000 liters leading to the objective function value
and distance driven of 497. During its first tour specified by 1−3−6−2−7−1
the delivers 37,000 liters to four clients: 2,3,6, and 7. 22,000 liters are delivered
to clients 4 and 5 during the truck’s second tour 1−4−5−1. Note that tours are
not explicit model objects; they are rather established in post-processing. Tourk is
finished when the truck returns to the depot, and tourk+1 begins when the truck
leaves the depot again.

7.3 Facility Location Problems

7.3.1 The Uncapacitated Facility Location Problem

In distribution and logistics one problem that arises is that of locating a set of facil-
ities, such as warehouses, each at one of a series of locations, so that clients may
be supplied with goods from these locations in the most efficient way possible. In
theory it may be possible to supply all customers from just one location, but this
may be unwise because costs of distribution will be high to customers situated a
long way from this one location. At the other extreme, it may be possible to set up
many facilities so that each customer is supplied from a nearby location, but as costs
will be associated with the opening up of each facility it is unlikely to be economic
to use a large set of facilities. Thus the major decision to betaken involves jointly
deciding how many facilities should be set up and at which locations. This problem
is termed theuncapacitated facility location problem.

In a typical instance of the problem, 20 locations might be considered as poten-
tial sites for renting warehouse space and 1,000 commercialcustomers are to be
supplied with building materials such as bricks, cement andtimber from these loca-
tions. Sites on the outskirts of major industrial areas are favored locations because

1 The data e4deliver.dat and the Mosel implementation are from
e4deliver.mos in FICO Xpress Optimization Examples Repository
(https://examples.xpress.fico.com/example.pl?id=moselapp5 4).



218 Types of Mixed Integer Linear Programming Problems

they are inexpensive, and have good road communication networks. As the materi-
als are heavy, it is unwise to concentrate materials at only afew locations, but it is
unclear how many locations should be used.

In other instances of the problem we may wish to collect itemsfrom the cus-
tomers, rather than deliver to them. It may also be best not tosupply/deliver all
the requirements for a customer from one location, but rather to supply/deliver a
fraction from each of several locations.

A general instance of the uncapacitated facility location problem may be formu-
lated as follows. First we introduce indices:

i ∈ {1,2, ...,m} : set of clients
j ∈ {1,2, ...,n} : set of locations

(7.3.1)

and data:

Cj : the cost of locating a facility at locationj
Hi j : the cost of satisfying demand of clienti from location j

(7.3.2)

We introduce binary variables

δ j :=

{
1 , if a facility is placed at locationj
0 , otherwise

(7.3.3)

and continuous variablesyi j ≥ 0 measuring the fractional quantity of demand of
client i that is satisfied from locationj. The objective includes set-up costs and
variables costs

min
n

∑
j=1

Cjδ j +
n

∑
j=1

m

∑
i=1

Hi j yi j (7.3.4)

The constraints are as follows. Each client must be completely supplied with no
surplus, and hence we have the constraint

n

∑
j=1

yi j = 1 , i ∈ {1,2, ...,m} (7.3.5)

and ifδ j = 0, thenyi j = 0 as a client can only be supplied from a location if a facility
is already located there,i.e.,

yi j −δ j ≤ 0 , i ∈ {1,2, ...,m}; j ∈ {1,2, ...,n} (7.3.6)

An application which makes use of a variation of the above model is used in Robin-
sonet al. (1993,[472]) where the problem is one of distribution usingnetworks.



7.4 Set Covering, Partitioning and Packing 219

7.3.2 The Capacitated Facility Location Problem

In the uncapacitated facility location problem it was assumed that once a facility had
been opened up at a particular location then it could supply/deliver all the customers’
requirements. This is perhaps unrealistic, and it might be expected that there would
be further limitations at individual locations on amounts supplied/delivered,e.g.,
because of limitations on storage capacities at each site. When capacity limitations
are introduced the problem is termed thecapacitated facility location problem.

The previous formulation in Section 7.3.1 may be adapted to provide a capaci-
tated problem.yi j is replaced by the binary variableγ i j in the formulation, included
in the objective function, and no longer do we permit fractional quantities of de-
mand. The constraint (7.3.5) is replaced by

n

∑
j=1

γ i j = Di , i ∈ {1,2, ...,m}, (7.3.7)

whereDi is the demand of clienti and (7.3.6) is replaced by

m

∑
i=1

γ i j −U jδ j ≤ 0 , j ∈ {1,2, ...,n}, (7.3.8)

whereU j is the capacity of facilityj.
An application which makes use of a facility location model similar to the above

appears in Spenceret al. (1990,[530]). The application concerns the selection of
sites for telemarketing centers. An application in the regional water industry de-
scribed by Baker & Baia (1995,[43]) uses modifications of B&Broutines to solve
problems of capacitated location. The bookLocation Scienceby Laporteet al.
(2015,[364]) is recommend for further reading.

7.4 Set Covering, Partitioning and Packing

7.4.1 The Set Covering Problem

Let us consider a problem where up to eight depots (j = 1,2, . . . ,8) can be used
to supply three sets (i = 1,2,3) of customers with specialized telecommunications
equipment. A set-up cost is associated with each depot chosen to be used. Due to the
river geography illustrated in Fig. 7.4, each set of customers can be supplied only
by particular depots. Customers in set 1 are on the North sideof the river and can
receive deliveries from depots 1, 2, 3 and 4; depot 1 is just onthe South side of the
bridge leading to a short driving distance. The table below shows which depots may
be used to supply each set of customers. The problem is to opensufficient depots,
at minimum total cost, to ensure that all customers are supplied, i.e., are covered.
A possible solution to this problem just stated would be to choose depots 4 and 8



220 Types of Mixed Integer Linear Programming Problems

river

D1
D2

D3

D4

D8

D6

D5

D7

customer set 1

customer set 3

customer set 2

B
ri

dge

B
rid

ge

Fig. 7.4 A set covering problem. The
river separates the customer set on the
North from those on the South. Due to
the river and bridges, the customers sets
can be served by the following depots:
customer sets depots

1 1, 2, 3, 4
2 4, 6, 8
3 1, 5, 7, 8

Note that depots 4 and 8 alone can cover
all customer sets; same for (1,8) and
(1,4).

(without reference to any costs), as it only involves two depots and it is clear that no
single depot can supply all three customers.

A problem of the above type is referred to as aset covering problem(SCP),i.e.,
the problem of “covering” at minimal total cost, a series ofm subsets ofn elements
by choosing at least one element from each subset. The problem may be stated as an
ILP problem by introducing binary variables,δ j , to indicate if a particular element
j, in our example a depot, is chosen or not. Let the data be:

Cj : the cost of choosing elementj

Ai j : =

{
1, if elementj occurs in subseti
0, otherwise.

(7.4.1)

The formulation is then:

min
n

∑
j=1

Cjδ j (7.4.2)

subject to the covering requirement that at least one element must be chosen from
each subset

n

∑
j=1

Ai j δ j ≥ 1 , i ∈ {1,2, ...,m}, (7.4.3)

and the domain conditions

δ j ∈ {0,1} , ∀ j ∈ {1,2, ..n}. (7.4.4)

In this formulation eachAi j is anm×n matrix of binary entries. The main constraints
of the problem ensure that each subset is covered by guaranteeing that at least one
variable that occurs in it is non-zero.

Corresponding to Fig. 7.4, for the three subset example we have

Ai j =




1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 1


 . (7.4.5)



7.4 Set Covering, Partitioning and Packing 221

If we further assume that all cost coefficients are equal,i.e., Cj = 1 for all j, the
problem becomes one of selecting the minimum number of covering depots (sub-
sets) as opposed to a minimum-cost collection of covering depots. With these data,
we get the detailed problem formulation

min δ 1+δ 2+δ 3+δ 4+δ 5+δ 6+δ 7+δ 8 (7.4.6)

subject to the cover inequalities

δ 1 +δ 2 +δ 3 +δ 4 ≥ 1
δ 4 +δ 6 +δ 8 ≥ 1

δ 1 +δ 5 +δ 7 +δ 8 ≥ 1
(7.4.7)

and the domain conditions

δ j ∈ {0,1} , ∀ j ∈ {1,2, ..,n}. (7.4.8)

An optimal solution to this problem isδ 4 = δ 8 = 1, with all other variables equal to
zero and an objective function value of 2.

In a more abstract description, and somewhat different fromour introduction
above, the set covering problem is about a setU , n subsetsS j ⊆U and the question
whether for a natural numberk ≤ n a union ofk or fewer subsetsSj exists, which
corresponds to the setU (cover). Formulated as an optimization problem, one wants
to determine a coverage with the smallest possible number ofsubsetsSj , or, if costs
Cj are assigned to the subsetsSj , a coverage with lowest costs.

There are many practical applications of this problem, including assembly line
balancing (Salveson (1955,[492]), locating emergency facilities (Toregaset al.
(1971,[562])) and crew scheduling (Baker & Fisher (1981,[44])). For practical pur-
poses, SCP instances with up ton variables andmconstraints can be solved to opti-
mality; approximation methods are often used for larger instances. With the increas-
ing power of MILP solvers,n andm increase over time. The set covering problem
has come into prominence of late because of its use to schedule airline crews. This
application leads to large problems, but these can be solved, and the solutions ob-
tained allow airlines to save sums equivalent to many millions of pounds by efficient
policies of crew scheduling. Such problems typically have over 100,000 variables.
Further discussion is contained in Ryan (1992,[487]). Because of the financial im-
pact of this scheduling area, much research is under way to find fast methods for
solving set covering problems.

7.4.2 The Set Partitioning Problem

Theset partitioning problem(SPP) is a variation of the set covering problem where
the inequalities of SCP are replaced by equations. Thus exactly one element from
each subset must be chosen.



222 Types of Mixed Integer Linear Programming Problems

Let us use the situation of the previous section. The problemis now to select a
minimum number of depots such that each customer may be supplied by exactly
one of the selected depots. As before the set-up cost associated with each depot
chosen to be used will be 1. Each set of customers can be supplied by particular
depots only as given in Fig. 7.4. The requirement is to open exactly one depot for
each set of customers at minimum total cost. For the three subset example given, the
formulation is:

min δ 1+δ 2+δ 3+δ 4+δ 5+δ 6+δ 7+δ 8 (7.4.9)

subject to the partitioning equalities

δ 1+δ 2+δ 3+δ 4 = 1 (7.4.10)

δ 4+δ 6+δ 8 = 1

δ 1+δ 5+δ 7+δ 8 = 1

and domain conditions

δ j ∈ {0,1} , ∀ j ∈ {1,2, ...,8}. (7.4.11)

An optimal solution to this problem isδ 2 = δ 8 = 1, with all other variables equal
to zero. Note that the optimal solution of the previous section,δ 4 = δ 8 = 1 violates
the second equalityδ 4+δ 6+δ 8 = 1.

The set partitioning problem has an application in airline crew scheduling, where
each set represents flight legs that must be flown and each variable represents a
feasible round-trip rotation for a crew. Each subset then represents a collection of
feasible allocations of crews, exactly one of which must be chosen. Some applica-
tions are described in Arabeyreet al. (1969,[31]), Baker & Fisher (1981,[44]) and
Gershkoff (1989,[222]).

7.4.3 The Set Packing Problem

Theset packing problemis closely related to the set covering problem. In this prob-
lem we also have a series of subsets of a set of elements. Each element has a value,
and we wish to choose at most one element from each subset to maximize the total
value of the elements chosen.

Consider a problem in which three machines are available andeach machine can
make at most one of a restricted series of items in any period.Each item can be
made on a single machine. As in the previous two sections, letthe data be as in the
table below.



7.4 Set Covering, Partitioning and Packing 223

MachineItem Types
1 1,2,3,4
2 4,6,8
3 1,5,7,8

. (7.4.12)

Let the values of all item types be 1, then a formulation of theproblem to manufac-
ture as many different item types as possible is

max δ 1+δ 2+δ 3+δ 4+δ 5+δ 6+δ 7+δ 8 (7.4.13)

subject to the packing requirement that at most one item may be chosen from each
subset of item types,i.e.,

δ 1+δ 2+δ 3+δ 4 ≤ 1 (7.4.14)

δ 4+δ 6+δ 8 ≤ 1

δ 1+δ 5+δ 7+δ 8 ≤ 1

and the domain conditions

δ j ∈ {0,1} , ∀ j ∈ {1,2, ...,8}. (7.4.15)

An optimal solution, one of many, isδ 2 = δ 6 = δ 7 = 1, with all other variables zero
and the objective equal to 3.

7.4.4 Additional Applications

Set covering is involved in a model built to schedule vehicles and manpower which
is described in Blaiset al. (1990,[89]). A set partitioning approach is used to pair
crews for airlines in an application described in Anbilet al. (1991,[20]).

7.4.5 Case Study: Airline Management at Delta Air Lines

A case study will now be discussed that describes the use of extended covering and
packing type models. The application is in airline management at Delta Air Lines
and is described by Subramanianet al. (1994,[549]).

The problem facing the company is that if an airline uses too small an aircraft
then it may lose potential customers, while if it uses too large an aircraft it may be
underutilized, which is wasteful and therefore expensive.The ideal is to have the
right aircraft available in the right location at the right time. A model was developed
to assign fleet types to flight legs. The model is organized to schedule a single day,



224 Types of Mixed Integer Linear Programming Problems

which is typical, and forms part of a continuous cycle. In practice, this will be only
partially true and adjustments are required,e.g., for weekends.

A simplified version of the model appearing in Subramanianet al. (1994,[549])
will now be given. Let us start by defining the indices

i ∈ C , the set of cities
k∈ F , the set of aircraft types
l ∈ L , the set of flight legs
t ∈ T , the set of time periods

(7.4.16)

and the subsetsLdit ⊂ L andLoit ⊂ L

Ldit , the set of flight legs whose destination is cityi in periodt
Loit , the set of flight legs whose origin is cityi in periodt.

(7.4.17)

Time periods are minutes and run across different days.
The relevant data are

Ckl : cost if an aircraft of typek flies legl
Sk : maximum number of available aircraft of typek.

(7.4.18)

If the aircraft cannot fly legl then we setCkl = ∞. We need the binary variables ,
δ kl ∈ {0,1} defined as

δ kl :=

{
1 , if an aircraft of typek is assigned to legl
0 , otherwise

,
∀k∈ F
∀l ∈ L .

(7.4.19)

Furthermore, we introduce the integer variables

αkit ∈ IN0 the number of aircrafts of typek on the ground
at city i from time periodt to period timet +1,

µk ∈ IN0 the number of aircrafts of typek that are used.
(7.4.20)

The objective is to minimize total costs,i.e.,

∑
k∈F , l∈L

Cklδ kl (7.4.21)

subject to

αk,i,t+1 = αk,i,t−1+ ∑
l∈Ldit

δ kl − ∑
l∈L oit

δ kl ,
k∈ F
i ∈ C

t ∈ T ,
(7.4.22)

i.e., the number of aircraft on the ground at cityi in time periodt + 1 is equal to
the number of aircraft on the ground at cityi in time periodt −1 plus all incoming
aircraft to cityi in periodt minus all departing aircraft from cityi in time periodt.
Next we model



7.5 Satisfiability 225

∑
k∈F

δ kl = 1 , l ∈ L , (7.4.23)

which states that exactly one aircraft is assigned to cover each leg. Furthermore, the
number of aircraft in use must balance,i.e.,

∑
l∈L

δ kl + ∑
i∈C ,t∈T

αkit −µk = 0 , k∈ F . (7.4.24)

Next, the number of aircraft of typek that are used must not exceed the maximum.

µk ≤ Sk. (7.4.25)

Finally, if the destination of legl1 and the origin of legl2 are identical then the
constraints

δ kl1 −δ kl2 = 0 , k∈ F (7.4.26)

must hold.
The constraints (7.4.26), as for many in the formulation, have indices that are

specified in a general way, but such constraints are only valid for certain appropriate
values of the indices and summations are only performed overappropriate values
of indices. The notation has been intentionally simplified here to give the reader the
“flavor” of the formulation. For full details the reader mustconsult Subramanianet
al. (1994,[549]).

Models were developed for Delta Air Lines consisting of tensof thousands of
constraints and variables (Subramanianet al., 1994,[549]). Several different objec-
tive functions were also used and soft constraints were alsoincorporated. The model
is able to perform the schedule changes rapidly; the planners can then consider the
solutions. It was reported in Subramanianet al. (1994,[549]) that use of the model,
called “coldstart”, was expected to save Delta Air Lines $(US)300 million over a
three year period.

7.5 Satisfiability

Consider the following problem. A child is presented with numbered bags of sweets
from which she may choose as many or as few bags as she wishes toher own sat-
isfaction, but with some restrictions. There are four bags of sweets and the child is
told:

“you may not choose all three of the bags 1, 2 or 3” and
“you may not choose all three of the bags 2, 3 or 4”.

How should she choose?
Clearly in each of the two conditions one bag of sweets must not be chosen. If

the child wishes to choose as many bags as possible, it would be advantageous to
avoid choosing bag 2 (or 3), because then all the other three bags could be chosen.



226 Types of Mixed Integer Linear Programming Problems

The above is a simple case of thesatisfiability problem. The satisfiability prob-
lem is the problem of finding a solution to a series of conditions, each defined using
binary variables, each of which must be satisfied. Each condition comprises a subset
of binary variables and to satisfy each condition at least one of its set of variables
must be set to zero. Thus a typical problem would be to find a solution to the con-
straints

δ 1+δ 2+δ 3 ≤ 2 , δ 2+δ 3+δ 4 ≤ 2. (7.5.1)

Clearly such a problem can easily be solved by

δ 1 = 0 , δ 2 = δ 3 = 1 , δ 4 = 0. (7.5.2)

To make the problem more interesting, we introduce a furtherrestriction that

δ 1 = 1−δ 4 (7.5.3)

and so this solution is not valid. The expression 1− δ 4 is more typically written
−
δ

or δ ′
4.

The more typical form of satisfiability problem is to find a solution satisfying a
set of constraints such as the following:

δ 1+δ ′
2+δ 3 ≤ 2

δ 2+δ 3+δ 4 ≤ 2
δ 1+δ 2+δ ′

3 ≤ 2
δ 1+δ 4 ≤ 1.

(7.5.4)

At the moment this problem has no objective function, nor is it known if a feasi-
ble solution exists (butδ 1 = δ 4 = 0, and any values for the other variables clearly
provides a feasible solution). To make the problem into a more straightforward ILP
problem we may introduce an extra binary variable,β j , into each constraint and an
objective function as follows:

min β 1+β 2+β 3+β 4 (7.5.5)

subject to
δ 1+δ ′

2+δ 3−β 1 ≤ 2
δ 2+δ 3+δ 4−β 2 ≤ 2
δ 1+δ 2+δ ′

3−β 3 ≤ 2
δ 1+δ 4−β 4 ≤ 1.

(7.5.6)

A value of 1 for anyβ variable ensures that the (modified) constraint in which it
occurs is satisfied. The problem is now an ILP problem with allvariables required
to be{0,1}. For this problem, if the objective function has optimal value zero then
a feasible solution has been found to the original satisfiability problem.

The general form of a constraint in a satisfiability problem is



7.6 Bin Packing 227

∑
i∈I

γ i ≤ |I |−1, where γ i = δ i , or γ i = 1−δ i , δ i ∈ {0,1} , i ∈ I . (7.5.7)

7.6 Bin Packing

7.6.1 The Bin Packing Problem

Consider our earlier encounter with the notorious burglar.After committing the
crime it might have been true that the burglar was not faced with dividing the loot
up into three containers, but rather he could decide how manycontainers would be
appropriate and would then ship these off by sea to destinations beyond jurisdic-
tion. Once that was decided, he would allocate each item to exactly one container.
It is likely that his choice of how many containers to use willbe governed by how
much he can pack into each container. The problem that faces him is termed thebin
packing problem.

The bin packing problem can be stated [cf. Martello & Toth (1990,[398])] as:
givenn items indexed byj andn identical bins indexed byi, with data

C : the capacity of each bin
Wj : the weight of itemj

(7.6.1)

assign each itemj to exactly one bini so that the total weight of the items in each
bin is less than or equal toC and the number of bins used is a minimum.

Here we need two sets of decision variables. We shall use the variablesβ to
indicate if a particular bin is to be used or not and the variablesδ to indicate if an
item is assigned to a particular bin or not,i.e.,

β i :=

{
1 , if bin i is used
0 , otherwise

, ∀i ∈ {1,2, ...,n} (7.6.2)

and

δ i j :=

{
1 , if item j is assigned to bini
0 , otherwise

,
∀i ∈ {1,2, ...,n}
∀ j ∈ {1,2, ...,n} . (7.6.3)

The formulation is then:

min
n

∑
i=1

β i (7.6.4)

subject to the requirement that the total weight packed intoa bin must not exceed
its capacity, and is zero if the bin is not used

n

∑
j=1

Wjδ i j ≤Cβ i , i ∈ {1,2, ...,n} (7.6.5)



228 Types of Mixed Integer Linear Programming Problems

and that each item must be assigned to exactly one bin,i.e.,

n

∑
i=1

δ i j = 1 , j ∈ {1,2, ...,n}, (7.6.6)

where

0≤Wj ≤C , j ∈ {1,2, ...,n} , C> 0. (7.6.7)

7.6.2 The Capacitated Plant Location Problem

A further variation on problems involving the location of facilities and serving of
customers will now be considered. It is a problem related to the bin packing prob-
lem, thecapacitated plant location problem, that of deciding which plants to open
to satisfy customers and assigning each customer to a sub-unit, K j of a plant j.
Cornuejolset al.(1977,[138]) describe an application of the problem to the banking
sector. Leung & Magnanti (1989,[373]) provide a vertex packing formulation of the
constraints of the problem. The formulation uses two sets ofvariables:

β j :=

{
1 , if plant j is open
0 , otherwise

, ∀ j ∈ N (7.6.8)

and∀i ∈ M , ∀ j ∈ N , ∀k∈ K j :

δ i jk :=

{
1 , if customeri is assigned to sub-unitk of plant j
0 , otherwise,

(7.6.9)

whereK j = {1,2, ...,k j} is a dependent index set. The following constraints are
present.

Each customer can be assigned to at most one sub-unit of one plant

∑
j∈N

∑
k∈K j

δ i jk ≤ 1 , ∀i ∈ M . (7.6.10)

A customer can only be assigned to a sub-unit of a plant if the plant is open,i.e.,

δ i jk ≤ β j i ∈ M , j ∈ N , k∈ K j . (7.6.11)

Of course, an objective function will also be required, but we do not specify this
here.



7.7 Clustering Problems 229

7.7 Clustering Problems

This section will discuss the capacitated clustering problem and the relatedp-
median problem. These problems are similar to the facility location problems in-
troduced earlier, but are distinguished here to allow the reader to relate to other
authors’ use of the terminology. They will be presented in a somewhat abstract form
to make the distinction from other similar problems more obvious.

7.7.1 The Capacitated Clustering Problem

The capacitated clustering problem (CCP) is characterizedby (m,n, p) for p ≤ n,
p≤mwith the following: Allocatenpoints uniquely topout ofmclusters so that the
capacity of each cluster is not violated, and the points are allocated to maximize the
homogeneity of points within the clusters while simultaneously trying to maximize
the heterogeneity of the points between clusters [see for instance Mulvey & Beck
(1984,[422]), Osman & Christofides (1994,[439])]. Homogeneity of points within
clusters is obtained by minimizing the sum of distancesDi j from each pointi to the
cluster center,j, to which it is allocated. Such problems often arise from positioning
depots (the clusters) to supply groups of customers (the points), located at particular
sites, in order to minimize the total transportation cost ofsupplying the customers.

We formulate the problem using the following indices

i ∈ N = {1, . . . ,n} , the set of points
j ∈ M = {1, . . . ,m} , the set of clusters

(7.7.1)

and data

Cj : the capacity of clusterj
Di j : the distance between pointi and the centre of clusterj
Wi j : the weight of pointi if allocated to clusterj

. (7.7.2)

It may be formulated using two sets of variables:

β j :=

{
1 , if cluster j is used
0 , otherwise

, ∀ j ∈ {1,2, ...m}, (7.7.3)

and

δ i j :=

{
1 , if point i is assigned to clusterj
0 , otherwise

,
∀i ∈ {1,2, ...,n}
∀ j ∈ {1,2, ...,m} . (7.7.4)

Then the objective function and constraints are given by

min
n

∑
i=1

m

∑
j=1

Di j δ i j (7.7.5)



230 Types of Mixed Integer Linear Programming Problems

subject to the requirement that the weight of points assigned to a cluster must not
exceed its capacity,i.e.,

n

∑
i=1

Wi j δ i j ≤Cjβ j , ∀ j ∈ {1,2, ...,m}, (7.7.6)

and that each point must be assigned to exactly one cluster,i.e.,

m

∑
j=1

δ i j = 1 , ∀i ∈ {1,2, ...,n}, (7.7.7)

and the total number of clusters we can use is fixed

m

∑
j=1

β j = p. (7.7.8)

It is useful to add the following constraints as this will tighten the formulation:

δ i j ≤ β j , ∀i ∈ {1,2, ...,n} ,∀ j ∈ {1,2, ...,m}. (7.7.9)

This problem has similarities to the bin packing problem.

7.7.2 The p-Median Problem

Thep-median problem –cf. Christofides & Beasley (1982), [129]) or MCOL/GAMSLIB/pmedian.gms
for an implementation – is the problem of locatingp facilities (medians) on a net-
work so as to minimize the total cost of allocating vertices (e.g., sales points) to
these facilities. The facilities (medians) are themselveschosen from the set of ver-
tices. This problem is clearly similar to CCP. The principaldifference is that each of
the p facilities will also be vertices. LetN = {1, . . . ,n} be the set of vertices. The
problem can be formulated in terms of decision variables asδ i j ∈ {0,1}, where

δ i j :=

{
1 , if vertexi is allocated to vertexj
0 , otherwise

, ∀i, j ∈ N . (7.7.10)

Note thatδ i j = 1 implies that j is a median vertex.Di j is the cost (which may
be determined by distance) of allocating vertexi to vertex j (when j is a median
vertex).

The formulation is then

min
n

∑
i=1

n

∑
j=1

Di j δ i j (7.7.11)

subject to



7.8 Scheduling Problems 231

n

∑
i=1
i 6= j

δ i j ≤ (n−1)δ j j , ∀ j ∈ N , (7.7.12)

which ensures that nothing can be allocated to a vertexj unless that vertex is a
median (this event is flagged by havingδ j j = 1)

n

∑
j=1

δ i j = 1 , ∀i ∈ N , (7.7.13)

which ensures that each vertexi is allocated to some medianj, and

n

∑
j=1

δ j j = p, (7.7.14)

which ensures that exactlyp vertices are medians.

7.8 Scheduling Problems

Scheduling problems arise where it is required to organize work, operations, tasks or
people into some time order. In many problems involving scarce resources it will be
possible to determine if certain tasks can be performed,i.e., a feasible schedule ex-
ists, but then there is the associated problem of determining a working schedule that
can be used in practice. Many different types of scheduling problem may be formu-
lated and solved as ILP problems. Surveys of research in the area and applications
appear in Lenstraet al. (1977,[371]), Potts & Van Wassenhove (1992,[456]) and
Blazewiczet al. (1993,[90]). Three types of scheduling problems are introduced by
means of examples; an additional one is investigated in moredetail in a case study.
It appears, however, that for solving scheduling problems,the most promising ap-
proaches using CP technique, as long as the objective function is simple, but for
more complicated ones,e.g., for tardiness, or net present value (NPV) LP/MILP
approaches seems preferable.

7.8.1 Example A: Scheduling Machine Operations

The following example illustrates a typical small scheduling problem. A factory
produces two components by using time on three different machines. Each compo-
nent is produced by six sequential operations. The times of these operations and the
required machine are given in the table. Only one operation at a time may be carried
out on a machine and the order of operations must be adhered to.



232 Types of Mixed Integer Linear Programming Problems

Operation 1 2 3 4 5 6
Machine required for component 11 2 1 2 1 1
Time for component 1 8 6 7 9 8 2
Machine required for component 23 2 3 2 3 3
Time for component 2 7 5 9 8 6 5

. (7.8.1)

The objective is to schedule with minimum total makespan, where makespan is
defined as the time by which both components have been produced. Let ti be the
time at which component 1 commences operationi, si the time at which component
2 commences operationi(i ∈ {1,2,3,4,5,6}), andebe the makespan. There are two
types of constraints. The first are simple precedence constraints:

t2 ≥ t1+8, t3 ≥ t2+6, t4 ≥ t3+7 (7.8.2)

t5 ≥ t4+9, t6 ≥ t5+8, e≥ t6+2

and

s2 ≥ s1+7, s3 ≥ s2+5, s4 ≥ s3+9 (7.8.3)

s5 ≥ s4+8, s6 ≥ s5+6, e≥ s6+5.

e is the larger of two completion timesviz. t6 + 2 ands6 + 5. The requirement is
handled by two constraints, modeling thate is larger than each of the completion
times. The effect is thatewill be equal to the larger of the two completion times, as
e is being minimized in the objective function.

Solving scheduling problems requires conflict resolution as different processes or
jobs compete for scarce resources. As components 1 and 2 haveto compete for the
use of machine 2, one or other must take precedence to avoid conflict. The possible
conflicts, denoting “component” by cpt and ’operation’ by op, are (cpt 1 op 2, cpt 2
op 2), (cpt 1 op 4, cpt 2 op 2), (cpt 1 op 2, cpt 2 op 4), (cpt 1 op 4, cpt 2 op 4). To
correspond to each of these four possible conflicts, we introduce a binary variables
δ i ∈ {0,1}, i = 1,2,3,4 such that

δ i :=

{
1 , if component 1 precedes component 2 at conflicti
0 , otherwise.

(7.8.4)

We then require the second type of constraint which will model conflict resolution.
A typical constraint requires us to model “either component1 completes operation
2 before component 2 or component 2 completes operation 2 before component 1”.
This corresponds to

either s2 ≥ t2+6 or t2 ≥ s2+5. (7.8.5)

To model
either− t2+s2+5≤ 0 or −s2+ t2+6≤ 0, (7.8.6)



7.8 Scheduling Problems 233

we note that the maximum time all operations can take to produce both components
consecutively is 80 units and introduce the constraints

−t2+s2+5≤ 80δ 1 , −s2+ t2+6≤ 80(1−δ 1). (7.8.7)

The complete set of constraints required to model conflict resolution is:

t2 ≥ s2+5−80δ 1 (7.8.8)

s2 ≥ t2+6−80(1−δ 1) (7.8.9)

t2 ≥ s4+8−80δ 2 (7.8.10)

s4 ≥ t2+6−80(1−δ 2) (7.8.11)

t4 ≥ s2+5−80δ 3 (7.8.12)

s2 ≥ t4+9−80(1−δ 3) (7.8.13)

t4 ≥ s4+8−80δ 4 (7.8.14)

s4 ≥ t4+9−80(1−δ 4). (7.8.15)

The objective function is
min e. (7.8.16)

This problem is typical of the smaller scheduling problems that can be formulated as
ILP models. As problems grow in size with more machines and more components
in conflict the problems become extremely difficult to solve as straightforward ILP
models.

7.8.2 Example B: A Flowshop Problem

The flowshop problem is the problem of schedulingN jobs in a machine shop con-
taining M machines, where each job has to be processed on every machine, and
every job follows the same ordering of machines as it is processed. Once each job
has been allocated a position in the schedule no change is allowed and jobs cannot
be subdivided. The objective of the problem is to minimize makespan.

A formulation of the flowshop problem is given in Wilson (1989,[596]) and Fig.
7.5 shows a typical schedule. This formulation is as follows, beginning with the
indices:

i ∈ I = {1, ...,N} , the set of jobs
j ∈ J = {1, ...,N} , the schedule positions for processing jobs
k∈ K = {1, ...,M} , the operation (machine) number.

(7.8.17)

The data are the processing timePik of job i on machinek. We introduce binary
variablesδ i j ∈ {0,1} such that



234 Types of Mixed Integer Linear Programming Problems

TIME

k - 1 k k + 1

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

Fig. 7.5 Gantt chart showing the schedule.

δ i j :=

{
1 , if job i is processed in schedule positionj
0 , otherwise,

(7.8.18)

and continuous variablessjk ≥ 0 representing the time at which the job in sched-
ule position j commences processing on machinek. Then we have the objective
function

min sNM +
N

∑
i=1

PiM δ iN (7.8.19)

subject to

N

∑
i=1

δ i j = 1 , ∀ j ∈ J , (7.8.20)

N

∑
j=1

δ i j = 1 , ∀i ∈ I , (7.8.21)

i.e., jobs must be uniquely positioned for scheduling. The constraints

sj+1,1 = sj1+
N

∑
i=1

Pi1δ i j , j = 1,2, ...,N−1 (7.8.22)

s11 = 0 (7.8.23)

and



7.8 Scheduling Problems 235

s1,k+1 = s1,k+
N

∑
i=1

Pikδ i1 , k= 1,2, ...,M−1 (7.8.24)

ensure that there is no idle time on either machine 1 or on job 1. The constraints

sj,k+1 ≥ sjk +
N

∑
i=1

Pikδ i j , j = 2,3, ...,N , k= 1,2, ...,M−1 (7.8.25)

ensure that the commencement of jobj on machine(k+ 1) is no earlier than its
finish time on machinek. Finally, the constraints

sj+1,k ≥ sjk +
N

∑
i=1

Pikδ i j , j = 1,2, ...,N−1 , k= 2,3, ...,M (7.8.26)

the commencement of jobj +1 on a machine must be no earlier than the finish time
of job j on the same machine.

Some idea of the difficulty of this problem is indicated by thefact that it con-
tainsN2 binary variables, and this will become cumbersome asN grows in size. An
instructive example based on Guéretet al. (2002,Heipcke2002a) is implemented in
MCOL/GAMSLIB/flowshop.gms.

7.8.3 Example C: Scheduling Involving Job Switching

A further scheduling problem arises whenjob switchingis involved,i.e., it is possi-
ble to commence one job and then switch to another before the first is complete. It
may be formulated in the style of the TSP.

The problem is to determine the sequence ofn jobs which must be completed
in sequence, such that the completion time of the last job is minimized. LetN =
{1, . . . ,n} be an index set, andCi j the cost of switching from production of jobi to
job j, and let

δ i j :=

{
1 , if job i immediately precedes jobj
0 , otherwise

, ∀i, j ∈ N, i 6= j. (7.8.27)

LetA represent the set of admissible possibilities ofi precedingj. Then the problem
formulation is

min ∑
(i, j)∈A

Ci j δ i j (7.8.28)

subject to

∑
(i, j)∈A

δ i j = n−1 (7.8.29)



236 Types of Mixed Integer Linear Programming Problems

as all jobs except the first in the sequence must have a predecessor

n

∑
i=1

δ i j ≤ 1 , ∀ j = 1,2, ...,n (7.8.30)

as each job must be preceded by at most one other,

n

∑
j=1

δ i j ≤ 1 , ∀i = 1,2, ...,n (7.8.31)

as each job must have at most one successor, and

∑
(i, j)∈S

δ i j ≤ |W|−1 , W ⊂ {1,2, ...,n} , 2≤ |W| ≤ n−1, (7.8.32)

whereS is the subset

S := {(i, j) ∈ A | i ∈W , j ∈W} . (7.8.33)

The last set of constraints is included to avoid illegal subsequences of jobs occurring,
and is similar to what was done in Section 7.2.

7.8.4 Case Study: Bus Crew Scheduling

The Citti-Bus Company Ltd. wants to cover some varying demand for drivers by a
set of crews who work 8 hour shifts with a one hour meal break. The day is divided
into hourly periods. There areNS= 12 possible shift types, all embedded in an 18
hour day lasting from 06.00 to 24.00. Different shift types,s, start at different times.
Shift 1 starts at 6am, shift 2 at 7am, and eventually shift 12 at 5pm. In general: shift
s starts at times+5 hours. To save money we want to run the buses at minimum
total cost.

To solve our problem by mathematical optimization let us check whether we
understood the problem completely. We want to derive a schedule which allocates
people to shifts. The problem is demand driven, if demand is high we need more
personnel, while late in the night or early in the morning there is low demand. Those
shifts covering the early morning hours or late night hours are the most costly ones
as the table below indicates

shift 1 2 3 4-8 9 10 11 12
time 6-13 7-14 8-15 9-20 14-21 15-22 16-23 17-24
costs 100 90 80 50 60 70 80 100

.

So we expect solutions with less personnel on the less attractive shifts and more
people on the mid-day shifts. When modeling real-world problems we should try
to have a clear idea of what economic driving force there exists in the model and



7.8 Scheduling Problems 237

what kind of results we anticipate. Sometimes deviations from our expectations may
force us to think again about our problem and its formulation.

Let t be the index of work hours,t = 1,2, ...,T. Since we have an 18 hour work
day, we setT = 18. So the time from 6am to 7am is referred to as the first work
hour,i.e., t = 1. Using the time index,t, shift sstarts whent = s. The data are

Cs : the cost of shifts
Rt : the required manning level in work hourt, and
Wh : the manning duties in each shift.

(7.8.34)

Note that in the requirements table work hourt in Rt refers to the absolute time
interval [t +5, t +6] andWh is an indication table with indexh ranging from 1 to 8.
It is set to 1 ifh is a working hour of a shift, and 0 otherwise. Let us have a look
at an example: if someone works 3 hours, then has a break, and then works 4 hours
this table looks as follows:

h 1 2 3 4 5 6 7 8
Wh 1 1 1 0 1 1 1 1

.

Alternatively, we could also define an indication tableBst which indicates whether
(if Bst = 1) shift s includes work hourt, or not(Bst = 0). At time t during the day
shift s is then in its(t − s+ 1)st hour of operation. The indication tables are thus
related to each other by

Bst =





0 , if t < s
Wt−s+1 , if s≤ t ≤ s+7

0 , if t > s+7
, ∀{st}. (7.8.35)

The basic decisions (or degrees of freedom) in our model are the numbersαs of
crews working on shifts. Thus we introduce integer variablesαs ∈{0,1, . . . ,9} into
our model. If we inspect the demand for drivers [table shouldbe read as folloẇs:
column 4 has the meaning “from 10 to 12 there is demand for 6 crews”]

t 6 7 8 10 12 14 16 17 19 20 23-24
Rt 3 9 10 6 7 6 8 10 8 3 2

specified in our small example modelbuscrewit is unlikely that we would need
more than 9 crews on a single shift. The reason is that for the data given we clearly
need 3 crews on the first shift starting at 6am, and 2 crews on shift 11 and 12. That
covers already at least two crews which need to be present during peak times (8 to
10am, and 5 to 7pm). Thus, even 8 would be a safe upper bound forthe number of
crews per shift.

The objective function is formulated easily as:

min
NS

∑
s=1

Csαs. (7.8.36)



238 Types of Mixed Integer Linear Programming Problems

It is subject to the constraints

NS

∑
s=1

Bstαs ≥ Rt , ∀t, (7.8.37)

which is equivalent to

min{t,T+1−7}
∑

s=max{1,t−7}
Wt−s+1αs ≥ Rt , ∀t. (7.8.38)

7.9 Summary & Recommended Bibliography

In this chapter we have investigated how various standard ILP problems may be
formulated. The models illustrate standard methods of formulation, in particular
those involving binary variables. We have seen how these formulations may be used
in practical cases by including the features not already present in the somewhat
artificial model. Thus by studying this chapter the reader should be able to identify
and formulate:

• problems of the knapsack family;
• problems of the traveling salesman family;
• facility location problems;
• set covering, set partitioning and set packing problems;
• satisfiability problems;
• problems of the bin packing family;
• clustering problems;
• scheduling problems.

Readers interested in theTraveling Salesman Problemare referred to Applegateet
al. (2007,[30]). Knapsack problems are well covered by Martello & Toth (1990,[398]).

7.10 Exercises

1. Formulate and solve a traveling salesperson problem over8 towns where it is re-
quired that the salesperson starts at town 1 and performs a complete circuit of all
towns such that total distance traveled is minimized. The distance, in kilometers,
from each town to each other town is given in the table below. (The distances
are symmetric in this problem,i.e., the distance between two towns is the same
irrespective of which direction the salesperson is traveling.)



7.10 Exercises 239

town 1 2 3 4 5 6 7 8
1 - 18527031512412399 180
2 - 215219187154210190
3 - 210220238198150
4 - 218134157149
5 - 168143129
6 - 198201
7 - 180
8 -

2. Solve the following problem.
Three containers of size 26, 25, and 34 tons are available. Itis required to allocate
the following 8 loads each to a container. The loads are such that their cost of
delivery,C, varies according to which container they are assigned and the weight,
W, of each load also varies (due to the protective packaging needed) according
to which container is used. Data onC are given in the following table.

Load 1 2 3 4 5 6 7 8
Container 127 12 12 16 24 31 41 13
Container 214 5 37 9 36 25 1 34
Container 334 34 20 9 19 19 3 34

Data onW are given in the following table.

Load 1 2 3 4 5 6 7 8
Container 121 13 9 5 7 15 5 24
Container 220 8 18 25 6 6 9 6
Container 316 16 18 24 11 11 16 18

Formulate and solve this problem to minimize the total cost of delivery.
3. Solve the problem given in Section 7.1.1.
4. Up to nine components may be attached to any of three circuit boards. Each

component has a fixed weight and a fixed value if it is used. The total weight
that may be attached to each circuit board is restricted and is 80, 90 and 85 units,
respectively, for the three boards. Each component may be attached to no more
than one board.

Component 1 2 3 4 5 6 7 8 9
Weight40 10 40 30 50 50 55 25 40

Value80 20 60 40 60 60 65 25 30

Formulate and solve the problem of attaching components to boards so as to
maximize total value.

5. A company has 14,000 £ to invest. There are four possibilities denoted byi. With
each investment we have associated costs,Ci , and yields,Yi , in two years’ time.
The table entries are given in units of thousands of £ (k£).



240 Types of Mixed Integer Linear Programming Problems

i 1 2 3 4
Ci 5 7 4 3
Yi 16 22 12 8

Formulate the company’s problem of maximizing the yield in two years’ time as
an integer program.

6. Container loads consist of items chosen from the set of items numbered{1,2, ... ,
20}. Each container load must include one specially marked itemand any of the
items may be chosen in advance. There are 10 containers and they must comprise
the following items

ContainerItems
1 1, 8, 11, 17
2 2, 8, 9, 11, 12
3 3, 4, 5, 6, 15
4 7, 8, 12, 14, 16
5 6, 9, 12, 15, 20
6 10, 13, 18, 19
7 6, 8, 12, 15
8 12, 14, 16, 18
9 1, 5, 10, 20

10 7, 13, 17, 19

Odd numbered items cost £50.00 to mark in advance and even numbered items
cost £100.00 to mark in advance (the cost is a total forall items of a particu-
lar type, single items cannot be marked individually). Formulate and solve the
problem of minimizing the total cost of advance marking of the special items.

7. Six jobs have to be processed on four machines. The table gives the processing
times required by each job on each machine. Once a job has started on a machine
it cannot be interrupted and all jobs must be machined in the order 1, 2, 3, 4.
Only one job may be processed by a machine at any given time. Formulate and
solve the problem of processing all jobs in minimum total time.

Job 1 2 3 4 5 6
Machine

1 10 12 14 15 13 12
2 9 7 6 4 8 7
3 6 4 3 2 4 5
4 2 2 1 1 3 3

8. Group design problem: 24 participants should be divided into groups with a min-
imum of 3, and a maximum of 6 persons. After 8 permutations, each participant
should have been at least once in a group with every other participant. Determine
the number and size of the groups fulfilling this condition.



Chapter 8
Case Studies and Problem Formulations

In this chapter we shall consider applications of mathematical programming arising
in various contexts. We shall examine the problem facing theclient, the model built
and the use to which it would be put. Problems will be ones which require financial
modeling, modeling of the closing and opening of facilities, modeling across time
periods, discounting over time, using opening and closing balances, and using hard
and soft constraints in model development. Each case will demonstrate the need for
a model of a particular type. A formulation of each model is provided in MCOL,
so that the reader may solve the problem and investigate the results. In some cases
it will be possible to formulate the problem in several contrasting ways. Some of
the benefits of the alternative formulations will be discussed. In the second half of
the chapter the focus will be on difficulties which commonly arise when we try to
run models and solve problems. We discuss how to get around infeasibilities and
illuminate certain aspects of sensitivity analysis.

8.1 A Depot Location Problem

There are six major towns in one area. The local fire-brigade service has decided
to rationalize the location of fire departments (currently each town has a station) so
that each town is within 20 minutes driving time of a fire department. Given the data
for driving times (specified in minutes) in the “driving time” table below from each
town t1 to each townt2,

t1\t2 1 2 3 4 5 6
1 0 15 25 35 35 25
2 15 0 30 40 25 15
3 25 30 0 20 30 25
4 35 40 20 0 20 30
5 35 25 35 20 0 19
6 25 15 25 30 19 0

241



242 Case Studies and Problem Formulations

the problem of deciding which fire departments remain open can be decided by
using an integer program.

Let us define our variables. We need binary variablesδ t ∈ {0,1} defined such
that

δ t :=

{
1 , if a fire department is located in townt
0 , if not.

(8.1.1)

The objective function is to minimize the number of fire departments:

min δ 1+δ 2+δ 3+δ 4+δ 5+δ 6. (8.1.2)

If we look at the data on driving times of fire engines we are interested in cases
when times do not exceed 20 minutes. Let us consider town 1 first. If we look at
the second column in the table we see that a fire department must be sited at town 1
or town 2 (or both) if town 1 is to be covered (driving times less than 20 minutes).
Therefore we need a constraint

Cover town 1: δ 1+δ 2 ≥ 1. (8.1.3)

Thus the problem is essentially a set covering problem wherea “cover” is defined
by the driving time being less than 20 minutes. By examining successive columns
of the “driving time” table or the “covering” table below

t1\t2 1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 1 0 0 0 1
3 0 0 1 1 0 0
4 0 0 1 1 1 0
5 0 0 0 1 1 1
6 0 1 0 0 1 1

we get the complete system of constraints

Cover town 1: δ 1 +δ 2 ≥ 1
Cover town 2:δ 1 +δ 2 +δ 6 ≥ 1
Cover town 3: δ 3 +δ 4 ≥ 1
Cover town 4: δ 3 +δ 4 +δ 5 ≥ 1
Cover town 5: δ 4 +δ 5 +δ 6 ≥ 1
Cover town 6: δ 2 +δ 5 +δ 6 ≥ 1.

(8.1.4)

The constraints are obviously fulfilled if we putδ 2 = δ 4 = 1 andδ 1 = δ 3 = δ 5 =
δ 6 = 0, i.e., it is sufficient to keep open two fire departments. This solution is also
the optimal solution, and it is unique,i.e., there is no other solution with only two
fire departments.

This problem, in a broader framework is treated inLocation Science, cf. [364].



8.2 Planning and Scheduling Across Time Periods 243

8.2 Planning and Scheduling Across Time Periods

Often it is required that a model considers production across time periods. In each
time period there is inventory available and production is made partly for use and
partly for stock. Adjacent time intervals are connected by multi-period flow con-
straints. Restrictions that are applied include minimum and maximum inventory
levels and satisfaction of customer demands. Goods held in inventory may also dete-
riorate. Production planning problems like the one discussed in Section 10.4 usually
make use of modeling across time periods.

When building multi-period models two important issues haveto be discussed
with the client: the length of the planning horizon and the resolution in time. A
typical production planning model may cover a planning horizon of one year and
the smallest unit in time may be a month. In scheduling problems very often the
horizon is only one or two weeks and the resolution in time comes down to only a
few hours or a day. The choice of both parameters has great influence on the size of
the problem. The length of the planning horizon depends on the purpose the model
is used for and also on the quality of the data entering the model. If the market
demand forecast is not very accurate it seems not to make muchsense to plan too
far into the future. The resolution in time depends on the degree of reality required
and determines the accuracy of the model. It may also occur that the resolution in
time is different for certain aspects contained in the model. In Section 10.4 it is
shown how different time scales can be embedded in one model.

Hendry et al. (1996,[273]) describe an MILP model to schedule production
across time periods in the copper industry. Three main production processes occur
in the copper foundry: the melting process, the production of “logs” of copper, and
the cutting of the logs into “billets” (smaller lengths). The process of converting the
molten copper into one lot of logs is called a “drop” and thereare about six standard
billet lengths for each log diameter. Two main factors affect the cost of production:
operational factors and the yield of copper obtained. Molten copper can be stored
and production is considered over a two week cycle. The company is interested in
minimization of production time.

8.2.1 Indices, Data and Variables

The formulation is as follows. The model makes use of production requirements
from an earlier stage, using another model, referred to as “stage one”. As usual we
start with the indices

m∈ {1, . . . ,M} , the index of days
d ∈ {1, . . . ,D} , the index of drop diameters
t ∈ {1, . . . ,T} , index of periods (not used explicitly).

(8.2.1)

The data of the problem are described in the following list



244 Case Studies and Problem Formulations

Wm : the weighting assigned to the production of logs on daym,
Md : the maximum number of drops of diameterd per day that

can be produced,
Nd : the required number of drops of diameterd in periodt

(output from “stage one” model),
Kd : weight of copper needed to produce one drop of diameterd,
v1 : the inventory of molten copper held at the beginning of

the first day of the cycle,
Td : the time required to produce one drop of diameterd,
O : the time to change over from the production of one log

diameter to another,
C : the daily log production capacity in man-minutes,
Y : the percentage of molten copper that can be used,
MS : the max. tonnage of molten copper that can be stored,
MX : the max. daily quantity of scrap copper that can be melted,
MN : the min. daily quantity of scrap copper that can be melted.

(8.2.2)

Continuous variables:

cm ≥ 0 : the weight of scrap copper melted on daym
vm ≥ 0 : the inventory of molten copper held at the beginning

of daym(m 6= 1)
sm ≥ 0 : slack time at the log production process on daym

(8.2.3)

In order to count the number of drops and diameters we define the integer variables

αmd : number of drops of diameterd produced on daym
β m : number of different log diameters produced on daym

(8.2.4)

Finally we introduce the binary variables

γm :=

{
1 , if it is decided to melt copper on daym
0 , otherwise

(8.2.5)

and

δ md :=

{
1 , if logs of diameterd are produced on daym
0 , otherwise.

(8.2.6)

8.2.2 Objective Function

The objective function is

min
M

∑
m=1

[
Wm ·

(
Oβ m+

D

∑
d=1

Tdαmd

)]
, (8.2.7)



8.2 Planning and Scheduling Across Time Periods 245

which will minimize the total time, including change over time, required to produce
the logs. The weighting given to each day is to ensure that thesmallest number of
days is used, and this is achieved by giving the smallest weighting to the first day
and increasing the values over time.

8.2.3 Constraints

The following constraints were modeled. The first one,

M

∑
m=1

αmd = Nd , ∀d ∈ D (8.2.8)

expresses that the total number of drops of each diameter produced in the period
should equal the requirement. Then we formulate a typical inventory balance equa-
tion coupling adjacent time periods

D

∑
d=1

Kdαmd+vm+1 =Y ·cm+vm , m∈ {1, . . . ,M−1}. (8.2.9)

The equations (8.2.9) guarantee that the inventory on day(m+1) plus the weight
of copper used in production should equal the inventory on day m plus the yield
from the melted copper. Some care is needed with the indexm counting the days.
Therefore, the equations are only considered for all but thelast day. Sometimes,
inventory balance constraints contain the stock level,vm, at timem and timem−1.
Inventory balance constraints are only complete if they connect appropriately to
initial stock,v1, and possibly, to final stock,vM+1. If we do not connect appropriately
to initial stock we lose all stock available at that time. Note thatv1 is not a variable
but a constant.

The next constraint we have to consider is the inventory capacity, i.e., we have to
guarantee

vm ≤ MS , ∀m∈ {1,2, ...,M} (8.2.10)

that the inventory does not exceed its maximum capacity.
The weight of scrap copper melted on daym must be zero or lie between its

minimum and maximum. In Hendryet al. (1996) this property is described by the
inequalities

MN −cm ≤ MX(1− γm) , ∀m∈ {1,2, ...,M} (8.2.11)

and

cm ≤ MXγm , ∀m∈ {1,2, ...,M}. (8.2.12)

Note that the binary variableγm forces either



246 Case Studies and Problem Formulations

γm = 0⇒ cm = 0 (8.2.13)

or
γm = 1⇒ MN ≤ cm ≤ MX. (8.2.14)

We can replace the inequalities (8.2.11) and (8.2.12) by declaring cm as a semi-
continuous variable. As discussed in Section 9.4.5 this leads to a more efficient
model.

The total time required to produce logs in daymplus change over time plus slack
time equals the available time capacity,C, leading to the equations

D

∑
d=1

Tdαmd+Oβ m+sm =C , ∀m∈ {1,2, ...,M}. (8.2.15)

The number,β m, of different log diameters produced on daym is given by the total
number of decisions to produce logs of different types,i.e.,

β m =
D

∑
d=1

δ md , ∀m∈ {1,2, ...,M}. (8.2.16)

The number,αmd, of drops of diameterd produced on daym must not exceed the
maximum possible which is ensured by

αmd ≤ Mdδ md , ∀m∈ {1,2, ...,M} , ∀d ∈ D. (8.2.17)

Finally, we wish to express that the number of drops of diameterd produced on day
m must be non-zero if the decision to produce is taken,i.e.,

αmd ≥ δ md , ∀m∈ {1,2, ...,M} , ∀d ∈ D. (8.2.18)

It was anticipated in Hendryet al.(1996,[273]) that the implementation of the model
would lead to substantial improvements in performance for the company as results
from the model-based optimization suggested a useful increase in copper yields.

8.3 Distribution Planning for a Brewery

In the UK, brewing companies brew two major different types of beer: ale and lager.
This is also the case for our specific brewer who wanted to optimize the business us-
ing mathematical programming. Each type of beer comes in several varieties (liquid
types), distinguished by taste, color, flavor and strength and several other character-
istics.

Most beers are sold in four major containers: cans, bottles,barrels and “cellar
tanks”. When packaged in the latter form the beer is deliveredin bulk to a tank at the
retail outlet (usually a public house) and then served to thecustomer straight from
the tank. Not all liquid types go into each container, and in fact the actual number



8.3 Distribution Planning for a Brewery 247

of commodities (i.e., liquid types in specific containers) is significantly smaller than
the maximum number theoretically possible.

When a particular liquid is brewed at one of the breweries it istaken to a pack-
aging unit to be placed in a container. Sometimes this journey is very short if, for
instance, the packaging unit is sited adjacent to the brewery and connected to it
by pipeline. But since packaging units are expensive it is sometimes necessary to
transport liquid in bulk from the brewery to a packaging unitof the correct type.

Each brewery belonging to the company has a separate limitedcapacity for lager
and for ale, but the capacity within these two sub-categories may be freely allocated
to any of the liquid types. A packaging unit can only put liquids into one type of
container.

After liquids have been put into containers (and have becomea commodity) they
are then transported to customer zones (demand points). These are typically depots
owned by the company, or the premises owned by wholesalers orsupermarkets.

8.3.1 Dimensions, Indices, Data and Variables

The parameters or dimensions of the model and the indices aresummarized below

b∈ {1, . . . ,NB} , the set of breweries
c∈ {1, . . . ,NC} , the set of commodity types
d ∈ {1, . . . ,ND} , the set of demand points
l ∈ {1, . . . ,NL} , the set of liquid types,NL = NAL+NLA

p∈ {1, . . . ,NP} , the set of packaging units
t ∈ {1, . . . ,NT} , the set of containers (packing type),

whereNAL andNLA denote the numbers of ales and lagers.
The company wished to consider the data as being driven by thecommodities,

that is, the combinations of liquid type in a particular container. A partial list might
be

Commodity number Liquid Container
· · · · · · · · ·
16 B23L Barrels
17 B23L Half pint bottles
18 G26A Pint bottles
· · · · · · · · ·

Data were collected and assembled into the following list:



248 Case Studies and Problem Formulations

CTBP
pb the unit transport cost from breweryb to packaging unitp

CTPD
tdp the unit transport cost of container typet from packaging

unit p to demand pointd
RL

c the liquid required by commodityc
RC

c the container type required by commodityc
CB

bl the brewing capacity at breweryb for liquid l
CP

p the total packaging capacity atp
Dcd the final demand for commodityc at demand pointd
IBL
lb 1 if breweryb can brew liquidl

NBL
l the number of breweries that can brew liquidl

BU
b the maximum amount that can be brewed atb

BL
b the minimum amount that can be brewed atb

PU
p the maximum amount that can be packed atp

PL
p the minimum amount that can be packed atp.

The continuous, non-negative decision variables needed for the problem are as fol-
lows

blb , the amount of liquidl brewed at breweryb
sl p , the throughput of liquidl through packaging unitp
lblp , the amount of liquidl sent from breweryb to packaging unitp
pcp , the amount of commodityc packed at packaging unitp
xpcd , the quantity of commodityc sent from packaging unitp to

demand pointd.

Note that in order to reduce the number of variables in the model listed below the
variables are only defined if certain logical conditions on data and indices are ful-
filled. In addition we need the binary variablesβ lb,δ l p ∈ {0,1} defined as

β lb :=

{
1 , if any liquid l is brewed at breweryb
0 , otherwise

(8.3.1)

and

δ l p :=

{
1 , if any liquid l is packaged at packaging unitp
0 , otherwise.

(8.3.2)

Note that theβ lb variables are only defined if breweryb can brew liquidl and there
is more than one brewery that can brew the liquid. Theδ l p are only defined if the
capacity of the packaging unitp is non-zero.

Explicitly allowing for zero capacity at a packaging unit may seem peculiar, but
one of the aims of the exercise was to consider the possible closure of one or more
of the packaging units. Different scenarios could easily beconsidered by setting
CP

p = 0 for a packing unit that was to be closed.
Note that liquid 1 denotesAlewhile liquid 2 isLager.



8.3 Distribution Planning for a Brewery 249

8.3.2 Objective Function

The objective function to be minimized was the total cost of transporting liquids
from breweries to packaging units, plus the total cost of distributing commodities
from packaging units to demand points.

NP

∑
p=1

NB

∑
b=1

NL

∑
l=1

CTBP
pb lblp+

NP

∑
p=1

NC

∑
c=1

ND

∑
d=1

CTPD
τdp xpcd , τ = RC

c . (8.3.3)

It would be easy to incorporate different brewery packagingcosts for each brewery
and packing unit, but these were not thought to be important in the initial stages of
the study.

8.3.3 Constraints

The following constraints were operative.
Liquid balance at each brewery:

NP

∑
p=1

lblp = blb , ∀l ∈ {1,2, ...,NL} , ∀b∈ {1,2, ...,NB}, (8.3.4)

which ensures that for each liquid/brewery combination, all of it is sent to some
packaging unit. The constraint

∑
c containingl

pcp = sl p , ∀l ∈ {1,2, ...,NL} , ∀p∈ {1,2, ...,NP} (8.3.5)

defines the throughput of liquidl through packaging unitp as the total amount
packaged of all commodities containing liquidl .

The total amount of ale brewed at a brewery is less than or equal to its ale capac-
ity, and correspondingly for lager. Hence

∑
p

lb,ale,p ≤CB
b,ale , ∀b∈ {1,2, ...,NB} (8.3.6)

∑
p

lb,lager,p ≤CB
b,lager , ∀b∈ {1,2, ...,NB}. (8.3.7)

Conservation of liquid going into the packaging units and being packed means that

∑
c requiringl

pcp =
NB

∑
b=1

lblp , ∀l ∈ {1,2, ...,NL} , ∀p∈ {1,2, ...,NP}. (8.3.8)



250 Case Studies and Problem Formulations

The capacity limitation at the packaging unit means that

NC

∑
c=1

pcp ≤CP
p , ∀p∈ {1,2, ...,NP}. (8.3.9)

Conservation of each commodity leaving each packaging unitgives us the equations

ND

∑
d=1

xpcd = pcp , ∀p∈ {1,2, ...,NP} , ∀c∈ {1,2, ...,NC}. (8.3.10)

Satisfying the demands for each commodity at each demand point exactly yields

NP

∑
p=1

xpcd = Dcd , ∀c∈ {1,2, ...,NC} , ∀d ∈ {1,2, ...,ND}. (8.3.11)

The throughput,sl p, of liquid l through packaging unitp is zero ifδ l p is zero [forced
by (8.3.12)], otherwise [forced by (8.3.13)] it must be greater than the minimum
packaging level for any commodity and less than the maximum packaging capacity

sl p ≤ PU
p δ l p , ∀l ∈ {1,2, ...,NL} , ∀p∈ {1,2, ...,NP} (8.3.12)

sl p ≥ PL
p δ l p , ∀l ∈ {1,2, ...,NL} , ∀p∈ {1,2, ...,NP}. (8.3.13)

This is a common formulation device. As theδ l p variables are binary (0 or 1) then
if the binary variable is 0 the continuous variable is zero, while if it is 1 then the
continuous variable is constrained to be less than the maximum valuePU

p and greater
than the sensible minimum valuePL

p . (These types of constraints occur frequently
enough for the semi-continuous variable construct to have been devised specially.
For the sake of simplicity they are not used here. But see Section 9.4.5 for the
benefits of such variables in B&B.)

Finally, we need constraints similar to (8.3.12) and (8.3.13) above, but applying
to the brewing of liquids at breweries. These constraints only apply if there is more
than one brewery which can brew a particular liquid.

blb ≤ BU
l β lb ∀l ∈ {1,2, ...,NL},b∈ {1,2, ...,NB} | NBL

l > 1 (8.3.14)

blb ≥ BL
bβ lb ∀l ∈ {1,2, ...,NL},b∈ {1,2, ...,NB} | NBL

b > 1 (8.3.15)

So if aβ lb is 0 the amount brewed is 0. But if aβ lb is l then the amount brewed must
be at least the smallest sensible quantity to brew at the brewery but not more than



8.4 Financial Modeling 251

the maximum amount that can be brewed by any brewery. We must also declareβ lb
andδ l p as binary variables; they can only take the values 0 or 1.

The data for most of the tables were held in ranges in aLotus 1-2-3 spread-
sheet, and imported by theDISKDATA -l command ofmp-model. A useful ap-
proach is employed by the firstDISKDATA -l command which fills up a table
calledSIZES from a spreadsheet rangeSIZES. The spreadsheet software is, in
2020, somewhat outdated. Currently, the majority uses Excel, but who knows what
will be used in 15 years. Note that theDISKDATA command for reading text data
is supported bymp-model’s successorFICO Xpress Mosel.

8.3.4 Running the Model

The brewery case study is contained in MCOL under the problemnamebrewery.
Most of the data were assembled into the singleLotus 1-2-3 spreadsheet file
brewdata.wk3, but some were held in data files. Unfortunately, already after 20
years, this software seems not be used anymore – our data are lost. This should
serve as a good warning and advise for the future. Only ASCII data have a reason-
ably long life time. Everything else depends strongly on market changes. The life
time of software seems to be very limited – and even if the software still exists,
backward compatability is not guaranteed either.

8.4 Financial Modeling

In its proper meaningfinancial optimizationis concerned with problems occurring
in the financial services industry and is used by investment and brokerage houses.
Most models in this area are related torisk managementand financial engineer-
ing. An overview on these topics is found in Zenios (1993,[607]). This collection
of contributions from different authors provides further references to financial opti-
mization and is very much recommended to the reader interested in this field.

Financial optimization is relevant to investors in stock markets or fixed-income
markets. It analyzes risks and leads to the constructions and maintenance of port-
folios with specified risk-return characteristics. Many models are concerned with
optimal portfolio systems and portfolio immunization strategies, currency hedging
strategies are another field of risk management.

The financial engineer designs and modifies financial instruments and tries to
improve the marketability of such products and to meet the needs of investors.

The mathematics involved in financial modeling is usually very demanding. Most
models are nonlinear and often lead to mixed integer nonlinear programming prob-
lems [see Section 12.6]. Since in addition, the reader mightnot be familiar with the
technical vocabulary involved in financial optimization, we decided not to incorpo-
rate material from this area into this book.



252 Case Studies and Problem Formulations

number of items

C
o

s
ts

Fig. 8.1 Costs versus number of items up to 260.

Instead, we just provide one example related to optimal purchase in the presence
of tapered discounts (also a nonlinear problem) and anotherone concerned with
yield management.

8.4.1 Optimal Purchasing Strategies

This problem has the following background: there are three suppliers of a good, and
they have quoted various prices for various quantities of the good. We want to buy
at the least total cost, yet not too much from any one supplier. Each supplier offers
decreasing prices per item for increased lot sizes. For example we want to buy at
most 40% from our known supplier Bob who offers us the following price ranges :

ranges 0 - 100101 - 200201 - 1000
prices 9.2 9 7
breakpoint 100 200 1000

, Cw(x) :=





9.2x , 0≤ x≤ 100
9.0x , 100≤ x≤ 200
7.0x , 200≤ x≤ 1000

,

i.e., if we buy 150 items from Bob, the total cost is 150·9= 1350. Fig. 8.1 shows
the cost as a function of the number of items for up to 260 items.

Let us treat the more general case of havingNS suppliers indexed bys andNB

breakpointsb, i.e., points at which the unit price changes. Discounts, which change
in steps, are called tapered discounts and occur frequentlyin real-world problems.



8.4 Financial Modeling 253

We will provide two model formulations which describe the problem. The first
attempt to model this problem is based on SOS2 introduced in Section 6.8.2, the
second one uses SOS1 introduced in Section 6.8.1 and is more elegant and efficient.

Let us start with the model using SOS2. Besides the set of breakpoints defined
above, for numerical reasons this also requires a set ofN = 2NB coarsened break-
points (see below). The problempurchasesupplied in MCOL shows how we could
make use of size and dimensions of models specified in data files. While using the
indices

b∈ B = {1, . . . ,NB} , the set of breakpoints
k∈ K = {1, . . . ,N} , the set of coarsened breakpoints
s∈ S = {1, . . . ,NS} , the set of suppliers

(8.4.1)

our relevant data are

Bsb , the quantity of good at breakpointb of suppliers
Csk , total costs to suppliersat breakpointk
∆ , base factor for coarsening the grid
∆k , recursively defined coarsening factors at breakpointk
Psb , price to suppliers between breakpointsb−1 andb
PU

sb , max. percentages to suppliersbetweenb−1 andb
R , the total amount required
Xsk , coarsened quantities at breakpointk to suppliers.

(8.4.2)

This problem involves quantity discounts. The graph of costagainst quantity pur-
chased is discontinuous because of the unit costs, which aredefined to be piecewise
constant. So the situation we are facing here is certainly nonlinear, but it is a very
special kind of nonlinearity. In Section 6.8.2 we saw how to use special ordered sets
of type 2 for modeling nonlinear functions. Now we will show how we apply this
concept to the current problem. To maintain sense in the special ordered set formu-
lation, we must “fix” the discontinuity by stopping purchases just at the breakpoint.
In order to do so, we introduce a single parameter∆ specifying the distance from
the breakpoints and allowing us to derive several other datarecursively. The coars-
ening factors are computed based on the parameter∆ , say∆ = 1.0, according to the
following recursive scheme

∆1 = 0 , ∆2 =−∆ , ∆k =−∆k−1 , k∈ {3, . . . ,N}. (8.4.3)

Note that for∆ = 1.0 this defines∆k recursively as 0,−1,1,−1, . . . ,−1. Based on
∆k and the definitions:1

k1 =

⌊
k+1

2

⌋
, k2 =

⌊
k
2

⌋
(8.4.4)

the breakpoints, let us call themnumerical breakpoints, of the coarsened grid

1 The expression⌊x⌋ means return the largest integer number not exceedingx. If x is a positive
number then⌊x⌋ yields the integral part ofx, i.e., ⌊4.5⌋= 4.



254 Case Studies and Problem Formulations

Xs1 = 0 , Xsk= Bsk2 +∆k , k∈ {2, . . . ,N} (8.4.5)

can also be computed recursively. In the example given abovethe numerical break-
points are as follows:

Xs1 Xs2 Xs3 Xs4 Xs5 Xs6

0 99 101 199 201 999
.

Next we compute the total costs at the original breakpointsapproaching from the
left and right

Cs1 = 0 , Csk= Psk1 ·Bsk2 , ∀k∈ {2, . . . ,N}. (8.4.6)

To give an example:Cs2 gives the cost of 920 at the breakpointBs1 = 100 if we are
approaching from the left,i.e., assuming a unit price of 9.2.Cs3 gives the price at the
same breakpoint if we approach from the right (assuming a unit price of 9.0). Note
that while our basic dataPsb have the dimensionmoney/item, Csk represents the total
cost and has the dimensionmoney. If we evaluate the data for our supplier Bob we
get the following total costs at the breakpoints:

Cs1 Cs2 Cs3 Cs4 Cs5 Cs6

0 920 900 1800 1400 7000.

Our model will have the continuous variablesxs ≥ 0 measuring the quantity to pur-
chase from suppliers, and the variablesλ ks forming a special ordered set of type 2
as defined in Section 6.8.2 and obeying the convexity constraint

N

∑
k=1

λ ks= 1 , ∀s∈ {1,2, ...,NS}. (8.4.7)

The decision variablesxs are related to the variablesλ ks by

xs =
N

∑
k=1

Xsk·λ ks , ∀s∈ S . (8.4.8)

Note that equation (8.4.8) is also perfectly suited to serveas a reference row since
the breakpointsXsk provide a nice order. The rest of the model formulation is now
straightforward. Let us begin with the objective function

min
NS

∑
s=1

N

∑
k=1

Cskλ ks. (8.4.9)

Finally, we have to respect the minimum quantity,R, that must be bought

NS

∑
s=1

xs ≥ R (8.4.10)



8.4 Financial Modeling 255

and that no more than the maximum percentage is purchased from each supplier

xs ≤ PU
s · R

100
, ∀s∈ S . (8.4.11)

That concludes our model description. Some further detailsare found in the model
file purchase.

A completely different approach to this problem is based on SOS1. In that ap-
proach, someδ sb-variables select which line segment we are in. The binary variables
are defined such that

δ sb=

{
1 , if Bsb−1 ≤ ysb≤ Bsb

0 , otherwise
,

∀s∈ S
∀b∈ B

, (8.4.12)

whereBs0 = 0, and the non-negative continuous variablesysb relate to the variables
xs according to

xs =
NB

∑
b=1

ysb , ∀s∈ S . (8.4.13)

The binary variablesδ b form an SOS1 with reference row

NB

∑
b=1

Bsbδ sb , ∀s∈ S (8.4.14)

and are subject to the convexity condition

NB

∑
b=1

δ sb= 1 , ∀s∈ S . (8.4.15)

The binary variables are used to ensure that at most one out oftheNB variablesysb

is non-zero. This property explains why (8.4.13) is valid and is enforced by the two
inequalities

Bsb−1δ sb≤ ysb≤ Bsbδ sb , ∀s∈ S , ∀b∈ B. (8.4.16)

The model is completed by (8.4.10)-(8.4.11) and the objective function

min
NS

∑
s=1

NB

∑
b=1

Psbxsb. (8.4.17)

While the second model formulation is more elegant and easierto understand it is
also preferable from a mathematical point of view and gives abetter representation
of the real-world problem. The introduction of∆ imported some inaccuracy into the
model. The second formulation is exact and it is a much more intuitive approach to
the model.



256 Case Studies and Problem Formulations

Let us conclude with the remark that modeling is never unique. This case study
shows very well how the same real-world problem can have rather different model
formulation. Depending from where we start structuring thereal-world problem and
translate it into the mathematical language, we may obtain very different formula-
tions.

8.4.2 A Yield Management Example

A container ship is traveling from Southampton to Singapore, stopping at Genoa,
Port Said, Dubai and Bombay to unload and take on cargo.

The marketing department of the company have estimated the revenue (yield)
per thousand tons of cargo transported between each pair of ports, and have also
specified the maximum cargo that they think they can sell between each pair of
ports.

We wish to find the best set of cargoes to accept, given the yields on each source-
destination pair. The ship must never exceeds its loading capacity ofC= 25 ktons.

Let us start the model formulation by specifying the indicess for the port where
we start andd for the destination port. We denote the number of ports byN. In this
case we haveN = 6. Our data are structured as

RL
sd , the minimum amount (in ktons) that must be

transported froms to d,
RU

sd , the maximum amount (in ktons) that can be
transported froms to d,

Ysd , the revenue per kton carried from ports to portd.

(8.4.18)

The tables below list these data for the cities Southampton (SH), Genoa, Port Said,
Dubai, Bombay and Singapore. We start with the yieldsYsd :

From / ToSH GenoaPort SaidDubaiBombaySingapore
SH .0 20.12 24.23 47.23 68.20 59.30
Genoa .0 .0 14.80 24.98 52.45 50.12
Port Said .0 .0 .0 39.50 60.65 48.23
Dubai .0 .0 .0 .0 49.24 28.34
Bombay .0 .0 .0 .0 .0 20.50
Singapore .0 .0 .0 .0 .0 .0

then we have the minimum requirementsRL
sd :



8.4 Financial Modeling 257

From / ToSH GenoaPort SaidDubaiBombaySingapore
SH .0 1.500 1.000 5.000 1.800 4.000
Genoa .0 .0 4.000 1.500 2.500 2.000
Port Said .0 .0 .0 3.000 2.300 1.500
Dubai .0 .0 .0 .0 1.200 1.500
Bombay .0 .0 .0 .0 .0 1.800
Singapore.0 .0 .0 .0 .0 .0

and finally the maximum requirementsRU
sd :

From / ToSH GenoaPort SaidDubaiBombaySingapore
SH .0 4.000 5.000 8.000 6.000 12.000
Genoa .0 .0 10.000 4.000 8.000 6.000
Port Said .0 .0 .0 8.000 5.000 8.000
Dubai .0 .0 .0 .0 2.900 6.700
Bombay .0 .0 .0 .0 .0 8.000
Singapore.0 .0 .0 .0 .0 .0

.

The decision variables determine how much to carry from eachport to another port
later in the voyage. Let us call these continuous variablescsd ≥ 0, the number of
ktons to carry from source ports to destination portd. The possible(s,d) pairs are

(1,2) (1,3) (1,4) (1,5) (1,6)
(2,3) (2,4) (2,5) (2,6)

(3,4) (3,5) (3,6)
(4,5) (4,6)

(5,6)

so we introduce the variablescsd only for these combinations. Note that we can
easily represent these pairs by letting the first indexs run from s= 1, . . . ,N− 1.
The second index,d, then becomes a dependent index and runs only fromd =
s+1, . . . ,N. This scheme is also applied to the objective function and the constraints.

The objective function to be maximized is the total yield, which is the sum over
all (source, destination) pairs of the yield per kton carried times the number of ktons
carried.

max
N−1

∑
s=1

N

∑
d=s+1

Ysdcsd. (8.4.19)

At any time the ship cannot carry more than its capacity. Consider the load on board
when a ship is just about to arrive at portp (p ranging from 2 toN). The amount on
board is the sum of the amounts being carried from the ports before p to portsp and
beyond. So

p−1

∑
s=1

N

∑
d=p

csd ≤C , p∈ {2, . . . ,N}. (8.4.20)

We also have the minimum and maximum requirements



258 Case Studies and Problem Formulations

RL
sd ≤ csd ≤ RU

sd , s= 1, . . . ,N−1 , d = s+1, . . . ,N. (8.4.21)

Since the constraints are just bounds on single variables, we better formulate them
as bounds as this has numerical advantages. Note that the value the indexd can take
depends on which valueshas been assigned. This model is stored under the problem
nameyldmgmt. A careful inspection of the model file shows how the non-trivial use
of subscripts discussed above is implemented.

A further interesting example of yield management in the fishery industry is de-
scribed by Glen (1995,[232]).

8.5 Post-Optimal Analysis

Post-optimal analysis starts when the optimizer finishes, displaying a message in
the log such as “problem is infeasible”, “problem is unbounded”, ormore desirably
“optimal solution found”. Unboundedness can usually be resolved relatively easy:
in most cases a class of constraints has been forgotten. For nonlinear optimization
problems resolving unboundedness can be more complicated.Similar as in linear
optimization, a convex objective function to be maximized,or a concave objective
function to be minimized tends to increase to infinity or to decrease to minus infinity
due to missing bounds on variables or missing constraints. The objective function
f (x) may have pointsxp in the interior of the feasible regionS with limx→xp f (x) =
±∞. Due to missing bounds on variables or missing constraints,S may not be a
compact set. In such cases, it may happen, that forx→±∞, f (x) only approaches
the optimal value but never can reach it. Examples aref (x) =−1+(x−1)/(x+1)
or f (x) = e−x with limx→∞ f (x) = 0. These functions never assume the value zero.

Infeasibility is more serious and is discussed in further detail in Section 8.5.1.
A finite optimal solution gives rise to the question “how stable is the solution?”.
Here, stability is related to how small changes in initial data affect the solution.
Some optimizers have the ability to perform various post-optimal analyses, where
the sensitivity of the optimal solution values to the assumed values of data can be
assessed. These analyses usually go under the nameranging.

8.5.1 Getting Around Infeasibility

My problem is infeasible - what should I do? Diagnosing infeasibilities is probably
the hardest part of modeling and optimization. Tracking down infeasibility in a large
problem can be difficult and reinforces the need to experiment with modeling small
instances of problems first to remove such inconsistencies.Novice users often ask
“which constraint is wrong?” and are surprised when told that this is an ill-posed
question. To see why, consider a small shop producing and selling bolts and screws.
If the variablesb ands denote the numbers of bolts and screws, we might have the



8.5 Post-Optimal Analysis 259

constraints
b + s≥ 6

2b + 3s≤ 7.
(8.5.1)

The first constraint might be a marketing constraint asking for a minimum demand
to be satisfied, while the second one might refer to some laboravailability. Neither
of these constraints is wrong, they are just inconsistent when taken with the non-
negativity constraints of the variablesb ands.

Infeasiblity can arise from any or all of the following causes:
a) getting a constraint sense wrong,
b) bad data,
c) the problem really is infeasible and
d) over-enthusiastic modeling.

Cause a) occurs more often than one would like to admit - you have written≥ when
you meant≤. Going over the model with a colleague tends to eliminate these errors
(at the risk of making oneself look foolish!).

Simple data entry errors often contribute to cause b), with values like 1.00 being
mistakenly typed as 100. Some defensive data checks are in order in all production
models, but, of course, these are boring compared with the intellectual excitement of
modeling and so get put off until the last moment. Displayingdata graphically often
helps to catch such errors, and is a good reason for holding data in spreadsheets
whose graphical facilities are advanced and easy to use.

If you are modeling a business situation which is currently in place (as opposed to
doing a planning exercise or other theoretical work) then itis unlikely that a model,
if correct, will be infeasible. The best way to see why the model is infeasible is to
fix the decision variables to values you know work in practice, and then see which
constraints are violated.

Unfortunately, in a planning environment it is possible that the problem really is
infeasible, and we have no good ideas as to feasible values for the decision variables,
so the option in the previous paragraph is not open to us. The model is illogical in a
sense. What can we do in this case? The model builder must re-think the model and
examine each relationship carefully to find the source of thedifficulty. A helpful
discussion is contained in Greenberg (1993c). Also the notion of Independent In-
feasible Sets (IIS) has been developed to help the modeler.2 They are not a panacea,
but they do help in practice.

An IIS is a set of constraints with the property that if any oneconstraint is re-
moved from the IIS then the remaining constraints are consistent. In a sense, an IIS
is the smallest set of “nasty” constraints. Sometimes an IIScan have but a few mem-
bers, and inspection of these gives a good guess as to where the problem is; but if
an IIS has many members, the search for inconsistencies may still be hard work.

The last major cause [cause d) above] of infeasibilities that we shall discuss is
what we might call a “lack of defensive modeling”. While the model is logically
correct the data yield a model which is too tightly constrained to be feasible. Few
constraints are, in practice, totally rigid. We might say that we only have 4 people

2 An IIS facility is available, for instance,CPLEX or XPRESS-OPTIMIZER.



260 Case Studies and Problem Formulations

available in a particular shift but in practice we might be able to get in (expensive)
contractors or work (expensive) overtime. These constraints are, in some sense “soft
constraints”. Some constraints, such as the number of hoursin a day, or on physical
processes are, however, truly rigid.

The trick with soft constraints is to add a slack variable to the constraint, so
that the original constraint can be violated, and add a penalty term into the objec-
tive function. Considering the second constraint in (8.5.1), we might introduce an
amount,l , of extra labor which we acquire at a cost per hour of, say,L. The con-
straint becomes

2b+3s≤ 7+ l . (8.5.2)

The objective function
max p (8.5.3)

(maximizing profit) changes into

max p−Ll . (8.5.4)

It is likely that there is a bound,LU , on the extra availability of labor, so we will
have a bound

l ≤ LU . (8.5.5)

With equality constraints we might allow positive or negative deviations from strict
equality, each with a cost.

The difficulty with softening constraints is that realisticchoices have to be made
for the objective function entries of the slack variables. In the case of the labor
slack we have presented above there is probably a market ratewe could use, but
this is not always the case. Then, if we choose too low a penalty cost our optimal
solution might involve having a non-zero slack even when theproblem is otherwise
feasible. There is no hard-and-fast rule here, one has to look to see what options and
economic resources are possible in practice. Further discussion on this is contained
in Section 5.5.3.

8.5.2 Basic Concept of Ranging

LP solvers allow ranging on right-hand side coefficients andthe objective function.
Let us see what this means by considering a (profit) maximization problem and what
happens to one particular variable, say variablex, which has an objective function
coefficientP. First let us consider how the objective function changes asx is forced
away from its optimal valuex0. In order to do so consider Fig. 8.2.

The objective function value will go down with a constant slope if we movex in
either direction (more precisely, it will not go up) towardssome maximum move-
ment, at which point the role of degradation will increase. It is fairly straightforward,
from the optimal solution of the LP, to calculate the slopes of the degradation, and
the limits to whichx can be moved before the slopes change. As indicated in the



8.5 Post-Optimal Analysis 261

z

xLA x0 xUA x

slope "unit cost up"

slope "u
nit c

ost d
own"

Fig. 8.2 Sensitivity analysis: objective versus optimal value.

A

x*

B

pL p pU

x

p

Fig. 8.3 Sensitivity analysis: optimal value versus unit profit.

diagram, the slopes will generally not be equal for a movement up and a movement
down. Not unreasonably, the slope in the direction of increasingx is called theunit
cost up, and in the decreasingx direction theunit cost down. The values ofx at
which the slopes change are calledupper activityandlower activityrespectively.

In a real industrial situation there may be a good reason why we would wish
to setx away from its optimal value. For instance, the value today might be only
very slightly different from that used yesterday, and we would like to stick with a
stable plan. Inspecting the unit costs up or down will immediately tell us whether
our reluctance to change will have a small or a large effect ontotal profit.

An alternative source of uncertainty might be the true valueof P, the per unit
profit of x. We might be able to see how the optimal amount ofx indicated by the LP
varies asP varies. Fig. 8.3 illustrates this dependency. AsP increases, the optimal
amount ofx to produce suddenly jumps to A, while asP decreases the optimal
amount ofx jumps down to B. The value ofP at whichx jumps to a higher level is
calledupper profit, and likewise the value ofp at whichx suddenly plummets is the



262 Case Studies and Problem Formulations

y

x

F

E

D

increasing
profit direction

Fig. 8.4 Sensitivity analysis: slope of objective function.

lower profit. It can be shown that the new levels A and B are just the upper activity
and lower activity we encountered when we were forcingx away fromx∗.

At first sight, these discontinuities in the optimal solution of x look surprising —
does not economics tell us that supply curves are smooth? Thereason can be seen
easily in a two-variable problem illustrated in Fig. 8.4.

For a fixed per unit profit coefficient fory, asx’s profit increases the optimal point
will suddenly jump to D, while as it decreases it will suddenly jump to F. So a small
change inP can lead to a large change in the best value ofx.

8.5.3 Parametric Programming

Various other post-optimal analyses might be useful. For instance, we might like to
see how the solution values change as the right-hand side of one or more constraints
change, or as various profit coefficients change. So, we wouldlike to trace out the
solution to

max cTx (8.5.6)

subject to
Ax ≤ b+θβ , x ≥ 0 (8.5.7)

asθ varies from 0 to 1. Hereβ is a right-hand side change. Doing this is called
parametric programming.

Similarly, we might like to see the solution of

max (c+θδ )Tx (8.5.8)

subject to



8.5 Post-Optimal Analysis 263

Ax ≤ b , x ≥ 0, (8.5.9)

asθ varies from 0 to 1.δ is a vector of changes to the objective function. This is
calledparametric programming on the cost row.

If the right-hand side and objective function can change simultaneously, then we
might have

max (c+θδ )Tx (8.5.10)

subject to
Ax ≤ b+θβ , x ≥ 0, (8.5.11)

which is calledparametrics on the rim.
Much harder to tackle is the case where coefficients in the constraint matrix

change:

max cTx (8.5.12)

subject to
(A+θα)x ≤ b , x ≥ 0. (8.5.13)

We are not aware of any current optimization software that includes this facility.
Though the techniques of ranging and parametric programming are nice theoret-

ically, they are of almost no use with large problems. The difficulty arises because
the solution to almost all large LP problems is degenerate,i.e., there are many al-
ternative solutions with the same objective function value. Minimal changes in the
right-hand side or profit coefficients will then lead to a solution that is different in
the decision variables, but nearly the same in the objectivefunction value. Thus the
upper and lower activities will coincide with the current optimal value, and we will
obtain little useful information.

When we do parametric programming on large problems there arelikely to be
an enormous number of different solutions as we changeθ . If we print out the
different solutions each time we jump to a new vertex then we will be drowned
in output. The natural thing is to say that we want solutions for a set ofθ , say
θ ∈ {0.1,0.2, . . . ,1.0}. But if that is what we want it’s best to solve ten separate
problems, which in the case of parametrics on the right-handside for instance, gives
rise to problemsPi with β i = i/10.

We would solve these problems fori = 1,2, . . . ,10 using the optimal basis for
problemi to start the solution procedure for problemi +1.

8.5.4 Sensitivity Analysis in MILP Problems

Finally we want to make some comments on sensitivity analysis in MILP problems.
The concept of sensitivity is closely related to that of continuity. In continuous prob-
lems we expect that a “small” change in an input quantity willhave “small” effects
onto output quantities. However, when discussing the dependence of optimalx on



264 Case Studies and Problem Formulations

its unit profit coefficientP we saw that we can expect jumps. The situation is even
worse in MILP problems. Consider the single constraint capacity problem

max 5δ 1+100δ 2+10δ 3 (8.5.14)

subject to
20δ 1+100δ 2+40δ 3 ≤C , δ i ∈ {0,1} (8.5.15)

with capacityC= 100. The solution is obviouslyδ 1 = δ 3 = 0 andδ 2 = 1 yielding an
objective function value of 100. IfC is slightly decreased for instance toC= 100−ε
whereε is any positive real number, the solution changes toδ 1 = δ 3 = 1,δ 2 = 0 and
an objective function value of 15. In LP the objective function is a smooth function,
but in ILP it is not.

Thus the consequence is that for MILP problems it is almost impossible to pro-
vide meaningful sensitivity analysis. We cannot expect better than this because of
the lack of continuity of discrete problems. Work by Williams (1995,[593]) attempts
to provide an explanation of sensitivity analysis and duality, where possible, for
MILP problems, but the possibilities are limited.

8.6 Summary & Recommended Bibliography

At the end of this chapter the reader should now be familiar with:

• several examples of models requiring the use of MILP;
• the nature of modeling special features required in practical instances of depot lo-

cation, distribution, optimal purchase, yield managementproblems, and schedul-
ing across time periods;

• the difficulty of detecting sources of infeasibility in models;
• the potential of post-optimality and parametric operations on solved problems.

It may also motivate the reader to have a deeper look into literature related to certain
fields of Operations Research,e.g., Location Science[364].



Chapter 9
User Control of the Optimization Process and
Improving Efficiency

This chapter will provide information on how the solution time of an IP problem can
be reduced significantly. This is important, as in contrast to ordinary LP problems,
effective solution of IP problems depends critically upon good model formulation,
the use of high level branching constructs, and control of the B&B strategy. Good
formulations are those whose LP feasible region is as “smallas possible” not ex-
cluding any feasible MILP solution, or, to be precise, thosewhose LP relaxation
has a feasible region which is close to the convex hull of the MILP problem’s fea-
sible set. In practice, this means, for example, that upper bounds should be as small
as possible. Formulating models in this fashion is still largely the responsibility of
the modeler, although work has been done on automatically reformulating mixed
zero-one problems,cf. VanRoy & Wolsey (1987,[574]), leading to tighter formula-
tions. Preprocessing can also improve the model formulation; cf. Achterberget al.
(2008,[4]), Gamrathet al. (2015,[215]), and Achterberget al. (2020,[5]). The merit
of good formulations is evident in practical applications such as Meyer (1969,[406]),
Jeroslow & Lowe (1984,[298]) and Cheshireet al. (1984,[126]).

Most of the techniques described in the sections below are executed automati-
cally by the (commercial) LP and MILP solvers available in 2020.

9.1 Preprocessing

Preprocessingmethods introduce model changes to speed up the algorithms.The
modifications are made, of course, in such a way that the feasible region of the
MILP problem is not changed. They apply to both pure LP and MILP problems
but they are much more important for MILP problems. There arealso dual tech-
niques that change the feasible region but ensure that at least one optimal solu-
tion remains in the feasible set. A selection of several preprocessing algorithms is
found in Johnsonet al. (1985,[302]). An early overview of simple and advanced
preprocessing techniques is given by Savelsbergh (1994,[496]). The reader is also

265



266 User Control of the Optimization Process and Improving Efficiency

referred to the comprehensive survey of presolve1 methods by Andersen & An-
dersen (1995,[22]). Achterberget al. (2008,[4]) is a useful source for presolving,
Gamrathet al. (2015,[215]) provide a more recent review on progress in presolv-
ing for mixed integer programming, and Achterberget al. (2020,[5]) give recent
insights into presolve reductions in mixed integer programming. Some common
preprocessing methods are: presolve (arithmetic tests on constraints and variables,
bound tightening), disaggregation of constraints, coefficient reduction, and clique
and cover detection. In 2020, among the most important techniques in presolve are:
probing, bound tightening, duplicate columns, dominated columns, duplicate rows,
dominated rows, two-row reductions, implied integer detection, singleton rows, and
substitutions (especially dual substitutions and those with two variables).

Many of these methods are implemented in commercial software but vendors are
usually not very specific about which techniques they have implemented or meth-
ods used. ForSCIPand the open-source solverCBC it is easier to find details about
presolving;cf. Gamrathet al. (2015,[215]). In particular, during preprocessing con-
straints and variables are eliminated, variables and rows are driven to their upper
and lower bounds, or an obvious basis is identified. Being aware of these methods
may greatly improve the user’s model building leading to more efficient models or
may reduce the user’s efforts if it is clear that the softwarealready does certain
operations automatically. For those reasons we demonstrate different preprocessing
methods by simple examples.

9.1.1 Presolve

There are two important operations presolve performs:arithmetic testsandbound
tightening.

9.1.1.1 Arithmetic Tests

Despite the good efforts of modelers, models are frequentlybuilt which contain
unintended redundant features. For example, given upper bounds of 10, 8, 8 (re-
spectively) and lower bounds of 2, 3, 5 (respectively) forx1, x2 andx3 the constraint

2x1+x2−x3 ≤ 25 (9.1.1)

is redundant as the left-hand side of the constraint can never exceed 23. To see this
we can inspect the left-hand side of (9.1.1). The maximum value it can take is given

1 The termspreprocessingandpresolveare often used synonymously. Sometimes the termpresolve
is used for those procedures which try to reduce the problem sizeand to discover whether the
problem is unbounded or infeasible.Preprocessinginvolves the presolving phase but includes all
other techniques which try, for instance, to improve the MILP formulation. It might be interesting
to point out here that transfering a solution back to the space ofthe optimal solution is called
postsolvingand is a non-trivial step in some cases.



9.1 Preprocessing 267

by driving the variables to their upper and lower bounds yielding

max(2x1+x2−x3) = 2·10+1·8−1·5= 23. (9.1.2)

Thus the inequality (9.1.1) can be removed from the problem.
To give another example of redundant constraints, let us assume 0< b1 < b2 and

consider the three constraints

0≤ x1 ≤ b1 , 0≤ x2 ≤ ∞ , x1−x2 ≤ b2. (9.1.3)

Sincex1 ≤ b1 andx2 is non-negative the maximum positive value the left-hand side
of the last constraint could take isb1 and thus the last constraint can never become
binding and thus is redundant.

Further, in the problem
max 2x1+x2−x3 (9.1.4)

subject to
x1 + x2 + x3 ≤ 100

2x1 + 5x2 + 3x3 ≤ 200
−3x1 + x2 + x3 ≤ 150,

(9.1.5)

where all variables have lower bounds of zero, the variablex3 could be removed
from the problem. It takes away from the availability of the three resources (9.1.5)
and reduces the objective function. Thus in an optimal solution we havex3 = 0.

The idea of checking a problem for redundant features is discussed in Brearleyet
al. (1975,[103]). Additional information appears in Tomlin & Welch (1983a,[561]
& b,[560]). Although the small examples given seem unlikelyto occur, in practice
redundancy is likely to creep in when large and complex models are formulated as
(a) redundancy may be masked within the problem, (b) a model may be made from a
combination of models built by several modelers, perhaps atdifferent locations, and
although each sub-model may contain no redundancies the combined model may do
so, and (c) idleness in modelers,e.g., ∑xi = Rand fixR= 0.

It is beneficial to remove redundancies if this can be done conveniently as it will
aid model management, reduce computer storage requirements and speed up solu-
tion. A model with redundant features will not give “wrong” solutions, but it offers
scope for improvement. Many LP software systems have facilities for removing re-
dundancies prior to the optimization process starting,i.e., a number of these checks
are made and constraints and variables adjusted, or indeed removed, accordingly.
Solution values are organized so that the output restores any redundant feature of
the model removed by presolve,e.g., shadow prices and reduced costs are calcu-
lated.

Arithmetic tests performed in presolving can also detectinfeasible problems. The
idea behind such tests is to transform the constraints such that a selected variablex j

appears alone on the left-hand side,i.e.,

x j ◦Bi ± ∑
∀k,k6= j

Aikxk , ∀i, (9.1.6)



268 User Control of the Optimization Process and Improving Efficiency

where the symbol◦ represents the relations≤ or ≥. Let us apply this idea to the
constraints

0≤ x1 ≤ 1 , 7≤ x2 ≤ 9 , x1+x2 ≤ 5. (9.1.7)

Selectingx2 the constraints system becomes

x2 ≥ 7
x2 ≤ 9
x2 ≤ 5−x1 ≤ 5

(9.1.8)

asx1 is non-negative. The first and last constraints are obviously in conflict and thus
our problem is infeasible.

9.1.1.2 Tightening Bounds

As we have already seen in Section 3.3.1 where we tightened the bound of the
inequality (3.3.2)x1+x2 ≤ 3.5 yieldingx1+x2 ≤ 3, in some integer problems tight-
ening bounds eliminates the tree enumeration in the B&B algorithms completely.
Tightening bounds is crucial – and probing builds on the sametheory. In this sec-
tion we will see how we can shrink the domain of a variable if weconsider several
constraints simultaneously.

Consider the constraints

Li ≤ ∑
j

Ai j x j ≤Ui , ∀i (9.1.9)

and the bounds
X−

j ≤ x j ≤ X+
j , ∀ j. (9.1.10)

Then, iteratively, we could compute the extreme values

Ei = ∑
j

Ai j x j , ∀i (9.1.11)

of constraints by driving the variables to either their lower or upper bounds,i.e.,
each variablex j is fixed to one of its finite (if any) bound values depending on the
correspondingAi j sign. For each constraint, selecting one variable at a time,Ei is
updated in order to find animpliedbound for the selected variable. If tighter, theim-
plied bound replaces the actual bound. This procedure iterates over all constraints,
and stops if a) during a complete iteration no reduced bound is found, or b) the num-
ber of iterations reaches a pre-defined maximum value. To demonstrate tightening
of bounds consider the following bounds

0 ≤ x1 ≤ ∞
0 ≤ x2 ≤ 2
4 ≤ x3 ≤ 10

(9.1.12)



9.1 Preprocessing 269

and let us analyze the constraint

4≤ 2x1+4x2−6x3 ≤ 10. (9.1.13)

A new lower bound forx1 is derived from considering 4≤ 2x1+4x2−6x3, or equiv-
alently from

x1 ≥ 2−2x2+3x3. (9.1.14)

Inserting the appropriate extreme values forx2 andx3, i.e., x2 = X+
2 = 2 andx3 =

X−
3 = 4 we findx1 ≥ 10. The new upper bound ofx1 is found from considering

2x1+4x2−6x3 ≤ 10, or equivalently

x1 ≤ 5−2x2+3x3 (9.1.15)

with x2 = X+
2 = 0 andx3 = X−

3 = 10 yieldingx1 ≤ 35. Thus the updated bounds for
x1 read

10≤ x1 ≤ 35. (9.1.16)

Understanding the concept of tightening bounds we can now also appreciate why it
is important to model constraints of the form

y≤Y ·δ , y≥ 0 , δ ∈ {0,1} (9.1.17)

with the upper boundY on y as small as possible. In the LP relaxationδ appears as
0≤ δ ≤ 1. Suppose, for example, that the largest feasible value ofy is Y′ <Y, and
that the objective function to be minimized contains a term,sayCδ , representing
some set-up cost associated withδ . If in the optimal solution of the LP relaxation
we havey=Y′, and we have used (9.1.17), because of the presence ofCδ , we will
obtainδ =Y′/Y < 1 leading to two additional subproblems in the B&B algorithm.
On the other hand, if we use the constraint

y≤Y′ ·δ , y≥ 0 , 0≤ δ ≤ 1 (9.1.18)

we getδ = 1. Although in practice we might not always encounter the favorable
case it illustrates the idea why we are advised to choose the upper bound ony as
small as possible.

A message such asLP relaxation tightened produced by a MILP
solver produced during optimization means presolve has been effective in integer
aspects of the problem. Note that solvers include several preprocessing methods
under presolve.

9.1.2 Disaggregation of Constraints

Disaggregation aims at finding some logical implications between binary and other
variables. Such logical implications are introduced into the model by adding logical



270 User Control of the Optimization Process and Improving Efficiency

inequalities. They can be added if implications of the following kind are present:
if a binary variable is zero or one, then a continuous variable is either at its lower
bound (L) or upper bound (U). There are four possible implications and we list the
inequalities they generate

δ = 0 ⇒ x= L −→ x−L ≤ (U −L)δ
δ = 0 ⇒ x=U −→ U −x ≤ (U −L)δ
δ = 1 ⇒ x=U −→ x−L ≥ (U −L)δ
δ = 1 ⇒ x= L −→ U −x ≥ (U −L)δ .

(9.1.19)

Consider the binary variableδ ∈ {0,1} in the example

x1 ≤ 100δ
−x1 +x2 ≤ 20

with
0 ≤ x1 ≤ 100

20≤ x2 ≤ 80
. (9.1.20)

In order to see whether one of the implications listed in (9.1.19) is present let us see
how the constraints look like when the binary variable takesthe values 0 or 1:

δ = 1=⇒ x1 ≤ 100
−x1 +x2 ≤ 20

(9.1.21)

and

δ = 0=⇒ x1 ≤ 0
x2 ≤ 20

=⇒ x1 = 0
x2 = 20

. (9.1.22)

While δ = 1 does not imply thatx1 or x2 is at any of its bounds,δ = 0 does so:
both variables,x1 andx2, are at their lower bounds. Applying (9.1.19) forx1 yields
the logical inequalityx1 ≤ 0 which does not help at all. But the logical inequality
derived forx2 reads

x2−60·δ ≤ 20 (9.1.23)

and improves our original model. To see this let us consider the original inequalities
(9.1.20). If we combine both of them we get

x2 ≤ 20+x1 ≤ 20+100δ (9.1.24)

Our additional logical inequality (9.1.23) leads to the tighter inequality

x2 ≤ 20+x1 ≤ 20+60δ . (9.1.25)



9.1 Preprocessing 271

9.1.3 Coefficient Reduction

Coefficient reduction2 is another preprocessing method which aims at tighter MILP
formulations. The reasoning involved is closely related tothe (0-1) knapsack con-
straints we got to know in Section 7.1.1. To see how and why coefficient reduction
works consider the inequality

4δ 1+3δ 2−2δ 3 ≤ 6. (9.1.26)

This inequality is not yet in the knapsack form because one ofthe coefficients is
negative. In order to achieve that goal we introduce a new binary variableδ

′
i = 1−δ i

which then has the coefficient−Ai j , i.e., a positive one. In our example this leads to
the binary knapsack constraint

4δ 1+3δ 2+2δ ′
3 ≤ 8. (9.1.27)

So in any case we can assume that all coefficientsAi j are positive,i.e., that the
inequality appears as a knapsack constraint. For each constraint ∑ j Ai j δ j ≤ bi (in
the example we consider only one) define the sum of all coefficients

Si := ∑
j

Ai j . (9.1.28)

We can assume thatSi > bi as otherwise the constraint is not binding at all. LetAim

be the maximum coefficient in constrainti and let us rewrite the original constraint
as

Aimδ m+ ∑
j 6=m

Ai j δ j ≤ bi . (9.1.29)

We can also exclude the caseAim > bi as in that case we could putδ m = 0. The
definition ofSi allows us to derive the following inequality:

∑
j 6=m

Ai j δ j ≤ min{Si −Aim,bi} . (9.1.30)

In order to improve the constraints let us add the term(Si −bi)δ m on both sides of
the inequality and rearrange the inequality (9.1.29) a bit:

(Si −bi)δ m+ ∑
j 6=m

Ai j δ j ≤ bi +(Si −bi)δ m−Aimδ m (9.1.31)

= (S−Aim−bi)δ m+bi . (9.1.32)

Since we want to tighten the formulation let us derive the minimum value of the
right-hand side. Under the assumptionSi −Aim < bi the minimum value,S−Aim,
is achieved forδ m = 1 (note that the term in brackets is negative according to our

2 In 2020, coefficient reduction still matters, but there are a number of more advanced techniques
to tighten coefficients, such as those that consider other rows inthe problem or cliques.



272 User Control of the Optimization Process and Improving Efficiency

assumption). Thus we end up with the inequality

(Si −bi)δ m+ ∑
j 6=m

Ai j δ j ≤ Si −Aim, (9.1.33)

which replaces the original constraint∑ j Ai j δ j ≤ bi . However, we have to show that
we did not change the feasible region of the original MILP problem. If we inspect
(9.1.33) for the caseδ m= 0 we get (9.1.30) again; thus we are safe on this side. The
caseδ m = 1 in (9.1.29) gives

Aim+ ∑
j 6=m

Ai j δ j ≤ bi , (9.1.34)

which corresponds to the original problem without losing something. Thus we have
shown that (9.1.33) is a valid inequality. As we haveSi −Aim < bi , and equivalently
Si − bi < Aim, we see that the coefficient ofδ m and that of the right-hand side of
(9.1.33) are really reduced, compared to the original inequality.

In short, we can establish the following rule: ifSi −Aim < bi the coefficientsAim

andbi can be assigned new values

Aim ←− Si −bi

bi ←− Si −Aim
(9.1.35)

replacing the original inequality. Then a new value ofSi is evaluated and the process
iterates over all coefficients.

Let us demonstrate the procedure and apply it to the constraint

4δ 1+3δ 2+2δ 3 ≤ 8, (9.1.36)

which yieldsS= 9. In this case we haveA11= 4 as the biggest coefficient,S−A11=
5< 8= b1 and thus the improved coefficients

A11 ←− 1= S1−b1

b1 ←− 5= S1−A11,
(9.1.37)

which lead to the improved constraint

δ 1+3δ 2+2δ 3 ≤ 5. (9.1.38)

The next coefficient to be replaced isA12 and eventuallyA13 so the final constraint
is

δ 1+δ 2+δ 3 ≤ 2, (9.1.39)

which claims that at most two of the binary variables can be different from zero. In
terms of the knapsack interpretation this inequality ensures that at most two items
can be chosen. If we inspect the original inequality (9.1.36) we can check this result
and see again that we could choose indeed at most two items.



9.1 Preprocessing 273

9.1.4 Clique Generation

Consider againn binary variablesδ j ∈ {0,1} and a constraint

n

∑
j=1

A jδ j ≤ b, (9.1.40)

which is again a knapsack constraint if all coefficientsA j are positive. As in Section
9.1.3 we assume that this is the case. There may be several constraints of such form,
and we inspect them individually. We also assume that the coefficientsA j in the row
of interest are sorted in non-increasing order,i.e., A1 ≥ A2 ≥ . . . ≥ An. A clique is
defined as an inequality

∑
j∈S

δ j ≤ 1 , S⊂ {1, . . . ,n}. (9.1.41)

The clique generation process inspects the two coefficientsA j +A j+1 starting with
j = 1. If A j +A j+1 > b then at most one ofδ j andδ j+1 can take the value 1 as
otherwise (9.1.40) is violated. We continue incrementingj until A j∗ +A j∗+1 ≤ b for
some valuej∗. ThenS= {1, . . . , j∗} is a clique because at most one ofδ j1, δ j2 with
j1, j2 ∈ S can be non-zero. Model formulation will benefit (tighter LP relaxation)
from violated cliques so only these are added to the model constraints. Naturally,
clique generation iterates over all the constraints.

Let us see how clique generation works on the constraint

1.8δ 1+1.5δ 2+δ 3+δ 4 ≤ 2. (9.1.42)

Working from left to right, the first pair that does not violate the constraint (9.1.42)
is δ 3, δ 4 as 1+1≤ 2. So the clique generated and added to our model is

δ 1+δ 2+δ 3 ≤ 1. (9.1.43)

Note that
δ 1+δ 2+δ 4 ≤ 1 (9.1.44)

also holds asδ 3 andδ 4 appear alike in (9.1.42). Exercise 9.1 will provide further
examples.

In 2020, cut generation as described above is not consideredpart of presolve but
part of the root node processing. That said, cliques are alsoadded in presolve if the
lifted clique dominates original constraints.



274 User Control of the Optimization Process and Improving Efficiency

9.1.5 Cover Constraints

As clique constraint, cover constraints usually also applyto 0-1 knapsack problems.
Again we considern binary variablesδ j ∈ {0,1} and a constraint

n

∑
j=1

A jδ j ≤ b, (9.1.45)

in which all coefficientsA j are positive but this time sorted in non-decreasing order
in each constraint. The idea of covers is to find certain combinations of binary vari-
ables such that the sum of their associated coefficients exceeds the capacity of the
knapsack. Let us now introduce acoverdefined as the constraint

∑
j

δ j ≤ K. (9.1.46)

If we find a subsetS ⊂ {1, . . . ,n} of indices such that∑ j∈S A j > b but for any
smaller subsetS ′ ⊂ S , ∑ j∈S ′A j ≤ b, then

∑
j∈S

δ j ≤ |S |−1 (9.1.47)

is aminimal cover(Crowderet al., 1983,[141]).
Based on this minimal cover we will derive alifted cover inequalityby consider-

ing the following knapsack problem:

M = max ∑
j∈S

δ j (9.1.48)

subject to

∑
j∈S

A jδ j ≤ b−Ak , ∀k /∈ S . (9.1.49)

If M > 0 thenδ k is lifted in the minimal cover, that now takes the form

∑
j∈S

δ j +(|S |−1−M)δ k ≤ |S |−1 (9.1.50)

for if δ k = 0 this is the minimal cover constraint above, while ifδ k = 1 then
∑ j∈S δ j ≤ M asM was selected with this property. The cover generation process
iterates over all the constraints.

Let us demonstrate this approach using the constraint

9δ 1+10δ 2+10δ 3+11δ 4 ≤ 23. (9.1.51)

The first task is to determine an appropriate set of indicesS . There are 4 minimal
covers{1,2,3}, {2,3,4}, {1,2,4} and{1,3,4} corresponding (9.1.51). Let us take the
first one,S = {1,2,3}, yielding the minimal cover



9.2 Efficient LP Solving 275

δ 1+δ 2+δ 3 ≤ 2 (9.1.52)

If we interpret the inequality (9.1.52) in terms of the knapsack problem it states that
of the first three items at most two can be selected. The only index not inS is i = 4.
So the lifting technique tries to addδ 4 to the minimal cover (9.1.52). In order to do
so we have to solve the following knapsack problem

M = max δ 1+δ 2+δ 3 (9.1.53)

subject to
9δ 1+10δ 2+10δ 3 ≤ 23−11= 12. (9.1.54)

In this example it is easy to see that we have the maximumM = 1 because only
one binary value can be different from zero. Thusδ 4 can join the minimal cover
constraint with coefficient 2−M yielding

δ 1+δ 2+δ 3+δ 4 ≤ 2. (9.1.55)

The last thing we have to check is that the lifted cover (9.1.55) is violated if we
would assign otherwise feasible values to the variables occurring in the cover. In-
deed,δ 1 = δ 2 = δ 3 = δ 4 = 1 makes (9.1.55) infeasible.

The result (9.1.55) is not a surprise as (9.1.55) just ensures that at most two binary
variables can be different from zero.

In the MILP solvers available in 2020, cover and knapsack cuts are not consid-
ered part of presolve anymore. They are rather part of the root node processing.

9.2 Efficient LP Solving

The use of software to solve LP problems rarely benefits from user intervention
during the optimization process, provided the matrix is well scaled [see Section
9.2.2]. However, it is useful to make use of awarm startwherever possible. As with
many things in live: Too many or too much may not be good. If oneuses warm starts
often during search one may not finish the search. Therefore,increase the number
of B&B nodes in each run. Other reasons why warm starts are good: Pseudo-costs;
promising branching variables have been identified.

9.2.1 Warm Starts

A solution saved from a previous related run may be advantageously used in the
form of an advanced basis [see Section 3.8.1 for a discussionof basis]. That is what
we call awarm start. Inside MILP solvers there is also something calledhot start. If
we already have a factorization of the basis such as when diving in the B&B tree, we



276 User Control of the Optimization Process and Improving Efficiency

can use that and save quite some time. If warm starts and hot starts are not possible
the use of acrash basisis recommended.Crash is discussed in Maros & Mitra
(1996,[397]). The idea is to force into the solution at an early stage all the variables
that look promising, rather than to introduce them sequentially. The exploitation of
crash structurescan dramatically speed the solution of LP problems [cf. Gould &
Reid (1989,[241])].

9.2.2 Scaling

Thescaleof the matrix of coefficients in an LP or MILP problem is the ratio between
the coefficient with largest absolute value and the coefficient with smallest absolute
value. A well scaled matrix is one where that ratio is relatively small. It is always
worth striving for a well scaled matrix as this avoids certain difficulties that can
be encountered during the optimization process,e.g., in the Simplex algorithm the
division of a large coefficient by a small one might be required, creating a very large
number, which leads to difficulties of computer representation of that number. A
variety of scaling methods are available that can be imposedon the matrix once it
is formed. However, it is advisable to try to avoid some foreseeable difficulties by
the careful choice of units for variables to avoid dramatic differences,e.g., working
in 1,000 units for salary data so that a salary is representedas 15.30 and working
in fractional measurements of tolerances so that 0.0015 millimeter is represented
as 1.5. Foolish choice of units might place the coefficients 15,300.0 and 0.0015
in the same model and lead to the quotient of these two quantities being created,
i.e., 10,200,000.0, which is rather large. If several of such large numbers occur and
we need to compute differences between them, a typical problem of large number
arithmetic requires our attention: inaccurate results dueto the cancelation of digits.
Ideally, the non-zero matrix coefficients should range between 0.01 and 1,000 in
absolute magnitude, and the optimal decision variables should not exceed 1,000.
A sensible use of units of measurement is worthwhile: using grams and tons to
measure similar quantities can cause problems. Similarly,measuring objectives such
as corporate cash flow in single monetary units such as £, SFr,Yen or $, is unwise.

A discussion of types of scaling appears in Fulkerson & Wolfe(1962,[211]),
Curtis & Reid (1972,[142]) and Tomlin (1975,[559]). Solvers offer a number of
types of scaling. Its objective is to get the coefficients as close to 1 as possible,
while not losing accuracy. The default scaling usually is row and column scaling by
the maximum element method . Other choices are

1. row (divide each row by the largest absolute value elementin that row),
2. column (divide each column by the largest absolute value element in that col-

umn),
3. maximin,
4. Curtis-Reid scaling (Curtis & Reid, 1972,[142]), and
5. geometric mean (replace “largest absolute value” in 1 or 2by geometric mean).



9.3 Good Modeling Practice 277

It has to be said that the influence of scaling on solution times is very badly under-
stood, but it still matters, in 2020. Unfortunately, it sometimes leads to the situation
that after unscaling, the solution is a lot less accurate than the user might want.

9.3 Good Modeling Practice

Solution times can also greatly be influenced by observing a few rules which distin-
guish “bad” from “good” modeling. Good modeling leads to numerically efficient
behavior of the solver. The “tricks of the trade” listed below demonstrate once more
that good modeling requires a tight connection and deep understanding of both the
model and how an algorithm is implemented in a commercial solver.

1. Structure of the objective function: collecting different cost contributions (trans-
port, production, inventory) into specially introduced variables instead of putting
them all into the objective function may increase the time needed to solve the
problem. If the total cost to be minimized is the sum of several logically destined
parts (for instance, transport, production and inventory)there is often a tendency
to specify the total cost by a constraint

c= cT +cP+cD (9.3.1)

and then give separate equations forcT , cP andcD [refer to Sections 10.4.2.14
and 10.4.3.4]. This tends not to be a good idea, as there are very few coefficients
in the objective function, and so the early choices in the Simplex algorithm can be
rather arbitrary. However, if presolve and/orcrash techniquesare used then the
substitutions into the objective function will probably occur, and the objections
given above rendered invalid. Actually, presolving nowadays identifies substi-
tution variables and hence, modeling can be done quite intuitive and close to
natural language.

2. Avoid zero right-hand side equations: constraints such as ∑A jx j = 0 should be
avoided. The minimum ratio rule has difficulties picking outthe best basic vari-
ables to be eliminated from the basis. Some modelers like to have all right-hand
side coefficients equal to zero, and supply just bounds on variables. For instance,
the constraint

x+2y≤ 6 (9.3.2)

can be written as
x+2y−s= 0 , s≤ 6. (9.3.3)

Problems formulated in this way can be degenerate, as the Simplex minimum
ratio rule has many ties to consider. So, the general advice is to avoid con-
straints such as∑A jx j = 0 if possible. (Although, after many iterations some
non-zero right-hand side might show up in the transformed equations associated
with ∑A jx j = 0.)



278 User Control of the Optimization Process and Improving Efficiency

3. In Chapter 2, page 42, we saw that balance constraints appeared in two guises.
Let x1,x2,x3 indicate flows into a process andy1 andy2 represent flows out. A
constraint is required to model the fact that flow must be conserved in the sense
that total flow out cannot exceed total flow in. The constraintis:

x1+x2+x3−y1−y2 ≥ 0. (9.3.4)

A tighter form of (9.3.4) and flow conservation is of course

x1+x2+x3−y1−y2 = 0, (9.3.5)

which ensures that flow out and flow in are exactly equal to eachother. Even
if (9.3.5) is the correct formulation of flow conservation there is an advantage
using (9.3.4). This replacement is valid under the following assumption: assume
thaty1 andy2 represent amount of products which are to be produced and sold
and appear in a maximization problem with positive coefficients in the objective
function. Letx1,x2 andx3 be amounts of pre-products purchased or intermediate
products produced in a production network. The numerical advantage for using
(9.3.4) is that it gives more freedom to the solver and supports better analysis
of infeasibilities in incorrectly formulated models. If the model is formulated
correctly then in accordance with the economical situationthe solution should
have the propertyy1 + y2 = x1 + x2 + x3 because it pays to produce as much
as possible. If that equation is not fulfilled the optimizer “destroys” worthwhile
matter which is, at the very least, strange! We should reanalyze the model as
something is economically not well understood or is incorrect.

4. When solving integer problems it is sometimes advantageous to introduce addi-
tional discrete variables because they enable the user to set priorities on variables
and thus influence the variable selection procedure during the B&B process. This
is illustrated below. But it is not just the advantage due to priorities but also the
branching strategies in a wider sense as it allows us to branch on constraints.
Consider the case that we introduce an additional integer variable α which we
relate to some binary variablesδ i

α = ∑
i

δ i . (9.3.6)

Let us now assume that the LP relaxation provides a fractional value α = 4.3.
Branching onα is then equivalent to branching on the inequalities

∑
i

δ i ≤ 4 or ∑
i

δ i ≥ 5, (9.3.7)

which can lead to a great improvement.
5. Using priorities on variables to branch on: consider the case where a chemical

company wants to build a large chemical reactor in either Korea or Brazil. The
reactor is either a batch reactor or a continuous reactor. One might introduce
binary variables,δ lt , such that



9.3 Good Modeling Practice 279

δ lt =

{
1 , if a reactor of typet is built at locationl
0 , otherwise.

(9.3.8)

However, let as ask what is the more important decision - the reactor type or the
location? Because Korea and Brazil are rather dissimilar countries with differ-
ent industrial infrastructure, markets and qualities of workmanship the decision
related to the country is the more important one. Thus, in order to control the
branching process it would be a great advantage to introducethe binary variable

α l =

{
1 , if a reactor is built at all at locationl
0 , otherwise.

(9.3.9)

This allows us to force the B&B algorithm to follow our reasoning: take the most
important decision first,i.e., if it comes to variable selection chooseα l first. The
variables are related by

δ lt ≤ α l , ∀{lt} (9.3.10)

and
α l ≤ ∑

t
δ lt , ∀l . (9.3.11)

Note that if we decide thatα l = 0 then for the binary variablesδ lt we haveδ lt = 0
for all t. If we decideα l = 1 then we ask for

∑
t

δ lt ≥ 1. (9.3.12)

6. The relaxation of equations containing integer and continuous variables into in-
equalities can greatly improve the B&B algorithm. Let us illustrate this approach
by the following example stemming from the chemical industry. Several unitsu
can produce a set of productsp in batches of sizeBup. Thus we have the equations

Bupβ upt = xupt , ∀u, p, t | Bup > 0, (9.3.13)

which link the number of batchesβ upt (typical values are between 0 and 20) with
the total amountsxupt produced in time periodt. The production variables are
further subject to capacity constraints, availability constraints, production recipe
constraints, etc., and appear in the objective function. The B&B did not find any
feasible integer solution within four hours or within 20,000 nodes. First, let us
try to understand why that is so. The economic driving forcesin the model are
the demands; typical values are a few hundred tons. The demands are satisfied
by appropriate values of the production variablesxupt. Usually, in an optimal so-
lution the variablesxupt take some continuous values. Thus, in the LP relaxation
and in most nodes of the B&B treeβ upt will be fractional. Generating two sub-
problems,i.e., adding the boundsβ upt ≤

⌊
β upt

⌋
or β upt ≥

⌈
β upt

⌉
, changed the

valuesxu′p′t on other units and for other products and produced new fractional
valuesβ u′p′t in the solution of the subproblem. The solution to the problem is to
give up the equations (9.3.13) and to replace them by the inequalities



280 User Control of the Optimization Process and Improving Efficiency

Bupβ upt ≥ xupt , ∀u, p, t | Bup > 0 (9.3.14)

and to advise the B&B algorithm to first investigate the nodeβ upt ≥
⌈
β upt

⌉
.

Now it is easy for the B&B algorithm to find feasible integer solution. If an LP
relaxation produces a solution with fractional value ofβ upt the subproblem has
the same solution but with batch size

⌈
β upt

⌉
. In order to avoid having arbitrary

large value ofβ upt these variables are slightly penalized in the objective (typical
value of the objective function are above 108 £, the penalty term is of the order
103 £). Having in mind that the capacity constraints are appliedto the production
variablesxupt, one might argue that batch sizes which cover more than what is
produced might violate the production capacity. This is true and therefore the
inequality

Bupβ upt−xupt ≤ εBup , ∀u, p, t | Bup > 0 (9.3.15)

was added, reducing the violation to a few percent (0.01≤ ε ≤ 0.1) of the batch
sizes involved. Now the B&B produced good solutions after 200 or 300 nodes
in less than 5 minutes. Inspecting the solution showed that only four or five out
of a few hundred of the original equations (9.3.13) were slightly violated. Fur-
thermore, the specific violations coincided with the uncertainty in the capacities
specified.

7. In the old days of integer optimization, an integer variable α had sometimes been
represented by binary variablesδ k exploiting the expression

α =
n
∑

k=0
2kδ k.

This is not necessary anymore – and it is not recommended! However, in terms
of presolving, MILP solvers usually perform better on binary variables than
on integer variables. One may keep this in mind, if the modeling process really
leaves a choice between binary and integer variables.

9.4 Choice of Branch in Integer Programming

Early in 1977, Beale (1977,[57]) gives a detailed description of branching method-
ologies. Linderoth & Savelsbergh (1999,[381]) provide a computational study of
search strategies for mixed integer programming. In commercial software, several
methods are normally provided for controlling the branching strategy;cf. Achter-
berget al. (2005,[6]). These include user-specified priorities for variable selection,
forced branching directions (up/down), search strategy (BFS/DFS), bounding prun-
ing, pseudo-costs, and control of the cut-off used for pruning the tree. For problems
with symmetry structure,orbital branchingby Ostrowskiet al. (2011,[440]) is very
important. This branching method is based on computing groups of variables that are
equivalentw.r.t. the symmetry remaining in the problem after branching, including



9.4 Choice of Branch in Integer Programming 281

symmetry that is not present at the root node. These groups ofequivalent variables,
called orbits, are used to create a valid partitioning of thefeasible region that sig-
nificantly reduces the effects of symmetry while still allowing a flexible branching
rule.

If it is expected that branching on a variable will cause a large degradation in the
objective function, that variable is defined to be important. It may be an advantage to
give relatively important variables a high priority. They are then chosen for branch-
ing at an early stage with the objective of reducing the overall work: these branches
require more effort than others and should therefore be donea few times at the top
of the B&B tree rather than many times at the bottom of it. Pseudo-costs are unit
rates of degradation used to estimate the effect of imposingintegrality conditions;
after the root node evaluation that after root node they needto be initialized which
requires strong branching. If estimated integer solutionsare consistently biased it
may be advantageous to alter these. The ability to force the branching direction is
probably of limited use in codes with a good default branching strategy.

9.4.1 Control of the Objective Function Cut-off

Control of the objective cut-off is one area where the user can most easily contribute
to the B&B search. If all variables appearing in the objective function are integer,
it is often possible to derive a minimum separation of distinct integer feasible ob-
jective values,i.e.,a numberα such that any integer feasible objective value better
than the current one is better by at leastα . Moreover, it is often the case that users
will be content with an integer feasible solution that they know to be withinα of the
optimal one,e.g., if the objective function values are expected to be of the order of
millions of USD, it probably can be accepted, to setα = 100, resulting in a maximal
loss of the resolution 100 USD. The valueα which is calledMIPADDCUTOFF in
Xpress-Mosel or CHEAT in GAMS, can then be added to the value of the current
best integer solution to give a sharper cut-off value. This may greatly speed the B&B
process in solving pure integer models and also those in which the integer compo-
nent is small. In the latter case, the B&B tree often “fans out” and the algorithm
would otherwise waste time searching for alternative integer solutions very close to
the current one.

9.4.2 Branching Control

When solving MILP problems it is important for the user to provide as much infor-
mation as possible that may contribute to the control of the process.3 There are two
main ways in which the B&B algorithm may be directed:

3 This was still true in the 1990s. Nowadays, 2020, branching control, pseudo-costs, etc. are cal-
culated once and updated automatically – there is nothing a user needs to ”specify” anymore.



282 User Control of the Optimization Process and Improving Efficiency

1. controlling which currently unsatisfied global entity (binary variable, integer
variable, special ordered set member, partial integer, or semi-continuous vari-
able, etc.) is chosen for branching, and the direction to branch first;

2. choosing which node to tackle and controlling how nodes are cut.

9.4.2.1 Entity Choice

There are a number of ways of controlling the entity choice. Priorities can be as-
signed to entities, so that those with the highest priority are chosen first. It is usually
better to branch on variables representing major decisionsrather than those repre-
senting consequences of such decisions. For example, as in example 5 in Section
9.3, a major decision may be the size of a facility and minor decisions based on it
may be the location of components within that facility. If branching is performed
first on variables given high priorities (i.e., major decisions) then these variables
will be dealt with at the top of a B&B tree rather than at the bottom of the tree. As
the effort required to optimise the LP problems created by branching on a major
variable is usually high then it is better to do this only a fewtimes at the top of the
tree rather than many times at the bottom of the tree.

A good strategy is to go depth-first through the B&B tree to obtain a good integer
solution as quickly as possible. This approach can help eliminate large parts of the
tree and therefore speed up the integer search.

9.4.2.2 Choice of Branch or Node

Most integer programming solvers use a depth first strategy until a first integer so-
lution is found. If a node is cut off or gives rise to an infeasible problem, then its
brother (node at the same level on the other half of the branch) is explored next.
Where both descendants are fathomed (i.e., established that they are each in one of
the three categories: infeasible; at a solution value poorer than the current best; or
a better integer solution than that found so far), the node with the best estimate is
chosen from all active nodes. Once an integer solution is found the Forrest-Hirst-
Tomlin (1974,[203]) criterion is used. This chooses the node with the highest value
of

e−zIP

z−e
, (9.4.1)

wherez is the objective value at the node,e is the estimate of the best integer solution
that would follow from that node andzIP is the current best integer solution. If
a good estimate of the optimal integer solution is availablein advance from, for
example, the solution of a similar model, this may be used in place ofzIP before the
first integer solution is found.

An estimate of the best integer solution that could follow from each node is made
by usingpseudo costs[57] which give the unit rates of degradation of the reduced
costsd j for altering variable values. If these estimates are consistently biased it is



9.4 Choice of Branch in Integer Programming 283

advisable to alter the pseudo costs to remedy this. Different up and down pseudo
costs can also be specified, where the up pseudo cost is the estimated degradation
per unit movement associated with increasing a variable (e.g., 0.5 to 1) and the down
pseudo cost is the corresponding estimate associated with decreasing a variable (e.g.,
0.5 to 0). This is useful when binary variables are used to model start-up costs if the
upper bound on the continuous variable, that is restricted by the binary variable, is
fairly loose. In the LP relaxation they may take very small values and the solver is
biased to branch down on them. Raising the down pseudo costs rectifies this.

9.4.3 Priorities

There is a priority value associated with each global entity. The lower the number,
the more likely the entity is to be selected for branching; the higher the number, the
less likely. For instance, a binary variable representing whether a project should be
funded might usefully be given a low priority number, whereas a variable represent-
ing some finer detail of the model may be given a high value. InXPRESS-MP the
DIRECTIVES command is used to facilitate priority setting and branching choice.
By defaultXPRESS-MP will explore the branch estimated to yield the best integer
solution from each node irrespective of whether this forcesthe global entity up or
down.

9.4.4 Branching on Special Ordered Sets

The most useful high level branching constructs are specialordered sets [see Section
6.8] and semi-continuous variables discussed in Section 9.4.5. We saw previously
that SOS1 are sets of variables in which, at most, one can be non-zero. They are
particularly effective if the set members are ordered in some way. For example, they
might represent the size of pipes to use in a pipeline, as introduced in Section 6.8.1.
Instead of branching on each set member individually, bounds can be imposed on
the size of pipe, and branching can take place on the entire set.

When the B&B algorithm operates on special ordered sets of types 1 or 2 the
algorithm handles these entities in a special way. During the stages of the B&B
algorithm we may find that the current LP relaxation solutionat a node contains
set variables at non-zero values in infeasible combinations. It is clearly desirable to
exclude such combinations and this is done by branching. Theapproach used is to
reduce the “distance” between the non-zeros by flagging subsets of variables in a
method analogous to varying upper and lower bounds on integer variables to try to
reduce the difference between bounds. If a set has elementsλ 1,λ 2, ...,λ n and the
LP relaxation solution suggests that more than one element is non-zero (or more
than two in the case of SOS2, or two non-adjacent elements) then a pair of adjacent



284 User Control of the Optimization Process and Improving Efficiency

variablesλ r ,λ r+1 is chosen to initiate the branching in the SOS1. It is actually a
reference row value that is used to branch on:

either all variablesλ i with Xi < Rare set to zero
or all variablesλ i with Xi ≥ Rare set to zero.

Let us use the example in Section 6.8.1 to illustrate the numerical advantage asso-
ciated with SOS1. We hadn different capacitiesCi ordered according to increasing
index [see Fig. 6.2]. To pick out the right capacity we introducedn binary variables
δ i such that

δ i :=

{
1 , if sizeCi is selected for the pipeline
0 , otherwise.

(9.4.2)

These binary variables formed an SOS1 and therefore it was not necessary to declare
them as binary variables any more. We ensured that exactly one capacity size was
chosen,i.e.,

n

∑
i=1

δ i = 1. (9.4.3)

The actual size,c, which is chosen was computed from

c=
n

∑
i=1

Ciδ i . (9.4.4)

The equation (9.4.4) served as the reference row.
In order to see what happens let us assumen= 4,Ci = i and that the LP relaxation

produced the following solution related to the set variables:

(δ 1,δ 2,δ 3,δ 4) = (0.47,0.0,0.0,0.53) (9.4.5)

and thus by evaluating the reference row (9.4.4)

c= 1·0.47+4·0.53= 2.59. (9.4.6)

Note that the pipe size 2.59 is what the model prefers to have,which means that we
probably will have size 2 or size 3. Ordinary branching wouldnow branch either
on δ 1 or δ 4 because these are not integral. Let us assume for the moment that the
variable selection will chooseδ 1. The branching directionδ 1 ≥ 1 will give c = 1
which is far from the relaxation. The branching directionδ 1 ≤ 0 would probably
makeδ 2 or δ 3 fractional. If we branch onδ 4 the situation is similar. So progress is
only poor. However, branching for SOS1 uses the value computed forc to separate
the indices and to generate two subproblems. In this examplewith c= 2.59 it detects

C2 ≤ c≤C3, (9.4.7)

which leads to the following two subproblems

δ 1+δ 2 = 0 or δ 3+δ 4 = 0. (9.4.8)



9.4 Choice of Branch in Integer Programming 285

We could also read this is branching onc≥C3 andc≤C2. In the first case there is
a great chance that the next LP problem will yieldδ 3 = 1 while in the second case
we will probably getδ 2 = 1. Now we are able to understand why the order plays
an important role in SOS1: The order is used to separate all indices in two sets of
indices. The stronger the order, the better the separation works.

Most commercial software packages have SOS1 and SOS2 implemented so the
branching described above will all happen automatically and no user intervention
is required. Note, however, that the user can put branching priorities [see Section
9.4.3] on sets as well as individual entities.

9.4.5 Branching on Semi-Continuous and Partial Integer Variables

Semi-continuous variables are permitted to take the value zero or anything at least
as large as unity and no larger than some upper boundU, i.e.,

σ = 0 ∨ 1≤ σ ≤U. (9.4.9)

Branching can take place on these variables directly ratherthan indirectly on an
associated binary variable. Consider the equivalent formulation of (9.4.9) using a
binary variableδ and continuous variablex

δ ≤ x≤Uδ . (9.4.10)

It is easy to see that the implication table

δ = 0 ⇒ x= 0
δ = 1 ⇒ 1≤ x≤U
x= 0 ⇒ δ = 0
x= 1 ⇒ δ = 1

(9.4.11)

holds which shows that (9.4.10) is indeed an equivalent formulation forcingx to
behave as a semi-continuous variable.

Let us now investigate how this formulation and the binary variable δ behave
while solving the LP relaxation. In most modelsδ would appear in the objective
function with some coefficient representing cost whilex enters positively represent-
ing a quantity being produced or sold. Therefore,δ will adjust itself to the smallest
value possible,i.e.,

0< δ < 1 , δ =
x
U
. (9.4.12)

The consequence is that branching has to be applied to each binary variable repre-
senting a semi-continuous variable. Now consider the original relation (9.4.9). The
LP solver would just see the relaxed inequalities

0< σ <U. (9.4.13)



286 User Control of the Optimization Process and Improving Efficiency

The B&B logic then works as follows: ifσ ≥ 1 orσ = 0 then nothing is done. Only
in the case 0< σ < 1 does branching become necessary. Thus, efficient implemen-
tations of semi-continuous variables leads to a smaller number of branches. Some
tests performed at BASF involving about 2,500 semi-continuous variables and using
(9.4.10) and (9.4.9) alternatively reduced the CPU times needed to solve a produc-
tion planning problem by a factor 6.

A generalization of semi-continuous variables leads to partial integer variables
already briefly mentioned on page 35. Partial integers mightarise, for example, in
the following context. A motor manufacturer wishes to allocate cars to its national
distributors throughout Europe. Naturally, it has to send each national distributor an
integral number of cars, but rounding a solution value of, say, 5,192.3 cars to Ger-
many down to 5,192 is acceptable. However, rounding down the16.4 cars allocated
to Andorra might be less satisfactory. So the manufacturer would like to specify
that values below, say, 50 must be integer, while those above50 can be treated as
real number and be rounded by hand. Partial integers allow the modeler to specify
precisely this restriction.

9.5 Symmetry and Optimality

Symmetry is a problem when trying to close the gap between theupper and lower
bounds, and thus proving global optimality. This is especially a problem when us-
ing deterministic global solver for solving non-convex NLPproblem. A systematic
treatment of symmetry in ILP and ways to reduce or to destroy symmetries are
treated by Margot (2010,[396]). Here we want to focus only ontechniques the mod-
eler can apply in the sense of static constraints or inequalities for both linear and
nonlinear optimization problems.

Symmetry is easiest understood in optimization problems with a geometric back-
ground,e.g., in computing minimal convex hulls as in Kallrath & Frey (2019, [326]),
where one wants to reduce the symmetries: translational, rotational, and mirror sym-
metry. Translational symmetry can partially be reduced by fixing the coordinate cen-
ter of the convex hull. Alternatively, one can fix a specific object to the origin of the
coordinate system. Rotational symmetry can be destroyed byfixing two objects, for
instance, to the positive x-axis. When placing congruent objects, a sequence metric
can be enforced.

With commercial MILP solvers, these symmetry destroying equalities or inequal-
ities are usually useful and help to close or at least to reduce the gap in shorter time.
However, with deterministic global solvers it is always a trade-off. Without symme-
try reducing techniques,i.e., with less constraints, they find better initial solutions in
shorter time. Symmetry reducing techniques only pay out when one wants to close
the gap, which is usually possible only for smaller NLP or MINLP problems.



9.7 Exercises 287

9.6 Summary

In this chapter we have emphasized the need for user intervention in many instances
of model solving. Although we might prefer to treat the solution process of LP or
IP problems as a “black box”, we find that this might not be appropriate in all cases.
Certain models prove difficult and/or slow to solve and we findthat attention to some
details by the user may improve solution time tremendously.It can help a solver a lot
if the user can provide an input feasible solution – this is also called MIP warmstart
and is one of the key elements of the polylithic modeling and solution approached
discussed in Chapter 14.

When we are considering models that need frequent resolving,it will be im-
portant to be able to perform these repeated runs in an efficient way. Thus the ad-
vantages to be gained from good use of presolve, scaling and branching choice (in
IP) are important to the modeler and client. After reading this chapter the modeler
should be aware of:

• the use of preprocessing techniques;
• the benefit from disaggregation of constraints;
• the technique of coefficient reduction in{0,1} constraints;
• the identification of special constraints, such as cliquesand covers;
• the benefits of well-scaled coefficient matrices;
• some model features which should be avoided;
• the benefits of using SOS1 and SOS2 as well as semi-continuous variables;
• the need for good branching choices to be made in the B&B algorithm; and
• the positive impact of cutting planes and heuristics solvers offer.

9.7 Exercises

1. This exercise consists of two tasks:

(i) Find all covers and cliques for the IP problem with binaryvariables
δ 1, . . . ,δ 5

max 7δ 1+2δ 2+8δ 3+4δ 4+7δ 5 (9.7.1)

subject to

3δ 1+4δ 2+5δ 3+8δ 4 ≤ 12

9δ 1+5δ 2+10δ 4+7δ 5 ≤ 14

8δ 1+5δ 2 ≤ 12 (9.7.2)

δ 1,δ 2,δ 3,δ 4,δ 5 ∈ {0,1}.

(ii) Show if any of the covers or cliques you have found may be lifted.



288 User Control of the Optimization Process and Improving Efficiency

2. Remove all redundant constraints and variables from the following LP prob-
lem and check if any bounds on the continuous variables,x1,x2,x3,x4, may be
strengthened.

max 2x1+x2+3x3+5x4 (9.7.3)

subject to

2x1+2x2+x3+x4 ≤ 20 (9.7.4)

3x2+2x3 ≤ 18

3x1+4x2+2x3+5x4 ≤ 35

x1,x4 ≤ 8. (9.7.5)

3. Show how the following constraint in binary variables,δ 1, . . . ,δ 6

10δ 1+8δ 2+8δ 3+7δ 4+6δ 5+6δ 6 ≤ 19 (9.7.6)

may be reduced to the form

3δ 1+3δ 2+3δ 3+2δ 4+2δ 5+2δ 6 ≤ 6. (9.7.7)



Chapter 10
How Optimization is Used in Practice: Case
Studies in Integer Programming

This chapter contains several case studies with an industrial background which in-
volve mixed integer programming techniques. We discuss real-world problems of
increasing size and complexity. The first group of case studies considers a con-
tract allocation problem, metal ingot production and a project planning problem.
Then follows a more extensive scheduling problem in the carton industry. The next
problem formulates and discusses a worldwide production planning problem in the
chemical industry. Then, a complex scheduling problem withpersonnel resource
constraints (again coming from the chemical industry) is presented. Finally, we see
mathematical programming in use to optimize a telecommunication network.

10.1 What Can be Learned from Real-World Problems?

Many practical problems leading to MILP formulations need great care in model
formulation. In contrast with ordinary LPs, effective solution depends critically
upon good model formulation, the use of high level branchingconstructs, and con-
trol of the B&B strategy. Good formulations are those whose LP relaxation is as
close as possible to the MILP - or, to be precise, those whose LP relaxation has
a feasible region which is close to the convex hull of the MILP’s feasible sets. In
practice, this means, for example, that upper bounds on variables should be as small
as possible. Formulating models in this fashion is still largely the responsibility of
the modeler who has to combine and to apply many of the theoretical concepts we
learned in Chapter 9. The more modeling experience the modeler has the better.
Apart from own modeling it also helps taking advantage of howother modelers
solved their problems. Thus, the real-world problems presented may serve to create
a feeling for what is a good or what is a poor model. Further, animportant point
is that if an MILP model formulation causes great trouble, a reformulation could
improve the situation significantly.

289



290 How Optimization is Used in Practice: Case Studies in Integer Programming

10.2 Three Instructive Solved Real-World Problems

The three case studies below originally appeared in Ashford& Daniel (1992,[40])
“Some Lessons in Solving Practical Integer Programs”. Theyappear by kind per-
mission of the publishers of the Journal of the Operational Research Society,
Macmillan (Stockton Press, UK). All use real data and have recently been, or are
currently being, used in practice, so their background has been disguised to some
extent.

10.2.1 Contract Allocation

A public utility, which is divided into six regional districts, wishes to allocate ten
power generation contracts to its regions as cheaply as possible. The cost per unit
of power generated by each region for each contract is known.If part of a contract
is allocated to a region then it must be at least as big as a certain minimum size.
For reliability reasons, no contract may be placed exclusively with only one district.
Each district has a limited power generation capacity.

Letting r index the districts or regions andc the contracts, this problem may be
formulated as an integer program as follows. Let the decision variables bexrc ≥ 0,
the power generated by each region for each contract.

The problem data are:

Ar : the total power available from each district
Crc : the unit cost of generating power
Lr : the minimum power level available from each

district r for each contract it has to supply
Rc : the total power required for each contract

(10.2.1)

The objective is to minimize the total cost:

∑
r

∑
c

Crcxrc (10.2.2)

subject to the demand requirements of each contract:

∑
r

xrc ≥ Rc , ∀c, (10.2.3)

the capacity limitations of each district:

∑
c

xrc ≤ Ar , ∀r, (10.2.4)

and the non-negativity conditions:

xrc ≥ 0 , ∀{rc}. (10.2.5)



10.2 Three Instructive Solved Real-World Problems 291

Thus far it is a simple transportation problem. One way of ensuring that the mini-
mum contract contributions are met is to introduce binary variablesδ rc forced to be
unity if xrc > 0 by constraints:

xrc −Mδ rc ≤ 0 , ∀{rc}, (10.2.6)

whereM is some suitable large positive number. Since the availabilities ranged from
10 to 60 units, a suitable value forM might be 100. In this case the modeler origi-
nally used

xrc −Mδ rc ≥ Lr −M , ∀{rc} (10.2.7)

to ensure that the minimum contract contributions are met and

∑
r

δ rc ≥ 2 , ∀c (10.2.8)

to ensure that at least two districts fulfill each contract.
The application of this model was to a small problem with ten contracts and

six districts. But this naive formulation is so bad that the B&B search remained
unfinished after 5,000 nodes.

It is more useful to replaceM by a better (i.e., smaller) upper bound [see Section
9.1.1.2, and the discussion near (9.1.17)] on eachxi j , an obvious one beingAi . We
might even do better by considering min{Ar ,Rc}. Thus, (10.2.6) becomes

xrc −min{Ar ,Rc}δ rc ≤ 0 , ∀{rc}. (10.2.9)

Moreover, (10.2.7) is far better reformulated without upper bounds on thexi j as:

xrc −Lrδ rc ≥ 0 , ∀{rc}. (10.2.10)

With these modifications the B&B search is completed in only eight nodes.
However, it turns out that the key reason for the rapid completion of the search is

constraint (10.2.8): that at least two districts are involved in each contract. Without
it, the B&B search has much greater freedom in branching choice and although the
minimum cost is found after only 24 nodes, it takes a further 1417 nodes (and about
20 seconds on a Pentium) to complete the search and prove optimality. Under these
circumstances, the solution process can be greatly helped by using semi-continuous
variables in the formulation, replacing the binaryδ rc variables, which enable bet-
ter estimates of the value of the best integer solution (if any) which would follow
from each integer infeasible node of the B&B tree. Ifσ rc are the semi-continuous
variables associated withxrc then (10.2.10) is replaced by:

xrc −Lrσ rc = 0 , ∀{rc}, (10.2.11)

and constraints (10.2.6) are dropped. We would then only need to branch onσ rc if
0 < xrc < Lr , whereas previouslyδ rc could be fractional whenxrc is taking a legal



292 How Optimization is Used in Practice: Case Studies in Integer Programming

value. Notice that we would still have required the binary variablesδ rc if require-
ment (10.2.8) were present.

The semi-continuous variable formulation is much easier tosolve, the B&B
search being completed in only 132 nodes (and 2 seconds on a Pentium).

So summarizing what we have learned: the problem shows the merits of least
upper bounds and the efficiency of semi-continuous variables.

10.2.2 Metal Ingot Production

Metal is smelted in vessels of a fixed size and then cast into ingots of different
weights. The problem is to determine how to split each vesselinto ingots so as to
satisfy given requirements for ingots of each weight with the smallest amount of
wastage. Unwanted ingots produced have to be treated as waste again.

If i indexes the ingot type andc indexes the alternative splitting of a vessel or the
combinations of ingots that may be cast from a single vessel,then we may define
the problem data as follows:

Mi : weight of ingot of typei
Nic : the number of ingots of weighti cast from combinationc
Ri : the requirement for ingots of each type or weight
Wc : wastage (units of weight) from a vessel cast in combinationc

(10.2.12)

The problem we have to model is very similar to the trimloss problems discussed in
Section 4.1.2 (Case B). So we may benefit from that section. Denoting the number
of vessels cast to each combination byαc the problem may now be formulated: first
we have to meet the requirements for each weight of ingot

∑
c

Nicαc ≥ Rc , ∀i, (10.2.13)

while minimizing the wastage:

∑
c

Wcαc+∑
i

∑
c

Mi (Nic −Ri) . (10.2.14)

The first term is the wastage associated with each combination and the second is
that of unwanted ingots. Notice that after some algebra thisis

∑
c

{
Wc+∑

i
MiNic

}
·αc−∑

i
MiRi . (10.2.15)

The second term is a constant and can be ignored, while the expression within paren-
theses in the first is simply the total weight of each vessel, which does not depend
onc at all. So the objective function may be taken to be just



10.2 Three Instructive Solved Real-World Problems 293

min ∑
c

αc. (10.2.16)

One particular problem had 18 different weights of ingot and1,345 possible ways
of casting each vessel. Unaided, the B&B search was unfinished after 8,000 nodes.
However, the structure of the objective (10.2.16) can be exploited by observing that
once an integer feasible solution has been found any better solution must have an
objective at least 1 unit smaller. Thus an addcutα =−0.999 was specified. Now the
B&B search took only 695 nodes to find the optimal solution andprove optimality.

Finally, let us summarize what we have learned from this real-world problem.
Our problem of casting metal ingots is approached via the trimloss model with a
very large number of integer variables. Specification of a suitable addcut proved the
only way of curtailing the explosive growth of the B&B tree.

10.2.3 Project Planning

A number,NP, of projects are to be scheduled over the coming few, sayT, months.
Each project requires varying numbers of personnel over itsduration and yields
a known return. For instance, project 1 uses up 3 people in themonth it starts, 4
in the second month, and 2 in its last month. The company has a limited number
of personnel available for the projects and wishes to schedule the projects so as to
achieve the greatest benefit. The benefit from a project only starts to accrue when the
project has been completed, and then it accrues at a rate ofRp per month for project
p, up to the end of the time horizon. The scheduling is on a monthby month basis,
so projects may be considered to start at the beginning of onemonth and terminate at
the end of one month. The problem is to decide when to start each project, subject to
not using more people than are available in any month. We use the following indices

m= 1, ...,Mp : set of months within project
p = 1, ...,NP : set of projects
t = 1, ...,T : set of months in the time horizon

(10.2.17)

The problem data may be defined by:

At : personnel available for all projects in montht
Dp : duration of projectp in months
Ppm : personnel required by projectp in monthm of its operation
Rp : return per month when projectp finishes.

(10.2.18)

The decisions may be represented by the binary variablesδ pt,

δ pt :=

{
1 , if projectp starts in montht
0 , otherwise

(10.2.19)



294 How Optimization is Used in Practice: Case Studies in Integer Programming

and integer variablessp = 0,1,2, . . . representing the start of projectp. From
(10.2.23) it follows that allsp will take integral values automatically. So they need
not to be declared as integer variables.

To reflect the fact that benefit from a project accrues at its completion, the com-
pany decided to credit each project started by its return,Rp, multiplied by the num-
ber of months from when it was completed to the end of the horizon. If the project
is started in periodt it finishes in montht +Dp − 1, so we get the benefitRp for
T −Dp − t + 1 months. To set up the objective function we must consider all the
possible projects, and all starting months that let the project finish before the end
of the planning period. For the project to complete it must start no later than month
T −Dp. Thus, the total benefit to the company is

max
NP

∑
p=1

T−Dp+1

∑
t=1

[Rp(T −Dp− t +1)]δ pt. (10.2.20)

A project can only be done at most once, so

T

∑
t=1

δ pt ≤ 1 , ∀p. (10.2.21)

The number of personnel required does not exceed those available, so

NP

∑
p=1

t

∑
u=max{1,t−Dp+1}

Pp,t−u+1δ pu ≤ At , ∀t. (10.2.22)

Notice that in montht, projectp will requirePp,t−u+1 people if it is begun in month
u. Furthermore, it will not require any personnel if it was begun more thant −Dp

months ago. The start month of a project is given by

sp =
T−Dp+1

∑
t=1

tδ pt , ∀p. (10.2.23)

If the variables are declared to be binary by

δ pt ∈ {0,1} , ∀p , t = 1, ...,T −Dp+1, (10.2.24)

the problem can now be solved as an integer program. MCOL provides a problem
namedprojschdwhich contains a small example of our scheduling problem.

In this particular application, the company’s planning period was initially 50
months and there were 17 projects to schedule. This gave a problem with 615 bi-
nary variables, which was solved after 742 nodes of the B&B search. However, the
problem may be formulated with SOS1 rather than binary variables. It is convenient
to defineδ p,T+1 to be a binary variable taking the value unity if and only if project
p is not begun at all. Then

Sp = {δ p1,δ p2, ...,δ p,T−d j+1,δ p,T+1} (10.2.25)



10.2 Three Instructive Solved Real-World Problems 295

forms an SOS1 whose members are naturally ordered by month. This may be spec-
ified by the single non-computational reference row:

NP

∑
p=1

T−Dp+1

∑
t=1

tδ pt +(T +1)δ p,T+1. (10.2.26)

It remains to add the termδ p,T+1 to the convexity row (10.2.21) above, which be-
comes an equality. The binary conditions can now be dropped.

The optimal solution was now found and proven in only 187 nodes of the B&B
search. The company wished to explore how the project schedule would change if
five years were available to complete the projects, so the model was re-run with a
time horizon of 60. In this case there were 785δ pt variables. The binary variable
formulation was solved after 8152 nodes of the B&B search whereas the SOS1
formulation was solved in only 1398 nodes. Note that although the ordering between
the set members is weak, the SOS1 formulation is still very effective on a large
example of the model.

10.2.4 Conclusions

Three practical integer programming models have been discussed with a view to elu-
cidating what makes formulations good, illustrating how poor formulations can be
improved and suggesting appropriate branching strategies. Each model is of fairly
modest size, but none is particularly easy to solve. Some lessons that may be drawn
from this exercise are as follows. Poor formulations such asthe initial contract al-
location model are catastrophic in the sense that they may render a solution, for
practical purposes, impossible. Restrictions on the choice of integer solution, such
as the lower bound on the number of districts supplying contracts in the first model,
and a slightly lower number of time periods in the project planning model, are a
great help in solving the whole integer program. High level branching constructs,
such as semi-continuous variables and special ordered setsshould always be consid-
ered. In the contracting problem, the solution time was reduced by a factor of ten by
using semi-continuous variables, and an even more dramaticreduction in solution
time was achieved by using Sl sets in the project planning models. Indeed, the larger
project planning model, in 1997, could not be solved withoutSOS1. However, the
ordering between set members must be fairly strong for them to be effective: they
should not be used for every set of mutually exclusive decisions.

Integer programs do require more care in both their formulation and solution
than linear programs of a similar size. But this is no reason not to attempt using
them and, even if exploratory runs fail to find the optimum quickly, it is possible
that some further work will yield an improved formulation orsolution strategy that
makes the models effective.



296 How Optimization is Used in Practice: Case Studies in Integer Programming

10.3 A Case Study in Production Scheduling

The following case study describes an example of problem formulation requiring
the modeling of awkward logic and the use of special ordered sets. It is taken from
Ashford & Daniel (1991,[39]) “Practical Aspects of Mathematical Programming”
which originally appeared in Operational Research Tutorial Papers 1991. The case
study appears by kind permission of its publishers, the Operational Research Soci-
ety, Birmingham, England.

A carton manufacturer produces a variety of cartons for the storage of liquid
products by processing board through machines, known as converters, which cut,
score, and print the customer’s design on it, making carton ’blanks’ which are sub-
sequently folded and sealed on machines known as sealers. The converters are the
bottleneck of the process, there being significant slack in other parts of the opera-
tion. Customers place orders weekly, so the company has the task of scheduling a
week’s production each Monday with a view to:

Minimizing the number of changes of machine configuration.
Each time a different size or shape of carton is produced, themachine cutter heads
need re-alignment. This setting-up process may take up to 4 shifts, during which
time the machine cannot produce.

Minimizing the duration of the ink changes in the converters.
There are constraints on the total number of inks being used at any time on each
machine and also on the number of inks used printing adjacentcartons. Light to
dark ink changes are more rapid than dark to light ones. Ink changes take between
15 minutes and one hour.

Minimizing the number of overtime shifts worked.
The workforce is highly unionized and overtime is expensive.

Minimizing shortfalls in meeting customer orders.
The scheduling task was divided into three stages:

• Dividing the week’s orders into groups of common size and shape and scheduling
cartons on the basis of their groups to minimize the time spent changing machine
configurations.

• Scheduling the orders within groups to reduce the ink change-over time.
• Scheduling orders through the sealers.

Orders for the same size and shape of carton are aggregated into groups and were
scheduled by an integer programming model, balancing the cost of overtime work-
ing and configuration changes against those of tardy and short delivery. The ink and
sealer scheduling was done heuristically, given the group schedules. A data manage-
ment shell gave the user access to order and production data and displayed generated
schedules. It manages the other modules of the system and waswritten in COBOL.
The group scheduling MILP was generated by theXPRESS-MP model builder and
optimized by theXPRESS-MP optimizer. The ink and sealer heuristics were written
as macros inLOTUS 123.



10.3 A Case Study in Production Scheduling 297

The group scheduling model was formulated as follows. Each machine can pro-
duce up to 4 groups simultaneously, and there are a limited number of such config-
urations in which it may be run. There are up to 16 production shifts each week
including those worked on overtime. Machine configurationsremain unchanged
throughout each shift.

The indices used in the model are:

m= 1,2, ...,M : set of machines
c = 1,2, ...,Cm : set of configurations
g = 1,2, ...,G : set of groups of orders
t = 1,2, ...,T : set of shifts.

(10.3.1)

Notec= 1 means setting up andt = 1 means the last shift of the preceding week.
The data are then:

St : the setting up cost (per machine, per shift)
Pg : the penalty cost of not meeting an order (per carton)
Dg : the demand for all items in each group
Ot the overtime cost (per machine, per shift)
Hmcc′ : the number of shifts required to change from configurationc

to c′ on machinem
Rmcg : the production rate (number of cartons of groupg produced

on machinem in configurationc per shift)
Im : the initial configuration of machinem
OT : the set of overtime shifts
SU : the set of shifts in which setting up is permitted.

(10.3.2)

The decision variables are: configuration,δ mct

δ mct :=

{
1 , if machinem is in configurationc in shift t
0 , otherwise,

(10.3.3)

and overtime production,σmct

σmct :=

{
1 , if m produces in configurationc in overtime shiftt
0 , otherwise,

(10.3.4)

and, finally, the shortfall,zg, of order groupg (in cartons).
Machines can only be idle in a producing configuration if leftunattended in an

overtime shift. So the production in a non overtime shift is given byδ mct.
Multi-shift machine set ups are, by custom and practice, never split across un-

worked overtime shifts. Most configuration changes can be completed in one or two
shifts. Moreover, the production manager would only allow setting up in 10 mid-
week shifts. Usually machine configurations would be changed in overtime shifts
worked at the week-end.

The model minimizes the sum of the setting up, shortfall and overtime costs:



298 How Optimization is Used in Practice: Case Studies in Integer Programming

min
M

∑
m=1

T

∑
t=2

Stδ m1t +
G

∑
g=1

Pgzg+
M

∑
m=1

Cm

∑
c=2

∑
t∈OT

Otσmct (10.3.5)

subject to the following constraints:
The overtime production can only be in the current configuration for each ma-

chine, so:

σmct ≤ δ mct , ∀m , c= 2,3, ...,Cm , t ∈ OT. (10.3.6)

No machine,M, can be in two distinct producing configurations (sayc
′

andc), u
shifts apart, if it takesu or more shifts to change from one configuration to the
other,i.e., Hmc′c ≥ u. So:

Cm

∑
c′=2∧c′ 6=c∧Hmc′c≥u

δ mc′t +δ mc(t+u) ≤ 1 ,
∀m , c= 2,3, ...,Cm

u= 1,2,3,4 , t = 1,2, ...,T −u.

(10.3.7)
The weekly demand, less the shortfall in production cannot exceed the number of
cartons produced, so:

M

∑
m=1

Cm

∑
c=2

{
T

∑
t=2∧t /∈OT

Rmcgδ mct+
T

∑
t=2∧t∈OT

Rmcgσmct

}
+zg ≥ Dg , ∀g. (10.3.8)

The model must begin in the configuration of each machine at the end of the previ-
ous week, so:

δ mct :=

{
1 , if c= Im
0 , otherwise

, ∀m. (10.3.9)

Of course, each machine must be in exactly one configuration (including setting up)
in each shift, so:

Cm

∑
c=1

δ mct = 1 , ∀m , t = 2,3, ...,T (10.3.10)

and

Cm

∑
c=1

σmct = 1 , ∀m , t ∈ OT. (10.3.11)

The configuration variables are binary, so:

δ mct ∈ {0,1}, ∀m ; c= 1,2, ...,Cm; t = 2,3, ...,T (10.3.12)

and

σmct ∈ {0,1}, ∀m ; c= 1,2, ...,Cm; t ∈ OT. (10.3.13)



10.3 A Case Study in Production Scheduling 299

Notice that there is no idle configuration in this formulation. This was unnecessary
because there is no penalty for producing more cartons from any group than re-
quired. Simple post-processing of the solution removed anyredundant production.

As each machine must be in exactly one configuration in each shift, it is possible
to replace the binary variables by SOS1 variables:

{δ mct,c= 1,2, ...,Cm} , ∀m , t = 2,3, ...,T (10.3.14)

and

{σmct,c= 1,2, ...,Cm} , ∀m , t ∈ OT. (10.3.15)

There is, however, no natural ordering between the set members, except that the
setting-up configuration in which nothing is produced mightbe considered first.
Thus a reference row of the form:

M

∑
m=1

T

∑
t=2

Cm

∑
c=1

cδ mct+
M

∑
m=1

T

∑
t∈OT

Cm

∑
c=1

cσmct (10.3.16)

could be used.
This formulation was specified to theXPRESS-MP model builder and is stored

under the problem namecarton in MCOL.
The model provided is inXPRESS-MP form, but it bears such a close resem-

blance to the algebraic formulation that its meaning shouldbe relatively transparent.
However, there are a number of aspects of this application which merit discussion.

Notice the separation between structure and data. This model is run and re-run
unchanged but with different data files (specified after theDISKDATA keyword).
This is convenient from an implementation standpoint, and also supports model
validation and testing. The separation could be made more complete by reading
from file the index maxima, overtime shifts, and shifts in which set-ups are allowed.

The advantages of using a modeling language are well illustrated by this case.
For instance (10.3.7) is relatively easy to write down in algebra, but it would be
unpleasant to write a C or FORTRAN program to generate the constraints in MPS
notation.

The specification is self-documenting: model specificationstatements follow the
analyst’s algebra and comments can be inserted anywhere (after the “!” symbol).
This facilitates model maintenance.

Some data processing can be done with the model. TheREQ array identifies
configurations that may be required and this is used to restrict the configuration
variables generated. The “|” symbol may be read as “given that” and the variable,
constraint or term is only generated if the following logical expression is true. To-
gether with the use of the factory’s operational restrictions on permissible set-up
shifts this constrains the choice available to the optimizer, greatly reducing the so-
lution times. This is a characteristic of many MILP applications which may only be
solvable at all when such operational restrictions are taken into account.



300 How Optimization is Used in Practice: Case Studies in Integer Programming

The actual application used slightly different (confidential) data from those given
and had additional complicating constraints, such as mid-week due dates. Initially,
there were 5 machines, 19 shifts and 31 possible configurations for the machines
(including setting up). A typical run had 310 binary variables in total and the B&B
search was completed in only 150 nodes and 18 seconds on a 33 MHz 486 PC.
However, this is highly data dependent and some sets of orders could take substan-
tially longer to schedule, particularly after the acquisition of a new converter and
introduction of new product groups. The SOS1 formulation requires less storage
overheads during the B&B, so gave some savings in solution time, but the ordering
between the set members was not strong enough to make this substantial on all runs.
An addcut value,α = 0.1% of the objective value, proved very effective in reducing
solution time when scheduling large sets of orders.

The group scheduling model always solved within a few minutes. A complete
run of the system typically takes about half an hour with the majority of the time
spent in the ink and sealer scheduling heuristics. Turnaround time was considered
entirely satisfactory by the client, who reckoned that the quality of schedules was
superior to those generated manually. Moreover, the systemis re-run whenever the
week’s orders change, which usually happens by the second day. Manual schedules
took a day to produce and re-scheduling mid-week was virtually impossible. The
relatively rapid response offered by the system was a crucial factor in its successful
implementation.

Finally, let us refer to two scheduling problems connected to the pulp and paper
industry. The first one, solved by Westerlundet al. (2007,[584]), is from one of the
largest pulp and paper companies in Finland (Metsä Tissue group and their factory
in Mäntẗa). The factory produces tissue paper from recycled paper aswell as virgin
mass (i.e., from new birch, spruce and pine fibers) if necessary. When scheduling the
whole production, the tissue products (toilet paper, kitchen paper etc) to be produced
with the tissue paper machines are initially scheduled for the coming weeks, given
the incoming orders for the products. In the short term (daily) scheduling one then
need decide how to utilize the available raw-materials (therecycled mass and virgin
fiber) in most cost efficient way. The different scheduling horizons are because the
raw material must be prepared in a separate process and recycled mass degrades
because of aging in only a few days and can thus not be stored instorages for longer
time without the use of costly chemicals. The second scheduling problem is from
the paper converting industry Walki Wisa in Pietarsaari (Finland). Here, a trim-loss
problem has been solved separately but the long and short term scheduling problems
for the utilization of all machines in the factory are given and have been solved by
Rosl̈of (2002,[485]).



10.4 Optimal Worldwide Production Plans⊖ 301

USA

Site 2

Customer

Customer

Asia

Site 3

Customer

Customers

Europe

Site 1

Customer CustomerCustomer

shipping

Fig. 10.1 Production network with three sites.

10.4 Optimal Worldwide Production Plans⊖

10.4.1 Brief Description of the Problem

We start with a rather general description of the model properties. The model de-
scribes a multi-site production network including a variety of different products
which can be produced in a plant (one plant at each site) depending on the mode
chosen for the plant to operate in. All products are subject to sales requirements of
customers according to pre-defined market demands considering several different
market scenarios.

There are production sites located in different regions. Itis possible to transport
each product from each production facility to any other site, subject to pre-defined
minimal transportation rates. Some of the production sitescan manufacture several
products, others cannot.

Within the framework of this production network the objective function (contri-
bution margin) included selling prices and the following costs: variable production
costs, change-over costs, site- and product-specific inventory costs, additional inven-
tory costs (associated with the rental of additional inventory capacity), transporta-
tion costs, and finally costs for external purchase. Since all balancing is performed
on the base of German Marks (DM), exchange rates are incorporated into the model.
The optimizer should compute a production plan for running all plants to maximize
contribution margin, and plans for inventory status, shipping and sales.

The original work (Kallrath 1995, [310]) resulted in a production planning model
for three plants in Germany, USA and Japan [see Fig. 10.1]. Each of the plants
can produce products with the quality of production being the same at all produc-
tion facilities. Capacities are site-dependent, change-over times, minimal production



302 How Optimization is Used in Practice: Case Studies in Integer Programming

charges and minimal plant utilization rates are site and product dependent. Produc-
tion is only possible if a minimum plant utilization rate is achieved, and the pro-
duction plan is only accepted if minimum production chargesare respected. The
model describes a scenario with product change-over times dependent on produc-
tion site and minimum requirements for the quantity of product to be produced in the
course of a year or a month, limited storage capacity, limited transportation capaci-
ties, minimum transport quantities, non-zero transportation times. Market demands
to be expected over the year can be included in the form of demand quantities and
associated probabilities for different,e.g., pessimistic and optimistic scenarios.

In the next sub-section we present a model describing a production network with
three sites and three products covering a year’s planning horizon; in Section 10.4.5
a more general case is described. For reasons of confidentiality it is not possible to
provide real data for this case study.

10.4.2 Mathematical Formulation of the Model

10.4.2.1 General Framework

Throughout this model description the following set of indices will be used:

i = 1, . . . ,NA : production sites (or markets)
j = 1, . . . ,NP : products
k = 1, . . . ,NK : production slices within the planning horizon
m= 1, . . . ,Mi : number of production modes at sitei
r = 1, . . . ,R : production slices within a commercial

time interval horizon
t = 1, . . . ,NT : commercial time intervals
w = 1, . . . ,NW : different market demand scenarios.

(10.4.1)

At first we will consider a scenario similar to the original work (Kallrath, 1995)
with NA = 3 production sites or plantsi. Each of them can operate inMi = 3 differ-
ent modes producingNP = 3 productsj. In that special case we have a one-to-one
correspondence between modes and products,i.e., m= j. As the case study in Sec-
tion 5.1 shows, in the chemical industry we have usually the case that a plant might
produce several products in a given mode. This feature leadsto mode changes. We
exploit the fact that we have only three modes to describe themode changes.1

Each production site is also a sales point and is responsiblefor delivering the
products to customers associated with that sales region. Inthis model we do not
distinguish between production sites and sales points. However, in more general

1 In Section 10.4.5 we present a reformulated version of the model which is capable of handling
an arbitrary number of modes and changes between them.



10.4 Optimal Worldwide Production Plans⊖ 303

scenarios with, for instance, more sales points than production sites, one should
keep sites and sales points logically separated from each other.

10.4.2.2 Time Discretization

We divide the entire planning horizon (one year in our case) into NK = 12 discrete
production slices (one month each).

Moreover, regarding delivery or sale, a commercial time scale of 12 periods
(months) withNT = NK/R is chosen. Usually, the production schedule has a finer
resolution than the commercial plans for sales and shipping. Using two time scales,
the resolution is chosen adequately for the purpose of both production planners and
marketing people. Ifk refers to a production slice in time intervalt, then the function

k(t, r) := R(t −1)+ r (10.4.2)

gives the absolute numberk(t, r) of that production slice referenced byt andr, and
connects both time scales. For abbreviation, if we want to cover the whole planning
horizon, we usek rather thank(t, r). Note thatNK = k(NT ,R). If the production time
scale and the commercial time scale are identical, we haveR= 1, andk= k(t, r) := t.
This feature can also be used to describe a production plan covering 12 months
which, for production, considers weeks during the first three months and considers
months for the rest of the planning horizon. In that case we would useRt instead of
Rwith

Rt =

{
4 , 1≤ t ≤ 3
1 , 4≤ t ≤ 12.

(10.4.3)

10.4.2.3 Including Several Market Demand Scenarios

The indexw is used to indicate different market demand scenarios. Eachmarket
demand scenario has a probability ofWw; the sum of them is

NW

∑
w=1

Ww = 1. (10.4.4)

The stochastic features will be associated only with the commercial quantities,i.e.,
selling, storing, purchasing and shipping; the variables describing these aspects will
have the indexw. All variables related to production (state variables, modechanging
variables, etc.) are not affected.

10.4.2.4 The Variables

At first we introduce the non-negative (continuous)production variables



304 How Optimization is Used in Practice: Case Studies in Integer Programming

pTOT
i j : aggregated production (in tons) of productj at sitei

mi jk : production (in tons) of productj at sitei in periodk
κ ik : semi-continuous variable related to minimum utilization.

(10.4.5)

The worldwide production network and its current state is characterized by thestate
variablesδ imk ∈ {0,1},

δ imk :=

{
1 , if plant i is in modem at the end of periodk
0 , otherwise.

(10.4.6)

These variables carry the information of the mode or status of the plant.
In oder to describe mode changes we introduce the mode changing binary vari-

ables

ξ ikm1m2
=

{
1 , if δ im1k−1 = δ im2k = 1
0 , otherwise,

(10.4.7)

and the binary variableχ ik

χ ik :=

{
1, if a mode-changed occured at sitei in periodk
0, otherwise

(10.4.8)

indicating whether a mode change occured at sitei in periodk or not.
To follow the stock we use the non-negative continuousstock variables

si jtw : total stock (in tons) of productj at sitei
sA
i jtw : rented stock capacity (in tons) of productj at sitei.

(10.4.9)

For sales and transport we introduce the non-negative continuous variables

pi jtsw : amount of productj shipped from sitei to sites, (10.4.10)

which for s 6= i indicate the quantity of productj shipped at timet from plant i to
site s, and fors= i represent the quantity sold at sitei. In addition we have the
non-negative semi-continuoustransport variables

σ i jtsw : (dimensionless) amount of productj shipped from sitei to s. (10.4.11)

Finally, we need some non-negative variables describing the purchase of products
from external competitors

pE
s jt : external purchase (in tons) of productj in periodt. (10.4.12)

Note that most of the variables are not needed for all combinations of indices but
rather for a few combinations indicated by some logical qualifiers; therefore we
refer to these variables as sparse variables.XPRESS-MP keeps track automatically
of sparse variables appearing in constraints. To keep things simple we do not give
the logical qualifiers in the model description.



10.4 Optimal Worldwide Production Plans⊖ 305

10.4.2.5 The State of the Production Network

The worldwide production network and its current state is characterized by thestate
variablesδ imk ∈ {0,1},

δ imk :=

{
1 , if plant i is in modem at the end of periodk
0 , otherwise

;
∀i
∀m
∀k.

(10.4.13)

These variables are used to guarantee that at the end of time intervalk the plant at
site i is in a unique mode. This is achieved by the equations

Mi

∑
m=1

δ imk = 1 ;
∀i
∀k.

(10.4.14)

Due to the presence of equation (10.4.14) it is sufficient to request the binary char-
acter of theδ imk explicitly only for NANK ∑Mi

m=1(Mi −1) of them.
Note that some initial data∆im = δ im0 have to be provided to define the known

status of planti before we start planning. Of course, these initial data mustsatisfy
the condition

Mi

∑
m=1

∆im = 1 , ∀i. (10.4.15)

10.4.2.6 Exploiting Fixed Setup Plans

Sometimes the state of all plants may be given in advance, andone may want to fix
the states of all plants to the states known from another optimization run. Therefore,
the model provides the option to use the states of all plants according to the bounds

δ imk = ∆ F
imk, (10.4.16)

where∆ F
imk give the state of all plants during the whole periodTP andI∆ is a switch

specifying whether a fixed plan is to be used (I∆ = 1) or not (I∆ = 1). This switch,
the default isI∆ = 1, allows fixing the setup while all other variables can be opti-
mized with respect to the fixed modes.

10.4.2.7 Keeping Track of Mode Changes

It is one of the most fundamental assumptions in this model that we can have at most
one mode change per period. If our the states variables take the valuesδ im1k−1 =
δ im2k = 1 we have a mode change from modem1 to m2 in time intervalk.

Mode changes are tracked by the binary variables



306 How Optimization is Used in Practice: Case Studies in Integer Programming

k - 1 k

δδδδδ
im k-11

δδδδδ
im k-12

Fig. 10.2 Illustration of a set-up change. The white gap in the right partof the figure represents
a set-up change from modem1 to modem2. The size of the gap indicates the time needed for the
set-up change relative to the length of time intervalk.

ξ ikm1m2
=

{
1 , if δ im1k−1 = δ im2k = 1
0 , otherwise

;
∀i
∀m
∀k.

(10.4.17)

This variable is unity if at the end of periodk−1 the plant is in modem1 and at the
end of periodk it is in modem2. So the variablesξ ikm1m2

, m1 6= m2, tell us whether a
mode change is taking place from modem1 to modem2 during time intervalk. The
Mi ×Mi matrix ξ ik (for fixed i andk) either is identical to zero or there is at most
one element which is unity. The state variablesδ and the set-up change variablesξ
are connected by

ξ ikm1m2
≥ δ im1k−1+δ im2k−1 ; ∀i ∀k ∀m1 ∀m2 |m2 6= m1. (10.4.18)

The conditions (10.4.14,10.4.18), together with the definition (10.4.43) of the change-
over costs, and the maximum property of the solution ensure that theξ ikm1m2

auto-
matically assume only the values 0 or 1; the saving in computing time by comparison
with the explicit declaration as binary variables is considerable. To understand this
property consider two subsequent time intervalsk−1 andk. For a particular binary
variableξ ikm1m2

we can analyse four different cases summarised in the table below
leading to four different inequalities:

δ im1k−1 δ im2k ξ ikm1m2
≥

0 0 −1
1 0 0
0 1 0
1 1 1

.

The caseδ im1k−1 = δ im2k = 1 represents a set-up change from modem1 to m2 in
time intervalk. This situation is illustrated in Fig. 10.2.

If for a particular modem the binary decision variables take the value zero in
consecutive time intervals,i.e., δ imk−1 = δ imk = 0, no production of a productj
associated with that modem is possible in time intervalk.

The total number of change-overs during the entire production period at sitei can
be limited in a simple way by



10.4 Optimal Worldwide Production Plans⊖ 307

NK

∑
k=1

NP

∑
m1=1

NP

∑
m2=1
m2 6=m1

ξ ikm1m2
≤Ui ; ∀i. (10.4.19)

10.4.2.8 Coupling Modes and Production

Let us now couple the production to the modes. This could be described by an
indication matrixIim j

Iim j :=

{
1 , if at sitei modem allows production ofj
0 , otherwise.

(10.4.20)

Note that this approach allows us to model that a certain product can be produced in
different modes. We now formulate the following relation

mi jk ≤
Mi

∑
m=1|Iim j=1

Cikδ imk−1+Cikδ imk , ∀{i jk} (10.4.21)

with site and time dependent logistic capacitiesC′
ik [explained below] specified in

tons per time interval,e.g., tons per month. In our special scenario in which products
and modes are uniquely coupled that equation just reduces to

mi jk ≤Cikδ i,m= j,k−1+Cikδ i,m= j,k , ∀{i jk}. (10.4.22)

The inequalities (10.4.22) lead either tomi jk = 0, mi jk ≤ Cik or mi jk ≤ 2Cik. Only
the first case is relevant and restrictsmi jk . The second inequality becomes valid if a
mode change occurs but is replaced by the stronger inequality (10.4.25). The third
case is also dominated by (10.4.25). The logistic capacities are either derived from
the theoretical annual capacitiesCi explained below according to

Cik := min

{
Ci

NK
,C′

ik

}
, (10.4.23)

or they are derived from the capacitiesC′
ik specifiedad hocfor the production time

intervals considering,e.g., plant shutdown or maintenance work. The annual pro-
duction capacitiesCi (tons per year) of planti give the amount of production if a
plant were producing continuously for a whole year. If no change-over occurs in a
specific time intervalr, production is possible at full capacityCir . Otherwise, the
theoretical production capacityCi is modified in this interval to a reduced capacity
CR

im1,m2k according to

CR
ikm1m2

=Cik −
∆im1m2

TP
Ci , ∀i ∀k ∀m1,m2 |m2 6= m1. (10.4.24)



308 How Optimization is Used in Practice: Case Studies in Integer Programming

Note that the mode change-over times∆im1m2 [in days] are used to reduce the ca-
pacity when change-overs occur. Typically, values vary between 2 and 8 days. By
definition, we put∆imm= 0.

It is, of course, also not valid for the sum of the products produced during a
time intervalr in which a change-over takes place to be greater than the modified
capacity,i.e.,

NP

∑
j=1

mi jk ≤Cir +
Mi

∑
m1=1

Mi

∑
m2=1
m2 6=m1

[
CR

ikm1m2
−Cir

]
ξ ikm1m2

; ∀{ik}. (10.4.25)

If no change-over takes place in a given time interval, the conditions (10.4.22),
(10.4.24) and (10.4.25) reduce tomi jk ≤ Cik. In the opposite case, for a unique
pair (m1,m2), (10.4.25) reduces to∑NP

j=1mi jk ≤CR
ikm1m2

, which furthermore requires
mim1k+mim2k ≤Cikm1m2.

10.4.2.9 Minimum Production Requirements

Finally, minimum production requirements,Ci j still have to be taken into account
over the entire production schedule,i.e.,

NT

∑
t=1

R

∑
r=1

mi jk(t,r) ≥ Ci j ; ∀{i j}. (10.4.26)

These conditions(NSNPNK coefficients) are replaced by the equivalent system of
equations with(1+NK) coefficients

pTOT
i j :=

NT

∑
t=1

R

∑
r=1

mi jk(t,r) ; ∀{i j}, (10.4.27)

and bounds
pTOT

i j ≥ Ci j ; ∀{i j}. (10.4.28)

Moreover, the total production at a site must not fall below given global production
limits Ci , i.e.,

NP

∑
j=1

pTOT
i j ≥ Ci ; ∀i. (10.4.29)

Finally, monthly minimum requirementsCi jt

R

∑
r=1

mi jk(t,r) ≥ Ci jt ; ∀{i jt } (10.4.30)

remain to be fulfilled.



10.4 Optimal Worldwide Production Plans⊖ 309

10.4.2.10 Modeling Stock Balances and Inventories

The stock balance equations are a special type offlow balance constraints[see Sec-
tion 2.3] and include the variablessi jtw which describe the stock of productj at site
i at the end of time intervalt. These constraints read

si jtw = si jt−1w+ pE
i jtw +

R

∑
r=1

mi jk(t,r)−




NS

∑
s=1

pi jtsw−
NS

∑
s=1
s6=i

ps jd(t,s,i)iw


 ,

∀i
∀ j
∀t
∀w.
(10.4.31)

This relation takes account of production, transfer to other sites, procurement of
goods from other sites, the initial stocksi j0 = S0

i j , quantitiespE
i jtw purchased from

external sources, which can likewise be kept in store, and the direct delivery or the
sale. In the last sum the indexsmarks additions to stock which already take account
of the transportation time,i.e., d(t, i1, i2) = t−Ti1i2, Ti1i2 denoting the transportation
time (in integer number of periods) from sitei1 to sitei2. Naturally, only those terms
with positive indexd(t, i1, i2) > 0 are taken into consideration. Note that because
Ti1i2 is used in the index it is required thatTi1i2 is measured in units of the period
and that it is integral.

The next step is now to ensure that a certain minimum stock is guaranteed. If
S−i j denotes the minimum stock for productj at planti andS0

i j the initial stocks, the
above requirement implies that

si jtw ≥ S−i j ; ∀{i jtw}. (10.4.32)

For logistic reasons there is a further requirement for the last time interval that a
prescribed final stockMi j is achieved,i.e.,

si jNTw ≥ Mi j ; ∀{i jw}. (10.4.33)

It must also be ensured that the local inventory capacitySi j is not exceeded,i.e.,

si jtw ≤ Si j ; ∀i ∀ j ∀t ∀w (10.4.34)

It seems reasonable to introduce additional variablessA
i jtw which represent the

amount of product in additional storage, which can be provided for example by
leasing, and thus do not lead to (10.4.34) but to the softer condition

si jtw ≤ Si j +sA
i jtw ; ∀{i jtw}, (10.4.35)

where the capacity of the additional store itself may be bounded by

sA
i jtw ≤ SA

i j ; ∀{i jtw}. (10.4.36)



310 How Optimization is Used in Practice: Case Studies in Integer Programming

10.4.2.11 Modeling Transport

Transport is only possible if the amount to be shipped is within the boundsP− (and
P+). The condition

pi jtsw = 0 ∨ P− ≤ pi jtsw ≤ P+ , z 6= i ; ∀{i jtsw} (10.4.37)

is formulated using the semi-continuous variablesσ i jtsw which satisfy the condition

σ i jtsw = 0 ∨ 1≤ σ i jtsw ≤ σ+ , z 6= i ; ∀{i jtsw}. (10.4.38)

Note that these variables are scaled to unity and related to the original variables
according to

pi jtsw = P−σ i jtsw , σ+ = P+/P−, z 6= i ; ∀{i jtsw}. (10.4.39)

The distinction between the variablespi jtsw and σ i jtsw is not necessary from an
algebraic point of view. We could replace all occurrences ofpi jtsw by P−σ i jtsw.
However, both approaches have different effects on scalingand thus on numerical
performance. In this case study it was much better to have both variablespi jtsw and
σ i jtsw in the model.

10.4.2.12 External Purchase

The quantities purchased from other suppliers are subject to the bounds

pE
i jtw ≤ PE

i jt ·Bi j ; ∀{i jtw}. (10.4.40)

Here, thePE
i jt are upper bounds of external purchase in tons, while theBi j ∈ {0,1}

specify whether externally purchased product is permissible at all. External pur-
chase becomes very important if there are conditions added to the model that de-
mand has to be satisfied.

10.4.2.13 Modeling Sales and Demands

Certainly no more must be delivered than is required by the demand,i.e.,

pi jtiw ≤ Di jtw ; ∀{i jtw}. (10.4.41)

The constantsDi jtw indicate how much of productj at timet is demanded with a
specific probability at sitei.

Sometimes we might want to model that demand is satisfied,i.e.,

pi jtiw = Di jtw ; ∀{i jtw}. (10.4.42)



10.4 Optimal Worldwide Production Plans⊖ 311

In that case we should make sure that external purchase is possible as otherwise we
might produce an infeasible problem due to lack of own production capacity.

10.4.2.14 Defining the Objective Function

The objective function is now to include the change-over costs, inventory costs,
transportation costs and production costs. First, with theplant-specific and product-
specific change-over costsCU

im1m2
we have the change-over costs

cU :=
NA

∑
i=1

NT

∑
t=1

R

∑
r=1

Mi

∑
m1=1

Mi

∑
m2=1
m2 6=m1

CU
im1m2

ξ ik(t,r)m1m2
. (10.4.43)

Using the constant inventory costsCI
i j for product j at planti for one time interval,

the inventory costscI are given as

cI :=
NA

∑
i=1

NP

∑
j=1

ND

∑
w=1

(
WwCI

i j

NT

∑
t=1

si jtw

)
. (10.4.44)

Apart from these inventory costs, we also consider the additional costscM for a
possible leased store with specific leased inventory costsCM

i j .

cM :=
NA

∑
i=1

NP

∑
j=1

ND

∑
w=1

(
Ww

(
CM

i j −CI
i j

) NT

∑
t=1

sA
i jtw

)
. (10.4.45)

These costsCM
i j are surplus costs for the additional inventory capacity. Part of the

costs is already covered by the inventory costCI
i j because the definition ofsi jtw in

(10.4.31) includes both types of inventory,i.e., part of the cost related tosA
i jtw is

already included incL.
With the individual costsCT

is the entire transportation costs are given by

cT :=
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

NS

∑
s=1
z6=i

ND

∑
w=1

WwCT
is pi jtsw. (10.4.46)

Finally, it remains to take account of the production costcP:

cP :=
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

R

∑
r=1

CP
i j mi jk(t,r) (10.4.47)

and the costscB

cB =
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

ND

∑
w=1

WwCE
i jt pE

i jtw , (10.4.48)



312 How Optimization is Used in Practice: Case Studies in Integer Programming

which arise from external purchase at purchasing pricesCE
i jt . The incomee is com-

puted from the sales

e=
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

ND

∑
w=1

WwEi jt pi jtiw . (10.4.49)

This results in the objective function to be maximized as thecontribution

Z(δ ,ξ ,m, p,s,sA, pE) = e− (cU +cI +cL +cT +cP+cB). (10.4.50)

10.4.3 Remarks on the Model Formulation

Let us now focus on a few points in the model formulation. Mostof these remarks
are related to techniques and tricks which might be appreciated by practitioners.

10.4.3.1 Including Minimum Utilization Rates

During the modeling and validation phase it became necessary to add an additional
requirement which guarantees a minimum utilization rateUR

i for each plant. As is
seen in Fig. 10.3 there are times in the production plan when the plant produces
only a tiny amount. Such solutions are not very likely to be accepted. Therefore,
the client asked for the inclusion of minimum utilization rates. That would force
the plant to stop production completely during some time intervals if not enough is
produced. Fixing this problem, leads to another class of semi-continuous variables
κ ik which force the solution to represent only scenarios with zero-production or a
utilization-rate with more than 100·UR

i %, i.e.,

UR
i Cikκ ik =

NP

∑
j=1

mi jk , ∀{ik}. (10.4.51)

Sinceκ ik is semi-continuous,i.e., κ ik = 0 or 1≤ κ ik ≤ κ+, equation (10.4.51) actu-
ally requires that

NP

∑
j=1

mi jk = 0 or
NP

∑
j=1

mi jk ≥UR
i Cik , ∀{ik}. (10.4.52)

To reduce the number of variables in the model,κ ik is only defined for those indices
(i,k), for whichCik is positive.



10.4 Optimal Worldwide Production Plans⊖ 313

0

350

Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec

Product 3

Product 2

Product 1

300

250

200

150

100

50

0
Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec

1000

Product 3

Product 2

Product 1

7000

6000

5000

4000

3000

2000

0
Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec

1000

800

600

400

200

Product 3

Product 2

Product 1

0
Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec

500

400

300

200

100

Product 3

Product 2

Product 1

600

Total production

Site 3

Site 2

Site 1

Fig. 10.3 Production plan. The units of measure are missing for reasons of confidentiality.

10.4.3.2 Exploiting Sparsity

Commercial LP-solvers use arevised Simplex algorithm, which operates very effi-
ciently on sparse matrices. In particular, it can be helpfulto keep the ratio of the
number of rows (constraints) and the number of columns (variables) and also the
density, i.e., the ratio of the number of non-zero coefficients to the totalnumber of
coefficients, as low as possible. For this reason, (10.4.19)is replaced by the two
constraints

χ ik :=
Mi

∑
m1=1

Mi

∑
m2=1

ξ ikm1m2
, ∀{ik} (10.4.53)

and
NK

∑
k=1

χ ik ≤Ui , ∀i. (10.4.54)



314 How Optimization is Used in Practice: Case Studies in Integer Programming

The system (10.4.19) consists of one row andNANK(NP − 1)NP columns2 for the
variablesξ ikm1m2

hasNANK(NP − 1)NP coefficients,i.e., the density is unity. In
the case of (10.4.53,10.4.54) one obtainsNANK +NA rows andNANK(NP−1)NP+
NANK columns, but

NANK +NANK(NP−1)NP+NANK (10.4.55)

coefficients. From that we derive the density

ρ =
no. of non-zero coefficients

(no. of rows) · (no. of columns)
(10.4.56)

=
NANK [(NP−1)NP+2]

(NANK)2(1+ 1
NK

)[(NP−1)NP+1]
=

96
91

· 1
NSNK

.

By introducingNANK additional constraints andNANK new variables we achieve a
(local) density which is reduced by a factor ofNANK , i.e., in our case forNA = 3 and
NK = 12 a factor of 36.

Let us conclude with the remark that besides scaling both thesize and the density
of the problem affect the performance of the solver. It is subject to testing and model
reformulations to find out which model formulation is the most efficient. In this case
study using the larger but sparser system produced faster solutions.

10.4.3.3 Avoiding Zero Right-Hand Side Equations

For numerical reasons discussed below while building a model the analyst should
try to avoid equations of the form

n

∑
j=1

Ai j x j = 0, (10.4.57)

or should include them only with great care. The problem which might occur includ-
ing many of these equations is related to the “minimum ratio rule” which governs
the elimination of nonbasic variables in the Simplex algorithm. From Section 3.2.2
we remember

xr :=
bi

Ars
= min

{
bi

Ais

∣∣∣∣Ais > 0

}
, (10.4.58)

where that basic variablexi with value bi leading to the smallest valuebi/Ais is
eliminated andxr is the value of the new basic variable. Note thatbi corresponds to
the right-hand-side of an equality constraint. Therefore,if several zero right-hand
side equalities are present the algorithm might have difficulties selecting the basic
variable to be eliminated.

2 Here we used the special case information thatMi = NP.



10.4 Optimal Worldwide Production Plans⊖ 315

Nevertheless, the advice of avoiding such structures should always be subject to
careful testing of the numerics. The relations (10.4.53) improved the performance
of the Simplex algorithm. This example also shows how such equations may enter
a model: they are used to define quantities later needed. However, we may keep in
mind that during preprocessing, defined variables often getreplaced again; these
are usually storage overhead and also they make hide constraints in which other
variables would be present (and these are original variables with non-zero coefficient
in objective function). Exceptions are if they help for branching!

10.4.3.4 The Structure of the Objective Function

A frequent structural feature of objective functions in production planning problems
is that it is built up from several components representing different costs or income
terms. The equations (10.4.43)-(10.4.49) define these components. This approach
has three disadvantages leading to a weaker performance of the Simplex based LP-
solver:

• it introduces additional zero right-hand side equalities,
• it introduces unbalanced scaling, and
• it makes “pricing” more difficult (choice of new basic variables).

The first point is not a major problem because only a few equations are added. The
second one is a more serious problem. Assume that all the other variables and their
coefficients are well balanced,i.e., all variables have values of the order of one and
their coefficients take values of the order of 1,000. Now, using defining equalities
and the short form of the objective function introduces variables which have much
larger values but the objective function has unit coefficient in all entries. The third
point may be even worse. Remember from Section 3.2.2 that thereduced costsd j

are computed according to the formula

d j = c j −cT
BB−1A j , (10.4.59)

wherec j denotes the coefficient in the objective function associated with nonbasic
variablesx j under examination,cB collects all coefficients in the objective function
associated with the basic variables,B is the basic matrix andA j refers to the present
columns associated withx j . Although reduced cost can be different from zero when
the variables do not appear in the objective function, in this case study it helped to
bring all variables into the objective functionZ = Z(δ ,ξ ,m, p,s,sA, pE)



316 How Optimization is Used in Practice: Case Studies in Integer Programming

Z =
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

ND

∑
w=1

WwEi jt pi jtiw −
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

NS

∑
s=1
z6=i

ND

∑
w=1

WwCT
is pi jtsw

−
NA

∑
i=1

NT

∑
t=1

R

∑
r=1

Mi

∑
m1=1

NP

∑
m2=1
m2 6=m1

CU
im1m2

ξ ik(t,r)m1m2
−

NA

∑
i=1

NP

∑
j=1

ND

∑
w=1

(
WwCI

i j

NT

∑
t=1

si jtw

)

−
NA

∑
i=1

NP

∑
j=1

ND

∑
w=1

(
Ww

(
CM

i j −CI
i j

) NT

∑
t=1

sA
i jtw

)
−

NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

R

∑
r=1

CP
i j mi jk(t,r)

−
NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

R

∑
r=1

CP
i j mi jk(t,r)−

NA

∑
i=1

NP

∑
j=1

NT

∑
t=1

ND

∑
w=1

WwCE
i jt pE

i jtw .

10.4.4 Model Performance

The model leads to a mixed integer linear programming problem (MILP) with 72
binary, 252 semi-continuous variables and 1071 continuousvariables, and 974 non-
trivial linear conditions. The structure of the model was matched to the algorithmic
fundamentals of the software early in the formulation stageleading to a density of
0.33% and about 4500 non-zero matrix elements. This facilitated the optimum use
of the numerical problem solving properties of theXPRESS-MP package. The first
feasible mixed integer solution is accepted as the solution. This heuristic is justified
because our trials indicate that its associated contribution margin deviates by only
a few percent from that of the continuous problem (well within the error associ-
ated with the input data) and because it eliminates the need for the time consuming
complete search for the absolute optimal solution via a B&B algorithm. The first
feasible integer solution is usually found within 40 seconds usingXPRESS-MP on
a Pentium. In some cases, we could even prove optimality in minutes. But proving
optimality turned out to be very data dependent. In some cases we could not prove
it within days.

10.4.5 Reformulations of the Model

Although the client was quite happy that the problem could besolved very fast, there
remains the open question of whether the solution found is the optimal solution.
Additional functionalities or wishes are to use the production planning model to
plan for more than 3 products, to relax the mode-product relations and to include
site- and mode-dependent capacities. Note that our model made explicit use of the
fact that we had only 3 products in all constraints connecting the mode variablesδ
and the set-up change variablesξ .



10.4 Optimal Worldwide Production Plans⊖ 317

Thus, we need to reformulate the model first to meet our client’s reality, and
second to decrease the integrality gap. In many cases reformulations of the model
help to get smaller integrality gaps. In some cases reformulations enable us to find
valid inequalities which can be used to reduce the gap.

10.4.5.1 Estimating the Quality of the Solution

If we cannot prove optimality (in real-world problems we always have to expect
that to happen) we can discuss the quality of solutions by inspecting the upper and
lower bounds derived by the B&B algorithm [see Fig. 3.9 and discussion of bounds
on page 122]. In a maximization problem the upper bound,zU , is provided by the
LP relaxations while the lower bound,zL, corresponds to the best integer solution
found. So we have the bounds

zL ≤ z∗ ≤ zU (10.4.60)

on the objective function valuez∗ of the (unknown) optimal solution. In a maxi-
mization problem the differencezU −z∗ is called theintegrality gap. If the search is
terminated beforez∗ has been computed, the differencezU −zL is used as an upper
bound on the integrality gap.

Assuming that bothzL andzU are positive the quality of our solution can also be
expressed by the relative expression

p := 100· zU −zL

zU , (10.4.61)

which expresses that the difference between the best solution found and the (un-
known) optimal solution is at mostp%. If that measure does not satisfy our client
we have to try to improve the bounds or to prove optimality.

While the lower boundzL increases if we allow the algorithm to seek for further
integer feasible solutions the upper boundzU decreases very slowly during the com-
putations. The upper bound can be decreased faster if it is possible to find effective
cuts and to apply B&C techniques.

10.4.5.2 Including Mode-Dependent Capacities

To include more than 3 products and to generalize the mode-product relation we
modify the model as follows. At first, we change the data related to capacity. Instead
of usingCi andCik we introduce the following data



318 How Optimization is Used in Practice: Case Studies in Integer Programming

D : days per period
Hik : number of days available for production and change-over

on sitei in periodk
HR

ikm1m2
: number of days available for production at sitei in period

k if a change-over from modem1to m2 occurs in periodk
RP

im j : production rates in tons/day, the amount of productj
which could be produced in modem in one day at sitei.

Notice thatHik depends onk which gives us the opportunity to model temporary
shutdowns (maintenance, test runs, etc.). The production ratesRP

im j will also be used
to indicate whether productj can be produced in modem at sitei at all. If RP

im j = 0
this is not possible. It is possible that a certain product can be produced in several
modes.

We can relate the new data tables,Hik andHR
ikm1m2

to our original data as follows

Hik =
Cik

Ci
D (10.4.62)

and
HR

ikm1m2
= max{0,Hik −∆im1m2} . (10.4.63)

Note that we do not require thatHik or HR
ikm1m2

is an integer quantity, and that

∆imm= 0 , ∀i , m= 1, . . . ,Mi . (10.4.64)

It is also possible to model the fact that months have different number of days. The
tableHik can be used to keep track of that.

The use of these data leads to some model changes affecting (10.4.21), (10.4.22),
(10.4.24) and (10.4.25). However, as the reformulation of the change-overs is also
changed we postpone the discussion of the modified relationsto Section 10.4.5.3.

10.4.5.3 Modes, Change-Overs and Production

In order to include more products (and also modes) and to improve the model for-
mulation with respect to the integrality gap we modify the meaning of two types of
variables already used:

mimk ≥ 0 number of days planti in periodk is in modem

ξ ikm1m2
=

{
1 , if δ im1k−1 = δ im2k = 1
0 , otherwise.

(10.4.65)

Note the difference:mimk now does not give the amount of tons, but just the number
of days (fractional days are allowed) in which the plant is inmodem during period
k. The variablesmimk can easily be related to a new variable,pT

i jk ,



10.4 Optimal Worldwide Production Plans⊖ 319

pT
i jk ≥ 0 , tons of productj produced at sitei in periodk. (10.4.66)

Thus mode, number of days available per mode and tons of products are connected
by

pT
i jk ≤

Mi

∑
m=1|RP

im j>0

RP
im jmimk , ∀{i jk}. (10.4.67)

Note that this relation is an inequality. Even if the plant isin a mode in which a
certain product could be produced there is no need to produceat full capacity.

The variableξ ikm1m2
has almost the same meaning as before. It is unity if at

the end of periodk−1 the plant is in modem1 and at the end of periodk it is in
modem2. While so far we interpretedξ ikm1m2

as a variable only describing whether
a change-over occurs or not it can now also be used to check whether production
continues. If the plant is in modem both at the end of periodk−1 andk then we
haveξ ikmm= 1.

In Section 9.3 we mentioned that it is sometimes advantageous to introduce ad-
ditional discrete variables. We now introduce additional binary variables with the
following meaning

α imk :=

{
1, if plant i is in modem for some time in periodk
0, otherwise

(10.4.68)

β imk :=

{
1, if modem is started at sitei in periodk
0, otherwise

(10.4.69)

and finally

γ imk :=

{
1, if modem is terminated at sitei in periodk
0, otherwise.

(10.4.70)

These binary variables are related to others by the constraints

β imk = ∑
m1 6=m

ξ ikm1m , ∀i, m= 1, . . . ,Mi , ∀k (10.4.71)

and
γ imk = ∑

m1 6=m

ξ ikmm1
, ∀i, m= 1, . . . ,Mi , ∀k

To express whether modem is used at all in periodk we have

α imk = δ imk−1+δ imk−ξ ikmm , ∀i, m= 1, . . . ,Mi , k= 2, . . . ,NT

(10.4.72)
and

α im1 = ∆im+δ im1−ξ i1mm , ∀i, m= 1, . . . ,Mi , (10.4.73)



320 How Optimization is Used in Practice: Case Studies in Integer Programming

where∆im = δ im0 denotes the known status of planti before we start planning. Note
that is not necessary to declareξ ,β andγ as binary variables if we have declaredδ
andα as binary variables.

Finally we have the following block of constraints:

γ imk = δ imk−1−ξ ikmm , ∀i, m= 1, . . . ,Mi , k= 2, . . . ,NT (10.4.74)

or
γ im1 = ∆im−ξ i1mm , ∀i, m= 1, . . . ,Mi (10.4.75)

and

β imk = δ imk−ξ ikmm , ∀i, m= 1, . . . ,Mi , k= 2, . . . ,NT . (10.4.76)

The constraints above describe the change-over activities. For production planning
problems under mode constraint (i.e., a single production mode for each period and
change-over variables representing the change of mode overtime), a tight linear pro-
gramming formulation of the change-over activities is obtained by representing the
evolution of the mode over time as a unit flow problem [see Karmarkar & Schrage
(1985,[337]) and Wolsey (1989,[600])].

Note that (10.4.14) is not required any longer. This followsfrom (10.4.15) and
inspection of (10.4.73)

Mi

∑
m=1

α im1 = 1+
Mi

∑
m=1

δ im1−
Mi

∑
m=1

ξ i1mm , ∀i, m= 1, . . . ,Mi (10.4.77)

If in the first period a set-up change takes place then∑Mi
m=1 ξ i1mm= 0 but∑Mi

m=1 α im1=

2 as production is possible in exactly two modes. Thus we have∑Mi
m=1 δ im1 = 1. If

no set-up change occurred then production was possible in only one mode which
gives∑Mi

m=1 α im1 = ∑Mi
m=1 ξ i1mm= 1 which again leads to∑Mi

m=1 δ im1 = 1.

10.4.5.4 Reformulated Capacity Constraints

Let us now start to formulate the capacity constraints as a function of the change-
over variables. While in the first model formulation capacityconstraints restricted
the amount of tons which could be produced, capacity constraints are now used to
restrict the number of days the plant is in a certain mode. We first note that

mimk < HR
immk·α imk , ∀i, m= 1, . . . ,Mi , ∀k (10.4.78)

is a valid upper bound. Remember, thatα imk carries the information whether mode
m is used in periodk or not. If the plant is never in modem during periodk then
α imk= 0 and the plant indeed spends zero days in modem. If modem is chosen,i.e.,
α imk = 1, the inequality reduces tomimk < Hik due to (10.4.64). Fractional values of



10.4 Optimal Worldwide Production Plans⊖ 321

α imk during the LP relaxation or within the tree reduce the time the plant can be in
modem leading to smaller amounts of the products being produced inthis mode.

Next, we want to compute the available capacities subject tochange-overs. These
constraints read

mimk ≤
Mi

∑
m=1

HR
imm2k ·ξ ikm2m+

Mi

∑
m2=1
m2 6=m

HR
im2mk ·ξ ikmm2

,
∀i

m= 1, . . . ,Mi

∀k

(10.4.79)
and

Mi

∑
m1=1|Hik 6=0

mimk ≤ Hik −
Mi

∑
m1=1
Hik 6=0

Mi

∑
m2=1

m2 6=m1

∆im1m2 ·ξ ikm1m2
,

∀i
∀k.

(10.4.80)

Constraint (10.4.79) defines the upper limit on the number ofdays of production
of product j at sitei in periodk as a function of the change-over variables. Days
for modem become available in periodk only if either the site status switchesto
modem in periodk [first term in the right-hand side of (10.4.79)] or the site status
switchesfrommodem in periodk (i.e., has statusj at the end of periodk−1). When
the mode of the site ism at the end of periodk−1 and k (i.e., ξ ikmm= 1 and no
change-over occurs in periodk), the value of the available capacityHR

ikmm is counted
once in the first terms. In any integer solution, by constraint (10.4.79), at most two
modes have a positive upper bound on available days in each period.

Constraint (10.4.80) defines the global available capacityin periodk to be equal
to the number of days available minus the number of days used for change-over.
The second term can only be applied if∆im1m2 ≤ Hik. Otherwise, we should fix
ξ ikm1m2

= 0 because there is not enough capacity in periodk to perform the change
over from modem1 to modem2.

10.4.5.5 Some Remarks on the Reformulation

What is the benefit of the reformulation? First, it became necessary to meet the
client’s reality. That was not possible with the old formulation. The new formula-
tion is very general, and is open to further generalizations. Second, the reformulated
model leads to a smaller integrality gap. Third, when applyingXPRESS-MP’s B&C
facilities some general types of cuts could be detected which were not present be-
fore.



322 How Optimization is Used in Practice: Case Studies in Integer Programming

10.4.6 What can be Learned from this Case Study?

This case study showed clearly that a model is an object subject to many changes,
modifications, and generalizations. The client involved inbuilding and validating
the model understood what was going on and saw other featuresin the real-world
problem which could be incorporated easily while others required substantial mod-
ifications to the current model formulation. During this process the model tended
to increase in complexity and also in the number of variablesand constraints. The
advantage was clearly that each model was based on an “easier” model which was
well understood and validated and not the subject of infeasibilities which may often
occur in the first phase of a project. In the end, the client hada model which was sig-
nificantly improved in terms of the integrality gap and solution time. The modeler
has used model formulations which moved away from thenatural variables which
were obvious in the first phase. In order to prove optimality,both B&B and B&C
algorithms had to be used.

10.5 A Complex Scheduling Problem⊖

This case study discusses a complex precedence and resourceconstrained schedul-
ing problem.3 In our case the scarce resource is personnel. It shows how an analyst
could approach such a problem and how to put some structure init. Several submod-
els will be identified which are already very demanding in themselves. The whole
model is far from being solvable by a pure MILP approach, but it shows something
which is also very important for working on real-world problems: knowing the lim-
its of certain optimization techniques and, despite those limits, being able to bring
the client’s and analyst’s worlds together and to provide anacceptable solution.

10.5.1 Description of the Problem

The client4 uses a set of machines, employs a number of workers and receives orders
from customers. Each order demands a certain amount of a product, which can be
produced on the client’s machines. The machines are operated and supervised by the
workers. Orders are often split up into several identical jobs, which are necessary in
order to produce the required amount of the product, becausefrequently orders de-
mand more product than the machine capacity. A job for a givenorder is processed
on a machine according to a procedure. A procedure defines anddescribes the struc-
ture of a job. It consists of a sequence of tasks defining how toproduce some amount

3 See also Pattersonet al. (1989,[449] for a general discussion of such problems.
4 The term client is used to refer to one who asks for support from a mathematical consultant. The
term customer is used to denote one who purchases goods from the client.



10.5 A Complex Scheduling Problem⊖ 323

of a product. The amount of product produced by a job depends on the capacity of
the machine. The tasks have to be carried out in a predetermined order. Each task has
a demand for labor and a certain duration, defined by the detailed personnel profile.
The workers are allocated to the different tasks in order to keep the jobs running.
Allocation of the workers has to comply with working regulation rules,e.g., taking
breaks, washing, equally spread labor among the workers, limits on labor intensive
work, over-occupation rate and time. The mathematical formulation of this schedul-
ing problem includes an assignment model, a sequencing model, and a time-indexed
formulation in order to incorporate the detailed personnelprofile. The objective is to
optimize this production system,i.e., to minimize the makespan and/or to minimize
the (variation in the) number of workers.

10.5.2 Structuring the Problem

Obviously we are facing a complex model. Therefore, it is advisable to structure the
model carefully. We will do this by identifying the most important objects and their
attributes. Note that our description already provides a classification intomainand
special features. This is important because clients often ask for many details which
turn out asnice to havebut not totally important.

10.5.2.1 Orders, Procedures, Tasks and Jobs

Main features: an order is assigned to a single machine and once the first jobof
an order has started, the order cannot be preempted. Once a machine is chosen it
requires a specific procedure that must be used. A procedure contains a sequence of
several tasks, thus determining the structure of a job. Orders are the demands of the
customers for some specific product. An order basically consists of an order num-
ber, a machine number, a priority, an amount of product, an earliest start time and a
due date. Using the due date a latest start time for an order can be derived. The in-
terval of possible start times may vary depending on whethersome pre-product has
to be produced or not (see below). Depending on the quantity of product ordered
either one job has to run or several identical batch jobs haveto run producing the
product. How many jobs are needed is calculated by dividing the amount demanded
by the capacity of the machine. The due dates are not rigid, asin some cases partial
satisfaction of orders is allowed,i.e., 80% of the jobs have to be finished by the due
date, while for the other 20% of the jobs some additional timeis available. Each
order or job has a priority. This priority determines their relevance to the production
system and mainly controls the appropriate sequencing of the orders. There are lim-
ited buffer times possible between all the tasks of a job,i.e., the start of a task can
be shifted over a certain time window after the completion time of the previous task.
Thus, for a certain time its labor requirement may be used formore urgent tasks, but
there is a point when a task has to start. No new jobs are started in the last hour of a



324 How Optimization is Used in Practice: Case Studies in Integer Programming

shift, because the workers are entitled to go for a washing break in the last hour of a
shift.

Special features (precedence relations): some products are produced according
to multi-stage recipes connecting different pre-productsand the finished product,
thus, connecting different machines. Therefore, jobs may be coupled by amounts
and time. Time coupling means that some tasks of jobs in different orders are syn-
chronized. Furthermore, sometimes it may occur that the last task of one job (e.g.,
getting out material from a pre-product job) corresponds tothe first or even the
second task (loading that material on the appropriate machine) of the following de-
pendent job,i.e., these tasks start at the same time, are executed simultaneously, and
the personnel is shared by both tasks. Some jobs can only start if a specified amount
of a pre-product (produced in a job of another order) is available. The amount of
pre-product needed is determined by taking into consideration the stocks of this pre-
product. Thus, the job producing it does not have to run as many times as calculated,
i.e., the number of jobs needed to run can be reduced. And, it is often necessary to
start the following dependent job even earlier than just after the last task of the pre-
ceding job. This is because there are no explicit set-up times, as they have been inte-
grated into the procedures as tasks. The same holds for reconstruction times. Some
procedures not only produce a main product but also deliver by-products which are
often recycled using another procedure,i.e., at the end of some job it may be nec-
essary to start two different new jobs: one job processing the main product towards
the finished product and one job processing (recycling) the by-products. Often the
recycling process does not have to start immediately after the end of the preceding
job. Like the tasks it has a limited buffer, but it must have started by the end of this
time slice.

10.5.2.2 Labor, Shifts, Workers and their Relations

Main features: the machines are operated 24 hours a day. The workers work intwo
12-hour shifts, a day shift starting at six in the morning anda night shift starting at
six in the evening. The number of workers on each shift is at most 15. There are
four different groups of workers A, B, C, D working in a 4-shift mode,e.g., shift A
starts off as the day shift, the next day it becomes the night shift and then there are
two days off. This results in the following sequence of shifts:

Day 1Day 2Day 3Day 4 Day 5 . . .
A,B C,A D,C B,D A,B . . .

For several reasons a worker may be absent,e.g., breaks, meetings, courses, holi-
days, sickness, etc. The available manpower per shift is adjusted accordingly. The
workers are assigned to the machines according to the labor requirement of the
different tasks. The labor requirement denotes whether a worker has to be present
during the whole duration of a task or only from time to time tosupervise the task.
The former are labor intensive tasks which require one or more workers and the lat-
ter are normal tasks which require a fraction of a worker,i.e., a worker can operate



10.5 A Complex Scheduling Problem⊖ 325

and supervise more than one task at the same time. Only a certain percentage of the
number of workers is allowed to execute labor intensive tasks at each time in order
to have capacity for normal tasks. Workers have a long break and a (short) washing
break during the shift. The long break has to be taken between12.00 noon and 2.00
pm for the day shift and 12.00 midnight and 2.00 am for the night shift. The workers
of a shift have to go in three groups, one group after the other. The washing break
has to take place in the last hour of the shift. As a prerequisite, no new jobs are
started in the last hour of a shift.

Special features: workers have different skills: some can operate every machine,
others most of them, while again others can only operate a fewmachines. Worker
are given a priority for each machine which expresses their qualification in operating
this machine. The labor intensive work load has to be spread equally over the work-
ers of a shift. They can be asked to work more than 100%, but this over-occupation
rate is limited to a certain percentage and there is a limit inhours on how long the
over-occupation can last, too. However, they do not have to work longer than their
12-hour shift. Assigning workers to tasks with fractional labor requirements on ma-
chines of the same group is preferred, because that would reduce their distances for
moving between machines.

10.5.2.3 Machines

Main features: the total number of machines is approximately 70, but only afrac-
tion of the machines is in use simultaneously. The other machines are not active and
not available to the production system. Furthermore, not all the active machines are
available, too. They are either in use or idle, because some are assigned exclusion
times and, thus, are temporarily not available. However, they are accessible again af-
ter this time ends. Exclusion times can be processing jobs that cannot be preempted,
large repairs, normal maintenance, rebuilding and so on. There are different ma-
chines that can produce the same product using the same procedure. The only dif-
ference is the capacity of the machines involved. There are different machines using
different procedures but producing the same product, and there are machines where
each can process different procedures producing differentproducts. Hence, there is a
choice between different machines for an order and competition between orders for
running on a specific machine. This competition is a general one,i.e., once an order
and a machine have been linked all jobs of this order run on this machine according
to the respective procedure. Each machine has a different capacity determining how
much product can be produced with one job.

Special features: the machines are divided into four groups representing thedif-
ferent physical floors in the multi-storey plant. Once one machine of a group pro-
cesses a job it requires at least one worker to stay with this group of machines
permanently.



326 How Optimization is Used in Practice: Case Studies in Integer Programming

10.5.2.4 Services

Special features: the workers have to fulfil some duties that do not require theuse of
machines. These services follow the same structure as the production system. They
are defined by a procedure and if they have to be executed the production system
receives an order for this service, which is then introducedinto the system like any
other order.

10.5.2.5 Objectives

The client in general receives orders in advance for up to sixmonths, but certain
products have such a high demand that up to 12 months of ordersare known in
advance. On the operational side it is necessary to know whatorders,i.e., jobs
and tasks, are currently in process or will be processed in the near future (two
weeks). Because of these requirements two different planning horizons are consid-
ered. Long-term planning is a time span of one year divided into slots of 12 hours,
i.e. , one slot represents one shift, giving 730 time slices. Short-term planning has a
time window of two weeks and a resolution of 1 hour, giving 336time slices. Long-
term planning will work on average labor demand for the orders and no single tasks
are considered. This plan is meant to help with the management of the negotiation of
due dates for new customer orders arriving at the system, of the availability of labor,
and of the absence of workers,i.e., courses, training, holidays, long term illness.
It is expected to be used once a month. Short-term planning seeks to improve the
planning of the operational side with a horizon of two weeks into the past and future
(2 days and 12 days respectively) providing the client with an improved scheduling
plan. This planning is based on the detailed data, using an hourly time slot system.
It is meant to help react to sudden changes during the operation of the machines,
e.g., accidents, urgent orders, break downs, etc. The short-term planning system is
expected to be used several times a day.

10.5.3 Mathematical Formulation of the Problem

10.5.3.1 General Framework

Our problem includes an assignment model and a sequencing model. The resource
constraints,i.e., the detailed personnel profile can be included using a time-indexed
formulation. These substructures motivate us to define a sequence of mathematical
models with increasing complexity:

ModelE := Time-indexed formulation with preassigned job-to-machine relations
and given sequence on each machine
ModelD := ModelE including buffer times between tasks



10.5 A Complex Scheduling Problem⊖ 327

ModelC := ModelD including the sequencing problems for preassigned job-to-
machine relations
ModelB := ModelC including the assignment problem
ModelA := ModelB including all special features of the problem

Obviously, we have the inclusion:E ⊂ D ⊂ C ⊂ B ⊂ A. In this book we will only
give a mixed integer formulation of ModelE. ProblemE on its own is already an
extremely hard problem. Some of the ingredients of this model have already been
encountered in Section 10.2.3.

10.5.3.2 Time Discretization

The smallest time interval to be considered is 1 hour. Tasks which last fractions of
an hour are rounded to the next upper or lower integer.

10.5.3.3 Indices

The following set of indices will be used

i = 1, . . . ,NO : set of orders
j = 1, . . . ,NJ

i : set of jobs in orderi
k = 1, . . . ,NK

i : set of tasks within the jobs of orderi
m= 1, . . . ,NM : set of machines
t = 1, . . . ,NT : set of time slices.

(10.5.1)

10.5.3.4 Data

Here are the data defining an instance of the problem



328 How Optimization is Used in Practice: Case Studies in Integer Programming

Cjt : costs if job j starts int
Di : due date for orderi
Lt : labor capacity,i.e., the number of workers available in

periodt. This value may vary between 4 and 15.
L jt : labor requirement,i.e., the number of personnel required by

job j in thetth period of the processing time. Typical values
are 1/3, 1/2, (2/3), 1, (2), (3). The numbers in brackets are
less frequent.

Likm : labor requirement,i.e., the number of personnel required by
taskk of each job of orderi on machinem. Typical values
are 1/3, 1/2, (2/3), 1, (2), (3). The numbers in brackets are
less frequent.

NP : constant labor capacity during the whole planning
horizon. This value may vary between 4 and 15.

Pj : processing time of jobj
Pj1 j2 : minimum separation between the start times of jobj1 and j2
Rj1 j2 : is defined in such a way, thatPj1 j2 +Rj1 j2 is the maximum

TL(U)
j : earliest (latest) possible start time of jobj.

(10.5.2)

10.5.3.5 Main Decision Variables

We will use the binary variables

δ jt :=

{
1 , if job j starts in periodt
0 , otherwise

(10.5.3)

and

α jt :=

{
1 , if job j starts in or before periodt
0 , otherwise.

(10.5.4)

10.5.3.6 Other Variables

Furthermore we will use some variables which are easily derived from the basic
variables.

µ ∈ IN : integer variable denoting the makespan or completion
time of all jobs resp. orders

σ j ∈ IN : integer variable denoting the starting time of jobj
(10.5.5)

10.5.3.7 Auxiliary Sets

For convenience we introduce the following definitions and sets



10.5 A Complex Scheduling Problem⊖ 329

N := {1,2, . . . ,NJ}
T := {1,2, . . . ,NT}
T j := {t|TL

j ≤ t ≤ TU
j }.

(10.5.6)

10.5.4 Time-Indexed Formulations

Let us suppose there is one orderi preassigned per machine, and each order consists
of NJ

i identical jobs with processing timesPj . Since we are not interested in solving
the assignment or sequencing problem we need no longer be concerned with orders
and jobs. So we only use jobs, but keep in mind that some attributes which now are
related to jobs are really associated with orders.

In order to minimize the makespanµ we define one artificial job called makespan
j∗, which has to wait until all other jobs are finished and has processing time 1. Al-
though we want to minimize the makespan, for mathematical reasons it might help
to introduce some costsCjt if job j starts int and to consider an objective function
which minimizes the sum of all starting costs. Such an objective function occurs
if the labor constraints are dualized. If we need exact agreement with the problem
description we can put theCjt to zero and consider only the artificial makespan job
with costCj∗t = t −1.

So the model considered involves a discrete time horizonT , a setN of jobs,
starting cost functionsCjt defined onT andN representing the cost incurred by
job j if it starts at timet, an acyclic precedence digraphD = (N ,A), and three
valuesPj ,Pl j andRl j ≥ 0 for all (l , j) ∈ A with Pj ≤ Pl j . Pj is the processing time of
job j, Pl j is the minimum separation between the start times ofl and j respectively,
whereasPl j +Rl j is the maximum separation.

In addition there are labor constraints: once started each job i requires a different
amountL ju of a limited resource in each of theu= 1, . . . ,Pj periods of its processing
time, whileLt is the total amount of resource available in periodt.

10.5.4.1 The delta Formulation

There is a “natural” time-indexed formulation for this problem that we first met in
Section 10.2.3. Again, we use binary variables

δ jt :=

{
1 , if job j starts in periodt
0 , otherwise

, ∀ j , ∀t ∈ T j . (10.5.7)

Note that
σ j = ∑

t∈T j

tδ jt , ∀ j ∈ N (10.5.8)

is then the start time of jobj. We now obtain the formulation :



330 How Optimization is Used in Practice: Case Studies in Integer Programming

min ∑
j∈N

∑
t∈T j

Cjt δ jt (10.5.9)

∑
t∈τ

δ jt = 1 , ∀ j ∈ N (10.5.10)

σ j −σ l ≡ ∑
t∈τ

t δ jt −∑
t∈τ

t δ lt ≥ Pl j , ∀{l j} ∈ A (10.5.11)

σ j −σ l ≡ ∑
t∈τ

t δ jt −∑
t∈τ

t δ lt ≤ Pl j +Bl j , ∀{l j} ∈ A. (10.5.12)

The labor constraint reads

∑
j∈N

t

∑
s=max{1,t−Pj+1}

L j,t−s+1 δ js ≤ Lt , ∀t ∈ T . (10.5.13)

The makespan,µ, expressed in theδ jt variables is given by

µ = ∑
t∈T j

(t −1)δ j∗t , (10.5.14)

and thus the objective function minimizing the makespan follows as

min ∑
t∈T j

(t −1)δ j∗t . (10.5.15)

Several variants of this model have been proposed in the literature, see for instance
Pritskeret al. (1969,[459]), Talbot & Patterson (1978,[551]), and Christofideset
al. (1987,[128]). In the special case thatL ju = 1 for all j,u andLt = 1 for all t,
it reduces to a single-machine scheduling problem. The time-indexed formulation
of this problem, but without the precedence and buffer constraints (10.5.11) and
(10.5.12), has recently been studied from a polyhedral point of view by Sousa &
Wolsey (1992,[528]) and van den Akker (1994,[12]). Tavares(1995,[552]) contains
a recent review of different approaches to project scheduling.

The constraints (10.5.11) and (10.5.12) can be disaggregated giving:

t

∑
s=1

δ is ≥
t+Pl j

∑
s=1

δ js , ∀{i j} ∈ A (10.5.16)

and
t

∑
s=1

δ is ≤
t+Pl j+Rl j

∑
s=1

δ js , ∀{i j} ∈ A (10.5.17)



10.5 A Complex Scheduling Problem⊖ 331

10.5.4.2 The alpha Formulation

Making a standard variable change for time-indexed formulations by introducing
for each jobj and each periodt ∈ T , we define

α jt =

{
1 , if job j starts in or before periodt
0 , otherwise

(10.5.18)

Thus,δ jt = α jt = 0 for all j and allt < TL
j , whereTL

j is the earliest start time of
j, δ jT L

j
= α jT L

j
for all j, andδ jt = α jt −α j,t−1 for all j andt = TL

j +1, . . . ,NT . To

support the understanding of the variablesα jt we give the following relation

α jt =

{
1 , if t ≥ σ j

0 , if t < σ j ,
(10.5.19)

in which σ j denotes the starting time of jobj.
Formally, variablesα jt need to satisfy the following constraints

α jNT = 1 , ∀ j ∈ N (10.5.20)

α jt ≤ α j,t+1 , ∀ j ∈ N , t = TL
j , . . . ,N

T −1 (10.5.21)

α lt ≥ α j,t+Pl j , ∀{l jt } (10.5.22)

α lt ≤ α j,t+Pl j+Rl j , ∀{l jt }. (10.5.23)

Now the labor constraint reads

∑
j∈N

t

∑
s=t−Pj+1

L j,t−s+1 (α js−α j,s−1)≤ Lt , ∀t ∈ T (10.5.24)

α jt ≥ 0. (10.5.25)

The makespan,µ, expressed in theα jt variables is given by

µ = NT − ∑
t∈T j

α j∗t (10.5.26)

and, thus the objective function minimizing the makespan has the following form

min

(
NT − ∑

t∈T j

α j∗t

)
, (10.5.27)

which is a special form of (10.5.9) with most of the valuesCjt = 0 and those forj =
j∗ are put toCj∗t =−1. The earlier the makespan jobj∗, i.e., the earlier all other jobs
are finished, the larger is the sum∑t∈T j

α j∗t (according to the definition of theα jt

variables). Instead of maximizing this sum we minimize the term in (10.5.27). The



332 How Optimization is Used in Practice: Case Studies in Integer Programming

constant termNT is not really important, of course, but it supports the interpretation
of the term as the makespan.

Now we have two formulations and we might ask ourselves whichone is better.
How good is theδ or α formulation? The answer: it can be shown that the polyhe-
dron (10.5.20-10.5.23) and (10.5.25) is integer. In other words: the linear program-
ming relaxations of theδ andα formulations are integer if no labor constraints are
present or active.

For any acyclic precedence digraph, this result can be derived from Flinet al.
(1982,[194]) where it is essentially shown that the optimization problem defined on
the polyhedron (10.5.20-10.5.23) and (10.5.25) is the dualof some minimum cost
network flow problem. As a consequence we note that the problem without the labor
constraints is easily solvable as a linear program or as a network flow problem. In the
presence of the additional labor constraints (10.5.13) or (10.5.24), the given formu-
lation is not necessarily integral any more. As it contains the knapsack constraints
(10.5.13) or (10.5.24) plus the generalized upper bound constraints (10.5.10), the
knapsack cuts exploiting the GUB structure derived in Wolsey (1990,[601]) could
be used to tighten the above formulation.

10.5.5 Numerical Experiments

In order to approach the full model we will first present some simple scenarios
with only a few orders and not too many jobs and tasks. We consider two groups
of scenarios of different complexity. Later, we will apply the model to a client’s
prototype.

10.5.5.1 Description of Small Scenarios

This problem considers only about 15 to 18 jobs which last only up to 4 hours and
belong to at most 4 orders. The scenarios assume thatNP = 3 orNP = 4 workers are
available and have to processNO ordersi each consisting of a number ofNJ

i jobs.
All jobs of the same order (jobs are counted 1, . . . , j, . . . ,NJ; in the table below, jobs
from jFi and jLi belong to orderi) are characterized by a unique personnel profile.
These data are summarized in the following tables:

i jFi jLi Pj NJ
i MO

i Di

1 1 2 4 2 10 8
2 3 4 3 2 8 6
3 5 7 2 3 9 6
4 8 10 3 3 12 9
5 11 13 4 3 18 12
∑ 57 41

,

i\t 1 2 3 4 MJ
i

1 1 1 1 2 5
2 2 1 1 4
3 1 2 3
4 1 2 1 4
5 1 2 1 2 6

,



10.5 A Complex Scheduling Problem⊖ 333

whereMJ
i specifies the total amount of personnel (in hours) required by each job

in order i. This allows us to compute the total number of personnelMO (in hours)
required by orderi. The following relations hold

MO
i := NJ

i MJ
i . (10.5.28)

Furthermore, the table gives the value of the total durationDi of an order if labor is
not an active restriction,i.e.,

Di := PjN
J
i . (10.5.29)

The objective is to minimize the makespan. An “artificial” last job is introduced that
follows all the others, and the objective is to start this jobas soon as possible.

The first example considers the first three orders of the tables. The makespan is
µ = 10, i.e., all jobs are finished within 10 time units. Although no order-to-machine
assignment was given in advance, it turns out that each orderruns on a separate
machine, and no machine is used by more than one order. The starting times are
summarized in the table

i\ j 1 2 3

1 3 7
2 1 5
3 1 3 7

.

The schedule associated with these starting times is

i\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 2 1 1 1 2
2 2 1 1 2 1 1
3 1 2 1 2 1 2
P 3 3 3 3 3 3 3 3 1 2

.

For the second example the table below gives the starting times obtained for a sce-
nario of 4 orders each connected to one of 4 machines. Each order is assigned to one
machine, and each machine is used by at most one job. The minimum makespanµ
or completion time for three workers available isµ = 14.

i\ j 1 2 3
1 7 11
2 1 9
3 3 5 7
4 1 4 11

.

The schedule associated with this starting times is



334 How Optimization is Used in Practice: Case Studies in Integer Programming

i\t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 2 1 1 1 2
2 2 1 1 2 1 1
3 1 2 1 2 1 2
4 1 2 1 1 2 1 1 2 1
P 3 3 3 3 3 3 2 3 3 3 3 3 2 2

.

In addition, the caseNP = 4 has been solved. The optimal solutionµ = 11 and its
schedule are

i\ j 1 2 3

1 1 5
2 1 8
3 3 6 10
4 1 5 9

,

i\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 2 1 1 1 2
2 2 1 1 2 1 1
3 1 2 1 2 1 2
4 1 2 1 1 2 1 1 2 1

P 4 4 4 4 2 4 4 4 2 4 3

.

10.5.5.2 A Client’s Prototype

This prototype has been set by a BASF customer. It covers 840 time slices and
considersNJ = 88 jobs leading to 17,000 binary variables. The subject of this in-
vestigation is planning a 5 week period in hours (NT = 840 hours) with optimal
labor occupation rates.NO = 10 orders have to be scheduled onNM = 9 machines.
Each order runs on one pre-selected machine, orders 6 and 7 use the same machine.
The sequence should be decided by the optimizer. The necessary amount of each
order is produced not at once but byNc(k) parts (Nc(k) ≈ 3−30) calledjobs. These
jobs each consist of 1 up to 6 steps ortasks k, characterized by a specific labor re-
quirementL jk and different durationsPjk. As all jobs of an order are assumed to be
identical, the order of jobs within an order is fixed to avoid symmetries. The jobs
are counted with numbers 1, . . . ,NJ. A due date for the last job (job with number
Nl(k)) of each order (= delivery time of order) is given (Table 10.1). There areLt

shift workers present (Lt = 2−10) at timet. In this prototype it is assumed that the
numberLt of present personnel is constant during the whole planning period, i.e.,
Lt = NP for all t. Times for breaks and variations because of holidays or illness are
not taken into consideration, nor is it the aim to assign workers to machines or jobs.
The objective of the optimization is minimizing the schedule length (makespanµ).

The production of orders 2-6 and 9-10 is connected,i.e., the output of one order
serves as a pre-product for the following one. The remainingorders are not restricted
by their pre-products. The production of one jobj i1 of orderi1 requiresp= p(i1, i2)
jobs j i2 of order i2. We denote this by the notation(i1 ← p · i2). In this model the
following prescriptions represent the connections between the different orders:

{(3← 2.5·2),(4← 3·3),(5← 1·4),(6← 1·5),(10← 0.3·9)}. (10.5.30)



10.5 A Complex Scheduling Problem⊖ 335

Table 10.1 This table lists for all ordersi the given due datesDi and the attributesAik −Bik : Mik
of each task,i.e., start time – finish time from start of the corresponding task: labor requirement in
units of 1/6 worker

i D i Aik −Bik : Mik

1 264 1- 2:12 3 : 6 4- 9:2 10-11:6 12-24:3 25-28:12
2 762 1 :12 2- 7: 2 8:6
3 432 1- 2: 6 3-19: 2 20-21:6 22-23:9
4 552 1- 2: 2 3- 9: 2 10-11:6 12-24:2 25-26:12
5 624 1- 2: 6 3- 9: 2 10-12:6 13-24:2
6 744 1-12: 6
7 840 1- 2: 6 3- 9: 3 10-12:6
8 840 1- 2:12 3 : 6 4-24:2 25-27:6 28-34:3 35-37:12
9 744 1- 2:12 3-19: 3 20-24:6 25-29:3 30-31:6

10 840 1- 5: 6 6 :12 7-15:2 16-21:6

62

·

·

·

71

1 ➜ 2 ➜ 3 ➜ 4 ➜ 5 ➜ 6 ➜ 7

8 ➜ 9 ➜ 10 ➜ 11 ➜ 12 ➜ 13 ➜ 14 ➜ 15 ➜ 16 ➜ 17 ➜ 18 ➜ 19 ➜ 20 ➜ 21 ➜ 22 ➜ 23 ➜ 24 ➜ 25 ➜ 26 ➜ 27 ➜ 28 ➜ 29 ➜ 30 ➜ 31 ➜ 32 ➜ 33 ➜ 34 ➜ 35 ➜ 36 ➜ 37

38 ➜ 39 ➜ 40 ➜ 41 ➜ 42 ➜ 43 ➜ 44 ➜ 45 ➜ 46 ➜ 47 ➜ 48 ➜ 49

50 51 52 53

54 55 56 57

58 59 60 61

72 ➜ 73 ➜ 74 ➜ 75

76 ➜ 77 ➜ 78

79 ➜ 80 ➜ 81 ➜ 82 ➜ 83 ➜ 84 ➜ 85 ➜ 86 ➜ 87 ➜ 88

62 ➜ 63 ➜ 64 ➜ 65 ➜ 66 ➜ 67 ➜ 68 ➜ 69 ➜ 70 ➜ 71 ➜

order 1

order 2-7

order 8

order 9-10

Fig. 10.4 Precedence relations between jobs.

From theses prescriptions and from the given orders the vector of jobs to produce
(7, 30, 12, 4, 4, 4, 10, 4, 3, 10) is computed,i.e., in totalNJ = 88 jobs. The directed
graphs displayed in Fig. 10.4 show the precedence relationsbetween the jobs of all
orders. The sequence of the orders 6 and 7 (jobs 58-61 and 62-71) is not known
beforehand.

The orders and jobs are completely characterized by the datastored in MCOL.
From the duration of the jobs of an order, the given deadlinesand the links be-

tween several jobs, restricted start time intervals can be computed similar to the
test for local consistency before starting the B&B procedure with constraint pro-
gramming techniques [see Section 10.5.6]. By this the intervals between earliest
and latest start time for most jobs are getting smaller. For orders not connected to
the production of others, the latest start time is given by the duration of a job and
the due date of the order. If the production of an order is linked to others, then apart



336 How Optimization is Used in Practice: Case Studies in Integer Programming

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

����������������������������������������������������������������������������������
���������� �������� �������� ����������

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

��������������������
������������ ���������������� ���� ����������������������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

���������� �������� ��������
���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���
����
����
����
����

����
����
����
����

���
���
���
���
����
����
����
����

0 362

24

6

12

18

50 100 150 200 250 300

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Fig. 10.5 Gantt chart and personnel occupation diagram.

from the due date of the final product, the due dates for the pre-products (e.g., for
safety reasons) lead in most cases to additional restrictions.

The prototype presented in this section contains another feature which leads to
a sequencing problem: orders 6 and 7 are processed on the samemachine. One
order should only start if the other has been completed. Theor-relation (”order
6 is produced before order 7”or “order 7 is produced before order 6”) might be
expressed by an additional binary variableη indicating whether order 6 is produced
before order 7,i.e., whether the last job of order 6 ends before the first job of order
7, or vice versa. For the sake of simplicity and because we only want to formulate
Model Ewe do not use this approach. Instead of that we solve the problem without
the sequencing component and check afterwards whether the sequencing conditions
are fulfilled. If not we solve two subproblems forcing the order 6 to be produced
before order 7 or vice versa.

Results: as already mentioned in Section 10.5.4 the LP relaxation of the given
formulation is integral without labor constraints only if besides (10.5.24), the prece-
dence constraints are disaggregated, namely only if the constraints (10.5.16) and
(10.5.17) are added to the formulation and if a final fictitious job is added to model
the makespan objective. Our experience shows that this result also holds if the labor
constraints do not become active. Unfortunately, this is only the case for relatively
trivial casesNP ≥ 15. For the more interesting caseNP = 4, just computing the
LP relaxation requires already about 2 hours CPU time on an IBM RS/6000 work-
station. Table 10.2 contains the results of an investigation on the influence of the
numberLt of available personnel on the total makespan of all given orders. These
results were achieved by usingconstraint programming techniques[266] further
discussed in Section 10.5.6. The result forNP = 4 is shown in Fig. 10.5 as Gantt
charts and occupation diagram.

In order to evaluate the quality of our solution we will derive some bounds on the
optimal solution value. If we relax the labor constraint,i.e., assume that enough per-
sonnel is available then we can proceed as follows: based on precedence constraints
between the jobs we deriveµ ≥ 362 as a lower bound on the makespan. For values
NP ≤ 2.82 this bound can be improved by dividing the sum of required man hours
by the number of present personnel. ForNP = 2 the boundµ ≥ 512 follows. The



10.5 A Complex Scheduling Problem⊖ 337

Table 10.2 This table presents the best results found with respect to objective functionz1. It con-
tains the computation times∆t (NP = 3,31

3 ,4
1
2 on IBM RS-6000,NP = 4 with 486 PC (66MHz,

32 MB main memory) ), the makespante resp. The sum of completion timesZ with given number
of personnelNP and occupation ratesU in percent.p rates the quality of the solution found in
percent according to the definition (10.4.61); 0 indicates proven optimality.

Lt ∆t [h] te te[h] G[%]

3 1:00:48 22d17h 545 50.6
31

3 0:30:07 19d11h 467 29.0
4 0:24:21 15d20h 380 6.4
41

2 0:43:32 15d02h 362 0.0

jobs of orders 1,2,8 and 9 all start with personnel requirement 2, so that ifNP = 2
workers in total are available two jobs of these orders cannot be processed at the
same time. In addition orders 4 and 10 contain tasks with personnel requirement 2,
so only the task before these work intensive tasks may be executed at the same time
like other jobs of orders 1,2,4,8,9 or 10. Therefore, we derive µ ≥ 604 if NP < 21

6.
So far, the MILP approach using the time-indexed formulation described in Sec-

tion 10.5.4 was not very efficient. Only forNP ≥ 6 were we able to derive the results
summarized in the table5 below:

NP 9 8 7 6 5 4 3
tc 362362 362 362 362362≤ 408
n∗ 27 29 165 346 277
time [sec] 66 91 27464824976635

.

Note the drastic increase in the CPU time required to prove optimality whenNP

decreases. ForNP ≥ 5 the optimality of the solution has been proven. ForNP = 4
no MILP approach was able to produce an integer feasible solution because there
are too many nodes in the B&B tree. The problem becomes much harder when the
labor constraints become more restrictive,i.e., for smaller values ofNP.

10.5.6 What can be Learned from this Case Study?

In the actual formulation of the problem only a few types of binary variables have
been used. Even that caused great problems. Much care is needed in order to save
the model from an inflation of binary variables. So in the longrun, if end-users
keep on insisting on increasing the size of their problems (the length of the planning
horizon, time resolution, etc.) and there is no huge breakthrough in mathematics
which would move MILP into the class of polynomial problems [see remarks on

5 The values forNP ≤ 4 have been been computed by Colombani & Heipcke (1997,[134]) in less
than 2 minutes using the constraint programming software packageSchedEns.



338 How Optimization is Used in Practice: Case Studies in Integer Programming

page 521], we are going to have to give up trying to solve MILP problems of a
certain size.

In that case the last resort is to use heuristics,e.g., simulated annealing, tabu
search, or as discussed below,constraint programming. Heipcke (1995,[266]) ap-
plied constraint programming techniques to solve this scheduling problem. Con-
straint programming techniques originated in artificial intelligence research. They
can be used to represent complex solution spaces in a naturalmanner by local re-
lations between variables, generally called constraints.There are no restrictions or
limitations on the structure of these relations. Local propagation techniques support
the search for optimal solutions in discrete problems. Theycan significantly reduce
the size of the solution space to be inspected. That approachcould produce solu-
tions, and when coupled with the LP relaxation allowed us to estimate the quality
of the solution. For a full discussion and results achieved for that problem using an
object-oriented CP tool the reader is referred to Heipckeet al.(1995,[266]). Further
work by Colombani & Heipcke (1997) using the constraint programming package
SchedEns succeeded in solving problems with a few hundred jobs and 2,000 tasks
in less than 20 minutes.

Another promising attempt (private communication with R. Möhring) is the im-
plementation of a B&B approach for the BASF scheduling problem that is based
on work by Bartuschet al. (1988,[52]). This approach permits temporal constraints
in the form of arbitrary, context-sensitive time lags between starting and/or comple-
tion times of activities and time-dependent resource requirements and availabilities
in the form of piece-wise constant step functions. The B&B algorithm constructs
feasible schedules along the time axis, starting at time 0 and, at every decision time
t, branches into feasible decisions (about which set of jobs to start att) with respect
to the resource constraints, while always observing the temporal constraints. It thus
always maintains a set of best possible feasible partial schedules for the different
subproblems created by these decisions and seeks to either complete them into a
full schedule, or to discard a branch because the best value that can be obtained by
this branch exceeds the best objective value known so far.

This approach is combined with heuristics to generate good feasible solutions in
order to start with good upper bounds, different strategiesfor exploring the subprob-
lems created (best-first-search, depth-first-search, user-defined search), and several
methods for generating good lower bounds for best possible value of the subprob-
lems.

In addition, it uses a powerful domination rule which permits discarding a sub-
problem if the currently “active” jobs in the partial schedule have been encountered
already in a different branch with a better lower bound. Thisdomination rule is
based on an efficient search tree implementation of all sets of active jobs encoun-
tered so far. For three different scenarios with four different personnel resources,
each was solved to optimality or proven to be infeasible within 90 minutes. The rea-
son for the success is that this approach uses a specialized B&B which is expected
to do better than a general B&B in MILP.

What can we conclude from the case study in this section? Are scheduling
problems too complex to be tackled by mathematical optimization? The answer



10.6 Telecommunication Service Network⊖ 339

is clearly: no! But we should be prepared for the fact that solving scheduling prob-
lems is very demanding in know-how, and may require more thanstandard software.
There is no straightforward solution to this class of problems and each problem is a
challenge.

10.6 Telecommunication Service Network⊖

In this study, the client wants to determine the cost-minimal configuration of a cor-
poration’s telecommunications service network operatingnationwide based upon
given demands for voice and data transmission. The whole problem involves two
models for optimizing the Virtual Private Network and toll-free number service
costs based on given voice traffic demands. In the case study we focus on the opti-
mization of private line service cost based upon given data traffic demands.

The mathematical formulation of this sub-problem basically corresponds to that
of a capacitated network design problem, where the sites of the corporation are
the nodes and the possible private line connections are the edges of the network.
More precisely, the problem is modeled as a special type of minimum-cost (ca-
pacitated) multi-commodity network flow problem, in which the capacities and the
corresponding cost of the edges may take on certain discretepossible values, while
the requirements on the flows (demands of data transmission)through the edges
have continuous values. In addition each of the commodities(demands) has to be
routed via a single path through the network to be designed. The corresponding
MILP model basically just involves binary variables for thedetermination of the
edge capacities and for the decisions on the paths through the network.

In Section 10.6.1, we give an overview of the problem avoiding any mathematics.
Section 10.6.2 introduces the mathematical model formulation for the data-network
sub-problem. Section 10.6.3 deals with improvements and reformulations of this
model.

10.6.1 Description of the Model

10.6.1.1 Technical Aspects of Private Lines

A private line is an analog or digital physical line between any two so-called “Points
of Presence” (POPs) of the carrier, which is rented exclusively to one customer
for voice and/or data communications. It is not used by any other customer of the
telecommunications carrier. Each carrier has its own POPs which are nodes of its
nationwide network. In order to be able to utilize private line services the customer
has to lease so-called access lines, which connect a corporation’s site to the closest
POP of the chosen carrier.



340 How Optimization is Used in Practice: Case Studies in Integer Programming

Today,private line servicesare mainly used for data traffic, although voice traf-
fic is also possible on those lines. Customers have to pay utilization-independent
monthly recurring charges which are based upon the distancecovered by the line
and upon the bandwidth of the line. The bandwidth or transmission rate refers to
the information-carrying capacity of a line. It is generally specified in bits per sec-
ond (bps), or kilobits per second (Kbps), respectively. Bandwidth is provided by the
telecom carriers in certain discrete values, usually in integral multiples of 56Kbps or
64Kbps, depending on the carrier. (Basically there is no difference between 56Kbps
multiples and 64Kbps multiples, because in the case of 64Kbps multiples the differ-
ence of 8Kbps is used for network management information. The performance of
both is the same.) The following types of private lines are available on the market:

• Digital Service 0 (DS0) or Digital Data Service (DDS) provides digital transmis-
sion at a speed of 56Kbps.

• Digital Service 1 (DS1) or Terrestrial 1.544Mbps-line Service (T1) supports
transmission of voice and data over digital lines at 1.544Mbps. Each DS1 repre-
sents 24 DS0 channels at 56Kbps.

• Fractional T1 Service (FT1) supports voice and data transmission over digital
lines in multiples of 56Kbps up to 768Kbps.

DS0, FT1, and DS1 lines can be split up into an appropriate number of single chan-
nels according to the customer’s demand.

In general anaccess lineis also a private line, but one which is leased for the
distance from the customer’s site to the carrier’s POP.

10.6.1.2 Tariff Structure of Private Line Services

There are two different types of tariffs for private line services:

• non-recurring installation costs,
• periodically recurring charges (monthly recurring charges for access lines or pri-

vate POP-to-POP lines).

Under certain circumstances (e.g., access lines) part or all of the installation charges
are waived by the communications carrier.

The monthly recurring charges for POP-to-POP private linesdepend on:
• chosen carrier,
• distance (according to the distance rate band, state),
• bandwidth,
• terms of contract with the carrier.

Additionally leased access lines from the sites to the carrier’s POP are necessary for
both end nodes of a private line. Obviously, the recurring charges for private lines
and leased access lines are independent of the transmitted volume.

The dependence of the tariff for private lines on thebandwidthis described by
a step function: the tariff increases nonlinearly with the number of leased 56Kbps-
channels [see Fig. 10.6]. There is a connection-dependent break-even point, at which



10.6 Telecommunication Service Network⊖ 341

Private Line Network

Cost of Bandwidth for Intersite Private Lines

0 6 12 18 24 30
0

c
o
s
t 

[$
]

bandwidth [n · 64 kbps]

Fig. 10.6 Cost of bandwidth for POP-to-POP private lines.

the cost of a number of single 56Kbps-channels (or the cost ofa fractional T1 con-
nection) becomes equal to that of a DS1 or T1-line. This break-even is found at
about 6 to 10 single 56Kbps-channels depending on the considered connection. The
cost of a number of T1 lines increases linearly with the number of T1s.

The dependence of the tariff on thedistanceis determined by pricing plans of
the carriers: carriers have defined their own service-dependent distance rate bands.
The distance is usually determined by the mileage calculated from the horizontal
and vertical geographical co-ordinates of the customer sites involved. Some carriers
also distinguish between interstate and intrastate rates:interstate applies to service
between two different states of the US, intrastate refers toservice within a single
state. The private line discounts depend on:

• chosen carrier,
• monthly volume (measured in US $) for all private lines,
• terms of contract.

10.6.1.3 Demands on Private Line Services

It is relatively complicated to investigate the corporation’s demand for data trans-
mission because it is technically difficult to measure the existing data transmissions
on each of about 200 existing lines within a sufficiently large typical time period.
The identification of original source and final destination of all those transmissions
turned out to be especially difficult.

Therefore it is assumed that all existing bandwidths configured for each logi-
cal site-to-site data connection are really needed. Further investigations on how to
measure data traffic are being conducted.



342 How Optimization is Used in Practice: Case Studies in Integer Programming

10.6.1.4 Private Line Network Optimization

The objective of this optimization is to (re-)design the structure of the corporation’s
private line network such that the given traffic demands between the sites of the cor-
poration are routed via cost-optimal paths through the network. Certain predefined
sites – so called hub sites – with the appropriate knowledge and equipment, should
be used for routing purposes.

10.6.2 Mathematical Model Formulation

The model discussed here covers the usage of private lines for data transmission.
We will merely consider one carrier at a time, and we will subsequently compare
the carrier-dependent optimization results. In practice it might be preferable to con-
sider two or three carriers simultaneously and to distribute the total service volume
in order to some emergency backup lines. Based on the financial situation, the sim-
plification seems to be sensible, as higher total service volumes are assigned to
a single carrier so that higher overall volume discounts could be expected. Other
preconditions, simplifications, and restrictions, that apply for this model, are the
following:

• consideration of the total cost of a single time period (onemonth);
• cost of private POP-to-POP lines as a step function of the number of 56Kbps

trunks;
• no consideration of access costs;
• no variation of the term of the contract: all charges based upon a three years’

term of contract.

The model addresses the design of the corporation’s privateline network where the
demands of data transmissions are given as bandwidths required between any two
sites of the corporation. The objective is to find for all those logical connections
optimal routings via certain hub sites with minimum overallnetwork cost.

This network design problem is modeled as a minimum-cost capacitated multi-
commodity network flow problem. The model involves binary flow variables, in-
teger and SOS1 of design variables, and real cost variables.The set of constraints
consists of

• flow conservation constraints (Section 10.6.2.2),
• edge capacity constraints (Section 10.6.2.3),
• additional constraints (Section 10.6.2.4).

10.6.2.1 General Foundations

Given a setS of NS corporation sites with certain data traffic demands between
the sites, the objective of this model is to design an optimalprivate line network –



10.6 Telecommunication Service Network⊖ 343

using a number ofNH predefined sites as hub sites for routing purposes – in order
to minimize the total data traffic cost of the corporation.

The problem is modeled as aminimum-cost capacitated multi-commodity net-
work flow problem, where

• the sites form the set ofnodesof the network,
• the hub sites are asubset of the nodes set,
• the directed physical connections between any two sites are thedirected edgesof

the network,
• the paths through the network aresequences of directed edges,
• the total bandwidth installed on an edge is thecapacityof the edge, and
• the logical demands on bandwidth between any two sites of the corporation are

thecommodities.

The objective is to install capacity on the edges and find a feasible (simultaneous)
routing of the demands on the resulting capacitated network, so that the overall
capacity cost is minimized. Thecapacitiesof the edges can be purchased in integral
multiples of two modularities, namely 56Kbps (DS0, FT1= n · 56Kbps, 1< n≤ 12)
and 24· 56Kbps (T1).

Thecapacity costsof an edge include distance-, bandwidth-, and possibly state-
dependent charges for using the private line services of thetelecommunications car-
rier. While we assume that the cost of T1 lines is a linear function of the number of
T1s, that is

c(n·T1) = n·c(T1) (10.6.1)

we take into account that the cost of fractional T1 channels increases nonlinearly
with the number of channels:

c(n·56Kbps)< n·c(56Kbps) (10.6.2)

and

c((n+1) ·56Kbps)−c(n·56Kbps)< c(n·56Kbps)−c((n−1) ·56Kbps). (10.6.3)

Therefore we specify for each edge between any two sitesr andsa grid of fractional
T1 channels(k−1) · 56Kbps,k ∈ {1, ..,NK

rs}, whereNK
rs corresponds to the break-

even point, at which a T1 line becomes less expensive thanNK
rs· 56Kbps channels,

and let the optimizer decide on the optimal grid point.
For simplification reasons we assume that thetraffic demands Di j between any

sitesi and j of the corporation’s network are given as – not necessarily integral –
multiples of 56Kbps. We associate commodities[i, j] with these demandsDi j and
denote the total number of demandsDi j > 0 by ND =

∣∣{[i, j] | i, j ∈ S ∧Di j > 0}
∣∣.

A feasible routingof a commodity[i, j] in the capacitated network has the following
characteristics [see Fig. 10.7 and Brockmüller et al. (1997,[104]).]:

• All of Di j is routed on asingledirected pathPi j . (A distribution of a demand
on more than one path is not possible, as,e.g., two paths with a data transmis-
sion rate of 112Kbps do not add up to one connection with a transmission rate of



344 How Optimization is Used in Practice: Case Studies in Integer Programming

Private Line Network Model

hub site

non - hub site

Possible Routing via Hub Sites

i

r
s

p rs = 1

j

ij

Fig. 10.7 A possible routing via hub sites for a demandDi j .

224Kbps.)

• If Di j is routed onPi j = {i, r1, r2, . . . , rN, j}, then the nodesrh, h∈ {1, . . . ,N},
are hub sites. That is, traffic from nodei to node j can either be sent directly, or
via a number of hub nodes.

• For any undirected edge{r,s} the total traffic routed using the edge (in either
direction) is at most equal to the selected capacity of the edge.

The model description is simplified if we use the following sets. LetS denote the
set of all nodes of the network (| S |= NS) and letH ⊆ S denote the set of hub
nodes (| H |= NH ). The setA of feasible edgesof the problem is given by

A = A H ∪A I ∪A O∪A D, (10.6.4)

where the sets describe the edges between different sites

A H := {(r,s) | r,s∈ H } between hub sites,
A I := {(r,s) | r ∈ H ,s∈ S \H } from a hub site to a non-hub site,
A O := {(r,s) | r ∈ S \H ,s∈ H } from a non-hub site to a hub site,
A D := {(r,s) | r,s∈ S ,Drs > 0} between sitesr & swith Drs > 0.

(10.6.5)

Let (r,s) be a feasible edge. Then the setK (r,s) of commodities that can be routed
via (r,s) is given by



10.6 Telecommunication Service Network⊖ 345

K (r,s) =





{[i, j] | i, j ∈ S ,Di j > 0} if (r,s) ∈ A H

{[i, j] | i = r, j ∈ S ,Di j > 0} if (r,s) ∈ A O

{[i, j] | i ∈ S , j = s,Di j > 0} if (r,s) ∈ A I

{[i, j] | i = r, j = s,Di j > 0} if (r,s) ∈ A D \A H .

(10.6.6)

Let E be the set of undirected edges obtained fromA :

E = {{r,s} | (r,s) ∈ A }. (10.6.7)

The following variables will be used throughout this model:

π rs
i j ∈ {0,1}, equal to 1 if directed edge(r,s) appears in routing

of Di j , [i, j] ∈ K (r,s), and equal to 0 otherwise (flow variables);
γ rs ∈ IN0, capacity variable controlling the number of T1s

installed on{r,s} ∈ E (integer T1 design variables);
β rsk ∈ {0,1}, SOS1 of capacity control, equal to 1 if a bandwidth

of (k−1) · 56Kbps channels is installed on{r,s} ∈ E ,
and equal to 0 otherwise
(SOS1 of FT1 design variables);

cP
rs [$], cost of total bandwidth capacity installed on{r,s} ∈ E .

10.6.2.2 Flow Conservation Constraints

Let the binary variableπ rs
i j indicate whether the directed edge(r,s) appears in the

routing of commodity[i, j] (π rs
i j = 1), or not (π rs

i j = 0). These variables are defined for
feasible combinations of edges and commodities only, that is to say for all[i, j],(r,s)
with [i, j] ∈ K (r,s). We want to determine the single routingRi j through the net-
work for demandDi j via the following set of directed edges:

Ri j =
{
(r,s) ∈ A

∣∣[i, j] ∈ K (r,s)∧π rs
i j = 1

}
, ∀[i, j]

∣∣Di j > 0 (10.6.8)

This set defines a feasible routing if the set includes

• one edge starting ati,
• one edge terminating inj (not necessarily different from the first edge), and if
• for each edge in the set terminating in a nodeq 6= j there is another edge in the

set starting in nodeq:

∀(r,q) ∈ Ri j ,q 6= j : ∃s∈ S ,(q,s) ∈ Ri j . (10.6.9)

This is ensured by the followingflow conservation constraints: source of a flowis
nodei, there is either a direct private line fromi to j or there is a flow fromi to one
and only one hub site6= j:



346 How Optimization is Used in Practice: Case Studies in Integer Programming

NS

∑
s=1

[i, j]∈K (i,s)

π is
i j = π i j

i j +
NS

∑
s=1

s∈H \{i, j}

π is
i j = 1 , ∀[i, j]

∣∣Di j > 0 . (10.6.10)

Sink of a flowis node j: there is either a direct private line fromi to j or there is a
flow from one and only one hub site6= i to j:

NS

∑
r=1

[i, j]∈K (r, j)

π r j
i j = π i j

i j +
NS

∑
r=1

r∈H \{i, j}

π r j
i j = 1 , ∀[i, j]

∣∣Di j > 0 . (10.6.11)

Flow via a hub site q is conserved, if q is not a starting or terminating node: the total
flow into q equals the total flow out ofq for all possible routings of commodities
[i, j],Di j > 0:

NS

∑
r=1

[i, j]∈K (r,q)

π rq
i j =

NS

∑
s=1

[i, j]∈K (q,s)

πqs
i j , ∀[i, j]

∣∣Di j > 0 ∀q∈ H \{i, j}. (10.6.12)

10.6.2.3 Edge Capacity Constraints

Let γ rs ∈ IN0 be an integer variable counting the number of T1s installed on an undi-
rected edge{r,s} ∈ E , and letβ rsk ∈ {0,1} be variables of an SOS1.β rsk is equal
to 1 if a fractional T1 with a bandwidth of(k− 1) · 56Kbps channels is installed
on {r,s}, and equal to 0 otherwise. The sum of T1s plus fractional T1 channels de-
termines the total capacity of the edge. The total flow via edge {r,s} ∈ E (in either
direction) may not exceed the total capacity of the edge, which is guaranteed by
requiring

NS

∑
i, j=1

[i, j]∈K (r,s)

Di j π rs
i j +

NS

∑
i, j=1

[i, j]∈K (s,r)

Di j πsr
i j ≤

NK
rs

∑
k=1

(k−1)β rsk+24γ rs , ∀{r,s} ∈ E .

(10.6.13)
The left-hand side of (10.6.13) is the total flow via{r,s} in either direction measured
in 56Kbps channels, while the right-hand side is the total capacity installed on{r,s},
also measured in 56Kbps channels.

In addition we have to state the usual convexity constraintsfor the design variable
β rsk controlling the number of selected FT1 channels, that is to say

NK
rs

∑
k=1

β rsk = 1 , ∀{r,s} ∈ E , (10.6.14)



10.6 Telecommunication Service Network⊖ 347

which means that there is a definite FT1 bandwidth for each connection{r,s} ∈ E .
Note, that the FT1 bandwidth is possibly equal to 0 which is the case ifβ rs(k=1) = 1.
As reference rows for theβ rsk variables we use the capacity constraints (10.6.13).

10.6.2.4 Additional Constraints

In this section we describe some further constraints which arise in the design of the
corporation’s private line network. Since these constraints do not critically influence
the structure of the model, we have not yet incorporated these constraints in the
prototype models.

Based on technical reasons there may be a restriction on the maximum number of
nodes used for routing a commodity[i, j] through the network. If at mostMi j nodes
are allowed for routing[i, j], that means that at mostMi j +1 edges are allowed on
the routing pathRi j for [i, j]. Since the flow variablesπ rs

i j indicate whether edges
appear on the path for[i, j] or not, one can count the total number of edges on the
path by adding up all theπ rs

i j variables for the commodity[i, j]. Hence themaximum
node constraintsread as follows:

NS

∑
r,s=1

[i, j]∈K (r,s)

(
π rs

i j +πsr
i j

)
≤ Mi j +1 , ∀[i, j]|Di j > 0. (10.6.15)

Based upon availability or just in order to exclude certain (feasible) edges from
being used for routing purposes, one may want to specify limits for the maximum
capacity of an edge{r,s} ∈ E . If at most a bandwidth ofKrs · 56Kbps is allowed for
{r,s}, then this is ensured by the followingmaximum edge capacity constraints:

NK
rs

∑
k=1

(k−1)β rsk+24γ rs ≤ Krs ∀{r,s} ∈ E . (10.6.16)

Some logical site-to-site connections[i, j] require more than one data transmission
bandwidth for different applications. These different demands may, but need not
necessarily, be routed via different paths through the network. These additional re-
quirements just raise the number of commodities which have to be routed through
the network. The extension of the model described above is straightforward: One
just has to use the suitable substitutions

[i, j]−→ [i, j,d] , π rs
i j −→ π rs

i jd , (10.6.17)

where the indexd counts the different demands per connection[i, j].
Some vital site-to-site traffic demandsDi j require backups in case of a failure in

the regular routing path. We have to differentiate between two cases:

• The backup path(s) should additionally be available at alltimes at the same ca-
pacity as the regular path.



348 How Optimization is Used in Practice: Case Studies in Integer Programming

• The backup path(s) should provide a certain backup capacity which could be
made available in cases of emergency by closing the edges on the path(s) for all
other communications.

The first case is easy to handle. LetΛi jd denote the required number of backup
paths for demandDi j . Then the modified source flow constraints

π i jd
i jd +

NS

∑
s=1

s∈H \{i, j}

π is
i jd = 1+Λi jd , ∀[i, j,d]

∣∣Di j > 0 (10.6.18)

and the modified sink flow constraints

π i jd
i jd +

NS

∑
r=1

r∈H \{i, j}

π r j
i jd = 1+Λi jd , ∀[i, j,d]

∣∣Di j > 0 (10.6.19)

ensure that there areΛi jd backup paths available. The additional constraints

NS

∑
r=1

[i, j,d]∈K (r,q)

π rq
i jd ≤ 1 , ∀q∈ H \{i, j} (10.6.20)

make sure that each hub site is used for at most one routing path of [i, j,d], i.e., i
and j are the only nodes common to the regular path and the backup path(s).

The second case of backups is more difficult to handle. In thiscase one has
to introduce additional backup flow variablesΛi jd which fulfil flow conservation
constraints corresponding to (10.6.10), (10.6.11) and (10.6.12), whereΛi jd replaces
the “1” on the right-hand sides of (10.6.10) and (10.6.11). The additional constraints

NS

∑
r=1

[i, j,d]∈K (r,q)

π rq
i jd +

NS

∑
r=1

[i, j,d]∈K (r,q)

Λi jd ≤ 1 , ∀q∈ H \{i, j} (10.6.21)

make sure that each hub site is used for at most one routing path of [i, j,d]. Further-
more the (huge number of) additional capacity constraints

NK
rs

∑
k=1

(k−1)β rsk+24γ rs ≥ Bi jd
[
Λi jd +Λi jd

]
,

∀{r,s} ∈ E
∀[i, j,d]

∣∣Bi jd > 0
(10.6.22)

ensure that there is at least enough capacity available (on the edges of the backup
path) to cover the backup bandwidthBi jd .



10.6 Telecommunication Service Network⊖ 349

10.6.2.5 Objective Function of the Model

The objective is to minimize the total POP-POP private line cost. IfCFT
rsk is the cost

of a fractional T1 line with a bandwidth of(k−1) · 56Kbps betweenr ands(s> r),
andCT1

rs is the cost of a T1 line betweenr ands, then theedge capacity costof {r,s}
adds up to

cP
rs =

NK
rs

∑
k=1

CFT
rsk β rsk+CT1

rs γ rs , ∀{r,s} ∈ E . (10.6.23)

Therefore the overall cost to be minimized for the network ofPOP-to-POP private
lines is given by

Z =
NS

∑
r,s=1

{r,s}∈E

NK
rs

∑
k=1

CFT
rsk β rsk+

NS

∑
r,s=1

{r,s}∈E

CT1
rs γ rs. (10.6.24)

Note thatCFT
rs(k=1) = 0.

10.6.2.6 Estimation of Problem Size

The size of the problem depends on the following dimensions:

NS : number of corporation’s sites,
NH : number of hub sites,
ND : number of demandsDi j > 0,
NK : number of fractional T1 grid points,

and on the number,| E |, of feasible undirected edges in the network. This number
is limited by

| E |≤ NH(NH −1)
2

+
NH(NS−NH)

2
+ND, (10.6.25)

where the first term of the sum counts the edges between hub sites, the second counts
the edges between non-hub sites and hub sites, and the last isa rough upper limit of
the edges between non-hub sites with demands.

The total number of columns results from the following selection of variables:

β rsk: | E | ·NK SOS1, fractional T1 capacity variable
γ rs: | E | integer, T1 capacity variable
π rs

i j : | E | ·ND binary, flow variables
cP

rs: | E | real, auxiliary cost variables,

(10.6.26)

which means that we have to expect about 5,000 SOS1 members, 400 integer,
35,000 binary, and 400 continuous variables for the real problem.

The total number of rows results from the following system ofconstraints:



350 How Optimization is Used in Practice: Case Studies in Integer Programming

(10.6.10): ND flows into the network,
(10.6.11): ND flows out of the network,
(10.6.12): | H | ·ND flow conservation at hubs,
(10.6.13): | E | capacity constraints,
(10.6.14): | E | convexity for SOS1β ,

(10.6.27)

which means that we have to expect about 2,000 rows for the real problem.

10.6.2.7 Computational Needs

Several scenarios with different numbers of sites (s), hubs (h), and demands (d)
were solved on a RS6000/340H workstation usingXPRESS-MP 8.09 without the
presolve capability being activated. The problem sizes (expressed by the number of
variables,n, and number of constraints,m), the number of binary variables,nB, the
number of variables in special ordered sets,nS, and the density,ρ , of the problems
are shown in the table below:

Scenario n m nB nS ρ
(12s,5h,16d) 2066231 288 48/17281.27
(15s,7h,18d) 3821369 690 77/30540.80
(26s,6h,31d) 6148616 891135/51220.48
(20s,8h,24d) 62595811256124/48790.51

.

This scenarios had the following solution statistics:

Scenario LP IP LP-gap time
(12s,5h,16d) 68561207243.21% 26min
(15s,7h,18d) 84791385438.80%14h 12min
(26s,6h,31d) 9453 % 51.01% ??
(20s,8h,24d) 9690 % 43.90% ??

.

The initial model which was used in these test runs did not involve the integer vari-
ablesγ rs. Just the S1 variablesβ rsk were used to determine the edge capacities.
Therefore there are no integer variables in these scenarios, and the number of S1
members was much higher than could be expected from the problem size estima-
tions above. Nevertheless the large integrality gaps indicated that there was a strong
need to improve the model formulation.

10.6.3 Analysis and Reformulations of the Models

This section points out the basic structure of the model and describes the reformu-
lations and improvements which should help to speed up the solution process. Valid
inequalities and some problem-specific cuts are given.



10.6 Telecommunication Service Network⊖ 351

10.6.3.1 Basic Structure of the Model

As pointed out before, the basic structure of the model is most similar to the struc-
ture of a general minimum-cost capacitated multi-commodity network flow problem
involving flow conservation constraints like (10.6.12), edge capacity constraints like
(10.6.13), edge capacity cost like (10.6.23), and an objective function being the sum
of the edge cost to be minimized. The network flow model described here has the
following specialities:

• no distribution of flows on different paths possible (=> π binary),
• only two different discrete capacity batches available (=> β ,γ integer),
• nonlinear cost function for one of the capacity batch-sizes (=> β S1),
• two different types of node [=> additional flow constraints (10.6.10), (10.6.11)

for non-hub sites].

10.6.3.2 Some Valid Inequalities: Edge Capacity Cuts

We expected to get useful valid inequalities by investigating relationships between
the flow variablesπ rs

i j and the design variablesγ rs and β rsk. A first set of valid
inequalities is obtained by reducing the capacity constraints (10.6.13) for total flows
through an edge to constraints for single flows through the edge. The inequalities

Di j ·
(
π rs

i j +πsr
i j

)
≤

NK
rs

∑
k=1

(k−1)β rsk+24γ rs ,
∀{r,s} ∈ E
∀[i, j]

∣∣Di j > 0
(10.6.28)

express that the single flow for demandDi j [instead of all flows∑Di j as in (10.6.13)]
is less than or equal to the total capacity in{r,s} and gives the valid inequalities
(edge capacity cuts)

∆i j ·
(
π rs

i j +πsr
i j

)
≤

NK
rs

∑
k=1

(k−1)≥Gi j

β rsk+ γ rs ,
∀{r,s} ∈ E
∀[i, j]

∣∣Di j > 0,
(10.6.29)

where∆i j :=
⌈

Di j
24

⌉
is the up-rounded integer associated withDi j /24 andGi j :=

Di j − 24(∆i j − 1) is the fractional part ofDi j /24. These cuts (10.6.29) have only
binary and integer variables, and all coefficients are integral.

Let us first try to give an intuitive interpretation of (10.6.29). Remember thatγ rs
is an integer number measuring the number of T1 lines and thateach T1 line consists
of at most 24 56Kbps channels. The variablesβ rsk measure the bandwidth produced
by these channels. They are members of SOS1, and for each index pair {rs} they
are one for exactly onek. The original inequality (10.6.28) is expressed in terms of
channels while the cuts are based on the number of T1s. Let us consider an example
in which the demand isDi j = 30. It is not likely, that an optimal solution will chose
more capacity then necessary. Thus, the demand is covered bytwo T1 lines,i.e.,



352 How Optimization is Used in Practice: Case Studies in Integer Programming

γ rs = 2, and six more channels,i.e., β rs7 = 1. Let us now consider (10.6.29).∆i j

measures the demand in units of the channels but it is up-rounded. Consider also the
integer value,∆ ′

i j = ∆i j −1 of the demand in units of channels. In our example we
get∆i j = 3. The demand∆ ′

i j = 2 is covered by two T1 lines,i.e., γ rs = 2. How do we
get the additional six more channels? (10.6.29) does not know about the channels
anymore. But the first term on the right-hand side of (10.6.29) has already excluded
those indicesk which lead to less than 6 channels. On the other hand, in an optimal
solution the variableβ rsk with smallest indexk is chosen.

How can one find such cuts? The first step is to divide (10.6.28)by 24 yielding

Di j

24
·
(
π rs

i j +πsr
i j

)
≤

NK
rs

∑
k=1

k−1
24

β rsk+ γ rs ,
∀{r,s} ∈ E
∀[i, j]

∣∣Di j > 0
(10.6.30)

and observing that the inequalities (10.6.30) contain onlybinary or integer variables
but still have some fractional coefficients. Down-roundingand up-rounding6 in in-
equalities with integer variables are common techniques. If we inspect (10.6.30) we
see that the first right-hand side term needs to cover the fractional part, 0.25, of
the demandDi j /24= 2.25 while γ rs takes care of the integer part, 2. What sort of
solutions can we expect in an LP relaxation which involves (10.6.30)? Typically,
some of theβ rsk are different from zero in LP relaxations,e.g., β rs5 = β rs9 = 0.5
which also gives 6 channels. The cuts (10.6.29) can never have β rs5 being different
from zero (they just do not appear in the sum), and also in LP relaxations there is
a tendency to select theβ rsk with index k as small as possible. So, this paragraph
gives an idea how the cuts are derived and why they lead to a tighter formulation.
The smaller the demand the more efficient is this formulation.

After we have some intuitive understanding concerning the foundations of the
cuts, we are now able to show formally that they are valid inequalities: if the demand
[i j ] flows over the edge{rs} thenπ rs

i j +πsr
i j = 1 and two cases are possible. The first

case isγ rs ≥ ∆i j (that is the case whenGi j > NK
rs). The second case isγ rs = ∆i j −1

(that is the case whenGi j ≤ NK
rs) which gives∑k−1≥Gi j

β rsk = 1, i.e., β rsk = 0 for
k< Gi j +1. So we have shown that the inequalities (10.6.29) are valid.

There are a lot of (in some cases redundant) inequalities, namely a number of
| E | ·ND. They ideally should be used as dynamic cuts in the B&C process of the
optimization run. However, just adding all these cuts as static, additional inequalities
to the model yielded much better LP relaxation values.

10.6.3.3 Some Improvements to the Model Formulation

Thetotal demand DTi originating or terminating at a sitei, measured in multiples of
56Kbps, is calculated by

6 Take the following example: The inequality 3.2α1 + 3.9α2 ≤ 8 with integer variablesα1 and
α2 has the valid inequality 4α1 + 4α2 ≤ 8 which is equivalent toα1 +α2 ≤ 2. If we draw the
feasible regions associated with the original constraint andα1+α2 ≤ 2 we see that the latter gives
a smaller feasible region and thus is the tighter constraint.



10.6 Telecommunication Service Network⊖ 353

DT
i =

NS

∑
j=2
j>i

Di j +
NS−1

∑
j=1
j<i

D ji , ∀i. (10.6.31)

The number ofβ rsk variables indicating the number of selected 56Kbps channels
for {r,s} is limited by the total demand (measured in multiples of 56Kbps) if either
r or s is not a hub site. This maximum valueNK∗

rs is given by

NK∗
rs := min

{
NK

rs,D
T
r +1

}
, ∀r ∈ S \H ∀s

NK∗
rs := min

{
NK

rs,D
T
s +1

}
, ∀r ∀s∈ S \H .

(10.6.32)

We useNK∗
rs instead ofNK

rs in order to reduce the number of variablesβ rsk. Further-
more, it is possible to fix some of theγ rs variables in cases where the total demand
at a non-hub site is less than the maximum numberNK∗

rs of β rsk which is related to
the break-even point where an additional number of single 56Kbps channels would
become more expensive than a T1 line. In these cases the following bounds apply

γ rs = 0 if DT
r < NK∗

rs ∀r ∈ S \H ∀s
γ rs = 0 if DT

s < NK∗
rs ∀r ∀s∈ S \H

γ rs = 0 if Drs < NK∗
rs ∀r,s∈ S \H .

(10.6.33)

The integration of these two improvements into the model formulation led to a
slightly better LP relaxation value and to a remarkable reduction of the total so-
lution time,e.g., 30% for the(20s,8h,24d) scenario.

10.6.3.4 A Surrogate Problem with a Simplified Cost Function

We now simplify the problem by using a linearization of the cost function for the
FT1 channels. In this case the decision on the number of 56Kbps channels may be
modeled via integer variablesω rs rather than the S1 variablesβ rsk. The relationship
between theω rs andβ rsk variables is defined by

ω rs :=
NK∗

rs

∑
k=1

(k−1) ·β rsk ∈ IN0 ∀{r,s} ∈ E . (10.6.34)

The capacity of an edge{r,s} (again measured in multiples of 56Kbps) is given by

ω rs+24γ rs (10.6.35)

and the cost of a single 56Kbps channel is approximated by

C56
rs :=

CFT1
rs(k=NK∗

rs )

NK∗
rs −1

(10.6.36)

such that the totalapproximatedcapacity costs of edge{r,s} are calculated by



354 How Optimization is Used in Practice: Case Studies in Integer Programming

c̃P
rs =C56

rs ω rs+CT1
rs γ rs . (10.6.37)

Simple edge capacity cutsanalogous to (10.6.29) for this surrogate model are ob-
tained by considering the reduced capacity constraints forsingle flows through an
edge. The inequalities

ω rs+24γ rs ≥ Di j
(
π rs

i j +πsr
i j

)
, ∀i

∣∣DT
i > 0 , ∀{r,s} ∈ E (10.6.38)

give the valid inequalities

γ rs ≥ ∆i j

(
π rs

i j +πsr
i j

)
andω rs ≥ Gi j [∆i j

(
π rs

i j +πsr
i j

)
− γ rs](

∀[i, j]
∣∣Di j > 0 ∧Gi j ≤ NK∗

rs ∀{r,s} ∈ E
)
,

(10.6.39)

where∆i j =
⌈

Di j
24

⌉
andGi j =Di j −24(∆i j −1) are the same as defined for (10.6.29).

Simple node flow cuts form an additional set of valid inequalities. They are of
the same type as (10.6.39) but looking at all demands at a sitei and all outgoing
and incoming flows. In this case the capacity constraints forthe sum of all the edges
adjacent toi

∑
{r,s}∈E

r=i∨s=i

(ω rs+24γ rs)≥ DT
i , ∀i

∣∣DT
i > 0 (10.6.40)

give the valid inequalities

NS

∑
{r,s}∈E

r=i∨s=i

ω rs ≥ GT
i ·


∆ T

i −
NS

∑
{r,s}∈E

r=i∨s=i

γ rs


 , ∀i

∣∣DT
i > 0, (10.6.41)

where∆ T
i :=

⌈
DT

i
24

⌉
andGT

i := DT
i −24(∆ T

i −1). Note, that compared to (10.6.39)

the set of node flow inequalities is much smaller. The reasoning for these cuts is
similar as in Section 10.6.3.2.

This surrogate model involving the approximate cost function, which

• incorporates integersω rs instead of binary variablesβ rsk which establish SOS1,
• includes the edge capacity cuts (10.6.39) as ModelCuts,7 but merely for those

demands required between the end nodes of the considered edge (that is for all
[r,s],Drs > 0,{r,s} ∈ E ), and

• includes all possible node flow cuts (10.6.41) as ModelCuts,

was tested with the(20s,8h,24d) prototype scenario. The optimizer just needed 2%
to 5% of the time spent to solve the original problem with the first model formula-

7 ModelCuts are problem specific cuts,i.e., valid inequalities that will cut-off unwanted fractional
values of binary or integer variables and that are otherwise redundant constraints. They are added
directly to the model formulation. In contrast, in B&C cuts are added dynamically in the tree to cut
off unwanted fractional variables.



10.7 Synchronization of Batch and Continuous Processes 355

tions. And the cost approximation was fairly good for the considered scenario (8%
deviation).

10.6.3.5 More Valid Inequalities: Node Flow Cuts

Since the simple node flow cuts appear to speed up the solutionprocess, we con-
sider the corresponding inequalities for the original problem with nonlinear FT1 cost
function. Looking at all demands at a sitei and all outgoing and incoming flows the
capacity constraints for the sum of all the edges adjacent toi in this case read

∑
{r,s}∈E

r=i∨s=i




NK∗
rs

∑
k=1

(k−1)β rsk+24γ rs


≥ DT

i , ∀i
∣∣DT

i > 0 (10.6.42)

and give the valid inequalities (node flow cuts)

∑
{r,s}∈E

r=i∨s=i

NK∗
rs

∑
k=1

(k−1)β rsk ≥ GT
i


∆ T

i − ∑
{r,s}∈E

r=i∨s=i

γ rs


 , ∀i

∣∣DT
i > 0 (10.6.43)

where∆ T
i =

⌈
DT

i
24

⌉
andGT

i = DT
i −24(∆ T

i −1) are the same as for (10.6.41).

10.6.3.6 Some Remarks on Performance

For small problems solutions were obtained in a reasonable amount of time, when
the demands fulfilled the following essential condition:

Di j ∈ IN0 , ∀[i, j]
∣∣Di j > 0. (10.6.44)

Otherwise the solution times became huge, even for small problem sizes. Since
demand is a vague quantity anyway, we gave the recommendation to the customer
to round it to the nearest integer in order to speed up the solution. Problems larger
than(12s,5h,16d) were only tackled with integral demands. So far, it is possible to
prove optimality for a scenario of(28s,8h,32d) involving 2,088 global entities.

10.7 Synchronization of Batch and Continuous Processes

This case study is based on Blackburnet al. (2014,[88]) and serves to illustrate the
usage of continuous-time formulations. So far, we have useddiscrete-time formula-
tions to describe production planning problems. Scheduling problems with detailed



356 How Optimization is Used in Practice: Case Studies in Integer Programming

time resolution needs, however, often lead to very large problems when using time-
discrete formulations.

In Janaket al.(2006,[295]) a large-scale scheduling problem faced in a very com-
plex BASF plant is described and solved by using a continuous-time formulation,
in which time is allocated to event points. The problem involves all of the struc-
tural elements from the above-stated list except for the sixth one (“multi-component
flow and nonlinear blending”). Here we describe only a small part of the plant and
only the major aspects and challenges. Raw materials are fedinto up to three batch
reactors and undergo a batch operation. Each time, the full batch size is used to pro-
duce an intermediate which is sent to two buffer tanks beforebeing processed in a
continuous unit as displayed in Fig. 10.8. Since certain products run faster on the
continuous unit compared to their batch processing time on the reactors, the reactors
are allowed to start prior to the start of the continuous unitto prepare the campaign
and pre-fill the tanks. The challenge is to synchronize the batch and continuous pro-
duction by exploiting the two buffer tanks to best meet the demand quantities and
due dates of the individual products.

R1 R2 R3 
Batch  
reactors 

B1 B2 

Buffer tanks 

Continuous  
production  

unit 

Inputs 

Packaging 

Fig. 10.8 Combination of batch and continuous production process.

The time horizon for this scheduling problem is 4 to 8 weeks. In this time frame,
about 10 to 20 different products need to be produced. These products fall into two
categories. Products of type 1 are subject to tracing production batches for legal
purposes. This implies keeping track of each batch producedon one of the reactors,
keeping the tanks separate, and emptying each tank completely before recharging it
with a new batch. Products of type 2 are not subject to tracing, which technically
implies that we can combine the two buffer tanks to one large buffer reservoir.

Apart from constraints such as the one above, multiple optimization criteria have
to be taken into account. Of highest priority is that, ideally, the continuous unit
should not be interrupted. Moreover, the second reactor should be used at a minimal
number of batches because it should rather serve other products in the larger net-
work topology. As the demand of the products does not exactlyfit to what the three
batch reactors with their individual batch sizes can produce in any combination, we
also try to minimize both underproduction and overproduction. Minimizing the gaps
between the batches on the individual reactors is another goal to be pursued.



10.7 Synchronization of Batch and Continuous Processes 357

In order to solve this complex multi-criteria optimizationproblem, we apply a
two phase approach: In Phase 1 we make the simplifying assumption that reac-
tors arealwaysavailable and can produce ahead to pre-fill the buffer tanks.Under
this assumption we minimize the total interruption time of the campaigns on the
continuous unit. Furthermore, we derive various lower bounds on certain quantities
(indicated by the arrow below) by applying the following hierarchy of objectives in
a lexicographic goal programming approach;cf. Schniederjans (1995,[502]):

1. minimize overproduction (demand vs. reactor batch sizes) → lower bound on
unavoidable overproduction,

2. minimize underproduction→ lower bound on unavoidable underproduction,
3. minimize interruption on the continuous unit→ lower bound on unavoidable

interruptions,
4. minimize time for pre-filling the tanks→ ensures closest connection of the cur-

rent campaigns and the associated reactor batches to the previous campaign, and
5. minimize the number of charges on reactor 2→ lower bound on the minimal

number of batches on reactor 2.

The results of Phase 1 either provide useful information forthe planner, such as the
unavoidable over- and underproduction under ideal conditions, or they are used in
Phase 2 to improve the numerical behavior of the problem and facilitate the deter-
mination of the optimal solution.

In Phase 2 we account for possible reactor blockades or the unavailability of re-
actors. Such blockades might require a later start of a campaign on the continuous
unit in order to avoid interruptions. Ideally we deviate from the campaign start de-
termined in Phase 1 as little as possible. Therefore, we minimize the time shift by
taking into account the lower bound on the unavoidable interruptions from Phase
1. Since we are also interested in dense production schedules on the batch reactors
we minimize the finishing time of the reactor finishing last. Finally, we minimize
the number of batches on reactor 2 and overproduction under these new conditions.
Overall, the hierarchy of objectives in Phase 2 can be summarized as:

1. minimize time shifts of the campaigns,
2. minimize finishing time of the reactor finishing last,
3. minimize number of batches on reactor 2, and
4. minimize overproduction.

The above-described approach produces a feasible schedulewithin 10 minutes
which is optimal with respect to the outlined hierarchy of individual objective func-
tions. Fig. 10.9 shows a typical Gantt chart with the three batch reactors, the contin-
uous plant and the two tanks aggregated to one large tank. Thegray shaded area on
the continuous plant C represents cleaning time. The gray-blue shaded areas on the
reactors starting at time 0 indicate time intervals at whichthe reactors are not yet
available. The pink color represents a blockade. The red product campaign is char-
acterized by consecutive batches without gaps, while the yellow product batches
show gaps. The tank diagram at the bottom nicely illustratesthat tanks are prepared
prior to the start of the continuous plant.



358 How Optimization is Used in Practice: Case Studies in Integer Programming

0

17

34

R1 

R2 

R3 

500 400 300 200 100 550 450 350 250 150 50 hrs 

C 

B1 

B2 

Fig. 10.9 Combination of batch and continuous production process – Sample optimization result.
The lower part shows the combined tank level of B1 and B2. Once one tank is empty near the end
of a campaign, it can be used to prepare for the next campaign (colored overlaps).

This model, implemented inGAMS, is embedded intoSAP APO and has been suc-
cessfully in use since 2006. The reasons for its success include a strong management
support as well as a talented planner having a good understanding of all the details
on the production floor.

Planners appreciate the tool a lot because it brings strong reliability into their
daily work and helps to reduce their time spent on generatingfeasible schedules.
Since the generated schedules reflect reality to a very high degree, the planner can
rely on the fact that the tanks do not overflow or the continuous process does not
have to be interrupted because a tank runs out of material to be processed. The
explicit determination of unavoidable over- or underproduction is another benefit.
It provides valuable information for joint meetings of the production planner, the
supply chain and marketing groups about the feasibility of the original (high-level)
plans created by those groups. Last but not least, the financial benefit of about 1-
2 million USD per year due to smoother operations and a betterutilization of the
production assets is highly appreciated.

10.7.1 Time Sequencing Constraints

Time sequencing constraints are needed to establish a sequence of charging points.
We require that the time associated with event pointc cannot be earlier than the time
for the previous event point plus the filling time associatedwith the previous tank
charge,i.e.,

tc− tc−1 ≥ dF
c ; ∀{s} , ∀{c∈ Cp|c> 1}. (10.7.45)



10.7 Synchronization of Batch and Continuous Processes 359

As we have tank-independent filling times, we use

tc− tc−1 ≥ ∑
r∈R

DF
r δ R

c−1,r ; ∀{c∈ Cp|c> 1}. (10.7.46)

10.7.2 Reactor Availability Constraints

Reactors are defined to be available from an earliest time,TE
r . In the rolling cam-

paign mode we could also use a variabletE
r which determines the optimal availabil-

ity point. A reactor is blocked from the time it starts a reaction task until the end of
charging to a tank. Thus, the total time the reactor is blocked is the sum of the times
for the reaction task plus the filling task,i.e., BD

rp = DRT
rp +DCT

rp ; as previously, we
will neglect the indexp.

The early time constraints for pre-given early timesTEF
r read

tc ≥ ∑
r∈R

(
TEF

r +DRT
r

)
δ R

cr ; ∀{c∈ C ′
p}. (10.7.47)

Note that we have to generate (10.7.47) for allc∈ C ′
p and not only forc= 1, as one

might expect. The reason for this is that we do not know which is the first charge
assigned to reactorr. If, instead of a givenTEF

r , we model an early time−tE
r in the

past,i.e., tE
r ≥ 0≤ tE

r ≤ BD
r , inequality (10.7.47) takes the form

tc ≥ ∑
r∈R

DRT
r δ R

cr − ∑
r∈R

tE
r δ R

cr = ∑
r∈R

DRT
r δ R

cr − ∑
r∈R

tδ
cr ; ∀{c∈ C ′

p}, (10.7.48)

where the nonlinar product termstE
r δ R

cr have been replaced bytδ
cr = tE

r δ R
cr. The con-

tinuous variablestδ
cr are calculated by

tδ
cr ≤ tE

r ; ∀{c∈ C ′
p} , ∀r (10.7.49)

tδ
cr ≤ BD

r δ R
cr ; ∀{c∈ C ′

p} , ∀r (10.7.50)

and
tδ
cr ≥ tE

r −BD
r (1−δ R

cr) ; ∀{c∈ C ′
p} , ∀r. (10.7.51)

In order to reduce the usage oftE
r , the sum∑r tE

r is minimized in an additional goal
programming step.

To model the batch reaction timesBD
r = DRT

r +DFT
r we proceed as follows. Ifc1

denotes any charge precedingc, i.e., c1 < c, we obtain the following relationship
between the times associated withc1 andc:

tc− tc1 ≥ ∑
r∈R

BD
r ρcc1r ; ∀{c∈ Cp|c> 1}, (10.7.52)



360 How Optimization is Used in Practice: Case Studies in Integer Programming

whereρcc1r = 1 if reactorr produces both chargec1 andc. The number of inequali-
ties (10.7.52) increases quadratically inNC

p . It might be sufficient to use the smaller
number of constraints

tc− tc1 ≥ ∑
r∈R

BD
r ρcc1r ; ∀{c,c1 ∈ C ′

p|max(1,c−Kmax)≤ c1 < c}, (10.7.53)

instead of (10.7.52) where the control parameterKmax might be set, for example to,
Kmax= 3; for Kmax= NC

p −1 (10.7.53) and (10.7.52) are equivalent. ForKmax= 3
(10.7.53) is generated forc1 = c−1,c−2, andc−3. Note that the model may lead
to a wrong result,i.e., tc− tc1 < BD

r , when

δ R
cr = δ R

c−Kmax,r = 1 , δ R
c1r = 0 ; ∀{c1 ∈ C ′

p|c−Kmax)≤ c1 < c−1}.

This case applies to a situation in which a particular reactor is only rarely used. It is
still not very likely that (10.7.52) is violated because theother reactors need to fulfill
(10.7.53) for small differencesc− c1 as well. Either way this needs to be checked
in the post optimal analysis.

The binary variablesρcc1r := δ R
crδ

R
c1r are subject to the following constraints.

ρcc1r ≤ δ R
cr ; ∀{c,c1 ∈ C ′

p, r|max(1,c−Kmax)≤ c1 < c}, (10.7.54)

ρcc1r ≤ δ R
c1r ; ∀{c,c1 ∈ C ′

p, r|max(1,c−Kmax)≤ c1 < c}, (10.7.55)

and

ρcc1r ≥ δ R
cr +δ R

c1r −1 ; ∀{c,c1 ∈ C ′
p|max(1,c−Kmax)≤ c1 < c} , ∀{r}.

(10.7.56)

10.7.3 Exploiting Free Reactor Time – Delaying Campaign Starts

The optimal early starting timestF
r in campaignk are matched to the available free

reactor timesDfr
r by the inequality

BD
r α0

1r + tF
r = Dfr

r + rF ; ∀r, (10.7.57)

whererF is a relaxation variable. Note that formulating (10.7.57) as an equality may
be too restrictive as it enforces that the available free timeDfr

r is used for pre-filling.
It might be better to use

BD
r α0

1r + tF
r ≤ Dfr

r + rF ; ∀r, (10.7.58)

which states that we can use pre-filling and early-time only up to the limitDfr
r + rF.

Note thatrF does not depend on reactorr which is consistent with the interpretation
that it represents the delayed start of a campaign.



10.8 Summary & Recommended Bibliography 361

10.7.4 Restricting the Latest Time a Reactor is Available

In order to prepare for campaignk+ 1 with known optimal early-times and tank
pre-filling we implement the constraint

tc+DCT
r ≤

(
Dstop

r + rS
r

)
+Mstop

k (1−δ cr) ; ∀r, (10.7.59)

with the preferred termination timeDstop
r after which reactorr is not used any more

for campaignk. The inequality (10.7.59) is activated ifδ cr = 1; otherwise it is re-
dundant due to the usage of an appropriate value ofMstop

k . The big-M valueMstop
k

can be chosen as the estimated campaign durationD∗
k

Mstop
k := D∗

k := Dk/RS
k ; ∀k. (10.7.60)

Alternatively, we could use thek andr dependent tighter big-M value

Mstop
rk := D∗

k −Dstop
r −Br ; ∀{rk}. (10.7.61)

The relaxation variablesrS
r in (10.7.59) are used to avoid infeasibilities in case the

termination time cannot be met. In an auxiliary model we minimize maxr rS
r , i.e.,

the maximum relaxation time by adding the inequalities

rS
max≥ rS

r ; ∀r (10.7.62)

and minimizingrS
max. The overall effect is that we try to connect the adjacent cam-

paignsk andk+1 best possible: in campaignk we try to match the termination times
to the ideal free reactors times known for campaignk+1, while in campaignk+1
we match the early times and pre-filling to the available times derived in campaign
k from Dstop

r + rS
r .

10.8 Summary & Recommended Bibliography

In this chapter we have considered several typical real-world problems (completely
solved to the customer’s satisfaction), two larger problems originating in chemi-
cal industry, and finally, the optimization of a telecommunication service network.
While the first of the larger ones could be successfully implemented and solved by
paying attention to critical mathematical issues and finally applying B&C, the sec-
ond one still awaits solution. For solving the telecommunication problem B&C is
needed again. The examples show that it is very important to get the data structure
right and to work on the mathematical formulation of the problem. Reformulations
of the problems are usually necessary to solve larger real-world problems. This point
is very important for the new practitioner to keep in mind. Although computer facil-
ities are improving in power, the benefits which can be gainedfrom efficient model



362 How Optimization is Used in Practice: Case Studies in Integer Programming

building and clever reformulations outperform the hardware aspects by a long way.
Thus by studying this chapter the reader should be able to:

• model more complex problems;
• appreciate the scope and difficulty of problems in practice;
• understand the gains to be made in the solution of practicalproblems by formu-

lating them in a sensible manner and by controlling the search for optimality;
• formulate own allocation problems.

Further reading on allocation problems: Westerlundet al. (2007,[585]) have de-
veloped a generic model forn-dimensional allocation. This model covers schedul-
ing problems (1-dimensional allocation), trim-loss problems (2-dimensional allo-
cation), packing problems (3-dimensional allocation), joint packing and scheduling
problems (4-dimensional allocation) and more generally, allocation problems in any
number of dimensions.

10.9 Exercises

1. ParkBench Ltd. (PB) manufactures park benches. It has three primary inputs,
beechwood, steel and labor. Steel and labor have a stable price over the four
quarters of the year, but beechwood’s price varies by quarter. PB produces two
sorts of benches, the Superior (S) and the Executive (E). Therequirements for
the inputs are given in the table below (e.g., one Superior bench requires 14.2
units of beechwood, 1.83 units of steel and 1 unit of labor).

BeechwoodSteelLabor
Superior 14.2 1.83 1
Executive 22.4 1.94 1.26

The selling prices of the benches vary by season (quarters Q1, Q2, Q3, Q4 in this
case).

£ Q1 Q2 Q3 Q4
Superior 850 890 860750
Executive10501200900810

At any time of the year steel costs£100 per unit and labor costs£90 per unit. The
price [cost/unit] of beechwood, however, is much more volatile. Skilled labor is
in short supply, and its availability is given as well. Priceand labor availability
are given by:

quarter Q1 Q2 Q3 Q4
cost/unit [£/unit] 28 34 22 18

skilled labor availability48 42 23 46

It is possible to store up to 10 benches in total from one quarter to another at a
cost of£ 82 per bench per quarter. At the start of Quarter 1 PB has 2 Superior



10.9 Exercises 363

and 4 Executive benches in stock, and it must have the same numbers in stock
at the end of Quarter 4. Demand is, of course, seasonal. The Sales Department’s
estimates of maximum demands by quarter are:

Units Q1 Q2 Q3 Q4
Superior 10 20 30 10
Executive 8 25 30 5

a) Formulate and solve PB’s problem, clearly stating any assumptions you
make. In particular, assume that a plan that gives fractionsof benches is ac-
ceptable.
b) Present your solution in a short report, explaining why itis plausible. In
particular, interpret the reduced costs and dual values.

2. Refer back to the previous exercise: PB’s beechwood supplier now offers them a
deal. If in any quarter they buy more than a certain number of units they can have
the rest of their purchases that quarter at a lower price per unit. In other words, if
they buy a quantity below the breakpoint then they pay Price 1(the normal price
given above), but each unit they buy above the breakpoint only costs them Price
2. Here are the data:

Q1 Q2 Q3 Q4
Price 1 28 34 22 18

Breakpoint300500350250
Price 2 20 25 20 15

Reformulate your problem, and find the new policy. Note: Freeversions of the
modeling systems have restrictions on the number of constraints, variables and
nodes in the B&B search. This problem, if formulated in a natural way, should
easily fit into this a free version. If your formulation does not fit into the software
you should try to reformulate it.





Chapter 11
Beyond LP and MILP Problems⊖

This ı́ ó chapter mentions several optimization problems which go beyond linear and
mixed integer linear optimization. The focus is rather on motivation. Therefore, it is
not intended to cover these topics in complete depth, but thereader should at least be
aware that modeling real-world problems is not restricted to linear models. In frac-
tional programming we show how to transform the problem to linear programming,
and successive linear programming as a special solution technique of nonlinear op-
timization. Next, we briefly discuss stochastic optimization. For quadratic program-
ming, which is again a special case of nonlinear optimization, we provide an equiv-
alent formulation based on special ordered sets. Nonlinearoptimization is covered
in more detail in the next chapter followed by separate chapters on deterministic
global optimization in practice and polylithic modeling and solution approaches.

Nonlinearities may occur in the objective function, in the constraints, or in both.
They may appear as nonlinear functions such asxn,

√
x, ex, or sinx. Sometimes,

usually in refinery problems or problems in the food industry, we encounter non-
linear terms of the formA(x)x, which we callnonlinearity in the coefficients,1 as
instead ofAx with coefficientA, the coefficient is a function involving the variable
x as an argument. This type of nonlinearity is very suitable for sequential linear
programming, sometimes also called successive linear programming or recursion.

Although this is not the topic of this book, a model might contain differential
equations in the constraints or integral expressions in theobjective function. They
could be included by appropriate discretization techniques – and might bring addi-
tional nonlinearities into the model.

1 Of course, they are not reallycoefficientsbut rather functions multiplied onto the variable.

365



366 Beyond LP and MILP Problems⊖

11.1 Fractional Programming *

The minimization problem LFPP

min
pTx+u
qTx+v

(11.1.1)

subject to
Ax ≤ b , x ≥ 0 (11.1.2)

is called alinear fractional programming problem. If the feasible setX ⊆ IRn of
(11.1.2) is nonempty andqTx+ v> 0 for all x ∈ X , LFPP is equivalent to the LP
problem

minpTy+uw

subject to

Ay−bw ≤ 0

qTy+vw= 1 , y ≥ 0 , w≥ 0.

This equivalence is based on the transformation

w=
1

qTx+v
, y = wx

relating the scalar variablew> 0 to the denominator of (11.1.1). The connection

y = wx (11.1.3)

between the original variablesx and the new variablesy enables us to transform
the solution from the equivalent LP back to the original problem. To illustrate this,
consider the example

min
x1+1
x2+2

subject to
x1+x2 ≤ 1 , x1,x2 ≥ 0.

The equivalent LP model
miny1+w

subject to
y1+y2−w≤ 0 , y2+2w= 1 , x1,x2,w≥ 0

has the solution

y1 = 0 , y2 =
1
3

, w=
1
3

computed usingfractionalProgin MCOL. Exploiting (11.1.3), we compute the so-
lution of the original problem



11.2 Recursion or Successive Linear Programming 367

x1 = 0 , x2 = 1 , z=
1
3
.

In this optimal solution, the nominator is as small as possible, while the denominator
is as large as possible. Note that this is sufficient for the global optimum but not
necessary.

If we want to minimize sums of ratios

min
p

∑
i=1

ni(x)
di(x)

,

there is no general transformation as above. As this problemhas many local min-
ima, we have to resort to global optimization techniques described in Chapter 13.
If the nominator functionsni(x) are convex and the denominator functionsdi(x) are
concave, the global minimum can be computed by the Branch & Bound algorithm
developed by Benson (2001,[74]). This paper also contains references to practi-
cal applications in multistage stochastic shipping problems, government contracting
problems, and bond portfolio optimization problems.

11.2 Recursion or Successive Linear Programming

Recursionbetter known asSuccessive Linear Programming(SLP), is a technique
whereby LP may be used to solve certain nonlinear problems. Some coefficients in
an LP problem are defined to be functions of the optimal valuesof LP variables.
When an LP problem has been solved, the coefficients are re-evaluated and the LP
is solved again. Under some assumptions this method may converge to a local2

(though not necessarily the global3) optimum. Those problems most amenable to
SLP are LPs with only a few nonlinear terms.

In the first subsection we will give an example illustrating the idea of recursion.
The second one discusses the pooling problem and provides some deeper mathe-
matical background on recursion and SLP.

11.2.1 An Example

This small recursion example is simplified from a real-problem concerning the dis-
posal of toxic sludge. Sludge has several nasty components,e.g., cadmium. There
are various sources of toxic sludge, which are taken to intermediate processing ar-
eas, where they are inevitably subject to some blending, andthen finally are deposed
at dumping grounds (end points). Formally, sludge including componentsc origi-

2 A solution is called alocal optimumif there exists no better feasible solution in its “vicinity”.
3 A solution is aglobal optimumif there exists no better feasible solution.



368 Beyond LP and MILP Problems⊖

nates at sourcei and has to go via processing areaj to final dumping groundk. The
maximum tonnage of nasty componentc that can be dumped atk is Mck. Sludge ar-
riving at processing areaj is blended, so its components cannot be kept separately.
The indices of the problem are

c = 1,2, ...,C : components
i = 1,2, ..., I : sources
j = 1,2, ...,J : processing areas
k = 1,2, ...,K : destinations (end points).

(11.2.1)

The data are

Ai : availability ati
Cjk : per ton disposal cost fromj to k
Fci : fraction ofc in material fromi
λ jc : assumed fraction ofc at j (recursed)
Mck : maximum tons disposal ofc atk.

(11.2.2)

Finally, we introduce the variables

qc j ≥ 0 : throughput of componentc at j in tons
t j ≥ 0 : quantity of componentc passing throughj
xi j ≥ 0 : amount [tons] sent fromi to j
y jk ≥ 0 : amount [tons] sent fromj to k.

(11.2.3)

Then the problem formulation starts with the disposal coststo be minimized

min
J

∑
j=1

K

∑
k=1

Cjky jk. (11.2.4)

We want to get rid of all sludge ati, i.e.,

J

∑
j=1

xi j = Ai , ∀i. (11.2.5)

Then let us consider the flow intoj

I

∑
i=1

xi j = t j , ∀ j, (11.2.6)

and the flow out ofj
K

∑
k=1

y jk = t j , ∀ j. (11.2.7)

Next, we consider the quantityqc j of componentc passing throughj:



11.2 Recursion or Successive Linear Programming 369

qc j =
I

∑
i=1

Fcixi j . (11.2.8)

Now we have to ensure that not too muchc is present atk, i.e., there is an upper
limit of tons of c which can be disposed of atk. Modeling this feature is more
complicated. Componentc comes in with each flowy jk from processing areaj to
end pointk. If we knew the concentration,λ c j, or the fraction ofc contained in the
stream originating at treatment placej, then the constraint just would read

J

∑
j=1

λ c jy jk ≤ Mck , ∀{ck}. (11.2.9)

The problem is, of course, that we do not know the fractionλ c j. If we accept non-
linear constraints, the only problem is how this quantity isrelated to other variables.
The essence of this formulation is that: the proportion of blended sludge at pro-
cessing areaj, i.e., the toxic componentc, is equal to the total quantity of toxic
component arriving at the treatment works divided by the total quantityt j of sludge
arriving there,i.e.,

λ c j :=
∑I

i=1Fcixi j

t j
=

qc j

t j
, (11.2.10)

or equivalently
t jλ c j = qc j. (11.2.11)

Both formulations are nonlinear equations. The second formulation has one numer-
ical advantage: we avoid possible divisions by zero.

If we want to avoid nonlinear constraints,i.e., we want to have a linear model,
we will have some difficulties. However, the following observation might help. Once
we have all information concerning the flow rates arriving atj we can compute the
fractionsλ c j. So let us assume for a moment we know the values ofλ c j, or (which
is what happens in real life) we guess some reasonable valuesfor theλ c j, solve the
LP, and then re-calculate their values from the LP solution according to (11.2.10).
This is the key idea of recursion. Formally,λ c j enters the expression as any other
constant data do. Oncexi j (or qc j) and t j are known from a solved LP problem
we apply (11.2.10) and computeλ c j. With the updated valuesλ c j we solve a new
LP problem. The recursion process continues until some formof convergence oc-
curs; see Appendix C.7 for a formal definition of convergence. Note that we cannot
guarantee convergence to a global optimum – and may in fact converge only to a
local optimum or not at all. So, theλ jc are unknowns which are recursed toqc j/t j .
XPRESS-OPTIMIZER has a recursion facility which lets the user specify coefficients
in the matrix as functions of the optimal values of variables. For instance, a coef-
ficient ai j can be specified as being set equal to the value ofxk/xl . Only a limited
number of functional forms is supported; see the manual on the CD for details.
When the coefficients to be recursed have been defined,XPRESS-OPTIMIZER can
be instructed to iterate until convergence has been established.



370 Beyond LP and MILP Problems⊖

Now let us summarize: we have learned that recursion is a rather simple method
to solve certain nonlinear problems. There is no guarantee that this procedure con-
verges. A more sophisticated method which looks very similar is successive linear
programming. This algorithm guarantees convergence by putting bounds on the dif-
ference between the estimate and the next solution value, while recursion does not
necessarily do so.

11.2.2 The Pooling Problem

The pooling problem occurs frequently as a subproblem in chemical process,
petroleum and food industry and within several types of network flow problems,
e.g., wastewater networks, crude oil refinery planning, in whichstream rates and
concentrations are needed – and are conserved. Typical applications occur if liquid,
non-reacting chemicals having different concentrations of contaminants need to be
blended and pooled. The pooling problem leads to a special nonlinear optimization
problem with a structure which allows us to apply successivelinear programming
successfully. To understand the problem, let us consider a pool of a liquid substance,
such as oil. There are several pipes bringing in oil at different flow rates and differ-
ent concentrations of a certain component that we are interested in. Pipes leaving
the pool carry oil at different flow rates but with the same concentration of the com-
ponent of interest. An early and more detailed discussion ofthe pooling problem it-
self is contained in Fieldhouse (1993,[188]) and Main (1993,[393]). A more recent
survey is by Misener & Floudas (2009,[416]). Here we just concentrate on some
original formulations and elementary mathematical solution approaches to solving
the pooling problem.

Let us try to generalize the pooling problem and to improve our mathematical
understanding of it – this will leads us tosequential linear programming(SLP) and
distributive recursion(DR). We will see below that both methods are mathemat-
ically equivalent but DR has some numerical advantages overSLP. In modeling
a petrochemical network of plants one often faces the problem of poolingn feed
streamsi of different quality. The feed streams have unknown inflow ratesxi . The
quality4 of feed streami may be characterized by the contents or concentrationCi

of aromatic compounds in that stream, for instance. The poolyields a product of the
average aromatic compound concentrationc,

c=
n

∑
i=1

Cixi
/

x or cx=
n

∑
i=1

Cixi , (11.2.12)

wherex is the total pool volume

4 In refinery industry the expressionquality or quality constraintsis commonly used. The quality
itself can be measured in dimensionless quantities such as concentration (tons/ton) or in appropriate
physical units (take viscosity as an example).



11.2 Recursion or Successive Linear Programming 371

x=
n

∑
i=1

xi , (11.2.13)

or the total inflow rate. Note that the quantitiesx, xi , andc are unknown variables
while the concentrationsCi may be known in advance (of course, they might also
be unknown variables, but let us consider the simpler case).As shown in Fig. 11.1
a), streams leaving the pool have concentrationc. This is the important feature:
output streams from a pool have the same concentration. If such a stream is fed into
a process unit as illustrated in Fig. 11.1 b), then, for instance, the total amount or
volume of aromatic compounds in this unit could be limited byan upper boundA+.
In this case a quality constraint

cy1 ≤ A+ (11.2.14)

needs to be added, wherey1 is the outgoing flow rate of the pool and ingoing flow
rate w.r.t. the process unit. Both (11.2.12) and (11.2.14) contain products of vari-
ables and are thus nonlinear constraints.

If only few nonlinear equations are present, special techniques such as SLP or
DR are applied.5 In SLP, the nonlinear product termscx andcy1 are replaced by
their Taylor series approximations. Lettingc0 andx0 be the current values ofc and
x, the first order approximation ofcx is

cx∼= c0x0+x0(c−c0)+c0(x−x0) = c0x+x0∆c. (11.2.15)

Similarly, the first order approximation ofcy1 is

cy1
∼= c0y0

1+y0
1(c−c0)+c0(y1−y0

1) = c0y+y0
1∆c. (11.2.16)

The right-hand side of (11.2.16) is linear and has the unknownsx and∆c,

∆c := c−c0. (11.2.17)

The pool concentrationc acts as a nonlinear variable,i.e., it appears in a nonlinear
term and its change∆c is determined by solving the LP. This leads to a new value of
c, determined by (11.2.17), which is used to initiate the nextiteration, replacingc0.
Note thatx acts as a special linear variable with nonconstant coefficient c0 changing
in each iteration. Most SLP implementations include boundson all ∆c variables of
the form

−S≤ ∆c≤ S,

whereS is a bound on the step size∆c imposed to ensure that the Taylor series
approximations are sufficiently accurate. SLP and DR have different approaches to-
wards the presence of these bounds and the logic for varying them. Using the rules
described in Zhanget al. (1985,[608]), convergence of SLP to a local optimum can
be proven for any differentiable nonlinear constraint or objective function. Nonlin-
ear optimization theory tells us, because our problem is non-convex, that there is

5 In principle the methods works with an arbitrary number of variables – but if problems get larger,
convergence problems and the significance of good initial guesses increase.



372 Beyond LP and MILP Problems⊖

b) R

(x
i 
, c

i
) (y

j 
, C)

(X, C) (y
1 
, C) Processing

Unit

a)

(x
i 
, c

i
) (y

j 
, C)

(X, C)

Fig. 11.1 The pooling problem and a process unit fed by a pool.

no mathematical technique available, which is basedonly on evaluating function
values or values of derivatives of a local optimumx∗, to find out whetherx∗ is a
global optimum. However, in Section 12.7 we will learn aboutdeterministic global
optimizationalgorithms which are able to prove global optimality.

Note that∆c plays the role of the recursed variable introduced in Section 11.2.
Instead of using the unknown variables∆c it is possible to use another variable
defined as

e= x0∆c. (11.2.18)

This leads us to DR. Using this variable the above relations take the form

x=
n

∑
i=1

xi (11.2.19)

n

∑
i=1

Cixi = c0x+e, (11.2.20)

and

c0y1+
y0

1

x0 e≤ A+. (11.2.21)

This approach is calleddistributive recursionwith the error variablee and the dis-
tribution factor

y0
1

x0 ≤ 1. (11.2.22)

From a numerical point of view, the advantage of this approach is that the LP-matrix
has much better scaling properties. Note that the new variable e only occurs with
coefficients less than or equal to unity. The next iteration is, of course, initialized
with

c0 ← c0+
e
x0 . (11.2.23)



11.3 Optimization under Uncertainty* 373

Furthermore, it should be noted thate has the units of concentration× amount
(volume),i.e., amount or volume, and thate is a free or unconstrained variable,i.e.,

−∞ ≤ e≤ ∞. (11.2.24)

As well as SLP, DR applies a damping strategy on to this free variable and requests

−E− ≤ e≤ E+. (11.2.25)

If the matrix generator does not support such variables theycan easily be produced
by introducing two non-negative variablese+ ande− and replacing the variablee
by the expressione+−e− at all occurrences ofe. Sincee+ ande− have the same
column coefficient wherever they occur they are linearly dependent and therefore
cannot enter the basis simultaneously,i.e., at most one of them can take a non-
negative value.

Sincee usually appears in flow balance equations, convergence properties are
observed to be better than in the SLP approach when putting further restrictions on
the choice ofe.

We have already briefly mentioned that in nonlinear problemsin general, and in
particular in the pooling problem, we have to distinguish between local and global
optima. In practice it is observed that the pooling problem usually has several lo-
cal optima. Depending on the initial guesses the solver findsdifferent local optima.
Thus, solving models involving pooling problems requires great care and deep un-
derstanding of the underlying real-world problems. Let us give at least one bit of
general advice: one should certainly try to avoid setting initial guess variables to
zero. Once a good solution is found one should keep the valuesof the recursed
variables and use them as initial values in further computations.

More recent approaches in refinery modeling exploit continuous-time formula-
tions, special techniques for dealing with bilinear terms,and global optimization
techniques;cf. Jia & Ierapetritou (2003,[301]), Misener & Floudas (2009,[416]),
Xiao & Floudas (2016,[604]), or Castilloet al. (2017,[116]). A strong impact on re-
finery modeling is also that MILP solvers now provide extended features to support
bilinear terms.

11.3 Optimization under Uncertainty*

In most part of this book we have developed and discussed deterministic models
assuming that the data are deterministic, although, in practice, input data may be
uncertain. In Section 3.4.3 we have described how LP problems can be handled
when variations in coefficients took place within the problem. If it turns out that
some coefficients in a mathematical programming problem arerandom or subject
to fluctuations, but governed by some probability distribution, the problem is often
approached bystochastic programming, a commonly used modeling and solution



374 Beyond LP and MILP Problems⊖

technique to deal withoptimization under uncertainty. Therefore, to start with, let
us first have a broader look at optimization under uncertainty.

11.3.1 Motivation and Overview

In most applications and in many software packages input data are assumed to be
exact and deterministic. This assumption leads to deterministic models. If some of
the input data are subject to uncertainty we enter the realm of optimization under
uncertainty, where we find optimization problems in which at least some ofthe input
data are seen as random data, or in which some constraints even only hold with a
given probability. Optimization under uncertainty can be useful in, for instance,

1. Energy industry: stream flows in water units (inflows in hydro-thermal models),
spot market raw material and energy prices, load profiles (demand), generator
outages, or delivery of solar and wind energy.

2. Production planning: uncertain demands, or output variations or plants.
3. Finance: uncertainty in prices or returns of the financialinstruments, or the

volatility of interest rates and currency exchange rates.

The nature of uncertainty can have its roots in physical random processes, market
uncertainties, or major unexpected events. Among the reasons for uncertainties we
find:

1. Physical or technical parameters only known to a certain degree of accuracy. Safe
intervals can usually be specified for such input parameters.

2. Process uncertainties,e.g., stochastic fluctuations in a feed stream to a reactor, or
processing times subject to uncertainties.

3. Demand uncertainties occur in many situations: supply chain planning (cf. Gupta
& Maranas, 2003, [256]), investment planning (cf. Chakrabortyet al., 2004,
[118]), or strategic design optimization problems,cf. Kallrath (2002,[313]), in-
volving uncertain demand and price over a long planning horizon of 10 to 20
years.

Optimization under uncertainty applied to real-world problems needs to cope with
conceptual issues such as identifying the stochastic nature of uncertain processes or
uncertain data entering the optimization model, dealing with feasibility and optimal-
ity, or interpreting the results properly. In the late 1990s, stochastic programming
was mostly used in energy industry and finance, but less frequently outside these
sectors. Nowadays, we see other areas of use, including in healthcare (e.g., schedul-
ing) and in public health (e.g., pandemic control and logistics for key resources such
as ventilators) in water resources (beyond hydroelectric scheduling) in mining (e.g.,
with uncertain ore prices and ore grade).

A road block to wider adoption is two-fold: Unlike deterministic optimization,
there is not a single standard model. There are chance constraints, two-stage models,
multi-stage models, etc. And, unlikeAMPL, GAMS, Mosel, etc., for mathematical



11.3 Optimization under Uncertainty* 375

programming, there is not a single easy interface that is widely accepted for opti-
mization under uncertainty. So, one needs greater expertise on the modeling side
and one has a bigger hurdle on the software side. That is changing but is still an
issue, especially, when it comes to industrial strength software.

The first step to modeling real-world problems involving uncertain input data is
to carefully analyze the nature of the uncertainty. Zimmermann (2000, [611]) gives
a good overview of what one has to take into consideration. Itis crucial that the
assumptions, which are the basis of the various solution approaches, are checked.
Technically, statistics including time series analysis, has been around for a long
time and can be used to fit stochastic processes to time seriesof data. Sahinidis
(2004,[489]) has provided an excellent overview of techniques used to solve opti-
mization problems under uncertainty. Kallrath (2008,[318]) has presented two pric-
ing problems under uncertainty in chemical process industry and some additional
discussion points. Below we list and comment on some techniques which already
have been or may be used in real-world projects.

1. Sensitivity analysisis conceptually difficult in the context of MIP, and is, from
a mathematical point of view, not a serious approach to solving optimization
problems under uncertainty (Wallace (2000,[581])). However, this approach can
be successfully applied to an optimization model embedded into a Monte Carlo
simulation to establish how strong the objective function values depend on fluc-
tuations of some input data. If the problem can quickly be solved to optimality
one could proceed as follow: The problem is solved for a set ofinput data gener-
ated randomly around nominal values. The distribution of a few thousand input
values is mapped to a distribution of objective function values.

2. Stochastic Programming(SP), and in particularmulti-stage stochastic models,
also calledrecourse models, have been used for quite a long time (cf. Dantzig
(1955,[147]), Kall (1976,[308]), or Birge (1997,[81])). In SP, models contain the
probability information of the stochastic uncertainty. Animportant assumption
is that the probability distributions do not depend on the decision variables in
most cases. While stochastic MILP is an active field of research (cf. the surveys
of Klein-Haneveld & van der Vlerk (1999,[346]) or Sen & Higle(1999,[510]),
and, more recently, in theHandbook of Stochastic Programming, Ruszczýnski
& Shapiro (2003,[486]), Schultz (2003,[507]), or Andradeet al. (2005,[26]))
industrial strength software has yet to enter the stage.

3. Chance constrained programming(CCP) deals with probabilistically constrained
programming problems and dates back to Charnes & Cooper (1959,[120]); for
more recent referencescf. Prekopa (1995,[457]), Guptaet al. (2000,[257]),
Gupta & Maranas (2003,[256]), Orçunet al. (1996,[436]), Arellano-Garciaet
al. (2003,[33], 2004,[34]).

4. Fuzzy set modelingsupporting uncertainties which fall into the class of vague
information and which are expressible as linguistic expressions. Fuzzy set the-
ory in the context of LP problems has been used, for instance,by Zimmermann
(1987,[610]; 1991,[609]) and Rommelfanger (1993,[484]).

5. Robust optimization– cf. Ben-Talet al. (2000, [66]), Bertsimas & Sim (2003,
[78]), Beyer & Sendhoff (2007,[79]), or Gregoryet al. (2011,[248]) – is an ap-



376 Beyond LP and MILP Problems⊖

proach to dealing with optimization under uncertainty if the uncertainty does
not have a stochastic background and/or that information onthe underlying dis-
tribution is not or hardly available (which is, unfortunately, often the case in
real-world optimization problems). Ideally, the solutions of robust optimization
should be robust against deviations from the nominal valuesof the input data. A
robust optimization approach for planning and scheduling under uncertainty has
been developed by Floudas and his co-workers;cf. Lin et al. (2004,[380]) and
Janaket al. (2007,[296]). They have developed a complete theoreticalframework
for generalMILP problems. Scheduling and planning problems are a sub-class of
the problems the theory can address. They have also solved large scale schedul-
ing applications by robust optimization approaches. While in SP the number of
variables increases drastically with the number of scenarios, in this robust opti-
mization approach by Floudas and his co-workers the number of variables and
constraints approximately only doubles (for interval uncertainties). An argument
sometimes used against robust optimization is that it is toorestrictive and pes-
simistic. This argument becomes invalid because the approach presented by Lin
et al. (2004,[380]) allows to specify the probability at which probabilistic con-
straints have to be fulfilled. One advantage of this robust optimization approach
is that for uniform distributions, the type and the complexity of the problem does
not change – MILP problems remain MILP problems. Another advantage is that
the number of variables and constraints increases only moderately. Having talked
about SP, where the distribution is assumed to be known, and having talked about
robust optimization, where the uncertain parameter takes aworst-case value in an
uncertainty set, it is worthwhile to considerdistributionally robust optimization
(DRO), which has recently emerged as a very attractive middle ground. In the
data-driven variant of DRO nature selects a worst-case probability distribution
that does not deviate too much from probability distributions that are consistent
with the available data. The survey paper by Rahimian & Mehrotra (2019,[460])
may serve as a good starting point. Robust optimization can also be seen as bilvel
programming (see Section 14.1.3.4). This allows to use the cutting-set methods
by Mutapcic & Boyd (2009,[427]), an interesting approach though technically
very demanding.

6. Decisions based onMarkov processes(cf. Meyn 2002, [407]) and/or the con-
trol of time-discrete stochastic processesallow for decision-dependent probabil-
ity distributions but typically require stronger assumptions on the stochasticity.
Chenget al. (2003, [123]) have given an excellent illustration of suchtechniques
applied to design and planning under uncertainty. An important distinction be-
tween Markov decision processes (MDPs) and multi-stage stochastic programs
are primarily in: tractable MDPs have finite (small sets) of available actions at
each stage while stochastic programs exploit convexity andmathematical pro-
gramming structures to allow for more complicated action spaces.

It is strongly recommended that if some data,e.g., demand forecasts in planning
models or production data in scheduling, are subject to uncertainties, one should
consider whether the assumption that planning and modelingis exclusively based on
deterministic data can be discarded and uncertainty can be modeled. If probability



11.3 Optimization under Uncertainty* 377

distributions for the uncertain input data can be provided,SP, CCP and DRO are the
means of choice.

Despite the broad range of solution approaches one important modeling issue
is usually not found in publications about solving real-world problems: A rigorous
discussion why the selected approach is appropriate to be applied in the real-world
problem of interest. This should involve a discussion of thenature of uncertainty:
Is it a random process? Is it a Brownian motion? Is there some hidden or unknown
causality in the process? In the context of energy design planning, costs for raw
materials oil, gas and nuclear, transport and sales prices and the amount of demand
are not only subject to complicated market dynamics (usually not covered by the
model), but they are also to random events such as disasters like earthquakes, vol-
cano eruptions, pandemia, or sometimes political instabilities and wars. Mathemati-
cally, this leads to the representationy= g(xi ,u j) where we neither know the causal
parametersxi and the stochastic componentsu j nor the functional relationshipg.
Are expected value approaches helpful if we do not know the probability distribu-
tion function or if we cannot repeat the decision as often as we need to? In energy
industry one could argue that the power demand over a day is well known after a
few years of collecting historical data and only subject to small stochastic scattering.
However, with increasing penetration of renewable energy sources, both solar and
wind, with the latter having greater short-term uncertainty on the energy availability
side. In moderate times without strong fluctuations in economy, in financial service
industry, the value of stocks can be approximated by Brownian motions. In times of
turbulence the dynamics are completely different, and mostextrapolation techniques
fail. Even in the best case, in which we can compute the optimal expected value, can
we also provide the variance of the expected value and is it a small one? If not, the
result is rather useless. All this is not to say one should notuse a certain approach.
But we stress to provide good evidence why the selected approach is appropriate
for the problem at hand. And, unfortunately, there are cases, e.g., strategic design
decisions of 20 years, in which we probably cannot do much more than quantifying
the sensitivity and looking for robust solutions.

11.3.2 Stochastic Programming

Stochastic programming (SP) finds many applications in energy industry and fi-
nancial optimization in which uncertainty sometimes is even the dominating factor:
uncertainty in prices or returns of the financial instruments, the volatility of inter-
est rates or currency exchange rates, and others. Stochastic programming is a very
complex topic and we only focus on its connection with recursion and the value
of the stochastic extension. For a more detailed treatment the reader is referred to
Kall & Wallace (1994,[309]). Some problems are difficult to solve while some may
be solved approximately. Recursion provides a way to solve some stochastic pro-
grams,e.g., to transform an LP problem with random coefficients into a solvable
form (Dantziget al., 1981,[151]). We may formulate it as a stochastic two-stage



378 Beyond LP and MILP Problems⊖

Fig. 11.2 Newsvendor problem. At stage 1 (left), the newsvendor has to decide how many news-
paper to purchase early in the morning (demand is not known). At stage 2 (right), the newsvendor
learns about the real demand (of course, demand somewhat depends on his ability to find cus-
tomers). Produced for this book by Diana Kallrath, Copyright ©2020.

model multi-stage, with or without recourse, which may thenbe solved by recur-
sion. Unfortunately, in practice the probability distribution is often unknown, and
only the expected values of random quantities are available.

To illustrate the idea of SP and a two-stage recourse problem, consider the case
of fixing the production of a chemical plant with uncertain demands and demand-
dependent selling prices for the next six months. The production amounts represent
the stage-1 decision. As soon as the production decision hasbeen made based on
an assumed demand, and the actual demand becomes available,a stage-2 decision
is necessary. If demand is lower than anticipated, the excess production might be
sold at a lower price. If the demand turns out to be higher, an extra production (driv-
ing the plant above its limit for a short period) might be considered to be sold at a
higher price. To illustrate the idea of two-stage recourse problems in more quanti-
tative details and to get familiar with the nomenclature we discuss and provide an
implementation of the newsvendor problem in the following section.

11.3.2.1 Example: The Newsvendor Problem

The newsvendor problem has been first stated in the 18th century, when a bank
needed to determine the level of cash reserves it required tocover the demand from
its customers. It has been widely used in economic literature,e.g., to analyze supply
chains in fashion and seasonal product industries. Since the 1950s, the newsvendor
problem has been extensively studied in operations research and extended to model
a variety of real-life problems;cf. Choi (2012,[127]).

The simplest and most elementary version of the newsvendor problem is an opti-
mal stocking problem in which a newsvendor needs to decide how many newspapers
to order for future uncertain demand given that the newspapers becomes obsolete at



11.3 Optimization under Uncertainty* 379

the end of the day,i.e., how many newspapersx should the newsvendor purchase
early in the morning from a newspaper company at a price ofC per newspaper; see
Fig. 11.2. Customers demandD (unknown at purchase time) has to be satisfied; oth-
erwise a penaltyQ> C occurs per uncovered newspaper. There is an upper bound
X+ on the number of newspapers the vendor can purchase (e.g., due to carrying lim-
its). The objective function is to minimize the total cost (purchasing costs + penalty
costs). This example may appear very simple and artificial, but the equivalent situa-
tion, for instance, in energy industry is very realistic:

newspapers ⇔ energy produced or purchased
demand ⇔ uncertain load (demand) of energy
upper boundX+ ⇔ energy production/availability limits

.

A good starting point to approach this problem is to considerthe deterministic ver-
sion of the problem with certain demandD formulated as the LP:

minz= Cx+Qy

s.t. 0 ≤ x≤ X+

x+y ≥ D , y≥ 0, (11.3.1)

where the variablesx andy represent purchased newspapers and uncovered demand.
Strictly speaking, this is a MILP problem, but we neglect theintegrality of x and
y. This deterministic version of the problem has an analytic solution: The optimal
solution for knownD is: purchase

x= min{D,X+} (11.3.2)

newspapers. But how many should be purchased whenD is uncertain?
In presence of uncertain input data one can get an overview and a feeling for the

sensitivity of the solutionw.r.t. the uncertain input data by solving the deterministic
problem for several scenarios. Therefore, let us consider the following data

C= 1.5,Q= 2 andX+ = 50

for the scenarioss1, s2, s3, s4, ands5 with demand data

(D1,D2,D3,D4,D5) = (13,23,25,31,33).

We assume that each scenario has a probability 20% for its realization. Now we
proceed as follows: We compute the optimal solution (11.3.2) for each scenario
separately,i.e., we will put D = Di for i = 1,2,3,4, and 5. Next, we insert each
scenario solution (the purchase valuex) into the other scenarios to explore the effect
of having the wrong demand. This way we obtain the scenario solution Ti j (wait-
and-see approachor WS solution):



380 Beyond LP and MILP Problems⊖

s1 s2 s3 s4 s5 average
s1 13 ; 19.5 13 ; 39.5 13 ; 43.5 13 ; 55.5 13 ; 59.5 13 ; 43.5
s2 23 ; 34.5 23 ; 34.5 23 ; 38.5 23 ; 50.5 23 ; 54.5 23 ; 42.5
s3 25 ; 37.5 25 ; 37.5 25 ; 37.5 25 ; 49.5 25 ; 53.5 25 ; 43.1
s4 31 ; 46.5 31 ; 46.5 31 ; 46.5 31 ; 46.5 31 ; 50.5 31 ; 47.3
s5 33 ; 49.5 33 ; 49.5 33 ; 49.5 33 ; 49.5 33 ; 49.5 33 ; 49.5
EV 25 ; 37.5 25 ; 37.5 25 ; 37.5 25 ; 49.5 25 ; 53.5 25 ; 43.1
SS 23 ; 34.5 23 ; 34.5 23 ; 38.5 23 ; 50.5 23 ; 54.5 23 ; 42.5

.

Note thatTi j gives(xi ;zi) with optimal purchasexi =Di of the deterministic problem
for D=Di and the corresponding objective function valuezi = 1.5xi , i.e., if scenario
si is realized for knownD = Di . For i 6= j, Ti j gives(xi ;zi j ) the objective function
value obtained for the deterministic problem forD = D j while fixing x = xi . For
i < j (i > j), the newsvendor has bought too few (too many) newspapers.

Now let us consider the solutions of these scenarios and certain averages. The
scenariossi with demands (13,23,25,31,33) have average demand

D∗ =
13+23+25+31+33

5
= 25.

In the scenario solution table we can consider the average cost per row (last column).
These averages are also calledexpected values. Then we solve each scenario with
the purchase fixed to the average (‘expected value’) demand,i.e., x= D∗ displayed
in the EV [Expected Value] row of the table.

From the deterministic model (11.3.1), we approach the two-stage stochastic so-
lution by duplicating the demand inequality for each scenario s:

minz= Cx+∑
s

psQys

s.t. 0 ≤ x≤ X+

x+ys ≥ Ds , ys ≥ 0 ; ∀s. (11.3.3)

Note that the recourse costs∑s psQys associated with the second-stage variables
ys are evaluated with the probabilityps of the scenarios. The solution of problem
(11.3.3) is calledhere-and-nowsolution and is interpreted as follows: We have to
decide now how many newspapers to buybut we incorporate the scenario-based
expectation into the decision. The stochastic approach is superior to just consider-
ing individual scenarios or averages as it explicitly considers the structure of the
problem in the model. The stochastic solution, or policy, isto purchasexss= 23
newspapers (the objective function value is the recourse value R̂= zss= 42.5). We
compare this to the individual scenarios and the averages,i.e., we solve each sce-
nario with its purchase fixed to the stochastic solutionx = xss= 23. As a result,
recourse corrects the first-stage variable (purchasex).

For the newsvendor example we can now quantify the valueV̂ (or VSS) of the
stochastic solution:

V̂ = Ê− R̂. (11.3.4)



11.3 Optimization under Uncertainty* 381

The expected result̂E of using the EV solution iŝE = 43.1; seeaverage valuein
the EV row of the table. The solution of the expected value problem, obtained by
replacing all uncertain input data with their expected values, is used to fix the first-
stage variables when computing the WS solutions. For the newsvendor problem we
obtain the special relation

V̂ = averageEVsolution - averageSPsolution.

Now we can interpret the value of the stochastic solution:V̂ = 0.6 quantifies the po-
tential for improvement if we switch from the deterministicto the stochastic model.
The larger theV̂ normalized to the objective function, the more it makes sense to
switch to the stochastic model. IfV̂ is small, it is not worthwhile to resort to SP.

Finally, let us focus on theexpected value of perfect information[EVPI], which is
determined by comparing the objective function values of the following two prob-
lems: The here-and-now or recourse solution (R̂= 42.5) obtained by solving the
stochastic optimization problem, and the wait-and-see solution (Ŵ = 37.5) result-
ing from solving each scenario individually and computing the expected values of
the objective functions. For the newsvendor problem we getEVPI = 5.0 with the
following interpretation: The EVPI (5.0, in this case) quantifies the (average) im-
provement if we knew which scenario will become reality. It is the price for gain-
ing access to perfect information. The larger the EVPI (normalized to the objective
function), the more sensible it is to invest in better forecast. While the difference
R̂−Ŵ measures the EVPI, the differenceÊ− R̂ is V̂. The quantities are useful for
answering the question whether it is worthwhile to resort toSP.V̂ requires the com-
putation of the stochastic solution̂R (HN=here-and-now, also called RP=recourse
problem). The relevance of the stochastic approach is, for minimization problems,
better expressed by the chain of inequalities (11.3.4),Ŵ ≤ R̂≤ Ê. The stochastic
solution is bounded by the valueŝW (of the wait-and-see solution) and̂E. If Ê−Ŵ
is small there is no need for a stochastic extension. IfÊ−Ŵ is large, SP can make a
significant difference. We have to keep in mind that these conclusions are only safe
if the scenarios represent the probability distribution ofuncertain input data well.

11.3.2.2 Scenario-based Stochastic Optimization

Among the techniques to solve optimization problems under uncertainty is scenario-
based stochastic optimization [cf. Dantzig (1955,[147]), Kall (1976,[308]), Kall
& Wallace (2004,[309]), Schultz (1995,[506]), Birge (1997,[81]), Birge & Lou-
veaux (1997,[83]), Carøe & Schultz (1999,[114]), Klein-Haneveld & van der Vlerk
(1999,[346]), theHandbook of Stochastic Programming[486], Schultz (2003,[507]),
Andrade (2005,[26]), Sen (2004,[509]), or Mitraet al. (2004,[420])]. For scenario-
based chance constrained programming,cf. Prekopa (1995,[457]), Guptaet al.
(2000,[257]), Gupta & Maranas (2003,[256]), Orçunet al. (1996,[436]), Arellano-
Garciaet al. (2003,[33], 2004,[34]). These approaches have in common that they
construct a deterministic equivalent problem of the original model and its uncer-



382 Beyond LP and MILP Problems⊖

tainties. Valenteet al. (2009,[570]) discuss this also with respect to embedding SP
and scenario trees in AMLs.

In the context of energy optimization, one of the largest application fields of
SP, generating reasonable scenarios representing the uncertainties is a formidable
task. The newsvendor problem had one period (no time-dependence) but two stages.
Stages are characterized as follows: at the beginning of a stage new information
about some uncertain events becomes available. At the end ofa stage we see re-
course decisions,i.e., adjustments (with stage 1 being an exception). Note that stages
are not necessarily connected to periods. The overall scheme for stages is: Make a
decisions at staget = 1, observe uncertain input data resolved at staget+1 and make
adjustments, proceed for all stagest until t = T. In production planning problems
we may have many time periods (months), but only two stages (T = 2), perhaps four
(T = 4, after 1 month, 3 months, and 6 months). In the energy sector, we typically
have 8760 time periods (1 year horizon at a resolution of 1 hour) but only 52 stages
(weeks). Decisions use only previously observed events as asource of information;
for future events we have only expectations (this is callednon-anticipativityof the
stochastic process).

For a production set of several thousands of demands over theplanning horizon,
it is not evident how to create scenarios covering the evolution of demands, sales
prices as well as the costs of energy and raw materials. Many input data such as
inflows in hydro-thermal models might be correlated or anti-correlated, others may
be completely independent; the same holds for raw materials. These relations, if
known, are usually built into the scenarios. Constructing appropriate scenarios is an
art; cf. Di Domenicaet al. (2007,[165]). Scenarios should, on the one hand, cover
the expected situations reasonably, and should, on the other hand, not be too sim-
ilar to avoid large the numbers of scenarios. To summarize the overall procedure:
Solving stochastic programs is always based ondeterministic equivalents: In Step 1
we approximate the stochastic processξ and itscontinuousprobability distribution
by a discreteprobability distribution. In Step 2 we derive scenarios from the dis-
crete distributions. The deterministic equivalent includes all scenarios and stages;
the number of scenarios increases exponentially. Therefore, to keep the problem
size limited, we should define good stages, construct reasonable scenarios and ask
ourselveshow many scenarios are necessary. If scenarios differ only slightly, can
we reduce the number of scenarios? This leads us toscenario reduction, for which
Henrionet al. (2008,[274]; 2009,[275]) have provided algorithms and software to
reduce scenario trees by combining similar and near-by scenarios.

11.3.2.3 Terminology and Technical Preliminaries

Stochastic programming separates into distribution problems (expected value and
wait-and-see) and recourse problems (distribution-basedand scenario-based), both
allowing the stochastic measures EVPI and VSS, as well as chance constrained
programming. Let us connect the basic definition with more formal mathematical
concepts.



11.3 Optimization under Uncertainty* 383

Theexpected-value (EV) solutionis defined as the solution of the Expected-Value
Problem, which is the deterministic problem obtained by replacing all uncertain in-
put data by their expected values,i.e., determining the expected values of all uncer-
tain input data (exploiting the probability distribution), and solving the deterministic
problem using the expected values of the uncertain input data. The EV solution is
used to compute the EEV.

The wait-and-see (WS)solution results from solving the deterministic problem
for all individual scenarioss. This way we obtain a set of solutions (not one imple-
mentable solution), the distribution of the optimal objective function values over all
scenarios, and the wait-and-see valueŴ defined as the expected value of this distri-
bution. The implicit assumption of the WS approach is that thedecision maker does
not need to decide now and can alwayswait until uncertainty turns into certainty
(see). The WS solution gives us some feeling of how the optimal solution varies as
a function of the scenarios,i.e., it seems similar to some kind of sensitivity analysis,
but it does not support any decision directly.

At this stage, we provide a few technical definitions used in probability theory
related to the concept of the expected value of a random variable subject to a prob-
ability distribution.

The expected value IE[x] of a continuous real-valued random variablex= x(ω)
is the integralw.r.t. to a probability measure

IE[x] :=
∫

Ω
x(ω)dp(ω)

with probability spaceΩ , ω representing the random process, and a probability
measure dp(ω), e.g., f (x)dx. In the special case of a probability density function
which is Riemann-integrable we have

IE[x] :=
∫

IR
x f(x)dx,

i.e., dp(ω) = f (x)dx with a probability density functionf (x).
The expected value IE[x] of a discrete real-valued random variablexi , i ∈I , with

associated probabilitiespi = p(x= xi) over a countable index setI , is the sum

IE[x] := ∑
i∈I

pixi .

Note that we have a non-zero probabilitypi for xi .

11.3.2.4 Practical Usage and Policies

Some words on the practical use and interpretation of SP: Multi-stage scenario-
based solutions give us an approximation to the solution (rather a policy) of the
stochastic problem with the following properties:



384 Beyond LP and MILP Problems⊖

1. Recourse has a backward correction effect of future uncertainties on the must-
decide-now decision at stage 1 (for which we have deterministic information).

2. At each node of the scenario tree we get the optimal values of the decisions for
certain realizations of the stochastic input data.

There are two ways to use two-stage SP for real-world decision problems:

1. Use only the stage-1 decision and apply a rolling-horizonapproach when reach-
ing the time connected to stage 2.

2. Use the stage-1 decision, wait until the uncertain input data becomes certain dur-
ing stage 2 and look up the corresponding stage-2 decision variables.

11.3.2.5 The Value of the Stochastic Extension

Imagine a company which has a deterministic model and solution approach in place.
They are aware that some input data are uncertain and also have some ideas about
various scenarios how these uncertain data might evolve. Now they are wonder-
ing whether it is worthwhile to enhance the deterministic model by rigid methods,
e.g., to exploit scenario-based stochastic optimization, to cover the uncertainty. Is it
worth investing several months or even years to built up the know-how and to mod-
ify and extend the model? What financial benefit can be expectedwhen including
stochasticity into the model? Is it realistic to expect a several-percent increase of
profit or a decrease of cost?

These questions are not easy to answer. As safe answer would be: ”It depends”.
Let us try to work out what exactly it depends on and how we can find a satisfy-
ing answer. Although practitioners often start straight ahead with scenarios, in the
beginning it is a safer to start working out what the underlying stochastic process
is. This may result in scenarios. If the stochastic process is a fully random process,
e.g., Brownian motion, scenarios can be difficult to construct and Monte Carlo or
sampling methods are preferable.

In any case, sensitivity analysis is a good starting point. Varying some of the
uncertain input parameters or evaluating different scenarios over a certain timespan
shows how stable or sensitive the solution and its objectivefunction value isw.r.t. to
changes in the uncertain input data.

For two-stage recourse problems Birge & Louveaux (1997,[82]) have introduced
a concept to evaluate the potential of the stochastic extension: The value of the
stochastic solution(VSS or V̂), which is a measure of whether SP can improve
decision making, and theexpected value of perfect information(EVPI) measuring
whether or not it is reasonable to pay for obtaining perfect information of the future.
The computation of̂V and EVPI usually exploits the constructed scenarios.

For minimization models, we have already seen in the newsvendor example, that
the inequalitiesŴ ≤ R̂≤ Ê hold. The valueÊ (or EEV) denotes the expected re-
sult of using the solution of the deterministic model EV (allrandom input data are
replaced by their expected values). The quantityŴ (or WS), known as thewait-
and-see solutionvalue, denotes the expected value of the optimal solution for each



11.3 Optimization under Uncertainty* 385

scenario. The valuêR(or RP forrecourse problem), also known as thehere-and-now
solution, denotes the optimal solution value of therecourse problem. The difference
EVPI = R̂−Ŵ denotes the expected value of perfect information and compares the
here-and-now and wait-and-see approaches. A small EVPI indicates a low addi-
tional profit when reaching perfect information. The differenceV̂ = Ê− R̂ denotes
the value of the stochastic solution and compares the here-and-now and expected
values approaches. A smallV̂ means that the approximation of the stochastic pro-
gram by the program with expected values instead of random variables is a good
one. Calculating these two measures is relatively simple for two-stage models and
is illustrated innewsvendor.gmscontained in the book library MCOL; see Section
11.3.2.1. The computation of̂V requires that we know the value ofÊ and proceeds
as follows:

1. Solve the expected value problem EV (replace all uncertain data with their ex-
pected values),

2. Fix the first-stage solution for each scenario (WS model) atthe optimal solution
obtained by solving the EV problem in Step 1,

3. Solve the resulting problem for each scenario, and
4. Calculate the expected value of the objective function over the set of scenarios

for these modified WS problems.

Note that the computation of̂V requires the solution of the stochastic problem.
Therefore, we are less interested inV̂ itself (we will get its value only after we
have solved the stochastic problem) but rather focus on inequality (11.3.4), which
gives us the boundŝW andÊ on the stochastic solution.

Transferring these concepts to the multi-stage case is not straightforward and
problematic. There exist a few possible approaches, one of which is presented be-
low and originates from Escuderoet al. (2007,[181]). In their paper, they generalize
the definition of bounds for the optimal values of the objective function for various
deterministic equivalent models in multi-stage stochastic linear programs. In partic-
ular, they introduce a chain of expected values when fixing the value of the decision
variables at the optimal value in the related average scenario model, EV. The final
value of the chain happens to be the expected value of using the expected value so-
lution, Ê, in two-stage models. Differences between the values in this chain indicate
the need to solve the stochastic model, RP. In each stage, they allow us to compute
the value of the stochastic solution,V̂, and to check how good the approximation
of the stochastic program by the deterministic one is up to the stage where the ex-
pected values are used instead of the random variables. The proposed extension of
the bounds is primarily useful for avoiding to obtain the RP value when the average
based solution is good enough, as it also happens for the two-stage problem.

Various difficulties occur in the multi-stage case and the generalization of the
two measures described above for this case. In particular, it is not as obvious which
variables must be fixed in the WS models. There are different approaches in liter-
ature. The easiest one is to only fix the first-stage variable at the optimal solution
as in the two-stage case. The variables of the following stages are free to take on
different values for different scenarios. The problem withthis approach is that it



386 Beyond LP and MILP Problems⊖

can happen that the first-stage solution in the EV problem performs better than the
solution of the RP one. The reason is that in the multi-stage case RP contains the
non-anticipativity requirement which is ignored when the WSmodels are solved.
Let us consider a multi-stage model where constraints only relate two consecutive
stages. We denote the optimal solution value of this problemas R̂. We deal with
the uncertainty in the stochastic parameters via scenario trees. We now define the
EV problem, where the uncertain parameters are replaced by their expected values
(overlined quantities):

minc1x1+ c̄2x̄2+ . . . c̄T x̄T

s.t. W1x1 = h1

T̄t−1xt−1+W̄txt = h̄t , t = 2, . . . ,T

xt ≥ 0 , t = 1, . . . ,T. (11.3.5)

Let x̄∗t be the optimal solution of problem (11.3.5). Let the expected result int using
the expected value solution, denoted byÊt ; t = 2, . . . ,T, be the optimal value of the
RP model, where the decision variablesx1, . . . ,xt−1 until staget −1 are fixed at the
optimal values obtained from the solution of the average scenario problem (11.3.5):

Êt :=

{
RP model
s.t. xsτ = x̄∗τ , τ = 1, . . . , t −1 , s= 1, . . . ,S.

(11.3.6)

We use RP in the definition of̂Et for clarification and simplification purposes to
formulate it. However, the computation ofÊt does not require the complexity which
is required for obtaining RP (except, obviously, for obtaining Ê1 that coincides with
the value RP). Since we fix the 0-1 variables until staget−1, the model for obtaining
Êt can be decomposed (if there are no continuous variables until staget −1) in Gt

independent submodels (with much smaller dimensions than the ones for RP). For
ÊT in particular we haveSscenario based submodels, the dimension of which is the
same as the dimension of the mean value problem EV, so thatÊT is the weighted
sum of the optimal solution value of these submodels.

Extending the definition (11.3.6) tot = 1 and definingÊ1 = R̂ generates the se-
quence of expected valuesÊ1, Ê2, . . . , ÊT , for which the inequalities

Êt+1 ≤ Êt , t = 1, . . . ,T −1 (11.3.7)

can be proven (in maximization problems).
We define the value of the stochastic solution int, denoted bŷVt , as

V̂t = Êt − R̂ , t = 1, . . . ,T. (11.3.8)

Useful results (for maximization problems) are the inequalities

0≤ V̂t ≤ V̂t+1 , t = 1, . . . ,T −1 (11.3.9)

and



11.3 Optimization under Uncertainty* 387

V̂t ≤ Ē− Êt , t = 1, . . . ,T, (11.3.10)

whereĒ denotes the objective function value of the EV problem.
The sequence (11.3.9) of non-negative values describes thecost of ignoring un-

certainty until staget when making decisions in multi-stage models. The expected
value of the solution that provides the average scenario problem,Ê, defined for two-
stage problems, is equal to the value ofÊT in multi-stage models.̂ET allows us to
calculate the maximum cost that we would be prepared to pay toignore uncertainty
at all stages or in the complete time horizon.In particular, Escudero et al. (2007)
introduce a chain of expected values when fixing the value of the decision variables
at the optimal value in the related average scenario model, EV. The final value of
the chain happens to be the expected value of using the expected value solution,
Ê, in two-stage models. Differences between the values in this chain indicate the
need to solve the stochastic model, RP. At each stage, they allow us to compute the
value of the stochastic solution, VSS, and to check how good the approximation of
the stochastic program by the deterministic one is up to the stage when the expected
values are used instead of the random variables.

Let us summarize the computational procedure: To obtainÊt , one needs to solve
the EV (just one problem) and save the optimal solution values. Then one fixes
all scenario variables up to staget −1. There are no non-anticipativity constraints,
and one can decompose the full problem into smaller submodels and compute the
expected value solution. It is the same situation as the one in the traditionalÊ, for
the two-stage case. InPortfolio.gmsthis approach is labeled by EEV(t).

The difficulty, however, is that models or problems, in whichmany variables have
been fixed, are often infeasible. Thus, if all problemsÊ2, . . . , Êt are infeasible, we
will not obtain any information about the quality of the approach above. A possible
alternative that does not fix the variables which generate infeasibility in the model
calculates an estimation of̂Et .

The intermediate values,̂Et , and thenV̂t , give us information about a suitable
choice of the number of stages in the model fort = 2, . . . ,T. Similar successive
valuesÊt ≈ Êt+1, and thenV̂t ≈ V̂t+1, would indicate that the deterministic problem
until staget is a good approximation to the stochastic problem, and therefore it
would not be necessary to define later stages.

A sufficient condition forÊt = Êt+1, and thenV̂t = V̂t+1, is the independence of
zt+1(s) for scenarios. This means that the optimal values at staget+1 are insensitive
to the value of the random elements. In such situations, finding the optimal solution
for one particularξ (s) (ξ (s̄), for example), would yield the same result, and it is
unnecessary to define a further stage.

In the second approach, labeled EEVhat(t) inPortfolio.gms, we computeEˆEVt ,
the feasible expected value int using the solution of the average scenario model,
the optimal value of the RP model, where the decision variables until staget−1 are
fixed at zero if they are fixed at zero in the optimal solution ofthe average scenario
model (11.3.5). That is,

EˆEVt :=

{
RP model
s.t. s∗τ ≤ x̄∗τMτ , τ = 1, . . . , t −1,

(11.3.11)



388 Beyond LP and MILP Problems⊖

whereM1, . . . ,Mt−1 are sufficiently large constants.
The approach described in the last paragraph provides us with a feasible policy

for our multi-stage model but is quite unrealistic.
Therefore Escuderoet al. (2007) have developed a dynamic approach, labeled

EDEV(t) in Portfolio.gms, which gives tighter bounds, works tightly with the tree
structure of the multi-stage problem and therefore uses thenotations described ear-
lier. To obtain theEDEVt values, one needs to solve oneEVg problem per scenario
group (g∈ G ). All of them (EVg) are deterministic models where the parameter esti-
mations are updated and based on average values only for the scenarios that belong
to groupg, i.e., modelEVg is solved for each scenario group at each stage of the
problem and the estimates are updated. The expected result of using these dynamic
solutions of the model based on average scenarios is obtained immediately from the
solution of these models. The computational steps are summarized below:

Step 1: t = 1. Solve problem (11.3.5),i.e., the Expected Value problemEVg for
scenario groupg= 1 (this is the traditional EV problem). Save the optimal solution
valueZ1

EV and the optimal solution values ¯x∗1 of the first-stage variables.
Step 2: Repeat fort = 1, . . . ,T −1:
Define the set of|Gt | average scenario problemsEVg for the scenario subtrees

corresponding to each group of scenarios at the next stageg ∈ Gt , where the ran-
dom parameters of subsequent stages are estimated by their expected values. All
variables of the previous stages are fixed at the optimal solution values obtained in
the chainEVa(g); g∈ G ; τ = 1, . . . , t −1. When solving the|Gt | problems, store the
optimal objective valuesZg

EV and the optimal values of the variables of the current
stage as ¯x∗,gt for g∈ Gt . In detail: At this staget = 2, one has|G2| scenario groups.
For eachg ∈ G2, one obtains a subtree. One needs to solve|G2| Expected Value
problems, each of them is the corresponding EV problem for the subtree with root
node 1 and nodeg in stage 2. In all of these problems, the first-stage variables are
fixed to the values obtained in Step 1. For eachEVg problem one saves the optimal
solution valueZg

EV and the optimal solution values for the second-stage variables.
At staget = 3, one has|G3| scenario groups. For eachg∈ G3, one obtains a subtree
again. Now one needs to solve|G3| Expected Value problems, each of them is the
corresponding EV problem for the subtree with root node 1 andnodeg at stage 3. In
all of these problems, the variables are fixed for stages 1 and2 to the values obtained
in Step 1 and 2 (t = 2). Again, for eachEVg problem, one saves the optimal solution
valueZg

EV and the optimal solution values for stage 3. This continues for all stages
except the last one (see below).

Step 3: Define the set of|Gt | = Saverage scenario problemsEVg, g∈ Gt for the
scenario subtrees corresponding to each group of scenariosat the last stage, where
all the variables of the previous stages are fixed, except forthe last one, at the optimal
solution values obtained in the chain of modelsEVa(g); g∈ Gτ ; τ = 1, . . . , t −1. So,
at the last stage,t = T, we haveGT = Sand need to solve|GT | EVg problems. Each
of them is a related scenario problem with variables of the last stage only.

With the procedure given in Steps 1 to 3, the expected value solutions are up-
dated. Let us denote the expected result int of using the dynamic solution of the



11.3 Optimization under Uncertainty* 389

average scenario byEDEVt , t = 1, . . . ,T, as the expected value of the optimal val-
ues of theEVg, g∈ Gt problems,i.e.,

EDEVt = ∑
g∈Gt

pgZg
EV , t = 1, . . . ,T, (11.3.12)

wherepg is the probability of scenario groupg computed as

pg = ∑
s∈Sg

ps. (11.3.13)

We define the dynamic value of the stochastic solutionV̂D as

V̂D = EDEVT − R̂. (11.3.14)

We need to solve|G1|+ |G2|+ . . .+ |GT |= |G | models to obtain̂VD, but all submod-
els have small dimensions. We can, similarly to the expectedresult int using the
expected value solution described above, define thedynamic value of the stochastic
solution, V̂D

t , for each staget. For the dynamic versions of̂E and VSS there exist
corresponding inequalities to (11.3.7), (11.3.9) and (11.3.10).

So, in each update step at staget one gets a new chain of inequalities as

Ŵt ≤ R̂≤ EDEVt ≤ Êt . (11.3.15)

In particular, at each stage, the list of computational steps to decide whether the RP
model needs to be solved or not, look similar to that given fortwo-stage models.

11.3.3 Recommended Literature

Here we provide to the reader a selected list of books and articles on stochastic
optimization.

1. The textbookIntroduction to Stochastic Programmingby Birge & Louveaux
(1997,[82]) provides a thorough introduction to SP with detailed examples and
including some material on integer SP – a book strongly recommended.

2. Lectures on Stochastic Programming: Modeling and Theoryby A. Shapiroet al.
(2009),[512]) has a good introductory chapter on stochastic programming mod-
els, gives a strong focus on two-stage and multi-stage problems as well as chance
constrained programming, and is a useful resource on the topic of statistical infer-
ence (sample average techniques used, for instance, byDECIS solver embedded
in GAMS).

3. The Value of the Stochastic Solution in Multistage Problemsby Escuderoet al.
(2007,[181]). An illuminating treatment of the stochastickey parameter EEV and
its extension to multi-stage models.

4. An interesting SP approach toplanning of offshore gas field developments under
uncertainty in reservesis by Goel & Grossmann (2004, [235]).



390 Beyond LP and MILP Problems⊖

11.4 Quadratic Programming

Quadratic programming is a special case of nonlinear programming. In this section
we do not cover the theory or efficient algorithms for solvingsuch problems. For
detailed background on quadratic programming we refer the reader to, for instance,
to Gill et al. (1981,[227]) or Furiniet al. (2019,[212]). We provide a simple trick to
solve quadratic programming problem using special orderedsets and just a MILP
solver.

Let us consider the quadratic programming problem (QP):6

min
1
2

xTGx+gTx (11.4.1)

subject to
ATx ≥ b , x ≥ 0. (11.4.2)

Introducing Lagrange multipliersλ for the constraintsATx ≥ b, andπ for the non-
negativity boundsx ≥ 0 leads us to the Lagrangean function

L(x,λ ,π) =
1
2

xTGx+gTx−λ T(ATx−b)−πTx. (11.4.3)

Defining slack variablesr := ATx−b, the Karush-Kuhn-Tucker (KKT) conditions
follow as:

π −Gx+Aλ = g (11.4.4)

r −ATx =−b (11.4.5)

π, r ,x,λ ≥ 0 , πTx = 0 , rTλ = 0, (11.4.6)

whereπTx = 0 andrTλ = 0 are the complementary slackness conditions which
state that for eachx, the variable itself or the associatedπ are zero (and the same for
r and its associatedλ ). A solution of a QP must satisfy the KKT conditions which
in this formulation provide necessary conditions for localminima. If G is positive
semi-definite, then a local minimum is a global minimum.

It is easy to extend this to the case where there are upper bounds on thex vari-
ables. For instance,x ≤ U can be modeled as

−x ≥−U (11.4.7)

6 Historically, the termquadratic programming(QP) refers to a quadratic objective function and
linear constraints. Nowadays, sometimes, the more general problem with a quadratic objective
function and quadratic constraints is also referred to as quadratic programming. Sometimes it is
named QPQC. If the QP or QPQC involves integer variables, one also sees the naming MIQCQP.
Thus, the advice is: Always check carefully for the definition when authors refer to quadratic
programming.



11.4 Quadratic Programming 391

requiring us to introduce slack variabless := U−x and a set of multipliers, sayσ ,
for these constraints. The complementary slackness conditions then read as

σTs= 0 , (11.4.8)

and (11.4.4) is extended to

π −σ −Gx+Aλ = g. (11.4.9)

Another extension is that equality constraints have free variable λ associated with
them.

Note that the KKT conditions establish a nonlinear system ofequations. How-
ever, the nonlinearity arises only in the complementary slackness conditionsπTx =
0 andrTλ = 0. The complementary slackness conditions can be modeled asspecial
ordered sets of type 1.

Therefore, using MILP software such asCPLEX or XPRESS-OPTIMIZER support-
ing SOS1, the quadratic programming problem is solved by deriving its KKT con-
ditions and solving them as a LP problem modeling the complementary slackness
conditions by SOS1. If S1 are unavailable in the MILP solver at hand, the comple-
mentary conditions can also be modeled with additional binary variables. LetX and
P be upper limits onx andπ, andδ an additional (vector) binary variable. Then the
conditionπTx = 0 can be replaced equivalently by

x ≤ Xδ , π ≤ P(1−δ ), (11.4.10)

which enforces that eitherx or π is zero. The inequalities (11.4.10) do not exclude
the case that both of them are zero.

Note that this MILP problem has no real objective function anymore. The original
objective function (11.4.1) is only contained in the KKT conditions. As we have to
provide an objective function to the MILP solver, we providesome dummy objective
function.

Here is a small example demonstrating how the method works.

min 3x2+2y2+z2+xy+
1
2

zx+xy− 2
5

zy+
1
2

xz− 2
5

yz (11.4.11)

subject to

x+y+z≥ 1.00
1.3x+1.2y+1.08z≥ 1.12

,
0≤ x≤ 0.75
0≤ y≤ 0.75
0≤ z≤ 0.75

. (11.4.12)

Let us express this problem using the structure of the general QP. Observing

xTGx = ∑
i

∑
j

Gi j xix j

andx1 = x, x2 = y, andx3 = z, we derive



392 Beyond LP and MILP Problems⊖

G :=




6.0 2.0 1.0
2.0 4.0 −0.8
1.0 −0.8 2.0


 , g :=




0
0
0




and

AT :=

(
1.0 1.0 1.00
1.3 1.2 1.08

)
, b :=

(
1.00
1.12

)
, U :=




0.75
0.75
0.75


 .

The model formulation below uses SOS1 as discussed above.

! To minimize 1/2x’Gx + g’x (’ indicates transpose)
! subject to
! A’x >= b , x>= 0 , x<= U [ A is m*n , G is n*n ]

! Lagrangian L(x,lambda,sigma,pi) =
! 1/2x’Gx +g’x -lambda’(A’x-b)-sigma’(U-x)-pi’x

! Kuhn Tucker conditions imply
! pi-sigma-Gx+A*lambda = g
! i.e.: pi + A*lambda = g + sigma + Gx
! A’x-r = b
! x+s = U
!
! pi’*x=0; s’*sigma=0; r’*lambda=0 (complementary slackness)
! lambda is a free variable if A’x=b,
! and the corresponding r doesn’t exist
! sigma(j) and s(j) do not exist if U(j) infinite

LET N=3 ! Dimension of x (three variables)
LET M=2 ! Number of linear constraints
LET HUGE = 1.0e10 ! Upper bounds > HUGE are assumed not

! to exist

TABLES
G (N,N)
B (M)
AT (M,N)
g (N)
U (N)
IFEQ(M) ! 1 if row i is equality, else 0

DATA ! entries not specified are zero
G(1,1) = 6 , 2 , 1
G(2,1) = 2 , 4 , -0.8
G(3,1) = 1 , -0.8 , 2



11.4 Quadratic Programming 393

B(1) = 1 , 1.12
AT(1,1) = 1 , 1 , 1
AT(2,1) = 1.3 , 1.2 , 1.08
g(1) = 0 , 0 , 0
U(1) = 0.75 , 0.75, 0.75
IFEQ(1) = 0 , 0

VARIABLES
x (N)
pi (N)
lambda(M)
r(i=1:M | IFEQ(i).ne.1)
s (j=1:N | U(j) < HUGE)
sigma(j=1:N | U(j) < HUGE)

CONSTRAINTS

! Reference row
dummy: &
-SUM(j=1:N) x (j) &
+SUM(j=1:N) pi(j) &
-SUM(i=1:M | IFEQ(i).eq.0) r(i) &
+SUM(i=1:M | IFEQ(i).eq.0) lambda(i) &
-SUM(j=1:N | U(i) < HUGE ) s (j) &
+SUM(j=1:N | U(i) < HUGE ) sigma(j) $

PI(j=1:N): pi(j) + SUM(i=1:M) AT(i,j) * lambda(j) &
= g(j) + sigma(j) + SUM(jc=1:N) G(jc,j) * x(j)

R(i=1:M): -r(i) + SUM(j=1:N) AT(i,j) * x(j) = B(i)
UPx(j=1:N | U(j) < HUGE): x(j) + s(j) = U(j)

BOUNDS
lambda(i=1:M | IFEQ(i).eq.1) .FR. ! Free for = constraints

SETS ! For complementary slackness
SSpi(j=1:N): pi(j) + x(j) .S1. dummy
SSl(i=1:M | IFEQ(i).eq.0): r(i) + lambda(i) .S1. dummy
SSs(j=1:N | U(j) < HUGE) : s(j) + sigma (j) .S1. dummy

END

Applying CPLEX or XPRESS-OPTIMIZER to the problem stored asquadratleads to
the results



394 Beyond LP and MILP Problems⊖

x = x1 = 0
y = x2 = 0.368421
z= x3 = 0.631579

,
π1 = 0.4
π2 = 0.0
π3 = 0.0

,
λ 1 = 0.968421
λ 2 = 0

,
σ1 = 0
σ2 = 0
σ3 = 0

.

This solution is the global minimum, as all eigenvalues(7.2734,3.6296,1.0970) of
G are positive andG is thus positive definite.

11.5 Summary & Recommended Bibliography

In this chapter we have briefly investigated some extensionsof mathematical pro-
gramming to handle nonlinear problems. We have mentioned how probabilistic
models can be tackled using recursion or stochastic programming and how non-
linear objective functions (e.g., quadratic) can be handled. We have also seen how
IP problems might behave when nonlinearity is introduced. Discussion has been
kept brief as the types of problems dealt with in this chapterare much less common
than those in earlier chapters and because the solution of such problems is awkward
and hard to guarantee.

Readers interested in thePooling Problemare referred to Tawarmalani & Sahini-
dis (2002,[554]), Audetet al. (2004,[42]), Misener & Floudas (2009,[416]).

11.6 Exercises

1. Minimize |x−y|+4|y−3| s.t.x+2y≤ 10 andx≥ 0, y≥ 0 using the approach
described in Section 6.5 exploiting a MILP solver. Hint: Resort to Section 6.5.

2. Minimize |x−y|+ 4|y−3| s.t. x+ 2y ≤ 10 andx ≥ 0, y ≥ 0 using the ap-

proximation|u| ≈
√

u2+δ 2 exploiting an NLP solver;δ is small number,e.g.,
δ = 0.0125.

3. Minimize max(e0.5x+7−0.2x,9−x2+3x−2) over the intervalx∈ [−5,3] using

the approximation max(u,v)≈ u+v+
√
(u−v)2+δ 2 exploiting an NLP solver;

δ is small number,e.g., δ = 0.0125.
4. Maximize min(e0.5x+7−0.2x,9−x2+3x−2) over the intervalx∈ [−5,3] using

the approximation min(u,v)≈ u+v−
√
(u−v)2+δ 2 exploiting an NLP solver;

δ is small number,e.g., δ = 0.0125.



Chapter 12
Mathematical Solution Techniques - The
Nonlinear World

This chapter provides some of the mathematical and algorithmic background to
solve NLP and MINLP problems to local or global optimality. Covering nonlin-
ear, continuous or mixed integer optimization in great depth is beyond the scope
of this book. Therefore only some essential aspects and ideas are introduced and
some basics are presented. Readers with further interest are referred to Gillet al.
(1981,[227]), Spelluci (1993,[529]), Burer & Letchford (2012,[107]) for a survey
on non-convex MINLP, Belottiet al. (2013,[64]) on MINLP, and Boukouvalaet
al. (2016,[99]) for advances on global optimization. Special techniques for NLP
problems, often used in oil or food industry, such as recursion or sequential linear
programming and distributive recursion, have already beencovered in Section 11.2.

12.1 Unconstrained Optimization

Be f : X ⊆ IRn → IR,x → f (x) a scalar- and real-valued function which can be
evaluated onX; this is the case, for instance, iff is continuous onX. The problem

min
x∈X

{ f (x)} ⇐⇒ f∗ := min{ f (x) | x ∈ X}, (12.1.1)

is calledunconstrained optimization problem. A vectorx∗ is called alocal minimum,
local minimizeror minimizing pointof f (x) and can be formally expressed by

x∗ = argmin{ min
x∈U⊂X

f (x)} := {x | f (x)≤ f (x′), ∀ x′ ∈U ⊂ X}. (12.1.2)

Maximization problems can be reduced, exploiting the relationship

395



396 Mathematical Solution Techniques - The Nonlinear World

max
x∈X

{ f (x)}=−min
x∈X

{− f (x)},

to minimization problems; therefore, depending on the situation, it is sometimes
preferable to deal with a maximization or a minimization problem. A typical dif-
ficulty in nonlinear, non-convex optimization is that it is usually only possible to
compute local optima, but it is very difficult to prove that such a local optimum is a
global optimum. In short, a global optimum is the best solution of all feasible points
while a local optimumx∗ is only the best solution in a neighborhood or environment
of x∗. Formally, a local minimum is defined as: In a given minimization problem, a
point x∗ ∈ X is a local minimum w.r.t. a neighborhood Ux∗ aroundx∗ (or just local
minimum), if

f (x∗)≤ f (x), ∀ x ∈Ux∗ .

If f∗ = f (x∗)≤ f (x) holds for allx∗ ∈ X, x∗ is called aglobal minimumof f .
The first solution approaches were derivative-free methods(DFM), i.e., search

procedures that merely evaluated function valuesf (x). One of the most com-
monly used methods is the (downhill) Simplex method, also known as Nelder-Mead
method, [Spendleyet al. (1962,[531]), Nelder & Mead (1965,[429])] not to be con-
fused with the Simplex algorithm in Chapter 3. Another approach is thealternating
variables method. In each iterationk, only variablexk is varied to reducef (x); all
other variables remain fixed at their values. Both methods are easy to implement
and suitable to solve problems with non-smooth functions. Although they usually
show a rather slow convergence behavior, in some situationswhere derivative-based
methods (DBM) prove to be problematic, they can be very useful. This is especially
true when DBM are numerically sensitive to the initial values or when one needs to
distinguish between local and global extrema. In such cases, DFM can be used to
obtain initial values for DBM although both also depend on initial values.

DBM used in local solvers require derivatives of first, and often second order; so
let us always assume thatf (x) has the required smoothness properties,i.e., that the
derivatives are continuous to the degree required. In detail, we need:

• the gradient of the scalar, real-valued differentiable function f (x) of the vector
x; f : X = IRn → IR, x → f (x)

▽ f (x) :=

(
∂

∂x1
f (x), . . . ,

∂
∂xn

f (x)
)
∈ IRn, (12.1.3)

• the Hessian Matrix1 H of the functionf (x)

H(x)≡▽2 f (x) :=
∂

∂xi

(
∂

∂x j
f (x)

)
=

(
∂ 2

∂xi∂x j
f (x)

)
∈ M (n,n), (12.1.4)

• the Jacobian2 J

1 Named after the German mathematician Ludwig Otto Hesse (1811-1874). M (m,n) denotes the
set of all matrices withm rows andn columns.
2 Named after the Swiss mathematician Carl Gustav Jacob Jacobi (1804–1851).



12.1 Unconstrained Optimization 397

J(x)≡▽g(x) := (▽g1(x), . . . ,▽gm(x)) =
(

∂
∂x j

gi(x)
)
∈ M (m,n), (12.1.5)

i.e., the gradient of the vector-valued functiong(x) = (g1(x), . . . ,gm(x))
T. The Hes-

sian matrix of the scalar functionf (x) is the Jacobian matrix of the gradient▽ f (x).
As in one dimension, the minimizerx∗ has to fulfill the necessary condition

▽ f (x∗) = 0 , ▽ f (x∗) ∈ IRn. (12.1.6)

Using a Taylor series expansion off (x) around the pointx∗, the following theorem
(sufficient condition) can be proven:

Theorem 12.1.For x∗ to be a locally minimizing point, it is sufficient that (12.1.6)
is fulfilled and that the Hessian matrixH∗ := H(x∗) is positive definite ,i.e.,

sTH∗s> 0 , ∀ s 6= 0 , s∈ IRn.

Here,sdenotes a non-zero vector. A basic approach to computing a numerical solu-
tion of the minimization problem (12.1.1) is theline search algorithm. Based on a
known solutionxk in iterationk, the next valuexk+1 in iterationk+1 is calculated
using the following steps:

• determination of a search directionsk;
• solve the line search subproblem,i.e., determine the minimum of the auxiliary

function3 f (xk+αksk) using aline search, whereαk > 0 is a matching damping
factor; and

• computation of the solutionxk+1 := xk+αksk for the next iteration step.

Algorithms for the solution of (12.1.1) differ in the way thesearch directionsk is
calculated.Damped proceduresuse a damping factorα,0 < α ≤ 1. Most of them
use a line search procedure to computeαk in iteration k. Undamped procedures
setαk =1. If the exact minimum off (xk +αksk) is computed, then the gradient
▽ f (xk+1) in the new pointxk+1 is perpendicular to the search directionsk, i.e.,
sT
k▽ f (xk+1) = 0. This follows from the necessary condition

0=
d

dαk
f (xk+αksk) = [▽ f (xk+αksk)]

T sk.

There are various classic optimization procedures to solve(12.1.1) based on this
fundamental concept.Descent methodis a line search method, in which the search
directionsk satisfies

▽ f (xk)
Tsk < 0. (12.1.7)

The method of the steepest descentusessk = −▽ f (xk); obviously, condition
(12.1.7) is satisfied for this choice ofsk. The gradient can be calculated analytically

3 Usually, f (xk+αsk) is not exactly minimized w.r.t.α. One possible heuristic is to evaluatef for
αm = 2−m for m= 0,1,2, . . . , and to stop the line search whenf (xk+αmsk)≤ f (xk).



398 Mathematical Solution Techniques - The Nonlinear World

or numerically approximated by finite differences. Typically one uses asymmetric
differences involving derivatives of degree twof ′′(x)

▽i f (x) =
∂ f
∂xi

(x) ≈ f (x+hei)− f (x)
h

+ f ′′(x)h

or the symmetrical differences involving derivatives of degree threef ′′′(x)

▽i f (x) =
∂ f
∂xi

(x) ≈ f (x+ 1
2hei)− f (x− 1

2hei)

h
+ 1

24 f ′′′(x)h2,

whereei is the unit vector along thei-th coordinate axis. From the numerical point
of view, symmetric differences are preferable to asymmetric differences, as they are
more accurate due to a smaller approximation error4 which is of orderh2.

A different way of calculating the search directionsk, is to use a second order
Taylor series expansion off (x) aroundxk. This corresponds to a quadratic approx-
imation of the functionf (x), i.e., x = xk+sk, f (x) = f (xk+sk) and

f (xk+sk)≈ f (xk)+▽ f (xk)
Tsk+

1
2sT

kHksk. (12.1.8)

If both the gradient▽ f (x) and the HessianH are analytically given, (12.1.8) en-
ables us to derive the classicNewton procedure. Applying the necessary conditions
(12.1.6) on (12.1.8), we obtain

Hksk =−▽ f (xk), (12.1.9)

which allows us to computesk according to

sk =−H−1
k ▽ f (xk). (12.1.10)

In most practical problems, the HessianH is not available. However, if▽ f (x) is an-
alytically known, or can be numerically expressed using asymmetric or symmetric
finite differences with sufficient accuracy, theQuasi-Newton-methodcan be applied;
cf. Werner (1992,[583, Section 7.3]). There are two types of quasi-Newton methods.
EitherHk in (12.1.10) is replaced by the finite differences-based symmetric approx-
imationH̄k

1
2

(
H̄k+ H̄T

k

)
,

or the inverse matrixH−1
k is replaced by an approximated symmetric, positive-

definite matrixH̃k; the latter is numerically more efficient. The initial matrix H̃0

can be any positive-definite matrix. In the absence of initial values, usually the unit

4 This raises the question of how to choose the size of the incrementsh. As illustrated by Presset
al. (1992,[458]), the optimal choice of this size depends on the curvature,i.e., the second derivative
of g : IR→IR, u→ g(u). Since the second derivation is, however, unknown in most cases, werefer

the reader to Presset al. (1992,[458, p.180]) and their heuristic approximationh≈ 2ε1/3
g u, where

εg is the relative precision with whichg(u) is calculated. For functions that are not too complicated
this corresponds approximately to machine accuracy,i.e., εg ≈ εm.



12.2 Constrained Optimization – Foundations and Theorems 399

matrix 1l is used to initializẽH0, or if specific information is available, a diagonal
matrix. These methods are sometimes also calledvariable metric methods, cf. Press
et al.(1992,[458, p.418-422]). The efficiency of this Quasi-Newton method depends
on the quality of the update procedure, in whichH̃k+1 is calculated from̃Hk; some
update formulas operate directly on the inverse matrixH−1

k and generateH−1
k+1.

12.2 Constrained Optimization – Foundations and Theorems

Similarly to linear programming,constrained optimizationis also callednonlinear
programming(NLP) for historical reasons. An NLP problem withn variables,n2

equations, andn3 inequalities is defined asProblem NLP

Minimize: f (x), x ∈ IRn,
subject to F2(x) = 0, F2 : IRn → IRn2,

F3(x)≥ 0, F3 : IRn → IRn3.

(12.2.1)

The functionsf (x), F2(x) andF3(x) are here assumed as continuously differentiable
over the whole vector space IRn. The vector inequalityF3(x) ≥ 0 is the short form
of then3 inequalitiesF3k(x)≥ 0, 1≤ k≤ n3. The set of all feasible points

S := {x | F2(x) = 0∧ F3(x)≥ 0} (12.2.2)

is calledfeasible regionor feasible setS . The set of active constraints in the point
x is determined by the index set

I (x) := {i | F3i(x) = 0, i = 1, . . . ,n3} ,

which is sometimes also called the set of active inequalities. In the early 1950s,
Kuhn & Tucker (1951,[359]) extended the theory of Lagrange multipliers, which
until then had been used to solve equality-constrained optimization problems, to
problems containing now both equalities and inequalities.The Kuhn-Tucker-Theory
is based on the following definition of the Lagrangian function

L(x,λ ,µ) := f (x)−λ TF2(x)−µTF3(x), (12.2.3)

which contains the objective functionf (x) with the constraintsF2(x) andF3(x).
The vector variablesλ ∈IRn2 andµ ∈IRn3 are calledLagrange multipliers; they are
added as additional variables to the original NLP problem and its variables.

Below we summarize some theorems and results of NLP theory. The neces-
sary conditions for the existence of a local optimum proven by Kuhn & Tucker
(1951,[359]) are presented using the JacobiansJ2 andJ3 of F2 andF3; cf. Ravin-
dranet al. (1987,[464]):

Theorem 12.2.If x∗ is a solution of the NLP problem and if the functions f(x),
F2(x) andF3(x) are continuous-differentiable and fulfill some regularityconditions,



400 Mathematical Solution Techniques - The Nonlinear World

then vectorsµ∗ andλ ∗ exist such thatx∗, µ∗ andλ ∗ satisfy the following conditions

F2(x) = 0 , (12.2.4)

F3(x) ≥ 0 ,

µTF3(x) = 0 ,

µ ≥ 0 ,

▽ f (x)−λ T
J2(x)−µTJ3(x) = 0 , (12.2.5)

cf. Collatz & Wetterling (1971,[132]), or Fletcher (1987,[193]). The equations
(12.2.4)-(12.2.5) are also called in short (Karush5 –) Kuhn Tucker (KKT) Condi-
tions, or simply first order conditions. A point(x∗,µ) that satisfies these conditions
is calledKarush-Kuhn-Tucker- point, or KKT point in short.

In addition, the functionsf (x), F2(x) andF3(x) need to fulfill certainregularity
conditionsor constraint qualificationsspecified by Kuhn and Tucker to exclude
certain irregular cases. Alternative forms of the regularity conditions are discussed,
for instance, by Bomze & Grossmann (1993,[96]) or Gillet al. (1981,[227]). A very
general formulation can be found at Bock (1987,[92]).

Let I (x′) be the set of active inequalities in pointx′. Let F̃3 be the function con-
sisting of all functionsF3i for which i ∈ I (x′); J̃3 denotes the associated Jacobian.
Furthermore,uT := (FT

2 , F̃
T
3) : IRn → IRN andN := n2+ | I |. Let L(x,µ,λ ) be the

Lagrangian function(12.2.3) ofNLP. Finally, letJN = JN(x) = ∂u/∂x be the Jaco-
bian ofu associated with the equations and active inequalities. A permutable point
x′ is calledregular, if rank(JN(x′)) = N; cf. Bock (1987,[92, p.48]) and Appendix
C.5 for a definition of therank of a matrix.

Theorem 12.3.Let x∗ ∈ IRn be a regular point and a local minimization point of
ProblemNLP (12.2.1). Then there exist vectorsµ∗ and λ ∗ so thatx∗, µ∗ and λ ∗
fulfill the KKT conditions [Equations (12.2.4) – (12.2.5)].

It should be noted that the difference between Theorems 2 and3 is in the assump-
tions,i.e., in the regularity conditions. If we further define the set ofdirections

T (x∗) :=

{
p 6= 0

∣∣∣∣
J2(x∗)p = 0,
J̃3(x∗)p ≥ 0,

µ̃ i∗J̃3(x∗)p = 0, ∀ i ∈ I (x∗)
}
,

and the Hessian

H(x∗,µ∗,λ ∗) :=
∂ 2

∂x2 L(x∗,µ∗,λ ∗),

by extending the assumptions in Theorem 2, the following results can be derived:

Theorem 12.4.(Second order necessary conditions).If the functions f(x), F2(x)
and F3(x) are twice continuous-differentiable, the second order necessary condi-
tions for a KKT point to be (x∗, µ∗, λ ∗) a local optimum are:

5 It was only later detected that Karush (1939,[340]) had already proven the same result in his
1939 master’s thesis at the University of Chicago. In his review article Kuhn (1976,[356]) gave a
historical overview of inequality-constrained optimization.



12.3 Reduced Gradient Methods 401

pTH(x∗,µ∗,λ ∗)p ≥ 0, ∀ p ∈ T (x∗). (12.2.6)

The interpretation of this theorem is that the Hessian of theLagrangian function for
all directionsp ∈ T (x∗) is positive-definite.

Theorem 12.5.(Second Order Sufficient Conditions).Let (x∗, µ∗, λ ∗) be a KKT
point of ProblemNLP (12.2.1). For all directionsp ∈ T (x∗), let the Hessian of the
Lagrangian function be positive-definite,i.e.,

pTH(x∗,µ∗,λ ∗)p > 0, ∀ p ∈ T (x∗). (12.2.7)

Thenx∗ is a strict local minimum of ProblemNLP.

Fletcher (1987,[193]) provides a proof of this theorem, further discussion of the
second order conditions, and even a less restrictive formulation of the regularity
conditions, based on a local characterization of the linearized constraints.

For a special class of problems, namely convex problems, thefollowing theorem
is proven [cf. Kuhn & Tucker (1951,[359]), Collatz & Wetterling (1971,[132]), or
Bomze & Grossmann (1993,[96]):

Theorem 12.6.(Kuhn-Tucker theorem; Sufficient condition). Given the nonlinear
Optimization problemNLP with a convex objective function f(x), linear equalities
F2(x) linear and concave inequalitiesF3(x). If there exist a solution(x∗,µ∗,λ ∗)
that satisfies the KKT conditions (12.2.4) to (12.2.5), thenx∗ is an optimal solution
of NLP.

If the functions f (x), F2(x) andF3(x) satisfy the assumptions6 of Theorem 12.6,
NLP is called a convex optimization problem. For convex optimization problems,
local optimality implies global optimality;cf. [447].

Algorithms for the solution of (12.2.1) are, for instance, found in Gill et al.
(1981,[227]) or Fletcher (1987,[193]). Most of them rely insome way on lineariza-
tion techniques. Inequalities are taken into account by active-set strategies. Among
the most powerful nonlinear optimization algorithms are the Generalized Reduced-
Gradient methoddescribed in Section 12.3,Sequential Quadratic Programmingex-
plained in Section 12.4, andInterior-points-methodsfor problems with many in-
equalities;cf. Bazaraaet al. (1993,[56]) or Wright (1996,[603]).

12.3 Reduced Gradient Methods

Reduced gradient methods are a natural extension of the Simplex algorithm for non-
linear optimization problems. In each iteration step, the active inequalities are used
to separate the variables into independent (free) and dependent ones. This is fol-
lowed by minimizing the objective functionw.r.t. to the free variables. This proce-
dure was originally developed by Abadie & Carpenter (1969,[3]) recent develop-
ments are in Abadie (1978,[2]), Lasdonet al. (1978,[367]) and Lasdon & Goods

6 These assumptions guarantee that both the feasible region and theobjective function are convex.



402 Mathematical Solution Techniques - The Nonlinear World

(1978,[366]) as well as Gillet al. (1981,[227, Section 6.3]) or Spelluci (1993,[529,
pp. 361]). It is used in some commercial software packages such asMINOS [cf.
Murtagh & Saunders (1978,[425]; 1982,[426])] orCONOPT, developed by Drud
(1994,[170]). These solvers in turn are available in the modeling languageGAMS
[106], which has the consequence that they are very frequently used for solving
practical problems that lead to large and sparse NLP problems. To get some insight
into the reduced gradient method, consider the optimization problem

min
x,y

{
f (x)+cTx+dTy

∣∣∣∣
h(x)+A1y◦b1

A2x+A3y◦b2
, L ≤ x,y ≤ U

}
(12.3.1)

with x∈ IRnx, y∈ IRny, g : IRnx → IRm1,A1 ∈Mm1,ny,A2 ∈Mm2,nx,A3 ∈Mm2,ny and
bi ∈ IRmi ; ◦ stands for one of the relations≤,= or≥ in the individual components of
the vector constraints. Note that the variablesy are only used in the linear terms; they
are therefore calledlinear variables. Accordingly, the termsnonlinear variablesas
well aslinear andnonlinear constraintsare used in this section.

If h(x) = 0, i.e., only the objective function contains nonlinear terms, thereduced
gradient methoddescribed, for instance, in Murtagh & Saunders (1978,[425]) can
be combined with a quasi-Newton algorithm,cf. Wolfe (1962,[598]). As in linear
programming, we introduce a slack variableu ≥ 0 to write the inequalityAx ≤ b
as equalityAx+u = b. Then we apply a zero-point transformations= u−b to get
Ax+s= 0, which allows us to use basic and non-basic variablesxB andxN as in LP
to obtain the representationBxB+NxN = 0. For problems with nonlinear objective
function usingns ≤ nx with so-called superbasic variablesxS the decomposition

BxB+SxS+NxN = 0

is constructed. For non-degenerate optimal solutions boththe variablesxS as well
as the variablesxB take values between their lower and upper bounds, while the
non-basic variablesxN as in LP are fixed to their bounds. However, in the reduced-
gradient method bothxS andxN (as in LP) are seen as independent variables used to
minimize the objective function value and the sum of the infeasibilities, whilexB is
still used to satisfy the linear constraints. If you notice that with the current number
ns no improvement can be achieved, some of the non-basic variables selected and
kept as superbasic variable,i.e., the value ofns will be increased. If, on the other
hand, a basic or superbasic variable takes a value at one of its bounds, it will be kept
as a non-basic variable andns is reduced by one.

To determine the superbasic variables we introduce the matrix

Z=
(
−B−1S 1l 0

)T
(12.3.2)

composed by the blocksB−1S, 1l and 0-matrix. Note that althoughZ is defined like
this in (12.3.2), it is not calculated directly in this way. Instead, one exploits the LU
decomposition of the basic matrixB, i.e., the product representationB=LU, where
the matricesL andU are lower and upper triangular matrices, and computesZq and
ZTg as solutions of linear systems of equations involvingB andBT. The superbasic



12.3 Reduced Gradient Methods 403

variables are calculated using a quasi-Newton procedure; asearch direction results
from

RTRq =−ZTg, g := ∇x f (x),

whereZTg is the reduced gradient andR is an upper triangular matrix. This matrix
R can be calculated by various update procedures using

RTR≈ZTHZ

to approximate the HessianH, i.e., the second derivatives off (x). As soon asq is
calculated,p = Zq follows as the search direction for all variables. This is followed
by a line search to solve the one-dimensional problem

min
α

{
f (x+αp)

∣∣ 0≤ α ≤ α+
}
,

whereα+ is derived from the limits of the variable. As in LP, the dual valuesπ or
shadow prices can be computed by solving a linear system of equations:

gB−BTπ = 0,

wheregB is the gradient of the objective function. The corresponding quantity for
the superbasic variable is

ZTg := gs−sTπ = 0 ;

in the optimal solution pointx∗ holdsZTg= 0.
If h(x) 6= 0, then, as implemented inGAMS/MINOS, we can use the projective

Lagrangian algorithm invented by Robinson (1972,[473]) and described in Murtagh
& Saunders (1982,[426]). In this iterative procedure the constraints are linearized;
the sequence of problems with nonlinear objective function, but linear constraints,
is solved using the reduced gradient method.

At the beginning of iterationk, xk is an estimated value of the nonlinear variables
andλ k is an estimated value of the Lagrange multipliers (or dual values) associated
with the nonlinear constraints. The linearizations resultin

hL(x,xk) = h(xk)+J(xk)(x−xk)

or in short formhL = hk+ Jk(x−xk) whereJk = J(xk) the Jacobian atxk; the i-th
row of Jk is the gradient vector of thei-th nonlinear second-order condition. This
results in the minimization problem

min
x,y

{
f (x)+cTx+dTy−λ kT(x−xk)+

1
2

ρ(h−hL)T(h−hL)

}
(12.3.3)

subject to the constraints

hL +A1y◦b1

A2x+A3y◦b2
, L ≤ x,y ≤ U



404 Mathematical Solution Techniques - The Nonlinear World

with a suitable scalar parameterρ in the quadratic penalty function

1
2

ρ(h−hL)T(h−hL).

As on page 402 we use the slack variabless1 ands2 where the right sidesb1 andb2

find their way into bounds ofs1 ands2. This results in the linear system of equations
(
Jk A1

A2 A3

)(
x
y

)
+

(
1l 0
0 1l

)(
s1

s2

)
=

(
Jkxk−gk

0

)

and the reduced gradient procedure from page 402 can be applied.
A disadvantage of the presented reduced gradient method is the linearization,

which places it in the group of sequential linear methods; these procedures linearize
the constraints and use a composed Lagrangian function as anobjective function in
which penalty terms occur.

Sequential linear methods iterate along the tangent direction during the line
search. On the other hand, the Generalized-Reduced-Gradient method developed
by Drud (1994,[170] ) used in his solverCONOPTmoves along the current hyper-
surface induced by the given constraints, which is not unusual for this class. In each
iteration of the line search, the basic variables are modified in such a way that they
lead to a feasible solution. The line search in the GRG procedure itself is numeri-
cally more expensive, but this pays off if the number of (outer) iterations is small.
The GRG iterative procedure inCONOPTis described shortly as follows:

1. Initializing the procedure.
2. Determining a feasible point.
3. Calculation of the Jacobian associated with the constraintsJ.
4. Selection of the set of basic variablesxB so that the sub-matrix ofJ, established

by the columns associated with these basic variablesxB, is regular; followed by
a factorization,i.e., LU decomposition of the basis matrixB. The other variables
are kept as non-basic variablesxN.

5. Calculation of the Lagrange multipliersBTπ = g.
6. Calculation of the reduced gradientr := g−BTπ.
7. Abort if the value ofr projected on the barriers is sufficiently small; the current

point is considered an optimal solution. Otherwise, proceed to step 8.
8. Determination of a search directiond for the non-basic variables; the calculation

is based on the knowledge ofr and allows the calculation of the tangent direction.
9. Perform a line search along directiond. At each step, the basic variablesxB are

modified so thath(xB,xN) = b is fulfilled, where the factorized representation of
B is used in a Pseudo-Newton method.

10. Continue with step 3.

In NLP problems various situations can occur: 1) The solution is a locally optimal
corner or vertex solution. In this case, there are no superbasic variables; the solution
is dominated by the constraints. 2) The solution is a locallyoptimal point on a
curvilinear constraint,i.e., it is on the boundary of the feasible region, but it is not



12.4 Sequential Quadratic Programming 405

Fig. 12.1 NLP problems have different solution structures. The blue dot indicates the solution
point. Upper left: A vertex solution of two intersecting linear constraints. Upper right: A solution
on the curvilinear constraint. Lower left: A vertex solution at an intersection point of a linear and
a curvilinear constraint. Lower right: A locally optimal interior solution.

a vertex solution. 3) The solution is a locally optimal interior solution. The largest
component of the reduced gradientr is less than some optimality tolerance.

12.4 Sequential Quadratic Programming

Sequential quadratic programming(SQP) is a very efficient optimization method
[533] for solving problem (12.2.1). A widely used SQP-basedsolver is SNOPT

developed by Gillet al. (1997,[225]). The basic idea of the procedure is to solve
(12.2.1) by solving a sequence of quadratic optimization problems. The subproblem
in iterationk appears as

min
∆x

{
1
2∆xTQk∆x+∇ f (xk)

T∆x
}
, ∆x ∈ IRn (12.4.4)

J2(xk)
T∆x+F2(xk) = 0, J3(xk)

T∆x+F3(xk)≥ 0,

where indexk denotes the quantities known at the beginning of iterationk, and∆x
is the correction vector to be determined. To solve this subproblem [cf. Gill et al.
(1981, Section 6.5.3)], the constraints are linearized andthe Taylor series of the
objective function is truncated after the quadratic term. There is no need to consider
the constant termf (xk) any longer. The necessary conditions of the Lagrangian
function corresponding to (12.4.4) are

Qk∆x+∇ f (xk)−J2(xk)λ̃ k+1−J3(xk)µ̃k+1 = 0.



406 Mathematical Solution Techniques - The Nonlinear World

If λ k denotes the vector of the Lagrange multipliers (for simplicity’s sake there is
no distinction between the Lagrange multipliersλ andµ for equations and inequal-
ities), known at the beginning of iterationk, and if∆xk, λ̃ k andµ̃k are the solutions
of (12.4.4) of iterationk, the next iterationk+1 follows as




xk+1

λ k+1

µk+1


=




xk

λ k

µk


+αk




∆xk

∆λ k

∆ µk


 ,

(
∆λ k = λ̃ k−λ k

∆ µk = µ̃k−µk

)
,

whereαk is an appropriate damping factor.
For the solution of the quadratic subproblems the reader is referred to Gillet al.

(1981, Section 5.3.2) and Fletcher (1987, [193], Chapter 10).

12.5 Interior-Point Methods

Interior-Point Methods(IPMs) are algorithms for computing local solutions of non-
linear constrained optimization problems, implemented, for instance, inIPOPT by
Wächter & Biegler (2006,[580]), a solver freely available and also embedded in
GAMS. This solver expects equality constraints and bounds on variables. Logarith-
mic barrier functions take care of the bounds. Using the necessary and sufficient
conditions for the existence of local optima (KKT conditions from Section 12.2),
the optimization problem is reduced to solving a nonlinear system of equations, for
instance, by Newton’s method. In LP, IPMs are particularly suitable for large, sparse
matrices or those that are almost degenerate; see also Appendix 3.8.5.

12.6 Mixed Integer Nonlinear Programming

In Section 11.2.2 we formulated a pooling problem and learned that it is a special
case of nonlinear programming. Let us now assume that in addition to the constraints
(11.2.12) and (11.2.14) on page 370 some processing units can only be operated in
specific,i.e., discrete modes. Then we have a mixed integer nonlinear optimization
problem. These problems are far more difficult than the ones we have looked at
so far. Nevertheless, there are algorithms capable of solving such problems. An
early overview of methods designed for solving mixed integer nonlinear problems
is given in Leyffer (1993,[374]). Readers interested in these algorithms are also
referred to Floudas (1995,[195]) or to the reviews by Grossmann (2002,[249]) or
Trespalacios & Grossmann (2014,[568]). Recommended is also the retrospective
on optimization by Biegler & Grossmann (2004,[80]) including a tree of classes of
optimization problems with a strong focus on process systems engineering. Finally,
a recent review and comparison of solvers for convex MINLP isby Kronqvistet al.
(2019,[355]).



12.6 Mixed Integer Nonlinear Programming 407

12.6.1 Definition of an MINLP Problem

In Section 2.6.2 we have already provided a formal definitionof MINLP problems.
We repeat it here for convenience. ForxT = (x1, ...,xnc) andyT = (y1, ...,ynd), ob-
jective functionf (x,y) and constraintsg(x,y) andh(x,y) an optimization problem

min

{
f (x,y)

∣∣∣∣
g(x,y) = 0
h(x,y)≥ 0

,
x ∈ X ⊆ IRnc

y ∈U ⊆ ZZnd

}
(12.6.1)

is called amixed integer nonlinear programming problem, if the domainU is dis-
crete,e.g., U = IN0 = {0,1,2,3, ...} and at least one of the functionsf (x,y), g(x,y)
andh(x,y) is nonlinear.

The continuous variables in (12.6.1) could, for instance, describe the states (tem-
perature, pressure, etc.), flow rates or design parameters of plant or chemical re-
actors. The discrete variables, often binary variables, may be used to describe the
topology of a process network or to represent the existence or non-existence of
plants. The good news is that mostly, binary variables appear only in linear terms,
and rarely in nonlinear ones. Consider, for example, the following pure integer non-
linear problem:

min
y1,y2

{
3y1+2y2

2

∣∣∣∣
y4

1−y2−15= 0
y1+y2−3≥ 0

, y1,y2 ∈ IN0

}

A feasible solution isy1 = 3 andy2 = 66. The unique optimal solution isy∗ =
(y1,y2)

∗ = (2,1) and f (y∗) = 8.

12.6.2 Some General Comments on MINLP

MINLP problems such as (12.6.1) are very difficult optimization problems. They
belong to the classN P-complete problems.7

We have learned that MILP problems are combinatorial optimization problems
for which the B&B algorithm based on LP relaxation proves to be sufficiently effi-
cient. A similar statement is also valid for quadratic programming (QP) problems.
LP and QP problems are special cases of nonlinear programming (NLP) problems.
Usually, NLP problems cannot be solved in a finite number of steps but only iter-
atively. Nevertheless, solving NLP problems is usually easier than solving MILP
problems. The reason for this, a fact well-known to numerical analysts, is that many
NLP problems can be solved locally using sequential quadratic programming (a

7 No algorithm is known which can solve anyN P-complete problem in polynomial time (the
solve time is bounded by a polynomial function of the problem size). It is thought that if such an
algorithm were found, it would also be able to solve otherN P-complete problems in polynomial
time,e.g., the resource constrained scheduling problem presented in Section 10.5. See Nemhauser
& Wolsey (1988) for further material on exact definition and explanation on classN P.



408 Mathematical Solution Techniques - The Nonlinear World

c) convex function d) non-convex function

a) convex set b) non-convex set

Fig. 12.2 Convex and non-convex sets and functions.

similar technique to sequential linear programming described in Section 11.2.2) and
have convergence rates of second order.8 This property allows us to determine local
solutions quickly. The matter becomes more complicated forstrongly non-convex
NLP problems with many local extrema. One way is to use deterministic global
optimization techniques as discussed in Section 12.7. Alternatively, metaheuristics,
for instance, simulated annealing and genetic algorithms are commonly used for this
kind of problem (but they are not able to prove global optimality).

Unfortunately, MINLP problems combine all the difficultiesof both its sub-
classes: MILP and NLP. Even worse, in addition they have properties absent in
NLP or MILP. While for convex NLP problems a local minimum is identical to the
global minimum, we find that this result does not hold for MINLP problems.

It is difficult to solve (12.6.1) in its general form. Therefore, in the 1980s and
1990s only special instances of (12.6.1) had been investigated. A significant as-
sumption or requirement is convexity. A set of points is called convexif for any
given two points belonging to the set the straight line connecting the points also
completely belongs to the set. More formally, the setM ⊆ IRn is calledconvexif
and only if x1 ∈ M andx2 ∈ M imply: λ 1x1 + λ 2x2 ∈ M for all λ 1,2 ∈ [0,1] and
λ 1+λ 2 = 1. A function f : X ⊆ IRn → IR is calledconvexif and only if

λ 1 f (x1)+λ 2 f (x2)≥ f (λ 1x1+λ 2x2), ∀λ 1,λ 2 ≥ 0 | λ 1+λ 2 = 1, (12.6.2)

which implies that the line connecting two pointsf (x1) and f (x2) of the graph
of f never lies “below” the graph [see Fig. 12.2c], and that the tangent at a point
(x0, f (x0)) of the graph always lies “below” the graph ,i.e.,

8 Second order convergence rate implies that we double the number of accurate digits after the
decimal point in each iteration. As derivatives, especially, the Hessian, are subject to numerical
errors, in practice one is usually content to prove and achievesuperlinear convergence.



12.6 Mixed Integer Nonlinear Programming 409

f (x)≥ f (x0)+ f ′(x0)(x−x0), ∀x. (12.6.3)

Solution algorithms in discrete optimization belong to twoclasses:deterministic
andheuristic methods. All deterministic methods use implicit enumeration and tree
search rules, which try to avoid analyzing sub-trees. B&B, for instance, uses rules to
fathom branches of the tree to avoid exploring them without ruling out the optimal
solution. Deterministic methods can decide whether a givensolution is optimal or
not. Heuristic methods lack this feature. Unfortunately, so far, efficient exact meth-
ods for solving large-scale non-convex MINLP problems still wait to be invented.

A simple deterministic method is to list all combinationsU of discrete variables
yi . Each binary vectoryi generates an NLP in the continuous variable vectorx. If
we solve this NLP problem, it is either infeasible or yields asolution, i.e., a pair
(xi ,zi = f (xi ,yi)). After having solved all NLP problems, we choose the pair with
smallestzi (let us refer to it using the indexi∗). Thus, the solution is given by the
triple (x∗ = xi∗ ,y = yi∗ ,z∗i = f (xi∗ ,yi∗)). This method is sometimes referred to as an
exhaustive search, and, of course, only works ifU has a limited number of elements
and if the NLP subproblems allow us to determine their globalminima. Although
the convexity assumption is fulfilled for convex (continuous) problems, the method
is of no practical use because of the prohibitively high numerical effort.

12.6.3 Deterministic Methods for Solving MINLP Problems

Deterministic methods for solving (convex) MINLP problems–cf.Nowak (2005,[433])
or Kronqvist (2018,[354]) for good reviews – in the 1980s fall into three classes:

1. Branch & Bound (Gupta & Ravindran, 1985, [258]),
2. Generalized Benders Decomposition (Geoffrion, 1972,[220]),
3. Outer Approximation (Duran & Grossmann, 1986,[171]), and
4. Convexification coupled to B&B entered the stage in the 1990s, followed

somewhat later by B&C.
The B&B algorithm for MINLP problems by Gupta & Ravindran (1985,[258]) is
based on the same ideas as the B&B algorithm for solving MILP problems. The
first step is to solve the problem generated by relaxing the integrality condition on
the variables. If a solution of the relaxed problem fulfills all integrality conditions, it
is also a solution of the original problem. Otherwise, in a minimization problem the
relaxed problem provides a lower bound (of course only if theglobal minimum can
be determined) and the search tree is built up. A feasible integer solution provides an
upper bound. A major drawback of the B&B algorithm applied toMINLP problems
is that nodes deeper in the tree cannot benefit so greatly frominformation available
at previous nodes as is the case in B&B algorithms for solvingMILP problems
exploiting warm starts using the dual Simplex algorithm.

The Generalized Benders Decomposition (GBD) method divides the variables
into two sets: complicating and non-complicating variables. In MINLP models the
class of complicating variables is made up by the discrete (usually binary) vari-



410 Mathematical Solution Techniques - The Nonlinear World

ables of the problem at hand. Then the algorithm generates a sequence of NLP
sub-problems (produced by fixing the binary variablesyk) and solves the so-called
MILP Master problems in the space of the complicating variables. The NLP sub-
problems yield upper bounds for the original problem while the MILP Master prob-
lems yield additional combinations of binary variablesyk for subsequent NLP sub-
problems. Under convexity assumptions the Master problemsgenerate a sequence
of lower bounds increasing monotonically. The algorithm terminates if lower and
upper bounds equal or cross each other.

Outer Approximation (Duran & Grossmann, 1986, [171]) also consists of a se-
quence of NLP sub-problems (produced by fixing the binary variablesyk) generated
by MILP Master problems. The significant difference lies in the definition of the
master problems. Algorithms based on Outer Approximation (OA) describe the fea-
sible region as the intersection of an infinite collection ofsets with a simpler struc-
ture, e.g., polyhedra. In Outer Approximation, Master problems are generated by
“outer approximations” (linearizations, or Taylor seriesexpansions) of the nonlin-
ear constraints inthosepoints which are the optimal solutions of the NLP subprob-
lems; that is, a finite collection of sets. The key idea of the algorithm by Duran &
Grossmann (1986,[171]) is to solve the MINLP with a much smaller set of points,
i.e. tangential planes. In convex MINLP problems, a superset of the feasible region
is established. Thus, the OA Master problems (MILP problem in both discrete and
continuous variables) produce a sequence of lower bounds monotonically increas-
ing. The termination criterion is the same as above.

While the GBD Master problems have fewer variables and constraints, the OA
algorithm provides tighter bounds and needs fewer iterations for convergence. Both
GBD and OA algorithms have heuristic extensions for non-convex MINLP. In many
instances they are even capable of proving optimality.

12.6.4 Algorithms and Software for Solving Non-convex MINLP
Problems

DICOPT by Duran & Grossmann (1986,[171]) and Viswanathan & Grossmann
(1990,[579]) was, in the 1980s, the only commercial software available for solv-
ing MINLP problem (12.6.1) of realistic size. It usesOuter Approximationwith
some extensions for non-convex problems.

One of the few and early MINLP algorithms and programs becoming available in
the 1990s isαECP;cf. Westerlundet al. (2018,[586]) for a recent paper on this ap-
proach. TheαECP method is an extension of Kelley’s cutting plane method which
was originally given for convex NLP problems; Kelley (1960,[342]). In Westerlund
& Pettersson (1995,[588]) the method was extended to convexMINLP problems
and in Westerlundet al. (1998,[591]) further extended to MINLP problems with
pseudo-convex constraints. The method was further extended in Westerlund & P̈orn
(2002,[590]) and the actual version of the method convergesto the global optimal



12.7 Global Optimization - Mathematical Background 411

solution for non-convex MINLP problems having a pseudo-convex objective func-
tion and pseudo-convex inequality constraints.

Another software package for mixed integer nonlinear optimization isMINOPT
by Schweigeret al. (1996,[508]), developed at the Department of Chemical Engi-
neering of Princeton University. This package can even handle MINLP problems
with differential constraints or mixed integer optimal control problems.

The period from 2000 to 2020 shows many streams of activitiescovering compu-
tational complexity, convexification, decomposition, finding feasible solutions and
deterministic approaches to computing global solutions ofMINLPs leading, for in-
stance, to the solversANTIGONE, BARON, COUENNE, LINDO, andDECOA, a par-
allel decomposition-based MINLP solver implemented inPython andPyomo; cf.
Burer & Letchford (2012,[107]), Bonamiet al. (2012,[97]) for algorithms and soft-
ware for convex MINLP, Belottiet al. (2013,[64]), Kilinç & Sahinidis (2017,[344]),
Sahinidis (2019,[490]) and further references therein, Nowak (2019,[434]), Muts
et al. (2020,[428]) – and Section 12.7. While Gurobi’s MILP solveris known as a
strong MILP solver, it is worthwhile to mention Gurobi’s efforts towards solving
non-convex mixed integer quadratically constrained problems being part of their
solver.

An impressive MINLP application is from one of the factoriesof Danisco in
Finland (today owned by DuPont), where a compound named Betaine (a food in-
gridient) is separated from molasses (a liquid solution from sugar beets). Betaine
is used for different purposes, but among all used as a nutrient in animal foods
for farming. The mathematical problem in this application is very exciting since it
resulted in an extremely complex MINLP model where the separation system has
been formulated by Emet & Westerlund (2008,[179]) as a two point boundary value
problem of a system of partial differential equations included as constraints in the
MINLP model. More on discretized differential equations asconstraints in NLP or
MINLP problems is found in Andrei (2013,[27]).

12.7 Global Optimization - Mathematical Background

The global minimum of problem (2.6.1) can can only be calculated with methods of
global optimization, if we do not request convexity;cf. ([197], [281], [280], [282],
[341], [553], [555], [200], [376], [199], [414])) – the literature reviews by Floudas
et al. (2005,[198]) and of Misener & Floudas (2012,[414] are particularly recom-
mended. In the case of deterministic methods – and only thoseare to be considered
– an upper and lower limitzo andzu for the objective function is determined for
a givenε-bound, so that finallyzu ≤ f (x,y) ≤ zo andzo−zu ≤ ε apply. The upper
boundzo is the objective function valuezo = f (x,y) of a feasible point(x,y) or, bet-
ter still, of a local minimum(x∗,y∗) obtained by a solution method for determining
stationary points in a continuous nonlinear problem or heuristic. While obtaining an
upper bound is relatively simple, the determination of the lower boundzu is more
difficult and the following methods are suitable,e.g.,



412 Mathematical Solution Techniques - The Nonlinear World

• interval methods([341] or [463]), which are not discussed here,
• convex relaxationusing convex underestimators and convexified sets combined

with a B&B process, and also
• piecewise linear underestimators(MILP formulation).

A convex function fu is calledconvex underestimatorfor a given functionf on
a setS , if fu(x) ≤ f (x) for all x ∈ S . As an example, the non-convex function
f (x1,x2) = x1x2 is considered on the interval[X−

1 ,X+
1 ]× [X−

2 ,X+
2 ]; it consists of

only one bilinear term and can be linearly convex underestimated by the variabley
and the following four inequalities

X−
1 x2+X−

2 x1−X−
1 X−

2 ≤ y≤−X+
1 x2−X−

2 x1+X−
1 X+

2

X+
1 x2+X+

2 x1−X+
1 X+

2 ≤ y≤−X−
1 x2−X+

2 x1+X−
1 X+

2 ;

cf.Al-Khayyal & Falk (1983,[14]), Al-Khayyal (1990,[13]) andMcCormick (1976,[400]).
The error between thef and this convex underestimatory is bounded by

max
x1,x2∈[X−

1 ,X+
1 ]×[X−

2 ,X+
2 ]
(x1x2−y) =

1
4

(
X+

1 −X−
1

)(
X+

2 −X−
2

)
.

For rational termsx1/x2, which have no sign change in the interval[X−
1 ,X+

1 ]×
[X−

2 ,X+
2 ], we obtain the linear inequalities

y≥ X−
1 /x2+x1/X+

2 −X−
1 /X+

2 , if X−
1 ≥ 0

y≥ x1/X+
2 +X−

1 x2/X−
2 X+

2 +X−
1 /X−

2 , if X−
1 < 0

y≥ X+
1 /x2+x1/X−

2 −X−
1 /X+

2 , if X+
1 ≥ 0

y≥ x1/X−
2 −X+

1 x2/X−
2 X+

2 +X−
1 /X−

2 , if X−
1 < 0.

Finally, we provide the best linear convex underestimator for univariate concave
functions f(x),i.e., functions with f ′′(x)< 0 on the interval[X−,X+],

f (x)≥ f (X−)+
f (X+)− f (X−)

X+−X−
(
x−X−) .

General, twice continuous-differentiable non-convex functions f (x) can be derived
for x ∈ IRn in the interval[X−,X+], as in (1994,[112]) by

F(x) := f (x)−
n

∑
i=1

α i
(
X+

i −xi
)(

xi −X−
i

)

with F(x)≤ f (x) and

α i ≥−1
2

min
i,x∈[X−,X+]

λ i {H(x)} ≥ 0, (12.7.4)



12.7 Global Optimization - Mathematical Background 413

whereH(x) is the Hessian matrix off (x) and λ i {H(x)} is the ith Eigenvalue of
H(x). Note that the smallest eigenvalueH(x) assumes on the interval[X−,X+] must
be calculated in each case. The maximum distance is given by

dmax := max
x∈[X−,X+]

( f (x)−F(x)) =
1
4

n

∑
i=1

α i
(
X+

i −X−
i

)2
. (12.7.5)

F(x) is convex on the interval[X−,X+] if and only ifHF(x)+2∆ is positive definite
for all x ∈ [X−,X+]. Here,HF(x) is the Hessian ofF and∆ := diag{α i} is called
diagonal shift matrix. The method outlined here is called the non-uniform diagonal
shift method([7], [8] and [9, Sections 3.4 and 3.5]). If instead of theα i-values, a
globalα , i.e., ∆ := α1l is used, one speaks of auniform diagonal shift procedure–
in this case,dmax is proportional toα .

The eigenvalues can be calculated exactly or with methods ofinterval arithmetic
– cf. [463] or [341]. This step is important for the efficiency of the procedure; theα i

should be as small as possible after (12.7.4) in order to makedmax as small and the
underestimators as accurate as possible. For the example

min
−1≤x1≤2,−1≤x2≤1

f (x1,x2), f (x1,x2) := cosx1sinx2−
x1

x2
2

the Hessian follows from follows – in the general case,e.g., with an automatic dif-
ferentiation algorithm – as

H f (x) :=




−cosx1sinx2 −sinx1cosx2+
2x2

(x2
2+1)

2

−sinx1cosx2+
2x2

(x2
2+1)

2 −cosx1sinx2+
2x1(x2

2+1)
2−8x1x2

2(x2
2+1)

2

(x2
2+1)

4


 .

For the application of interval arithmetic it is important and necessary thatH f (x)
can be calculated analytically. If one evaluates this matrix under consideration of
the indicated bounds of the variablesx1 andx2, then the interval estimation follows

H f (x)⊆ [H f ] =

(
[−0.84148,+0.84148] [−3.00000,+2.84148]
[−3.00000,+2.84148] [−40.84148,+32.84148]

)
.

However, these elements can be further refined by determining the global minimum
or maximum for each element over the permissible range. Thisway we get the
optimal interval-Hessian

[H f ]∗ =
(
[−0.84148,+0.84148] [−1.52288,+1.38086]
[−1.52288,+1.38086] [−2.00608,+4.00181]

)
.

The following results are relevant here. The exact smallesteigenvalue for(x1,x2) ∈
[−1,2]× [−1,1] is λ e

min(H f ) =−2.3934; this can be approximated, for example, by
calculating the eigenvalues of the matrixH f (x) for a very fine grid. The smallest
eigenvalue of interval matrices can be calculated,e.g., with the method of Hertz



414 Mathematical Solution Techniques - The Nonlinear World

convex underestimator

non-convex function

Fig. 12.3 Non-convex function and a convex under-
estimator. The convex underestimator displayed is not
necessarily the best convex underestimator. The best
convex underestimator possible is the convex hull
function of the given non-convex function.

[277]; the basic idea is to construct a finite subset of real matrices from the interval-
Hessian so that the smallest eigenvalue over all these matrices of the subset is equal
to the smallest eigenvalue of the interval-matrix. We getλ e

min([H f ]) =−41.0652 and
λ e

min([H f ]∗) = −3.0817. Thus,α = 1.1967 after (12.7.4) is sufficient to guarantee
the convexity of the underestimator

F(x) := f (x)−α (2−x1)(x1+1)−α (1−x2)(x2+1) .

A convex setMc is calledconvexificationof a given setM if Mc ⊇ M. The setS
implicitly defined by the inequalities9 g(x,y)≥ 0 is spatially divided into subsetsSi

in a B&B method. The convex minimization problem min(x,y)∈Si
c

f i
c(x,y) is solved

by convexificationSi
c. It is solved by means of a procedure similar to outer ap-

proximation described above providing the solutionzi
c from which the lower bound

zu := mini zi
c follows. By further refinement of the division and thus better adapta-

tion of the convex underestimatorsf i
c(x,y) to the division, a monotonously growing

sequence of lower boundszu is created. The refinement is continued untilzo−zu ≤ ε
is valid.

It can be shown that this process class converges towards theglobal minimum up
to everyε-bound – but only in theory, as the unavoidable rounding errors that occur
during the practical implementation of a numerical algorithm on a computer are
not taken into account; when solving practical problems, one should therefore not
request accuracies, for instance, smaller thanε < 10−6. The fact that the influence of
rounding errors can be considerable and have serious consequences, and can even
lead to completely false statements, has often been demonstrated on the basis of
practically relevant problems. With regard to rounding errors, it can be useful in
global optimization to check the results using methods of interval arithmetic.

The solverGLOMIQO (Global Mixed-Integer Quadratic Optimizer), and its suc-
cessorANTIGONE, developed by Misener & Floudas (2012,[414]) is particularly
suitable for solving non-convex NLP and MINLP problems thatare only quadratic
in constraints and objective function. Here the problem is reformulated first; if pos-
sible, variables in equalities are eliminated. For example

Qi j xix j +Akxk = B

under the assumptionAk 6= 0 the variablexk is replaced by

9 Equationsh(x,y) = 0 are replaced by the inequality pairs−δ ≤ h(x,y)≤ δ with any givenδ > 0.
However, this procedure should only be used if there is no otherway; it is not very efficient.



12.7 Global Optimization - Mathematical Background 415

xk =
Qi j xix j −B

Ak
.

If lower and upper limitsX−
k andX+

k are known forxk, the inequalities

X−
k ≤ Qi j xix j −B

Ak
≤ X+

k

are added to the problem.
Bilinear termsxix j are replaced by the introduction of an additional variable

yi j := xi +x j

leading to

xix j =
1
2

(
y2

i j −x2
i −x2

j

)
. (12.7.6)

Although the right-hand side of (12.7.6) now contains threeadditional quadratic
terms, to our advantage each of them only contain one variable. Two special fea-
tures ofGLOMIQO, and its successorANTIGONE, are the generation ofRLT con-
ditions and a graph-theoretical analysis to identify convex substructures which
have a positive effect in connection with convex underestimators. RLT stands for
reformulation-linearization techniques; the RLT conditions are dynamically added
to the problem if required.GLOMIQO, for example, considers all variablesxi that oc-
cur nonlinearly anywhere in the model and multiplies them byall linear equalities
with row vectorAm and column vectorx

Amx = ∑
j

Am jx j = bm,

containing only continuous variablesx j , i.e.,

∑
j
(Am jx j −bm)xi = ∑

j
Am jx jxi −bmxi = 0, ∀{im}.

The inequalities
b−m ≤ Amx ≤ b+m

are treated similarly and lead to the additional inequalities
(
Amx−b+m

)(
xi −X−

i

)
≤ 0,

(
Amx−b+m

)(
X+

i −xi
)
≤ 0, ∀{im},(

b−m−Amx
)(

xi −X−
i

)
≤ 0,

(
b−m−Amx

)(
X+

i −xi
)
≤ 0, ∀{im},

which are not all generateda priori, but only when required within B&B.



416 Mathematical Solution Techniques - The Nonlinear World

12.8 Summary & Recommended Bibliography

In this chapter we have covered different ways of solving NLPand MINLP problems
and have investigated certain aspects of software which will solve such problems.
Thus the reader should now be familiar with:

• a standard form of NLP problems;
• the use of first and second order necessary and sufficient condition (KKT condi-

tions) and some very general principles of NLP and MINLP; and
• how the general reduced gradient method works.

A goodIntroduction to Nonlinear and Global Optimizationis by Eligius M. T. Hen-
drix & Boglárka G.-T́oth (2010,[272]). Methods to solve MINLP problems are well
covered by Nowak (2005,[433]). For further reading on nonlinear optimization ap-
plications we recommend Andrei (2013,[27]).

12.9 Exercises

1. Use a local NLP solver to solve a) maxf (x) with f (x) = (10−x)sin9(2πx) for
x∈ [0,10]. b) Solve a) under the constraintx+ f (x)≤ 4. Think about appropriate
initial values forx.

2. Use a local NLP solver to minimizef (x,y) = x2+y2 subject tox2−16y≤ 0 and
1.6− y(x−1.6) ≤ 0 and−7x2+39x−2y≤ 42. Think about appropriate initial
values forx andy.

3. Let t ∈ [0,2π]. Use a local NLP solver to minimize

f (t) =
+1

∑
k=−1

Ak{
3r2

0−4r2
0 cosθ −2r2

0

[
sin2 θ cos

(
t + 2

3πk
)
−cos2 θ

]}6

−
+1

∑
k=−1

Bk{
3r2

0−4r2
0 cosθ −2r2

0

[
sin2 θ cos

(
t + 2

3πk
)
−cos2 θ

]}3

with r0 = 0.154,θ = 109◦.5, and

A−1 = 588600 B−1 = 1079.1
A0 = 600800 B0 = 1071.5

A+1 = 481300 B+1 = 1064.6
.

Hint: Construct your own multi-start algorithm with initial values fort in [0,π/2],
[π/2,π], [π,3π/2], and[3π/2,2π].



Chapter 13
Global Optimization in Practice

Global optimization techniques,cf.Horst & Pardalos (1995,[280]), Floudas (2000[197]),
Floudas & Gounaris (2009,[199]) or Misener & Floudas (2012,[414]), are suit-
able for solving non-convex NLP or MINLP problems. When in this book we
refer to global optimization, we meandeterministic global optimization, where a
globally-optimal objective function value can be computedup to a givenε > 0.
If ε approaches the machine accuracy, fundamental questions arise which are bet-
ter answered in the disciplineReliable Computing; we therefore limit ourselves to
ε > 10−6, which is sufficient for most practical problems. In practice, the compu-
tational effort growth exponentially with the number of nonlinear variables has a
limiting effect. Since 2002, several commercially available solvers have been devel-
oped, includingBARON [223], LINDO [503] andGLOMIQO [414] andANTIGONE,
which are systematically described in the review article byMisener & Floudas
(2012,[414]).

Petroleum industry tries to solve planning and scheduling problems , which con-
tain pooling problems in their core, using deterministic global optimization. The
production of natural gas is also related to this. Questionsin the environment of
water systems or food production often also contain poolingproblems and therefore
require global optimization techniques. Further application examples can be found
in Floudaset al. (1999,[201]), Floudas (2000,[197]) or Kallrath (2004,[315]). It is
also worth mentioning that with the methods of global optimization as in Maranas
& Floudas (1994,[112]) it is possible to determine all zerosof a system of nonlin-
ear equations. This is applied,e.g., in the determination of all stationary states of
chemical reactors; Maranas & Floudas (1994,[112]) apply itto the determination
of possible energy levels of molecules, Ratschek & Rokne (1993,[462]) to circuit
design problems. Applications to parameter estimation androbotics can be found
in Jaulinet al. (2001,[297]). Misener & Floudas (2012,[414]) also includes applica-
tions from the field ofComputational Geometry.

In this chapter, we have commented on several applications originating from cut-
ting and packing, a field for which the book by Scheithauer (2018,[500]) provides a
very good overview and introduction. For smaller cutting orpacking problems it is
possible to prove global optimality.

417



418 Global Optimization in Practice

13.1 Global Optimization Applied to Real World Problems

There are many good reasons why deterministic global optimization is or should
be used when solving non-convex nonlinear (continuous and mixed integer) uncon-
strained or constrained real-world optimization problems. The arguments are:

1. determination of a global minimum or maximum of the objective function f over
the feasible region,

2. determination of lower and upper bounds on the global minimum or maximum,
3. determination of a collection of good quality local solutions in a local vicinity of

the global solution,
4. determination of all isolated solution points of the set of equality and inequality

constraints , and
5. guaranteed proof that a constrained nonlinear problem isfeasible or infeasible.

Point 1 is of course the most important if we are solving objective functions the
values of which are of the order of billions of dollars; even atenth of a percent is
a lot of money. Point 2 provides us with a quality estimation if we cannot prove
global optimality, but at least we have guaranteed bounds quantifying the maximal
difference to the theoretical global extremum. Point 3 is often relevant for practical
purposes and the robustness of the solution. Point 4 is not soobvious, and possibly
more often used in science: sometimes it is useful to know allroots of an equation
system. Only exact methods – deterministic global optimization belongs to this class
– can prove that a problem is infeasible; this is Point 5.

An important practical issue when solving complicated problems is to find feasi-
ble points at all. Local solvers may just produce the messageproblem is infeasible,
which only means that it islocally infeasible. The global solvers mentioned above
have multi-start techniques and local search strategies embedded which initialize a
local NLP solver. That way, they have a much better chance to come up with at least
a feasible point.

Closing the gap is still a challenge for most global solvers.And there is an impor-
tant trade-off between determining feasible points, on theone hand, and closing the
gap, on the other hand. For only determining feasible pointsthe problem should be
as simple as possible and contain as few nonlinear terms as possible. For closing the
gap, in many cases one needs extra constraints destroying symmetry and degeneracy
– which in turn makes it more difficult to find feasible points.

After the advent of global solvers in the early 2000s, now solvers can deal with
larger problems with more variables than in 2002, have embedded better techniques
and use reformulation and transformations,cf. Skjäl et al. (2012,[526]), Skj̈al &
Westerlund (2014,[525]) or Lundell (2018,[389]), to closethe gap, but they are by
far not at the same level as MILP solvers presently. Some global solvers still lack
trigonometric functions. Robustness and stability are issues to be improved. So,
there is a long way to go to meet industrial standards. But it is worthwhile to try
global solvers for the problem at hand – and, in some operative industrial software
they are used, for instance, in pulp and paper industry.



13.2 A Trimloss Problem in Paper Industry 419

13.2 A Trimloss Problem in Paper Industry

Cutting and packing industry significantly1 contributes to the GDP of several coun-
tries. As in Section 4.1, we are faced with the task of cuttingpaper products of vari-
ous sizes from a large paper roll (master roll) in order to satisfy customer demands.
This time, however, not only the choice of patterns and theirmultiplicity, but also the
patterns themselves should be the degree of freedom of optimization. This question,
which is dealt with in papers by Westerlundet al. (1994,[589]) and Harjunkoski
(1997,[262]), leads to a nonlinear, non-convex integer optimization problem.

The master roll has widthWmr and a length assumed to be infinite. Each order or
product paper rolli, i ∈ I = {1, . . . ,N}, is identified by its widthbi . It is assumed
that all product rolls have the same infinite length. In general, cutting an entire or-
der from the master roll without trimloss is impossible. A combination of optimal
waste pattern minimizes the waste. In order to identify the best scheme, a maximum
number of different patternsNP is suggested, where a pattern is defined by the po-
sitioning of the knives. Each pattern contains one or more pieces of order widths
Wi , i ∈ I = {1, . . . ,N}, and can be repeated several times throughout the scheme
to meet the demand forDi pieces of order widthWi . The selection of each pattern is
described by a binary variableδ p, p∈ P = {1, . . . ,NP}, the number of repetitions
of the patternp by the integer variableµ p. The number of products of sizei in the
patternp is characterized by the integer variableα ip. Later, we want to arrange the
patterns so that the more frequently used ones are listed first. The patterns are still
subject to some special constraints. For example, each pattern must have a minimum
used total width ofF . The number of knives in use is limited byK, which means that
there cannot be more thanK order widths in a pattern. This results in the following
minimization problem

z= min
µ p,δ p,α ip

∑
p∈P

(
CR

p µ p+CP
pδ p

)

with roll costsCR
p to be paid for each typep roll used, and fixed costsCP

p to be paid
when patternp is used. The following constraints must be observed: Fulfillment of
demand

∑
p∈P

µ pα ip = Di , ∀i. (13.2.1)

Consideration of the lower and upper width when selecting patterns

Fδ p ≤ ∑
p∈P

Wiα ip ≤Wmrδ p , p∈ P. (13.2.2)

1 The pulp and paper industry plays an important role worldwide.There are in the order of 3000
paper mills worldwide, producing a total of 394 million tons ofpaper and paperboard, in 2010.
Europe (including Russia) has approximately 900 paper mills, while Germany has about 180. The
largest producer in the world is the Finnish UPM group with an annual tonnage of 12.7 million
tonnes, followed by Stora Enso with 11.8 million tons and by International Paper with 9.7 million
tonnes per year. Santos & Almada (2012,[494]) report that in Portugal the pulp and paper industry
contributes over 4% of the GDP and 5% of the active employees.



420 Global Optimization in Practice

Limitation of the cutting knives and thus the number of orderwidths in a pattern

δ p ≤ ∑
i∈I

α ip ≤ Kδ p , p∈ P.

Relating the pattern selection variableδ p to the pattern multiplicityµ p

δ p ≤ µ p ≤ Pδ p , p∈ P,

whereP is an upper limit on the usage of patternp. A special cutting condition
which is derived from demand

∑
p∈P

µ p ≥ max

{⌈
∑i∈I Di

K

⌉
,

⌈
∑i∈I WiDi

Wmr

⌉}

can give us some indication on how to selectP.
It is important for proving optimality to destroy degeneracy, i.e., if patternp is

selected, then – in order to avoid defining patterns which arenot used at all – pattern
p−1 must also be selected

δ p ≤ δ p−1 , p∈ P.

Patternp−1 should be used more often than patternp

µ p ≤ µ p−1 , p∈ P,

and finally the integrality conditions

δ p ∈ {0,1} , p∈ P,

µ p ∈ {0,Mp}∩ IN0 , p∈ P

and
α ip ∈ {0,NK}∩ IN0 , i ∈ I , p∈ P.

Setting the cost coefficients to

CP
p = 1 , CR

p = 0 , p∈ P

gives the minimal number of patterns, while

CP
p = 0 , CR

p = 1 , p∈ P

minimizes the number of rolls. Mixed costs or cost such as

CP
p = 1 , CR

p = 0.1p , p∈ P

are possible as well. The implementationTrimMINLP.gmshas been set up forWmr =
2360,F = 2225,K = 12 and



13.2 A Trimloss Problem in Paper Industry 421

D = (6,6,9,9,12,15)

W = (300,280,265,240,225,208).

For minimizing the number of patterns we setNP= 4 and obtain a proven minimum
of two patterns (µ1 = µ2 = 3) with the global solverANTIGONE, BARON, COUENNE

andLINDO within seconds. Six rolls is also the result when we minimizethe number
of rolls (for the settingNP = 6), but in that case we get four patterns (µ1 = µ2 =
2,µ3 = µ4 = 1). Using the mixed costs

CP
p = 1 , CR

p = 2 , p∈ P

leads again toµ1 = µ2 = 3, i.e., two patterns and six rolls.
For up to ten order widths, this MINLP model works well and thegap is

closed within minutes. Above ten orders and also somewhat depending on the de-
mand spectrum, solution times increases strongly. However, as we learn in Section
14.1.3.2.2, there are more efficient ways – for instance, column generation tech-
niques – for solving special cases of the problem above than resorting to solving it
as a MINLP problem. However, real-world situations may ask for features which
destroy the structure of decomposition techniques such as column generation. Typ-
ical situations or complicating features are minimizing the number of patterns (that
is why we provide this MINLP formulation) resulting in fewerknife changing op-
erations, exact demand fulfillment as in (13.2.1), the restriction that only patterns
with a certain minimal filling widthF (equivalently, maximal trimloss) as above in
(13.2.2) are considered feasible, or the requirement that orders should be covered
by a minimal number of patterns.

Let us also refer to another trimloss problem in paper converting industry solved
by Westerlund & Isaksson (1998,[587]). The production in this application is much
lower but also in this case the entire production in the factory is considered. The
production capacity in this industrial application is 100,000 metric tons of converted
paper per year (the turnover of the factory being about 100 million euro) but also
in this case the MINLP application is sufficiently large, calculated it in the number
of MINLP problems solved on a yearly basis, which is about 3,500. The trim loss
(mainly on laminated paper) was about 4.5 percent of the production in late 1990-
ties and decreased to about 1.7% (calculated on a yearly basis) after the system was
taken into use at the Walki Wisa factory in Pietarsaari, Finland.

A similar technique has been used by Karelathiet al. (2011,[335]) to solve a large
scale production planning in the stainless steel industry.The problem involves the
cutting of all steel products in the Outokumpu Stainless Steel mill in Tornio, Finland.
The factory is one of the largest stainless steel mills in theWorld, with a yearly
production of about 2 million metric tons of stainless steel. The number of trim loss
problems solved in the factory is huge as well. The total number of MINLP problems
solved per year is about 150,000 and the total number of variables optimized on a
yearly basis is about 150 million in this largescale industrial application. The system
solving the trim loss problems has been in daily use since beginning of the century
(started in 2000). Thus, about 3 million MINLP (trim-loss) problems have been



422 Global Optimization in Practice

solved, including about 3,000,000,000 variables in this giant industrial application,
since the system was taking in use.

13.3 Cutting and Packing involving Convex Objects

The bottoms of large tanks, such as those used in breweries, are bent from a circular
base and convexly deformed. They are made of high quality stainless steel and the
circles are cut from rectangular metal plates [coils], which are subject, for example,
to production restrictions not exceedingL = SP

1 = 8m andB = SP
2 = 4m in width.

Required circles exceeding these dimensions are divided into convex polygons and
then welded together. Since stainless steel is very expensive, the circles or polygons
have to be cut from minimal area coils; special models and solutions, which guar-
antee the non-intersection of convex polygons by means of separating hyperplanes,
have been developed by Kallrath (2009,[320]). Alternatively, previously produced
rectangles can be stored in inventory,i.e., their dimensions are known. In Rebennack
et al.(2009,[467]), this task is solved by a column numbering method in which non-
convex NLP problems are solved globally.

Paint to be applied in large quantities to walls is often stored in buckets of ellipti-
cal basic shape so that the paint rollers can be as large as possible and the weight of
the full paint buckets does not become too great. For the transport of such buckets
it can be useful to combine large and small buckets on truck loading areas in order
to achieve the best possible area utilization. Since ellipses also approximate well to
other geometric figures by overlapping, packing or cutting problems with ellipses
or later in three dimensions with ellipsoids are already very interesting. Kallrath &
Rebennack (2014,[329]) have developed a separating line approach for this purpose,
which has ultimately led to a closed algebraic formulation of the problem and allows
to place a given set of ellipses on rectangles with minimum area.

Consider the case that all objectsi ∈ I are to be placed into a design rectangle
R within a target rectangle of specified size,i.e., xP

d ≤ SP
d, d ∈ {1,2}; the area

a= xP
1xP

2 (13.3.3)

of this design rectangle should become minimal.
The modeling process involves representing the objects, ensuring that their in-

terior does not overlap with interior of other objects, and modeling the objective
function. The placement of the objects usually allows totranslateandrotatethem.

Using appropriate inequalities, we must ensure that no objects overlap (they are
allowed to touch) or exceed the boundaries ofR. Formulating these conditions for
circles alone is simple, as outlined in Section 13.3.1.1, but for keeping circles, poly-
gons and ellipses apart, it becomes very challenging to construct separating lines
or separating planes in 3D (for instance, when packing ellipsoids as in Kallrath
(2017,[324])).



13.3 Cutting and Packing involving Convex Objects 423

13.3.1 Modeling the Cutting Constraints

We briefly describe the conditions for circles and polygons.For ellipses we refer the
reader to Kallrath & Rebennack (2014,[329]).

13.3.1.1 Cutting Constraints for Circles

If our objects are only circles with radiiRi , the non-overlap conditions are quite
simple. If xi andxi′ denote the centers of the circlesi and i′, then non-overlap is
ensured by

(xi −xi′)
2 ≥ (Ri +Ri′)

2 , ∀{ (i, i′) | i < i′}. (13.3.4)

For n circles we obtainn(n−1)/2 inequalities of the type (13.3.4).
In this context (circle cutting or packing), it is worthwhile to briefly refer to Ke-

pler’s conjecture: For packing congruent circles or spheres in unrestricted 2D and
3D geometry, the highest packing densityδ (fraction of area or volume covered
by the objects) is realized for face-centered cubic and hexagonal close packing ar-
rangements withδ 2D = δ 3D = π/

√
18. About 300 years after Kepler, the 2D case

was proven by the Norwegian mathematician Axel Thue (1909,[557]). The much
more difficult 3D case was proven, a century after Thue, by Hales (2005,[260]) –
interestingly enough, in his proof he has used LP and B&B!

Unlike the situation in Kepler’s conjecture, in our case we have non-congruent
circles and a rectangular design container with free lengthand width. The inequali-
ties

xid ≥ Ri ; ∀{i,d} (13.3.5)

and
xid +Ri ≤ xP

d ≤ SP
d ; ∀{i,d} (13.3.6)

guarantee that no circle exceeds the boundaries of the rectangle.
For up to ten circles, feasible solutions are found within seconds – global opti-

mality is proven in less than an hour.

13.3.1.2 Cutting Conditions for Polygons

A polygon p is characterized by itsKp verticesVp1, . . . ,VpKp, or by its coordinates
Xpk, k= 1, . . . ,Kp. It suffices to consider convex polygons. Interesting applications
of non-convex polygons in the textile industry can be reduced to convex polygons
as non-convex polygons can always be built up by convex polygons. Polygons are
implicitly and completely described by their centers, the direction from the center to
the vertices and distances to the centers as well as by the orientation; see Fig. 13.1.
The centerX0

p of the original, unmoved and non-rotated polygon is defined by



424 Global Optimization in Practice

X0
p =

1
Kp

Kp

∑
k=1

Xpk ; ∀{p}. (13.3.7)

The polygons can now be placed in any position, using the vector x0
q

x0
p =

1
Kp

Kp

∑
k=1

xpk ; ∀{p} (13.3.8)

as the center. Preservation of shape and orientation is determined by the equation

xpk = x0
p+

(
cosα p sinα p

−sinα p cosα p

)(
Xpk−X0

p

)
; ∀{pk}. (13.3.9)

If one wants to avoid trigonometric terms, instead of the rotation angleα p we can
also usevp := cosα p andwp := sinα p as free variables with bounds−1≤ vα p ≤+1
and−1≤ wα p ≤ +1, wherevp andwp are further connected by the trigonometric
identity

v2
p+w2

p = 1 ; ∀{p}. (13.3.10)

For polygons with a symmetry axis we only need to consider anglesα p in the inter-
val from 0◦ to 180◦, i.e., −1≤ wα p ≤ 1. Further symmetry properties can be used
for regular polygons.

xp2

xp1

xp6

xp5

xp4

xp3

x
0
p

Fig. 13.1 Representation of polygons exploiting the vertices and the center. Reprinted by permis-
sion from Springer Nature, Journal of Global Optimization, Kallrath (2009,[320]), Fig. 1.

The condition that a convex polygon completely lies inR is reduced to the con-
dition that all vertices lie insideR, i.e.,

Xpkd ≤ xP
d ≤ Smax,d ; ∀{pkd}. (13.3.11)

In order to ensure that two polygonsp and p′ do not overlap, we have to proceed
somewhat differently than with circles, where non-overlapwas easily enforced by
a distance condition between the centers. With any convex objects in the plane,



13.3 Cutting and Packing involving Convex Objects 425

including polygons and later ellipses, we can take advantage of the fact that every
straight line that does not run through the interior of the object has the property that
the object lies on one side of the straight line. For every twoconvex objects that
are free of overlap except for points of contact, at least onestraight line (in higher
dimensions, at least one separating hyperplane) can be found, where both objects lie
on different sides of the straight line.

xi

Gpi

pc

ip

pc

pi3

pc

pi4

xp2

xp3

xp4

xp5

(a) Circle-Polygon

Gpp′

pp′p4

ppp′1

xp′2

xp1 xp2

(b) Polygon-Polygon

Fig. 13.2 Lines separating polygons and circles (a) as well as lines separating polygons (b), en-
suring that they do not overlap. Reprinted by permission from Springer Nature, Journal of Global
Optimization, Kallrath (2009,[320]), Fig. 2.

For polygons it follows from the convexity of both polygons that all vertices ofp
andp′ lie on the separating line; see Fig. 13.2. Letp andp′ be polygons with vertex
setsKp andKp′ ; the setsKp andKp′ can have a different cardinality. The straight
lines Gpp′ which separate the polygonsp and p′ contain the variablesgpp′ , mpp′ ,
andλ pp′ for each polygon combinationpp′ and have the form

Gpp′ := Gpp′(λ ) = gpp′ +mpp′λ pp′ ; ∀{p, p′|p′ > p}, (13.3.12)

whereλ ∈ IR parameterizes the straight line. The direction vectormpp′ is normal-
ized to 1,i.e.,

m2
pp′ = 1 ; ∀{p, p′|p′ > p}. (13.3.13)

In general, condition (13.3.13) is numerically problematic because it reinforces the
non-convex nature of the problem. In this case, however, (13.3.13) is helpful because
we can easily normalize the normal vectornpp with respect toGpp′ by

(
npp′1,npp′2

)T
=
(
mpp′2,−mpp′1

)T
; ∀{p, p′|p′ > p}. (13.3.14)

TheKp connection vectorsppp′k from Gpp′ to the corner pointVpk of polygonp are
represented by

ppp′k = xpk−
(
gpp′ +mpp′dλ pp′k

)
; ∀{p, p′,k|p′ > p∧k≤ Kp}, (13.3.15)



426 Global Optimization in Practice

while for theKp′ verticesVp′k of the polygonp′ the connection vectors are calculated
according to

pp′pk = xp′k−
(
gpp′ +mpp′dλ p′pk

)
; ∀{p, p′,k|p′ > p∧k≤ Kp′}. (13.3.16)

The auxiliary variablesλ pp′k andλ p′pk are needed to calculate the footpointsppp′k
andpp′pk. The two polygonsp andp′ are separated by the conditions of parallelism

ppp′k = ∆pp′knpp′ ; ∀{p, p′,k|p′ > p∧k≤ Kp}, (13.3.17)

and anti-parallelism

pp′pk =−∆p′pknpp′ ; ∀{p, p′,k|p′ > p∧k≤ Kp′}, (13.3.18)

where the variables∆pp′k and∆p′pk measure the distances of the vertices from the
straight line.

To ensure that polygons do not intersect with circles, in (13.3.13) to (13.3.18) we
replace polygonp′ by circle i and make the following changes: The variables∆p′pk
in (13.3.18) are fixed to the radiiRi , i.e., the straight line is tangent to the circle,∆ c

pik
corresponds to∆pp′k in (13.3.17), which now has the form

pc
pik = ∆ c

piknpi ; ∀{p, i,k|k≤ Kp}, (13.3.19)

and (13.3.18) becomes

pc
ip =−R(i)nip ; ∀{ip}. (13.3.20)

Feasible configurations are found within minutes – global optimality is proven only
for a few polygons.

13.3.2 Problem Structure and Symmetry

The cutting problems formulated above present themselves as NLP problems with
the following non-convex aspects:

1. Firstly, the bilinear objective function (13.3.3). If the length or width ofR is
fixed (strip packing), this is reduced to a linear objective function.

2. The condition of non-overlap leads to a geometric situation which obviously re-
sults in a non-convex region. To understand this, imagineR with an already fixed
objecti f . The allowed range of the remaining objectsi ∈ I \{i f } concerningi f

is R without the range covered byi f . If the objects are only circles, then (13.3.4)
is the relevant inequality with only quadratic and bilinearterms. Also in the case
of polygons and ellipses, the problem formulation does not require more than
quadratic equalities or inequalities. The normalization equations (13.3.13) are
particularly problematic.



13.3 Cutting and Packing involving Convex Objects 427

Since all non-convex terms are quadratic in nature, it is notsurprising that the solvers
BARON, GLOMIQO, or ANTIGONE perform particularly well in this problem class
and is the only global solver capable of closing the gap between the upper and
lower bound for most problems,i.e., really calculating the global optimum. Apart
from non-convexity, the presented problems are still difficult because of their hidden
combinatorial character. So far, combinatorial problems have only been encountered
in connection with mixed integer problems. The combinatorial structure of the trav-
eling salesman problem results from the possible permutations for the order of the
cities to be visited. The situation is similar here, which can be illustrated as follows.
Suppose you allocate each objecti with the pearls of a pearl necklace, which is then
placed through the rectangle or meanders throughR. By the path of this pearl chain
takes throughR, the objects can take many relative positions to each other,i.e., ob-
ject j can be positioned to the left, below, right or above objecti. The objects can
be placed in the same position as the pearl chain. Polygons and ellipses also have
an orientation. Viewed in this way, the degrees of freedom consist of the order of
the objects along the chain, the positions on the chain and the path the chain takes
throughR. The degrees of freedom are the same as the degrees of freedomof the
objects along the chain. Strictly speaking, the order couldbe treated by complete
enumeration, but is only possible for small instances. The positions on the chain,
represented by the centers of the objects, as well as the orientation are mapped in
the NLP model. The path of the chain throughR is a difficult problem in itself. The
difficulty of the problem partly results from symmetry. Symmetry can be reduced
a little by placing the center of an arbitrary object in the first quadrant ofR. For
example, if we choose circlei∗, it means

xi∗d ≤ 1
2

xP
d ; ∀{d}. (13.3.21)

For a polygonp∗, the inequality

x0
p∗d ≤ 1

2
xP

d ; ∀{d} (13.3.22)

has a positive effect on the computing time. Symmetry degeneration by the presence
of congruent objects,i.e., those that are identical in shape and area, can be reduced
by assigning them to the same congruence classIco. For objectsi andi′ in the same
congruence class we apply the ordering inequalities

xi1+5xi2 ≤ xi′1+5xi′2 ; ∀{(i, i′)|i < i′∧ Ico
i = Ico

i′ }. (13.3.23)

The choice of coefficients is rather arbitrary. Another degree of degeneracy that
can cause problems for a global solver is associated with free objects. These are
mostly smaller objects that can move between the larger oneswithout touching them
and without changing the value of the objective function,i.e., the areaa of the
rectangle. This is unproblematic for cutting problems, butrather undesirable for
packing problems. One way of dealing with this problem is to including the center
coordinates in the objective function to be minimized; thisresults in the selected



428 Global Optimization in Practice

objects being placed as far to the left as possible at the leftbottom of the coordinate
origin.

13.3.3 Some Results

Kallrath (2009,[320]) contains results for circles and polygons. Optimality could
be proven for up to 10 circles, for small numbers of polygons as well. The results
obtained by Misener & Floudas (2012,[414]) withGLOMIQO calculate optimal solu-
tions in much shorter time. This can also be seen for smaller problems with ellipses.

13.4 Summary & Recommended Bibliography

In this chapter we have considered various non-convex, nonlinear optimization
problems and formulations requiring global optimization techniques. Thus the
reader should now be familiar with:

• the flavor of applications in the global optimization; and
• limits of solver used in deterministic global optimization.

TheHandbook of Test Problems of Local and Global Optimizationby Floudaset al.
(1999,[201]) is still a valuable source to get familiar withtypical problems in the
field.

13.5 Exercises

1. Use a global NLP solver to solve Exercise 1 in Section 12.9.
2. Use a global NLP solver to solve Exercise 2 in Section 12.9.
3. Use a global NLP solver to solve Exercise 3 in Section 12.9.



Chapter 14
Polylithic Modeling and Solution Approaches

This chapter deals with polylithic modeling and solution approaches. Such ap-
proaches allow to considerably extending the set of solvable practical problems both
in their quality (structure) and size (number of variables and constraints). These ap-
proaches are illustrated by problems from paper industry, which were solved with
the help of polylithic modeling and solution approaches. Indetail, roll minimization
with based on column generation, simultaneous minimization of waste and number
of used patterns, as well as format production are treated.

14.1 Polylithic Modeling and Solution Approaches (PMSAs)

Many practical mixed integer optimization problems are difficult to solve. Instead
of tackling these difficult problems directly as monolithicproblems, they can also
be solved equivalently as sequences of models. This situation leads to polylithic
modeling and solution approaches including, for example:

1. Column generation[cf. Lübbecke & Desrosiers (2005,[388]) or Section 2.6.3],
2. Branch-and-Price, an extension of column generation to mixed integer problems

[cf. Section 3.3.4 or Barnhartet al. (1998,[51])],
3. Benders’ Decomposition– see Section 14.1.3.2.1,
4. Evaluation of auxiliary problems to derive tighter bounds for the original prob-

lem, which in turn leads to an easier solution of the originalproblem,
5. Hybrid methodsin which constructive heuristics are used together with exact

optimization algorithms, or
6. Lexicographic goal programmingfor solving multi-criteria optimization prob-

lems (see Section 5.4).

To the advanced reader, the field ofMatHeuristicsmay appear closely related to
PMSAs. Maniezzoet al. (2009,[395]) provide a good introductory reference to
MatHeuristics. MatHeuristics refer to a broad class of hybrid algorithms in which
exact approaches and metaheuristics are combined. So, obviously, there is a strong

429



430 Polylithic Modeling and Solution Approaches

Fig. 14.1 Polylithic versus monolithic modeling. In contrast to monolithic methods (left),
polylithic models consist of a set of models (right) linked to eachother with regard to their in-
puts and outputs. Produced for this book by Diana Kallrath, Copyright ©2020.

focus on or a connection with metaheuristics, respectively. PMSAs are broader – as
we will see below – and in some sense, even include MatHeuristics.

One might feel inclined to view PMSAs from two main angles: modeling (4,5,6)
versus solving techniques (1,2,3). Solving seems to be moregeneric as the solving
techniques usually have an advanced theoretical basis and can be applied to many
problems. But a deeper look shows that they exploit or require a lot of structure
and a slight change in the model (additional or different constraints) and they do
not work – thus, they are not strictly generic. Polylithic modeling is, definitely, less
generic – and results in custom or tailor-made solution approaches. They follow the
principalanything goes: Submodels need not be exact models, they may be simplifi-
cations. Alternatively, the master is an approximation, solved by a tailored solution
technique, and only submodels are solved to optimality. In practice, modeling and
solving are interconnected and require deep knowledge and experience from the
modeler. Therefore, the two viewing angles are possible butsomewhat artificial.

14.1.1 Idea and Foundations of Polylithic Solution Approaches

Based on the Greek termmonolithos(monolithic; a stone consisting of only one
block), Kallrath (2009,[319]; 2011,[322]) has used the corresponding termpolylithic
for modeling and solution approaches in which mixed integeror non-convex non-
linear optimization problems are solved with the help of customized methods using
several linked models or algorithms.



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 431

14.1.1.1 Monolithic Models and Solution Approaches

A monolithic model simply consists of a model with data, variables and constraints.
It is solved byonecall to a solution algorithm solving an LP, MILP, NLP, or MINLP
problems – for the problems we have presented so far in this book, this use of a gen-
eral purpose solver is the standard. This keeps the structure of the model and its
solution relatively simple and clear. When using an algebraic modeling language,
the possible constraints on the variables are set only once.The model output and
solver results flow directly into an attractive, well-structured output report or a vi-
sualized presentation of results.

14.1.1.2 Polylithic Modeling and Solution Approaches

In contrast to monolithic methods, polylithic models consist of a set of models
linked to each other with regard to their inputs and outputs,i.e., modelm+1 can
use results of the firstm models; see Fig. 14.1. This can be used to initialize cer-
tain variables or to put tighter bounds on variables. Examples of polylithic solutions
are decomposition methods, such as the column generation method [cf. Gilmore &
Gomory (1961,[228]) or L̈ubbecke & Desrosiers (2005,[388])], Branch&Price [cf.
Barnhartet al. (1998,[51])], or hybrid methods [cf . Pochet &Wolsey (2006,[452])],
in which constructive heuristics and/or local search and enhancement procedures
are combined with exact MIP algorithms to calculate allowable points or good lower
and upper bounds. In a natural way, tailor-made algorithms are obtained. However,
this requires a great care and attention in programming withregard to the following
points:

1. Bounds and initial values of variables must be tracked andupdated very carefully.
2. The results of discrete variables are usually not integer, but deviate slightly from

them,e.g., 0.9999987 instead of 1. However, as these result values arestill used,
it not only makes sense but is often necessary to round them. However, this can
lead to infeasibilities. Caution is advised.

3. Variables and constraints in different models should be declared as local objects;
otherwise, misunderstandings should be avoided by choosing names.

4. The maintenance effort for polylithic methods is considerably higher than for
monolithic ones; the extension of additional functionalities in model and solution
approach can be complex.

PMSAs have a wide range of applications; they significantly increase the amount
of practical problems that we can solve in a reasonable amount of time. We find
them in problem-specific preprocessing, in general mathematical algorithms, and in
structured primal1 heuristics and hybrid methods. Customized polylithic solution

1 Here the termprimal refers here to the primary problem,i.e., the optimization problem in its
original form. Primary heuristics and procedures provide onlyprimal allowable points. Only by
the addition of dual information an optimality proof is possible.



432 Polylithic Modeling and Solution Approaches

approaches with thousands or millions of solution calls represent a particular chal-
lenge for algebraic modeling languages. Warm or hot starts,which can be used to
prevent the model from having to be translated and compiled over and over again,
become very important.

PMSAs are recommended when the problem cannot be solved directly – they
represent a powerful but last resort. They can also be seen asa kind of bridge tech-
nology that can be replaced if significant improvements are made in the area of
solution algorithms.

14.1.2 Problem-specific Preprocessing

In Section 9.1 several preprocessing methods have already been presented and it
has been pointed out that commercial software vendors use these methods in their
solvers, but often do not reveal exactly which methods and how they have been
implemented. In addition to this lack of transparency, another argument for the de-
velopment of one’s own preprocessing techniques and the exploitation of problem-
specific structures and properties is that problem owners usually know more about
their problems than the software can automatically identify.

14.1.2.1 Dynamic Reduction of Big-M Coefficients

In Chapter 9, Big-M coefficients (in short: Big-Ms) were usedat various points.
Using an illustrative production planning example, the significance of minimal Big-
Ms in the activation or deactivation of inequalities such as

x≤ X+M(1−δ )

with a continuous variablex and a binary variableδ , is shown indynBigM(MCOL).
In this implementation,M is reduced iteratively in a sequence of models,cf.Kallrath
(2009,[319]). The number of nodes in a Branch&Bound algorithm can thus be sig-
nificantly reduced. In general, this method is effective if the presolving techniques
built into the commercial solver do not lead to a model tightening.

To illustrate the approach, let us consider a simple production planning example
in which it is not obvious how one should choose the valueM explicitly and a
priori . Apart from this, we want to use only a simple MILP solver not exploiting
any presolving techniques. We illustrate the idea of dynamic improvement of Big-M
formulations by considering a small production example with 7 productsi = 1, . . . ,7
of sales pricesYi = 1+ i in $/tons and individual machine production capacitiesCi

in tons/day. We consider only one specific day. Therefore, weneglect the index for
different days. The total demand to be satisfied per day isD tons,i.e.,

∑
i

xi = D, (14.1.1)



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 433

where the variablexi denotes the amount in tons of producti produced on that day.
Production is only possible if producti has been selected,i.e.,

xi ≤ Miδ i , ∀i, (14.1.2)

whereMi are sufficiently large numbers. An obvious choice is to setMi =Ci .
Another complication is that the amounts produced for selected products should

not differ by more than∆ tons. If δ i denotes the selection binary variable, we can
formulate this condition by

|xi1 −xi2| ≤ ∆ +Ni1i2(2−δ i1 −δ i2) , ∀{(i1, i2)|i2 6= i1}, (14.1.3)

whereNi1i2 are sufficiently large numbers. Actually, the coefficientsNi1i2 also rep-
resent Big-M values; a tight choice is

Ni1i2 = max{Mi1,Mi2}−∆ . (14.1.4)

Note that inequality (14.1.3) only becomes active if both productsi1 and i2 have
been selected. The absolute value term in (14.1.3) is replaced by two inequalities

xi1 −xi2 ≤ ∆ +Ni1i2(2−δ i1 −δ i2) , ∀{(i1, i2)|i2 6= i1}, (14.1.5)

and

xi2 −xi1 ≤ ∆ +Ni1i2(2−δ i1 −δ i2) , ∀{(i1, i2)|i2 6= i1}. (14.1.6)

If product i is selected,Pi people need to be allocated to its production. As there are
only Pmax people available, we obtain the knapsack constraint

∑
i

Piδ i ≤ Pmax. (14.1.7)

The idea of dynamically improving Big-M,i.e., to reduce the valueMi , is to solve
a sequence of auxiliary problems generated by fixingδ i = 1, and maximizingxi ;

we call this maximumXi . This value allows us to updateMi from M(1)
i = Ci to

M(2)
i = Xi . The method is effective ifXi < Ci . We could try a second round: The

next step could be to tightenNi1i2 and then go back toMi .
As a numerical example, we use sales pricesYi = 1+ i, ∆ = 20 and

C= [100,80,90,60,100,110,100], P= [11,6,6,5,5,4,1], D= 120, Pmax= 19.
(14.1.8)

The sales prices just serve to provide some reasonable objective function. In this
specific case our procedure relies on setting all the binary variables to 1. In the
general case, this may not even result in a feasible problem.Therefore, one has to
keep in mind that such approaches are very problem-specific and are always tailor-
made. Exploiting the problem structure, the use of such techniques can be very
effective as we show below.



434 Polylithic Modeling and Solution Approaches

To demonstrate the effect of dynamically improving the Big-M coefficients, we
avoid the strong commercial MILP solvers as their presolving strategies are very
strong but rather use the public domain MILP solverCoinGLPK by Makhorin
(2009,[394]), and setMi = Ci and Ni1i2 = maxi Ci = 110. We obtain the optimal

solution after 40 nodes. The first round of dynamic improvingM(1)
i =Ci yields

M(2)
i = [70,70,70,60,70,70,70].

Using these improved valuesM(2)
i results in the optimal solution in just 21 nodes.

A further round onMi does not lead to any improvement. TighteningNi1i2 has not
reduced the number of iterations. We have also appliedCPLEX to this problem.

CPLEX solves the problem to optimality in the root node for bothM(1)
i = Ci and

M(2)
i , however, we can see a difference in the Simplex iteration count of 16 for the

original formulation, and of 2 for the tightened formulation.
To summarize the dynamic model improvement such as Big-M formulation or

models containing integer variables: the method is effective when the pre-solving
techniques of the commercial solver are unable to tighten the formulation, but only
a sequence of tailor-made auxiliary problems can do so. The approach can be can
be easily implemented in any modeling language.

14.1.2.2 Bound Tightening for Integer Variables

With auxiliary problems and PMSAs, tightened upper limits can be calculated for
integer variables. An example is the interval reduction of the number of batches in
Lin et al. (2005,[378], Table 4), in which a reactor portfolio problemis solved. The
objective function of the auxiliary problem was to maximizethe number of batches.
In the context of integer variables, this is highly recommended as it can significantly
improve the lower bound of the original minimization problem. This becomes clear
when you consider the difference in the upper bound of an integer variableα ≤ 3
instead ofα ≤ 3.4.

14.1.2.3 Data Consistency Checks

In Section 2.9 we focused on data collection, while in Section 5.5.5 we have dis-
cussed the problem of consistent and obtainable data when modeling real-world
problems. In complex applications, it is not easy to ensure or check the consis-
tency of the input data, as problems usually only become apparent when several
constraints need to be fulfilled at the same time. Automatic feasibility checks are
therefore essential in production planning and scheduling, both in supply network
planning and in energy industry. In process industry, for example, such tests in
scheduling models could be simple tests for identifying inconsistent batch sizes.
Useful are also auxiliary models for checking the consistency of state task networks



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 435

and topology, compatibility of production facilities, warehousing and demand. Fi-
nally, we can exploit advanced procedures such as single jobanalysis to accurately
solve the scheduling problem for each job, identifying unavoidable underproduction
or delays.

In particular, unavoidable underproduction or delays should be rigorously ad-
dressed using the multi-criteria optimization (first minimizing violations, then solv-
ing the original problem) outlined in Section 5.4 rather than penalizing only under-
production or delays. As discussed by Kallrath & Maindl (2006,[327], pp. 344 f.),
penalties with coefficients that cannot be interpreted economically lead to numerical
problems and complicate the interpretation of the integrality gap.

14.1.3 Mathematical Algorithms

Here we consider general mathematical algorithms, namely,decomposition meth-
ods, Branch&Bound, Branch&Cut, dynamic programming (DP) and goal program-
ming (GP) for multi-criteria optimization problems.

14.1.3.1 Branch&Bound and Branch&Cut Methodologies

Most commercial solvers use Branch&Bound (B&B) to solve MIPor non-convex
NLP or MINLP problems, usually branching on variables. There are special branch-
ing strategies for semi-continuous variables (SCVs) or special-ordered sets. Since
not all solvers support these structures, Kalvelagen (2003,[332]) has coded the
branching method for SCVs intoGAMS to solve a MINLP problem with additional
SCVs. Problem-specific branching on other structures such as constraints can rarely
be found in commercial solvers – another area for PMSAs.

Automatic addition of inequalities can be found in B&C, Outer Approximation
and goal programming as discussed in Section 5.4. Useful resources are Karup-
piah & Grossmann (2008,[339]) for global optimization techniques of non-convex
MINLPs with structures suitable for decomposition, Rebennacket al. (2011,[470])
for a detailed tutorial on B&C methods for solving the stable-set problem (SSP) and
Rebennacket al.(2011,[469]) for progress in graph reduction methods within B&C
methods for the SSP. Sometimes other problem-specific cuts are available that can
be added to the problem either statically or dynamically. The dynamic case is, of
course, the more interesting one and is illustrated by several examples in the model
libraries of AMLs such asGAMS (e.g., MCOL/GAMSLIB/tsp5.gms) orMosel. For
example, the tour elimination constraints are dynamicallyadded to the core model
of the traveling salesman problem (TSP) model. While this technique only works
for small TSPs, it shows how dynamic addition of inequalities can be applied to
other problems. For the TSP, one can also learn about including cut generation and
callbacks for B&C.



436 Polylithic Modeling and Solution Approaches

14.1.3.2 Decomposition Methods

Decomposition techniques break down the problem into smaller problems that can
be solved sequentially or in parallel. There are standardized techniques such as
Dantzig-Wolfe decomposition (a special column generationmethod) to solve LP
problems with special structures, or Benders’ decomposition [cf.Benders (1962,[67])
or Floudas (1995,[196], Chap. 6)], but also structure-utilizing, customized methods.
Nowak (2005,[433]) gives a good overview on relaxation and decomposition meth-
ods for MINLP. Note thatSAS/OR contains a decomposition solver, based on the
PhD thesis of Galati (2009,[213]), for LP and ILP. SAS is the first commercial mod-
eling and optimization software company offering this functionality saving the effort
of developing one’s own decomposition algorithms. This maylead to progress com-
parable to the situation with B&C thirty or forty years ago when MILP solvers did
not yet have generic B&C technology embedded.

An alternative to decomposition is an aggregation approach(cf. [385, 387] and
the references therein), where the original large problem is (iteratively) substituted
for a smaller aggregated problem. If the original problem has a special structure,
iterative aggregation can be combined with the decomposition approach,cf. [383].

14.1.3.2.1 Benders Decomposition (BD)

This technique was developed by Benders (1962,[67]) to break down MILP prob-
lems into a sequence of master problems (MP) and subproblems. The MPs are IP
problems with discrete variables while the subproblems areLPs. The MP gives an
integer solution to the subproblem which either proves the optimality of this solution
with respect to the original problem or otherwise returns a permissibility or optimal-
ity inequality to the MP. BD has also been applied to very large LPs – preferably
in the world of stochastic optimization, where BD is also known as the L-shaped
method;cf. Birge & Louveaux (2000,[84]). If BD is applied to NLPs it isgeneral-
ized BD. If BD is also applied to the subproblems, one speaks of anested BD.

14.1.3.2.2 Column Enumeration (CE) and Column Generation (CG)

The termcolumnis derived from the language environment of linear programming.
Since the 1950s,columnshave stood for variables androws for constraints. In the
Simplex algorithm, non-basic variables are examined as candidates for possible ba-
sic variables in the pricing step. In dynamic variants of theSimplex algorithm, these
non-basic variables are generated dynamically.

In the context of CE and CG, the termcolumnshas a broader meaning and stands
for specific objects that occur in a model;cf. Section 2.6.3. In cutting stock prob-
lems, columns usually stands for patterns, in network flow problems for permis-
sible paths through a network, and in vehicle routing problems for subsets of or-
ders that can be assigned to a vehicle or a feasible tour, whereby feasible tours as



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 437

in Desrocherset al. (1992,[163]) are generated by solving shortest path problems.
Heinzet al. (2012,[265]) have solved steel mill slab design problems and compare
various methods to CG.

The basic idea of CG is to split an optimization problemP into a master problem
PM and a subproblemPU. The decomposition usually has a natural interpretation.
Nonlinear problemsP can be completely reduced to solving LPs, as in the case
of trimloss minimization. Decompositions have to be carefully constructed so that
both problemsPM andPU can be solved in short time. The most famous example
is probably the Gilmore & Gomory (1961,[228]; 1963,[230]) column generation
method for calculating the minimum number of rolls to meet the demand for smaller
order rolls of given width. The monolithic version of this problem leads to a MINLP
problem with a very large number of variables.

CG provides an optimal solution to the LP problems and it can be used to solve
the LP relaxation of MILP/ILP problems. The idea of CG is to generate not all
possible columns but the favorable ones only. This can be achieved by solving the
pricing problem. At each iteration, solving the pricing problem generates a new
column by optimizing the reduced cost, therefore the generated column would be the
favorable one. Then the restricted master problem selects acombination of columns
to create a feasible solution. It is also possible to solve certain types of subproblems
(i.e., generate columns) using heuristics which reduce the solution time significantly.

In simple cases it is possible to create all columnsa priori (CE). If this is not
possible, starting from an initial set of columns, new columns are dynamically added
to the problem; good review articles for dynamic CG are, for example, Barnhartet
al. (1998,[51]) or L̈ubbecke & Desrosiers (2005,[388]).

CE can be regarded as a special variant of CG that is applicable when only a small
number of columns exists or when the consideration of a smallnumber of columns
is sufficient. This is the case, for example, in practical trimloss problems, as usually
only patterns with a small strip loss are accepted; this already excludes most pat-
terns. CE naturally leads to a selection problem of existingcolumns; this selection
problem is also called partitioning model. Schrage (2006,[504], Sect. 11.7) gives
illustrative examples from the application areas decomposition, matching, overlap-
ping, partitioning and packing problems. Rebennacket al. (2009,[467]) have de-
veloped a general framework for decomposing a given set of objects into subsets
and subsequently assigning them to existing objects – and applied it to a trimloss
problem in the metal industry. Despite the limitation of thenumber of columns,
CE offers some important advantages. These include the easyapplicability to MIP
problems, the lack of need to solve a pricing problem to create new columns, and
the low implementation effort.

14.1.3.2.3 Column Generation and Branch&Price Methodology

CE can be regarded as a special variant of CG. Generally speaking, we can use
CG for solving well-structured MILP problems with several hundreds of thousands
or millions of variables,i.e., columns. These problems lead to very large LP prob-



438 Polylithic Modeling and Solution Approaches

lems when the integer conditions are relaxed. If the LP problem contains so many
variables (columns) that it cannot be solved with a direct LPsolver (revised Sim-
plex, interior point method), the so-calledmaster problem(MP) starts with a small
subset of variables and becomes therestricted MP(RMP). After solving the RMP,
new variables are identified in apricing problem(PP). This step corresponds to the
identification of non-basic variables that are included in the basis of the Simplex
procedure and led to the designation column generation. TheRMP is now solved
with the new set and number of variables. The procedure terminates when no new
variables can be identified using the pricing problem. The simplest variant of the
CG procedure can be found in the Dantzig-Wolfe decomposition (Dantzig & Wolfe
1960,[146]). Note that CG would not provide an integer solution. However at the
last step, one can solve the restricted master problem as an integer problem to find
an integer solution. However, this would be a heuristic and would not guarantee
optimality. CG can guarantee optimality only for the LP models.

Gilmore & Gomory (1961) were the first to apply the idea of CG toan IP prob-
lem: The trimloss problem in paper industry. In this case, the PP is a knapsack
problem,i.e., also an IP problem – here, in the knapsack problem, the new columns
are created. This problem is unique in the sense that the gapscreated by the RMP
– here patterns – are sufficient to create the optimal integersolution to the prob-
lem. This is generally not the case as mentioned above. If both problems,PM and
PU, contain integer variables, the CG is embedded in a B&B procedure: This is
therefore calledBranch&Price (B&P); cf. Barnhartet al. (1998,[51]) and Savels-
bergh (2001,[498]). In a nutshell: B&P is IP with CG. During the branching process
new columns are created – another reason for the term Branch&Price. B&P (often
also linked to Branch&Cut) are tailor-made implementations with decomposition
structures. Despite the considerable implementation effort, B&P is one of the most
powerful techniques for solving MIP problems with CG. A listof successful appli-
cations in various areas can be found in Kallrath (2008,[317]).

14.1.3.3 Lagrange Relaxation

Lagrange relaxation (LR) –cf. Geoffrion (1974,[221]), Fisher (1985,[192]), Martin
(1999, [399]) or Guignard (2003,[255]) – is not so much a mathematical method
to determine feasible points, but rather an important method for the improve-
ment of the lower bounds of a minimization problem, using dual information. The
Branch&Bound method used in Section 3.8.6 for solving MILP problems is initially
based on a relaxation of the LP problem; the relaxation results from neglecting the
integrality condition of the discrete variable. For combinatorial problems such as the
traveling salesman problem, however, this domain relaxation is very weak. The LR
performs much better, as we will demonstrate later with thegeneralized assignment
problemintroduced in Section 7.1.3. LR is a widely used technique, especially in
discrete optimization. The basic idea here is to neglect problematic restrictions and
to include them in the objective function multiplied by a Lagrange multiplier to be
determined instead. If – for fixed Lagrange multipliers – theresulting optimization



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 439

problem is easier to solve, there is good hope that the lower bound can be efficiently
improved by iteratively determining the Lagrange multipliers using a subgradient
method. Let us consider the (mixed-)integer linear programP:

min
x

z= cTx

Ax ≥ b

Bx ≥ d

x ≥ 0 , x j ∈ IN0 ∀ j ∈ J.

First of all, it must always be decided which constraint is tobe dualized. If we
assume that the problem

min
x

z= cTx

Bx ≥ d

x ≥ 0 , x j ∈ IN0 ∀ j ∈ J

is relatively easy to solve, it is a good idea to relaxAx ≥ b; that is what we want to
prepare in the following. The setΓ

Γ := {x|Bx ≥ d,x j ∈ IN0 ∀ j ∈ J}

is the set of all integer feasible points of the inequalityBx ≥ d. ExploitingΓ we can
also represent P as

min
x

z= cTx

Ax ≥ b , x ∈ Γ .

If P has an optimal solution and conv(Γ ) denotes the relaxation ofΓ or the convex
hull of Γ , which is obtained by replacing the discrete point setΓ with its convex
hull, problem D

L(u) = min
{

cTx−uT (Ax−b) |x ∈ Γ
}

= min
{

uTb+cTx−uTAx|x ∈ Γ
}

= min
{

bTu+
(
c−ATu

)T
x|x ∈ Γ

}

satisfies the equality

min{cTx|Ax ≥ b,x ∈ conv(Γ )}= max{L(u)|u ≥ 0}= maxD,

i.e., the optimal solution of the relaxed problem can be obtainedfrom the optimal
solution of the dual problem associated with problem P. IfΓ̄ designates the LP
relaxation ofΓ , i.e., if we neglect the integrality condition ofx, and relax(P) the LP
relaxation of P, then due to the relaxation properties the following applies



440 Polylithic Modeling and Solution Approaches

Γ ⊆ conv(Γ )⊆ Γ̄

resulting in the chain of inequalities

min[relax(P)]≤ min[conv(P)] = maxD ≤ minP,

i.e., for every non-negativeu the LR gives us a lower bound ofP, which is also
deduced directly from the structure ofL(u), because for every feasible pointx and
non-negativeu a positive termuT (Ax−b) is subtracted from the objective func-
tion cTx. In this sense, problem D to be solved is a relaxation of P. In the case
min[relax(P)] = minP, LP and Lagrange relaxation agree; in other cases, the LR
is usually stronger than the LP relaxation.L(u) is a piecewise linear and concave
function; thus it can be differentiatedw.r.t. u up to a finite set of discrete points̄u. It
is the lack of differentiability at a finite number of points that leads to the concept of
the subgradient. A real vectorγ ∈ IRm is a subgradient ofL(u) in a pointū exactly
when

L(u)≤ L(ū)+(u− ū)T γ.

If L(u) is differentiablew.r.t. tou, γ corresponds to the direction vector of the tangent
line. In the non-differentiable case,L(ū)+ (u− ū)T γ corresponds to a straight line
that matchesL(u) in, but otherwise overestimatesL(u); there are infinitely many
of them. The set of all subgradientsγ in one point is also called subdifferential
G (ū) of L(u) in ū. In the differentiable case the subdifferential contains only one
subgradient: the gradient∇L = ∂L/∂u. With the concept of the subgradient the
optimum of the non-differentiable functionL(u) can be calculated exploiting the
subgradient method described in the following section.

14.1.3.3.1 Subgradient Method

The subgradient method extends the method of steepest ascent to piecewise linear
convex or concave functions such asL(u). Although a step towards a subgradient
does not necessarily lead to an improvement ofL(u), it makes sense to follow the
direction of a subgradient and proceed iteratively in the subgradient procedure as
follows:

Step 0: Solution of the LP relaxation, whereby the constraints to be relaxed must
be included in the model. The dual values of the constraints to be relaxed follow
from the solution of this problem. In addition, a primary solution is required from
which an upper bound can be calculated.

Step 1: An iteration counterk is initialized tok = 0. A vectoru0 > 0 must be
known; here, for example, the dual variables associated with the dualized constraints
can be used from LP relaxation. Finally, an accuracy limitε > 0 is defined.

Step 2: Calculate the subgradientγk = g(xk) = b−Axk, whereg(xk) in the dif-
ferentiable case denotes the gradient ofL(u) in uk, andxk ∈ Γ (uk), i.e., for fixed
u = uk one has to calculate the value of the Lagrangian functionL(uk) andxk as the
optimal solution of the dual problem



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 441

Lk = L(u = uk) = min
x

{
bTu+

(
c−ATu

)T
x
}

Bx ≥ d,x j ∈ IN0 ∀k∈ k

Step 3: Setuk+1 := max{0,uk+ tkγk} with a positive (scalar) incrementtk suit-
able for control.

Step 4: If ∆ k :=
∥∥uk+1−uk

∥∥< ε, termination occurs, otherwisej is incremented
by one and we continue with Step 2.

The control of the step sizet j – cf. Bazaraa & Sherali (1981,[55]) – is heuris-
tic in nature and requires a problem-specific adaptation, but follows the significant
theoretical result of Poljak (1967, [453]) that the sequence {Lk} converges against
the limit L(ū), if the sequence{tk} converges towards zero and for the sum of the
sequence members holds

∞

∑
k=0

tk = ∞.

This divergence ultimately guarantees that the step sizes do not become too small.
Heldet al. (1974,[271]) recommends

tk := θ k

[
LU −Lk

]

‖γk‖2

with 0< ε ≤ θ k ≤ 2, whereLU is an upper limit forL(u). As a consequence of the
weak duality theorem, any primary solution can be chosen forL(u). However, the
solution of the primary problem to determineL(u) forces us to determine at least
one integer permissible solution; in some cases a constructive heuristic can help
here. At the initialization ofu0 the recourse to the primary solution of LP relaxation
was sufficient. Initially, you can setθ 0 to θ 0 = 2 and halve the value ofθ k if Lk does
not increase during several iterations.

14.1.3.3.2 Example: Generalized Assignment Problem

As an example and similar as in Section 7.1.3, we consider a set of tasksi ∈ I that
should be assigned to different machinesj ∈ J, where each taski is assigned to only
one machinej. The assignmenti → j causes costsci j and uses machine capacity
Ci j . If we are interested in a cost-minimal solution, this can becalculated by the
generalized assignment problem

min∑
i

∑
j

ci j xi j

∑
j

xi j = 1 , ∀i (14.1.9)

∑
j

Ci j xi j ≤ d j , ∀ j (14.1.10)

xi j ∈ {0,1} , ∀{i j}.



442 Polylithic Modeling and Solution Approaches

If we think about using LR, we first have to be clear about whichrestrictions should
be relaxed in the Lagrange sense. This is where (14.1.9) or (14.1.10) comes into
question; we opt for the assignment equation (14.1.9), as this is more difficult than
the knapsack inequality (14.1.10), which is one of the easier ones in the class of
MILP problems – in general, equations that contain discretevariables are usually
candidates for difficulties and unpleasant surprises. Thischoice to relax (14.1.10) in
the sense of Lagrange becomes all the more meaningful the more a larger number
of tasks is confronted with a smaller number of machines. Letus now – as in Martin
(1999,[399]) – consider three tasks and two machines with capacities of 13 and 11
as well as costs and capacity utilization for the example

ci j :=




9 2
1 2
3 8


 , Ci j :=




6 8
7 5
9 6


 .

To describe the problem in a vector framework, we define

A :=




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 , b :=




1
1
1


 ,

and the vectors

cT : = (c11,c12,c21,c22,c31,c32)

x : = (x11,x12,x21,x22,x31,x32)
T.

This allows us to write the allocation equation as

Ax = b.

In Step 0we solve the relaxed LP problem,i.e.,

min∑
i

∑
j

ci j xi j (14.1.11)

∑
j

xi j = 1 , ∀i (14.1.12)

∑
j

Ci j xi j ≤ d j , ∀ j (14.1.13)

x ≥ 0

and getzLP = 6.428 as result; the dual values(2,2,4.286) associated with (14.1.12)
are useful as well. For this small problem we can also easily calculate the optimal
integer solution; we getzIP = 18 – so the LP relaxation returns only a very weak
lower bound of about 36%.

Now let us see whether the LR can help us. First we initializeu0 := (2,2,4.286).
We obtain an upper boundLU from the obvious solutionx11 = x11 = x32 = 1 and



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 443

xi j = 0 for all other combinations ofi and j, i.e., ∑i ∑ j ci j xi j = 19. Let us remember
again how the problemL(uk)

min∑
i

∑
j

ci j xi j +∑
i

u j ∑
j
(1−xi j ) (14.1.14)

6x11+7x21+9x31 ≤ 13 (14.1.15)

8x12+5x22+6x32 ≤ 11 (14.1.16)

x11,x12,x21,x22,x31,x32 ∈ {0,1}

is structured, and start the procedure as:

{Input }
An upper boundLU

An initial valueu0 ≥ 0
{Initialization }
θ 0 := 2
{Subgradient iterations}
for k := 0,1, . . . do
γk := g(x j) = b−Axk {subgradient ofL(uk)}
tk := θ k

[
LU −L(uk)

]∥∥γk
∥∥−2{step size}

uk+1 := max{0,uk+ tkγk}
if
∥∥uk+1−uk

∥∥< ε then
Stop

end if
if no improvement in more thanK iterationsthen
θ k+1 := θ k/2

else
θ k+1 := θ k

end if
k := k+1
end for

The following table generated usinglagRel.gms2 in MCOL (see also MCOL/GAMSLIB/gapmin.gms)
summarizes the results.

2 This GAMS file and part of the description in this section is by Erwin Kalvelagen
(www.amsterdamoptimization.com) who kindly gave his permission to make this file part of
MCOL.



444 Polylithic Modeling and Solution Approaches

k L(uk) θ k ‖γk‖ tk ∆ k uk
1 uk

2 uk
3

1 7.000 2.0000 2.00 12.000 12.000 14.0000 14.0000 4.2857
2 2.286 2.0000 2.00 16.714 16.714 0.0000 14.0000 21.0000
3 -8.000 1.0000 2.00 13.500 13.500 13.5000 14.0000 7.5000
4 5.500 1.0000 2.00 6.750 6.750 13.5000 7.2500 14.2500
5 12.250 1.0000 1.00 6.750 6.750 13.5000 14.0000 14.2500
6 6.000 1.0000 1.00 13.000 13.000 13.5000 1.0000 14.2500
7 6.000 0.5000 1.00 6.500 6.500 13.5000 7.5000 14.2500
8 12.250 0.5000 2.00 1.688 1.688 15.1875 7.5000 12.5625
9 9.375 0.2500 2.00 1.203 1.203 13.9844 7.5000 13.7656

10 11.781 0.2500 2.00 0.902 0.902 13.0820 7.5000 14.6680
11 11.414 0.1250 2.00 0.474 0.474 13.5562 7.5000 14.1938
12 12.362 0.1250 2.00 0.415 0.415 13.9710 7.5000 13.7790
13 11.808 0.1250 2.00 0.450 0.450 13.5215 7.5000 14.2285
14 12.293 0.0625 2.00 0.210 0.210 13.7311 7.5000 14.0189
15 12.288 0.0625 2.00 0.210 0.210 13.5213 7.5000 14.2287
16 12.293 0.0313 2.00 0.105 0.105 13.6261 7.5000 14.1239
17 12.498 0.0313 2.00 0.102 0.102 13.5245 7.5000 14.2255
18 12.299 0.0313 2.00 0.105 0.105 13.6292 7.5000 14.1208
19 12.492 0.0156 2.00 0.051 0.051 13.5784 7.5000 14.1716
20 12.407 0.0156 2.00 0.052 0.052 13.6299 7.5000 14.1201
21 12.490 0.0078 2.00 0.025 0.025 13.6045 7.5000 14.1455
22 12.459 0.0078 2.00 0.026 0.026 13.6300 7.5000 14.1200
23 12.490 0.0039 2.00 0.013 0.013 13.6173 7.5000 14.1327
24 12.485 0.0039 2.00 0.013 0.013 13.6300 7.5000 14.1200
25 12.490 0.0020 2.00 0.006 0.006 13.6237 7.5000 14.1263
26 12.497 0.0020 2.00 0.006 0.006 13.6300 7.5000 14.1200
27 12.490 0.0010 2.00 0.003 0.003 13.6269 7.5000 14.1231
28 12.496 0.0010 2.00 0.003 0.003 13.6237 7.5000 14.1263
29 12.497 0.0005 2.00 0.002 0.002 13.6253 7.5000 14.1247
30 12.499 0.0005 2.00 0.002 0.002 13.6237 7.5000 14.1263
31 12.497 0.0005 2.00 0.002 0.002 13.6253 7.5000 14.1247
32 12.499 0.0002 2.00 0.001 0.001 13.6245 7.5000 14.1255
33 12.499 0.0002 2.00 0.001 0.001 13.6253 7.5000 14.1247
34 12.499 0.0001 2.00 0.000 0.000 13.6249 7.5000 14.1251
35 12.500 0.0001 2.00 0.000 0.000 13.6253 7.5000 14.1247
36 12.499 0.0001 2.00 0.000 0.000 13.6249 7.5000 14.1251
37 12.500 0.0001 2.00 0.000 0.000 13.6251 7.5000 14.1249

As the subgradientsγk are calculated according to

γk
i := 1−∑

j
xk

i j ,



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 445

in this example we only obtain the values 1 or 2. The convergence in increment
tk and in the values ofuk is easy to see. Columntk shows that every timeK = 2
consecutive valuesLk did not lead to an improvement, the value ofθ was halved.

The LR provides us with bound 12.5 – this is almost 70%. Such improvements
over the LP relaxation also encourage the LR to be integrateddirectly into B&B pro-
cesses for solving MILP problems. LR bounds can be further strengthening taking
into account a double-decomposition structure of the problem,cf. [384, 286].

14.1.3.3.3 Variations for Nonlinear Problems

In principle, the LR can also be applied to nonlinear problems. For the cutting prob-
lems discussed in Section 13.3 and especially for the placement of circles in Section
13.3.1.1 we want to dualize the conditions

(xi −x j)
2 ≥ (Ri +Rj)

2 , ∀{ (i, j) | i < j}.

For non-convex problems, however, considerable duality gaps are to be expected,
i.e., the lower bounds calculated from the LR are weak. Thus, in the non-convex
case, procedures based on exact penalty functions are preferable; cf. Pillo et al.
(2012,[451]). In exact penalty methods, the penalty constant is chosen so that the
optimal solution to the problem containing the penalty termmatches that of the
original.

14.1.3.4 Bilevel Programming

Bilevel Programming (BLP) problems are mathematical programming problems
that contain an optimization problem in the constraints;cf. Bracken & McGill
(1973,[101]). Alternatively, one might say, it is an optimization problem constrained
by another optimization problem.

Bard (1998,[50]) is a good starting point for practical BLP with a focus on al-
gorithms and applications (economics, resource allocation, transportation network
design). Many new real-world problems in the area of energy networks can only be
efficiently solved as mixed-integer bilevel programs. Among them are the natural
gas cash-out problem treated by Dempeet al. (2011,[158]), the deregulated elec-
tricity market equilibrium problem, biofuel problems, anda problem of designing
coupled energy carrier networks. BLP models for describingmigration processes
are also in the list of the most popular new topics of bilevel programming, as well as
allocation, information protection, and cybersecurity problems. In the notation by
Floudaset al. (1999,[201, Chap. 9, pp. 205]), a general form of BLP is givenby:



446 Polylithic Modeling and Solution Approaches

min
x,y

F(x,y)

subject to

G(x,y)≤ 0

H(x,y) = 0

y ∈ argmin
z

f (x,z)

subject to

g(x,z)≤ 0

h(x,z) = 0

z∈ IRn2

x ∈ IRn1 , y ∈ IRn2.

F , G andH are the outer (planner’s orleader’s view in Stackelberg games) problem
objective function, inequality and equality constraints,while f , g andh are the inner
(behavioral orfollower’s view in Stackelberg games) problem objective function,
inequality and equality constraints, respectively. While the outer problem hasx and
y as decision variables, the inner problem has onlyy as a decision variable,i.e., the
inner problem containsx as an input parameter. This structure can also be extended
to multilevel programming,cf. the special three-level optimization problem treated
by Dempeet al. (2020,[159]).

The levels cannot be changed. A high-level decision maker isable to influence the
decisions made at lower levels, without having complete control over their actions.
The objective function of one department of an organizationis determined, in part,
by variables controlled by other departments operating at higher or lower levels. Let
us illustrate this by some typical real-world applications.

1. In economic planning at the regional or national level a typical situation is given
by the leader,i.e., the government controlling policy variables (e.g., tax rates or
import quotas) and maximizing employment or minimizing theuse of a resource.
The follower is the industry to be regulated; industry wantsto maximize, for
instance, the net income subject to economic and governmental constraints,cf.
Migdalaset al. (1998,[1]) and several papers therein.

2. Determining price support levels for biofuel crops,cf. Bard (1998,[50, Chap.
12]): The leader is again the government determining the level of tax credits for
each biofuel product; the leader wants to minimize total outlays. The follower,
who wants to minimize costs, is the petro-chemical industry.

3. Resource allocation in a decentralized company,cf. Aiyoshi & Shimizu (1981,
[11]) or Bard (1988,[49]): The leader is the central resource supplier, who allo-
cates products to manufacturers and wants to maximize profitof the company
as a whole. the followers are the production facilities at different locations; they
determine their own production mix and output to achieve maximal performance
of their own unit.



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 447

4. Transportation system network design,cf.Bard (1998,[50, Chap. 10]): The leader
is the central planner controlling investment costs,e.g., which links (roads or
railroad tracks) to improve; the objective is to influence users’ preferences to
minimize total costs. The follower are the individual users. Their route selection
determines the traffic flows and therefore the operational costs. The users try to
minimize cost of their routes.

5. Chemical and biological engineering: Leader is the overall process design with
minimal operating costs. The follower minimizes Gibbs freeenergy, along with
constraints involving mass and energy balance;cf. the original work by Clark &
Westerberg (1990,[131]) and Ferriset al. (2009,[186]) for more examples.

BLP can be understood as a logical extension of mathematicalprogramming, or as
a generalization of a particular problem in game theory (Stackelberg games). There-
fore, literature is extensive and diverse with many contributions found in economy,
cf. Mirrlees (1999,[413]) – an example from this paper is coded and provided as
MCOL\GAMS\EMPLIB\mirrless.12. More codedGAMS examples in the same
location namedfld9*.* and ccmg*.* are from Floudaset al. (1999,[201, Chap. 9,
pp. 205]) and Conejoet al. (2006,[137]).

Medium- and large-scale BLP problems are difficult to solve.Enumeration,
penalty methods and reformulation techniques,cf. Dempe & Kue (2017,[160]), are
frequently used for solving BLP problems. Especially linear BLP problems can be
solved by vertex enumeration. In reformulation techniquesthe bilevel problem is
transformed into a single level one by replacing the inner problems with its KKT
optimality conditions. BLP problems are also difficult froma theoretical point of
view; cf. Dempe (2002,[157]). They do not need to have a solution. Evenrestricting
all outer and inner functions to be continuous and bounded does not guarantee the
existence of a solution.

14.1.4 Primal Heuristics

Primal heuristics allow us to calculate good primal solutions as an approximation
for the optimal solution or starting values for further use in improvement proce-
dures. We distinguish between structured primal heuristics and hybrid methods.
The former follow a certain modeling or algorithmic procedure and can be used
quite comprehensively. Hybrid methods combine,e.g., exact MIP algorithms with
constructive heuristics or improvement methods – also calledmetaheuristics– like
simulated annealing, genetic algorithmsor taboo search.

In its simplest form, local search methods can improve the initial solution de-
termined by a constructive heuristic. In solving the MIP problem, the basic idea of
primal heuristics is to repeatedly solve a subproblem on a smaller subset of discrete
variables, usually binary variables. The binary variablescan be chosen randomly or
controlled by a metaheuristic. The selected binary variables are then subject to MIP
optimization, while the others are fixed to their already known values. The neigh-
borhood of a discrete solution can be chosen very versatilely. For a vector of binary



448 Polylithic Modeling and Solution Approaches

variables, any other vector can be called a neighbor if thesevectors differ only in a
maximum of three components. In combination with MIP techniques such neighbor-
hoods lead to another polylithic method called local branching; cf. Fischetti & Lodi
(2003,[191]). In this context, we also refer to the RINS heuristics implemented in
CPLEX or XPRESS(cf.Dannaet al.2005,[144]) and to thefeasibility pumpproposed
by Fischetti & Glover (2005,[190]), which can also be regarded as polylithic.

If possible, a bound for the objective function should be derived in addition to
a primal feasible point. While the primal heuristic providesan upper bound for a
minimization problem, in favorable cases a lower bound of the original problem
can be calculated if a feasible point is known. In other cases, a lower bound can
be calculated by solving an auxiliary problem, where the auxiliary problem should
be a relaxation of the original problem, making it easier to solve. In Section 14.1.5
we show that primal heuristics allow the calculation of upper and lower bounds in
favorable cases, if the problem or the objective function ofthe problem has a basic
structure that minimizes the number of active objects and increases the problem size
in the number of objects.

14.1.4.1 Structured Primal Heuristics

Structured primal heuristics follow certain rules for computing feasible points of
mixed integer or non-convex, nonlinear optimization problems.

14.1.4.1.1 LP-Guided Dives, Relax-and-Fix

Primal feasible solutions can be computed by systematically dealing with the critical
discrete variables, mostly binary variables. These include, for example, thedive-
and-fix (DF) andrelax-and-fix(RF) methods, sometimes also called fix-and-relax
(FR), as well asmoving window techniqueor sliding window technique, cf. Van
Dinter et al. (2013,[168]). In DF, one solves the LP relaxation of a MIP problem
followed by fixing a subset of the fractional variables to appropriate bounds. Near-
integer-fix (NIF) is a variant of DF where the fixed variables can be fixed to the next
integer point.

While NIF and DF can easily lead to infeasible problems, the situation with RF
and FR is somewhat more advantageous. FR is a progressive process by exploiting
decomposition structures into products, activities, timeor geometry. Using FR, the
author has solved small, 6×6 instances of the Eternity II problem (cf. Benoist &
Burreau 2008,[73], or Mũnozet al.2009,[424]) as MILP. This problem is a highly
combinatorial, NP-complete edge-matching problem with little structure but 256!·
4256 possible combinations, most of which are probably infeasible.

FR requires that we are able to decompose the discrete variablesδ of an original
problemP into Rdisjoints or weakly overlapping subsetsSr , r ∈ R := {1, . . . ,R}
with, for instance, a time-forward structure. An example ofthis is rolling production
planning, in which early time periods can be more important than later ones. Based



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 449

on these decompositionsSr , R MIP problemsPr are solved, which eventually
result in a composite feasible point ofP. In problemPr , 2≤ r ≤ R, the values
of δ ∈ Sr−1 are fixed to their optimum values fromPr−1; integrality is required
only for δ ∈Sr . SinceP1 represents a relaxation ofP, in a minimization problem
the objective function value ofP1 gives a lower bound of the objective function
value ofP. At the transition fromr − 1 to r of it may happen thatPr becomes
infeasible. In most cases, however, it is sufficient to install a small overlap between
Sr−1 andSr to ensure feasibility, in which additional free discrete variables at the
end of partitionSr−1 establish a connection to partitionSr . Even in cases without
a feasibility problem, this small overlap increases the quality of the point created
by FR (δ R,xR), which is also a feasible point of the original problem. When using
CPLEX or XPRESS-OPTIMIZER, the MILP solver can build directly on the feasible
point. In favorite cases, the integrality gap between the upper and lower bounds can
then be reduced or even closed.

FR works particularly well in energy industry. A pump storage plant may serve
as an example. With an hourly discretization over one year and the binary decision
variables (use of the highly pumped reservoir water or energy generation by a ther-
mal power plant) we can easily arrive at tens of thousands of binary variables as
well as at similarly large numbers of constraints (balancing and coupling of reser-
voir levels in adjacent time periods). The aim is to minimizestart-up costs for pumps
and thermal power plants. Since late and early periods are hardly coupled due to the
lack of storage possibilities, a few partitions, each of which may, for example, com-
prise three months, are sufficient to generate good feasiblestarting points and to
calculate the optimal solution of the original and completeproblem in two minutes
downstream with the MILP solver’s mipstart functionality.

14.1.4.1.2 Linear Approximations for NLP Problems

Beale & Forrest (1976,[60]) have applied the idea of piecewise linear approxima-
tions to the calculation of global minima of nonconvex, nonlinear functions. They
have introduced structured sets namedspecial ordered sets of type 2(in short,
SOS2) with special branching strategies described in Section 6.8. Since then, nu-
merous contributions to SOS2 have appeared, including Fariaset al. (2000,[155];
2008,[156]), with discontinuous, separable, piecewise linear functions, Vielmaet
al. (2009,[576]) with a development of a uniform approach and extensions to mixed
integer models for non-separable piecewise linear functions, Misener & Floudas
(2010,[417]) with piecewise linear formulations for two- and three-dimensional
functions, or Rebennack & Kallrath (2015,[466],[465]) forcomputing minimal
numbers of breakpoints and error-controlled piecewise-linear approximations.



450 Polylithic Modeling and Solution Approaches

14.1.4.1.3 Homotopy Sequences of Models

Homotopy methods can be useful for computing initial feasible points from a se-
quence of relaxed models. For example, in a scheduling problemP due dates can
be relaxed, resulting in the relaxed modelR. The optimal solution or any feasible
point of R is also a feasible point ofP if the due dates inP are modeled us-
ing slack variables. In an auxiliary model, the sum of these slack variables can be
minimized.

Rolling horizon approaches using RF described above can also be understood
as a homotopy. This is, however, a very simple case, as it onlyworks on variables
and their domain specification or bounds. More powerful, butalso more difficult
to implement, are homotopy methods are based on model sequences in which the
models really differ by constraints and features.

In the design study described in Kallrath (1999,[311]) the costs for a site-wide
production network are minimized. These include costs for raw materials, invest-
ment costs and variable costs for reprocessing plants as well as a penalty cost term
for residual impurities occurring at a certain point of the production network.

This MINLP problem, which is difficult due to its structure and size, is solved
in a sequence of submodels of different complexity implemented in the modeling
languageGAMS. In this homotopy, modelm+1 is initialized using the results from
modelm. For example, a simple linear model provides first results for calculating
the concentrationscin

jk occurring in the pooling problem, and for initializing two
simplified nonlinear models. The integer conditions of the binary variables were first
relaxed and only considered in the last step. In summary, thefollowing sequence of
submodels of increasing complexity have been used:

problem type problem ingredients or results
LP yields approximation of concentrations
NLP 1 includes pooling, local cleaning units (LCUs)
NLP 2 yields relaxed semi-continuous flows
RMINLP 1 includes connections and free pools
RMINLP 2 includes local LCUs
MINLP is the full model with all binary variables.

14.1.4.2 Hybrid-Methods

In hybrid methods, exact optimization algorithms are combined with constructive
heuristics or improvement procedures (local search procedures or metaheuristics
like Simulated Annealing, Genetic Algorithms or Tabu Search) combined to find
feasible points of the optimization problem.

In constructive heuristics, the structure of the optimization problem is exploited
to create a primal feasible point. This point could be further improved by the im-
provement procedures described above. This means that initial values can be as-
signed to discrete values in MIP problems, which is, for instance, very useful when



14.1 Polylithic Modeling and Solution Approaches (PMSAs) 451

using the solver’smipstart feature. In favorable situations, hybrid techniques can
also be used to compute lower bounds for minimization problems; an example is
the exhaustion heuristics in Kallrathet al. (2014,[330]) used to minimize the num-
ber of patterns in a cutting stock problem. Like the structured primary heuristics in
Section 14.1.4.1, hybrid procedures are problem-specific;but they are tailor-made
solution techniques, which are not easily transferable to other problems. The devel-
opment of hybrid procedures is therefore theart to generate good feasible points
with as little computation time as possible. In this context, everything is allowed.

14.1.5 Proving Optimality using PMSAs

In the previous section we have learned about using PMSAs as primal heuristics,
i.e., to obtain feasible points. Special classes of problems that allows using primal
heuristics to calculate lower bounds are MILP or MINLP problems that become
smaller,i.e., have fewer variables and constraints when the objective function ap-
proaches the optimum. Examples are:

1. Pattern minimization in cutting stock problems: Kallrathet al. (2014,[330]) have
used a PMSA to solve a cutting stock problem to optimality,i.e., closing the
gap between the upper and lower bound of a MILP problem. In that example
the number of patterns was to be minimized. The upper bound was given by the
best integer feasible found. The key ideas were variables and an index setJ
of patterns from which appropriate patterns could be constructed. Originally, the
problem was very large, as the number of pattern was identical to the number of
order widths. However, as the objective function was to minimize the number of
patterns, with each feasible solution found, a smaller upper bound was found –
and the index space of patterns could be reduced. Finally, inthis iterative proce-
dure, due to the reduced index space, the problem became so small that it was
possible to solve it to optimality.

2. Calculation of optimal breakpoint systems. For continuous, piecewise linear ap-
proximations of nonlinear functions by SOS2 variables, Rebennack & Kallrath
(2015,[466]) have calculated minimum breakpoint systems with different meth-
ods, where the approximator, over- or underestimator is sufficient for a given
accuracyδ . The minimum breakpoint system cannot always be determineddi-
rectly by solving a MINLP problem. In cases where direct calculation is not pos-
sible, a hybrid method first generates a permissible, but notnecessarily minimum
breakpoint system, which satisfies theδ accuracy. However, an upper bound for
the number of breakpoints is now known, which reduces the cardinality of the
set numberB of possible breakpoints in the direct MINLP model and makes it
possible to solve the MINLP problem.

So, the generic idea is: Consider a MILP, NLP or MINLP problemover an index
spaceIk in iterationk. The objective function has the property that from its mini-
mized values a reduced index space of the original problem can be derived, leading



452 Polylithic Modeling and Solution Approaches

to smaller problem with fewer variables and constraints. Ifduring the iterations
of the polylithic procedure the problem becomes so small that optimality can be
proven, we are done – and have obtained feasibility and optimality. In these cases of
objective functions leading to reduced problem size, PMSAsare both primal heuris-
tics and dual techniques leading to improved lower bounds, and in favorite cases, to
closed gaps. Examples of objective functions are minimizing the number of:

1. patterns in cutting stock problems,
2. breakpoints to obtain piecewise-linear approximationsof nonlinear functions,
3. people working on shifts, and
4. rail cars, airplanes, or rental cars in a fleet.

The objective function is to minimize the number of elementsin an index space
involved in the optimization problem. The problem in iteration k, k= 0,1,2, . . . then
involves a binary variableδ i , i ∈Ik, indicating, for instance, whether index element
i representing a pattern, breakpoint, person, or car has beenactivated or selected.
The objective function is simply

min ∑
i∈Ik

δ i .

Note that the index elements have to be ordered and allow to accessing its adjacent
index,e.g., p01, p02, . . . , p99, as this allows us to exploit index shrinking by

δ i ≤ δ i+1 , i ∈ Ik, (14.1.17)

and to define a sequence of index sets for which holds|Ik+1| ≤ |Ik| due to

Ik+1 = {i|δ i ∈ Ik∧δ i = 1 in iterationk}.

If they are not ordered, for instance, in product portfolio minimization, (14.1.17)
cannot be enforced and the index space shrinking approach does not work.

14.2 PMSAs Applied to Real-World Problems

PMSAs are very problem-specific. In this section we outline afew ideas for cutting
stock and packing problems, and illustrate an evolutionaryapproach used to solve a
simple supply chain problem. We also provide a strategy to compute optimal break-
points for approximating nonlinear functions.



14.2 PMSAs Applied to Real-World Problems 453

14.2.1 Cutting Stock and Packing

Cutting stock and packing problems allow many PMSAs among them complete enu-
meration discussed in Section 14.2.1.1, various incremental, swapping, exchange
or tour-reversing approaches in Section 14.2.1.2, or solving irregular strip packing
problems by hybridizing and LP by Gomes & Oliveira (2006,[238]).

14.2.1.1 Complete Enumeration

The cutting stock problem formulated as a MINLP problem in Section 13.2 requires
a lot of computing time when the number of orders increases above 10. Exact so-
lutions – up to a certain problem size – can still be obtained using complete enu-
meration (CE). In CE we generate all existing patternsp ∈ P a priori, obtain the
order multiplicity of orderi within patternp, and then solve the master problem.
The master problem is the minimization problem

z= min
µ p,δ p,α ip

∑
p∈P

(
CR

p µ p+CP
pδ p

)

with variable pattern costsCR
p to be paid for each master roll cut to patternp, and

fixed costsCP
p to be paid when patternp is used at all. The only variables are the

integer variablesµ p (pattern multiplicity) and the binary variablesδ p indicating
whether patternp has been selected in the optimal solution.

The constraints are to fulfill demands

∑
p∈P

µ pα ip = Di , ∀i, (14.2.18)

and to relate the pattern selection variableδ p to the pattern multiplicityµ p

δ p ≤ µ p ≤ Pδ p , p∈ P,

whereP is an upper limit on the usage of patternp.
CE has the advantage over column generation that it does not depend on problem

structure as much as far as the inner structure of the patternis concerned. The limits
of practical usefulness of CE are on the one hand the number ofpatterns to be stored,
and on the other hand the size of the master problem which can be solved by the
available MILP solver. The implementationTrimCE.gmscontains a procedural part
establishing all feasible patterns inspired by Karelathi (2002,[334]).

If the master problem must be solved in no more than two minutes and becomes
too large for the available MILP solver (300 to 400 patterns for CoinCBC, and
5,000 to 6,000 patterns forCPLEX) to stay within the target time limit, we re-
sort to the multi-core decomposition ideas of parallel PMSAs in Kallrath et al.
(2020,[325]). Let us assume we have 2000 patterns and want touse the free MILP
solverCoinCBC on a machine with 16 cores. Then we randomly select 400 pat-



454 Polylithic Modeling and Solution Approaches

terns and solve six master problems (with six different pattern sets) in parallel. This
constellation even allows us to exploit two cores for each master problem. This ap-
proach, although global optimality is not guaranteed, has been used successfully on
a real-world problem in paper industry. In most cases, it actually gets the global
minimum – this has been verified by running certain instancesusingCPLEX.

Another example of column enumeration for a cutting stock problem is found in
Rebennacket al. (2009,[467]). In this example, columns are subsets of disks to be
cut from a set of existing rectangular plates (coils in steelindustry) of different size.
Exploiting these columns, the MINLP problem is decomposed into nonconvex NLP
problems. Finally, a MILP master problem has to be solved.

14.2.1.2 Incremental, Swapping and Tour-reversing Approaches

If the problem size of cutting or packing problems becomes too large, one may use
incremental algorithms,i.e., exploiting additive placements of objects or subsets of
objects until all objects have been placed, to construct at least feasible solutions.
Especially bin packing or strip packing problems – the widthof a rectangles is
known, the length is to be minimized as in Kallrath (2009,[321]), or Kallrath &
Rebennack (2014,[329]) – are very suitable for using incremental algorithms; the
problem of computing a minimal-radius circular container hosting a given set of
disks is another example (see Ryuet al. (2020,[488])). In such cases, an initial set of
randomly selected objects is placed followed by small number of additional objects
to be placed. The problem size is limited by partitioning thesets of objects into two
subsets,Sp andSf . Sp contains objects we want to keep fixed and not subject to the
non-overlap constraints; this is a subset of the objects already placed.Sf consists of
objects free to be placed and subject to non-overlap constraints, i.e., new objects to
be added and objects near the boundary between the already placed objects free to
be relocated and the new ones. This approach has similarities to Relax-and-Fix in
Section 14.1.4.1 and is also used for ellipsoid packing by Kallrath (2017,[324]).

Another approach is the 2-exchange heuristic by Gomes & Oliveira (2002,[237])
in the context of nesting problems or the approach by Kallrath & Frey (2019,[326])
for packing circles into perimeter-minimizing convex hulls is to swap objects and
rearrange them. However, this is not easy because maintaining feasibility can be
a serious problem. For the same problem, Kallrath & Frey (2019,[326]) have also
implemented a tour-approach which covers the combinatorial part of the outer disks
establishing the perimeter of the convex hull.

14.2.2 Evolutionary Approach

Evolutionary algorithms (EAs) are generic population-based metaheuristics inspired
by biological evolution, such as reproduction, mutation, recombination, and selec-
tion. Candidate solutions to the optimization problem playthe role of individuals in



14.2 PMSAs Applied to Real-World Problems 455

a population, and thefitness functiondetermines the quality of the solutions. Evolu-
tion of the population then takes place after the iterated application of reproduction,
mutation, recombination, and selection. To illustrate this approach in the context
of mathematical programming and PMSAs, we use the Supply Management Prob-
lem with Lower–Bounded Demand (SMPLD) by Chauhanet al. (2004,[122]). A
set of providers supply products of one type to a set of consumers, the quantity of
products that can be delivered lies between given minimum and maximum values,
and the costs proposed by each provider are linear functionsof the quantity being
delivered. The SMPLD consists in finding the quantity of products which will be
supplied by each provider to each consumer minimizing the total cost (production
and set-up costs):

Satisfy demandD j for a set of customersj ∈ J by productionxi j from plants
i ∈ I with capacityCi . The non-negative continuous production variablesxi j are
subject to the semi-continuous condition

xi j = 0∨Li ≤ xi j ≤Ci . (14.2.19)

The corresponding MILP model with binary variablesδ i j andxi j is given by the
following relations, starting with the objective function:

∑
j

Pi j xi j +Si j δ i j , (14.2.20)

wherePi j andSi j are the specific production and set-up costs.
The capacity constraint is

∑
j

xi j ≤Ci , ∀i (14.2.21)

and the demand constraint reads

∑
i

xi j ≥ D j , ∀ j. (14.2.22)

As the objective function involves the binary variablesδ i j , we formulate the semi-
continuous constraints (14.2.19) using the binary variables

Liδ i j ≤ xi j ≤ Ciδ i j , ∀{i j}.

This MILP problem, for the data provided in the implementation in ea-smpld.gms,
has minimal cost of 732 (just mentioned to compare it to the EAsolution); the
solution is obtained in milliseconds as it is only a small problem.

Let us now describe how to solve this MILP problem using an evolutionary ap-
proach. In real-world problems we might face the problem that some binary or inte-
ger variables make it impossible to solve the problem in reasonably time; sequencing
problems fall into this class. The EA controls the binary variablesδ i j . For each fixa-
tion, the resulting LP is solved – and the fixed coefficientsδ i j are updated. Note that
from the optimization model’s point of viewδ i j are not variables anymore but fixed



456 Polylithic Modeling and Solution Approaches

coefficients leading to eitherxi j = 0 or Li ≤ xi j ≤ Ci . Constraints (14.2.21) and
(14.2.22) are relaxed as fixation can lead to infeasibilities. Therefore, we introduce
the relaxations variablesti ≥ 0 andsj ≥ 0 and obtain the modified constraints

∑
j

xi j ≤Ci + ti , ∀i, (14.2.23)

and

∑
i

xi j ≥ D j +sj , ∀ j. (14.2.24)

In the EA framework the objective function (14.2.20) becomes the fitness function

∑
j

Pi j xi j +Si j δ i j +V (14.2.25)

with the violation term
V := ∑

i
Piti +∑

j
Pjsj . (14.2.26)

To get the EA running, in Step 0 we assign initial valuesδ i j . Using a random gen-
erator with 50% probability we setδ i j = 0 and with 50% probabilityδ i j = 1.

Step 1: For givenδ i j (and thusxi j = 0 or Li ≤ xi j ≤ Ci), we solve the resulting
LP. If all relaxation variables vanish, we have a feasible point and an upper bound
on both the fitnessand the objective function; we storeδ i j andxi j . Otherwise, if
some relaxation variables have non-zero values, we only have an upper bound on
the fitness function.

Step 2: We apply a mutation operator toδ i j . For instance, with a 10% mutation
probability, we replaceδ i j by 1−δ i j (the otherδ i j coefficients remain unchanged)
and move to Step 1 if the total number of iterations has not been reached.

This approach is implemented inea-smpld.gms– this file contains further imple-
mentation details and the data. Note that as this EA implementation is a heuristics, it
does not provide a lower bound. Therefore, we can stop, for instance, when we have
found the first feasible solution (all relaxation variablestake value zero), or after a
certain number of iterations. In this example, the EA finds a solution with objective
function value 732, the optimal MILP value, after 80 iterations.

EA can be extended to problems with more discrete variables.In a scheduling
problem, the EA could take care of the sequencing variables,while the remaining
MILP part is solved by a MILP solver for the sequencing variables fixed. In the
sense of a PMSA, EAs can be useful to generate feasible initial points, but it may
be slow depending on the number of discrete variables. Note that if the number of
discrete variables is small, it may be worthwhile to think about complete enumera-
tion. Depending on the problem structure and the size of the feasible space, it may
take a while before a feasible solution is obtained. An EA canproduce a significant
advantage if it reduces a MINLP to a MILP problem.



14.2 PMSAs Applied to Real-World Problems 457

14.2.3 Optimal Breakpoints

In Section 6.8.2 we have learned how SOS2 for given sets of breakpointsXb can be
used to interpolate univariate nonlinear functionsf (x) by piecewise linear functions
ℓ(x); both should be functions onD := [X−,X+]⊂R. The size of the resulting MILP
problem depends crucially on the number of breakpoints and one can expect that the
MILP problem has significantly more variables than the original MINLP or NLP
problem. We want to compute such breakpoints systems aimingfor small numbers
of breakpoints and distribute them so that an approximationaccuracyδ is achieved.
Rebennack & Kallrath (2015,[466], RK2015, hereafter) haveshown that if f has
finitely many points of discontinuity, then one can construct a piecewise linearδ -
approximator functionℓ : D→ R for f with finitely many support areas. However,
one may not be able to impose continuity on the functionℓ. There are various tasks
related to the construction of optimal breakpoint systems:

1. Compute theprovenminimal number of breakpoints required to piecewise lin-
early and continuously approximate any continuous function over a compactum
(the methodology also works if the function has finitely manydiscontinuities) so
that an approximation accuracyδ is achieved.

2. For a given numberB of breakpoints, compute the tightest possible piecewise lin-
ear and continuous approximator; tightest in the sense of minimizing the largest
deviation between the approximatorℓ(x) and the functionf (x).

3. For a givenδ > 0, compute piecewise linear and continuousδ -under- andδ -
overestimators.

Note that we do not only talk about interpolation any longer but also about ap-
proximators, under- and overestimators. For univariate functions, the concept of
under- and overestimators leads to piecewise linearδ -tubes around the function
f , and becomes very important when we want to replace nonlinear function terms
in constraints. We can then useδ -under- andδ -overestimators for inner and outer
approximations of the feasible region. Especially, if nonlinear terms occur in diffi-
cult constraints, and even more complicated, in equality constraints, we rather use
linear under- and overestimators. Note that 2δ -underestimators for a continuous
function f with a minimal number of breakpoints can be calculated by shifting a
δ -approximator forf with a minimal number of breakpoints up by valueδ .

As in Section 6.8.2 we consider a univariate functionf (x). For a set of break-
pointsxb, b∈ B, that are now unknown and subject to

X− ≤ xb ≤ xb+1 ≤ X+,

we have the equalities for convexity and relating the breakpoints to the argumentx

∑
b∈B

λ b = 1 , x= ∑
b∈B

xbλ b, (14.2.27)

and the function value



458 Polylithic Modeling and Solution Approaches

y= ℓ(x) = ∑
b∈B

φbλ b ; φb := φ(xb) = f (xb)+sb , ∀b∈ B (14.2.28)

with shift variablessb measuring the deviation ofℓ(x) from the function valuesf (x)
at the breakpoints; in pure interpolation we havesb = 0. Note that instead of the
function valuesFb = f (xb) in (14.2.28) we useφ(xb) to allow for approximation
and not only interpolation.

Unlike in Section 6.8.2, the breakpointsb now have unknown positionsxb – they
become the fundamental variables of our optimization problem; in addition we have
thesb variables. With binary variablesχb indicating whether breakpointb is used,
we want to minimize the numberB= |B| of breakpoints,

min ∑
b∈B

χb,

and compute their positionsxb, satisfying the accuracy inequality

|ℓ(x)− f (x)| ≤ δ , ∀x∈ D. (14.2.29)

Inequality (14.2.29) is a continuum requirement,i.e., x in (14.2.29) is not a de-
cision variable and can vary in the intervalD, and it turns the problem into the
class of semi-infinite programming (finite number of variables, but infinitely many
constraints). With a few more constraints couplingχb to the usage or existence of
breakpointb or xb, resp., RK2015 call this problem “OBSC” forOptimalBreakpoint
System using aContinuum approach forx.

To solve this difficult semi-infinite MINLP problem and to obtain a computa-
tionally tractable mathematical program, one discretizesthe continuum constraints
(14.2.29) intoI finite constraints of the form

|ℓ(xi)− f (xi)| ≤ δ , ∀i ∈ I := {1, . . . , I}, (14.2.30)

for appropriately selected grid pointsxi . Applying this approach toeachof the B
breakpointsxb in formulation OBSC leads to aDiscretizedOptimal Breakpoint
System (OBSD in RK2015). The size (in terms of number of variables and con-
straints) of OBSD depends strongly on the numbersB andI . The MINLP problem
OBSD is generally too large and difficult to solve. Only for modest numbers of
breakpoints and not too many discretization points there isa chance of solving these
problems to global optimality. Alternatively, one can solve the optimal distribution
of a fixed numberB of breakpoints for the discretized continuum constraint

|ℓ(xi)− f (xi)| ≤ µ , ∀i ∈ I

and minimizeµ followed by checking whetherµ ≤ δ .
RK2015 have used the idea of formulation OBSD and discretizeeach interval

(xb−1,xb) into I equidistant grid points. By forcing the usage of exactlyB−1 break-
points (no need for countingx0 = X− nor xB = X+ as breakpoints), the binary vari-
ablesχb are eliminated and one obtains the NLP problem FBSD:



14.2 PMSAs Applied to Real-World Problems 459

µ∗ = min µ (14.2.31)

s.t. xb−xb−1 ≥
1
M

, ∀b (14.2.32)

lbi = φ(xb−1)+
φ(xb)−φ(xb−1)

xb−xb−1
(xbi −xb−1) , ∀{bi}

xbi = xb−1+
i

I +1
(xb−xb−1) , ∀{bi} (14.2.33)

|lbi − f (xbi)| ≤ µ , ∀{bi} (14.2.34)

xbi ∈ [X−,X+], −∞ ≤ lbi ≤+∞ (free) , ∀{bi}
µ ≥ 0 ; sb ∈ [−δ ,+δ ], xb ∈ [X−,X+] , ∀{b}. (14.2.35)

At the breakpoints the function deviation is bounded byδ saving the discretization
pointsxbi at the breakpoints. The solution of the FBSD minimization problem pro-
vides a breakpoint systemxb, the shift variablessb, and the minimal valueµ∗ as
functions ofB andI , i.e., µ∗ = µ∗(B, I) andxb = xb(B, I).

The simultaneous computation of all breakpoints by solvingone optimization
model is computationally very expensive. Thus, RK2015 haveproposed PMSAs,
especially, forward and backward schemes. In the forward scheme, one moves from
x0 = X− to breakpointx1 as far as possible away fromx1 fulfilling the accuracy
requirement on [x0,x1], and then successively fromxb−1 to the next breakpointxb ≤
X+ covering the whole interval.

Finally, we present an example. Motivated by the fact that many global solvers
do not support trigonometric functions, we want to represent sinx by a piecewise-
linear approximator using five breakpoints. Solving the model, for instance, using
the implementationoptGrid.gmsprovided in MCOL, we find – after 18 minutes
of computing time using the solverLINDO– that sinx can be approximated to an
accuracy ofδ = 0.00582257548536694 using the breakpoints(b0,b1,b2,b3,b4) on
the interval [0,π/2]:

b 0 1 2 3 4
Xb 0 0.5703434930043430.9394406218020041.26316079512676π/2

.

The range [0,π/2] with the five breakpoints above can be extended to [0,2π] using
16 breakpoints by

xb =





Xb , b= 0, . . . ,4
π/2−X8−b , b= 5, . . . ,8
−x16−b , b= 9, . . . ,16

.

Finally, extensions to higher dimensions have been analyzed by Rebennack & Kall-
rath (2015,[465]). Two-dimensional functionsf (x1,x2), for instance, can be approx-
imated or interpolated by exploiting triangulations.



460 Polylithic Modeling and Solution Approaches

14.3 Summary & Recommended Bibliography

In this chapter we have presented polylithic modeling and solution approaches (PM-
SAs) for solving difficult or large MILP, NLP and MINLP problems. Thus the reader
should now be familiar with:

• the main benefits of PMSAs: problem-specific preprocessingand construction of
solution algorithms;

• the importance of computing initial values and providing initial approximations
to obtain primal feasible points of these MILP, NLP, and MINLP problems;

• proving optimality using PMSAs; and
• typical situations in which PMSAs can be useful.

In literature, the field ofMatHeuristicsis closely related to PMSAs. A good intro-
ductory reference is by Maniezzoet al. (2009,[395]). A good review of mathemati-
cal models of irregular packing problems is by Leaoet al. (2019,[370]).

14.4 Exercises

1. Solve the farmer’s problem in Sections 2.6.1 and 3.3.1 bycolumn enumeration,
i.e., generate all feasible combinations of calves and pigs, evaluate the objective
function as on page 81, and pick the best combination as the optimal solution.

2. Implement thecolumn generation(CG) method by Gilmore & Gomory in the
AML of your choice for solving a trimloss problem similar to the one in Section
13.2. Exploit the following background material:

The CG method by Gilmore & Gomory (1961,[228]) is based on a feasible initialization (feasi-
ble patterns, no underfulfillment of demand), and the iterationloop (master problem, subprob-
lem = pricing problem). The master problem (MP) is given by

min∑
p

µ p s.t. ∑
i

Nipµ p ≥ Di , ∀i ; µ p ∈ {0,1,2,3, . . .} , ∀p, (14.4.1)

whereDi = (8,16,12,7,14,16) is the requested number of rolls, andNip specifies, how often
order width i is contained in patternp. During the iterations, the integrality conditions are
replaced by the non-negativity conditionsµ p ≥ 0. The MP yieldsµ p and the values of the
dual variables or shadow pricesPi , which are required as input to the pricing problem (PP)
generating new patterns. The PP is a knapsack problem with objective function

min

(
1−∑

i
Piα i

)
s.t. ∑

i
Wiα i ≤W ,

α i ∈ {0,1,2,3, . . .}
Wi = (33,36,38,43,49,53)

; ∀i, (14.4.2)

with master roll widthW = 220 and order widthsWi . The objective function in (14.4.2) cor-

responds to the reduced costs ¯c j := c j − πTA j = c j −∑i π iAi j of the MP; we recognize the

non-basic variables indexed byj, column vectorA j := (α1, . . . ,α I )
T representing a new pat-

tern leading to updatedNip, and the dual variablesπ associated with the demand inequality.

In (14.4.1) all objective function coefficients are 1 andπ i = Pi . As the MP is a minimization



14.4 Exercises 461

problem, iterations terminate when ¯c j = 0, or for numerical reasons, when ¯c j ≥−ε, whereε is

a small, non-negative number,e.g., ε = 10−6. After the iterations are done, MP is solved as a

MILP problem for the patterns generated andµ p ∈ {0,1,2,3, . . .}.

Hints: Work out a feasible initialization, implement the relaxed master problem,
the pricing problem, the iteration loop, and finally the MILPmaster problem.

3. Extend the column generation method implemented in Exercise 2 by considering
that only K knives are available. Hint: Start by thinking where this condition
enters the game (MP or PP?). Run numerical experiments forK = 3 andK = 2.





Chapter 15
Cutting & Packing beyond and within
Mathematical Programming

This chapter, based on material provided and written by Prof. Dr. Yuriy Stoyan
& Prof. Dr. Tatiana Romanova,1 is devoted to the phi-function technique used for
mathematical modeling of cutting and packing (C&P) problems. Phi-functions are
constructed here for some 2D and 3D geometric objects. Phi-functions can be de-
scribed by quite simple formulas. A general solution strategy using phi-functions
is outlined. Conceptually, the Phi-function approach exploits NLP and MINLP and
can be understood as cutting & packing beyond and within Mathematical Program-
ming. It also exploits polylithic modeling and solution techniques.

15.1 Introduction

The cutting and packing (C&P) problem is a part of computational geometry that
has rich industrial applications in garment industry, sheet metal cutting, furniture
making, shoe manufacturing, etc. The common task in these areas is to cut a certain
set of figures of specified shapes and sizes from a given sheet (or strip) of material
(textile, wood, metal, etc.),cf. the tutorial by Bennell & Oliveira (2008,[71] and
references therein. To minimize waste one wants to cut figures as close to each other
as possible; in other words one needs to design a layout as close to the optimum as
possible before the actual cutting.

This is a mathematical problem which can be formalized as follows: given a strip
of fixed widthW and infinite length, sayS= {x≥ 0, 0≤ y≤W}, cut outn given
figures from the rectangle{0≤ x≤ L, 0≤ y≤W} ⊂ Swithout overlaps, so thatL
takes its minimum value, see Fig. 15.1.

In other applications, one needs to arrange a given set of objects within a cer-
tain area (say, shipment on a deck of a freight car or electronic components on a

1 The National Academy of Sciences of Ukraine, Institute of Mechanical Engineering Problems,
Department of Mathematical Modeling and Optimal Design, Kharkiv, Ukraine & Kharkiv National
University of Radioelectronics, Department of Applied Mathematics.

463



464 Cutting & Packing beyond and within Mathematical Programming

Fig. 15.1 Strip packing polygons into a rectangle of given width and infinite length. This is Fig. 7
from Taylor & Francis: Journal of the Operational Research Society, Vol. 67, Stoyanet al. (2016),
Cutting and Packing Problems for Irregular Objects with Continuous Rotations: Mathematical
Modelling and Non-linear Optimization. Fig.7 [538]. Copyright ©2016 The Operational Research
Society, reprinted by permission of Taylor & Francis Ltd, www.tandfonline.com on behalf of The
Operational Research Society.

panel), and again one wants to minimize the use of space or maximize the number
of objects.

Clearly these two types of problems – cutting and packing – are mathematically
equivalent; they are known as the C&P problem (it is also called nesting problem,
marker making, stock cutting, containment problem, etc). In some cases it involves
additional restrictions on the minimal or maximal distancebetween certain objects
or from the objects to the border of the container. The tutorial by Bennellet al.
(2008,[71]) summarizes previous studies of C&P problems and its history.

Many other applications involve 3D geometry: packing pillsinto a bottle, placing
crates and barrels into a cargo compartment, 3D laser cutting, modeling of granular
media and liquids, and radiosurgery treatment planning, and 3D printing (just to
name a few). Thus, the C&P problem naturally extends to threedimensions. Fig.
15.2 illustrates a 3D packing problem – objects of various shape and dimensions are
packed into a convex container in order to minimize its dimensions.

Fig. 15.2 3D packing examples: Local optimal placement of polyhedra (left, Fig. 12a in Romanova
et al. (2018, [474]) and 100 ellipsoids (right, Fig. 10 in Romanovaet al. (2020, [476]).



15.1 Introduction 465

The problem is NP-hard, and as a result solution methodologies predominantly
utilize heuristics; most existing methods of cutting and packing are restricted to
objects of certain shapes and type and impose various limitations on their layout.
The most popular and most frequently cited tool in modern literature on the C&P
problem is the so calledNo-Fit Polygon; it is designed to work only for polygo-
nal objects without rotation and one of the objects that can be translated;cf. Ben-
nell & Oliveira (2008,[71]. A detailed review of tools and mathematical models for
irregular packing problems is provided in Leaoet al. (2019,[370]). The book by
Scheithauer (2018,[500]) introduces the fundamental knowledge for dealing with
C&P problems and presents modeling and solution approaches. However, not all
advances are published in books or academic journals because many commercial
companies closely guard their products.

The goal of this chapter is studying the cutting and packing problem in a for-
mal mathematical manner. In this study objects of very general shape (called phi-
objects) are considered and their layouts are characterized by means of special
functions (called phi-functions) whose construction involves a certain degree of
flexibility. The concepts of the phi-object and the phi-function have their roots in
topology; but the phi-functions turn out to be highly convenient for practical so-
lutions of C&P problems. In particular, since the construction of phi-functions is
flexible, the advantage of this fact is taken to develop more efficient algorithms.
The concept ofquasi phi-functionsextends the phi-function domain by introduc-
ing auxiliary variables. The use of quasi phi-functions, asan alternative to phi-
functions, allows for simplified descriptions of non-overlapping constraints, at the
expense of a larger number of variables. The quasi phi-functions concept is in-
troduced in Stoyanet al. (2016,[539]). It is motivated by the idea proposed by
Kallrath (2009, [321]) of using separation lines to model non-overlapping con-
straints for circles and convex polygons. The phi- and quasiphi-functions have
been successfully used to model a variety of packing, cutting and covering prob-
lems [124, 443, 475, 536, 548, 477, 446, 545, 479, 444, 445], including applications
in space engineering [474, 542, 544, 543], 3D printing [480], terminal debugging
[482, 478], material sciences [172]. The principal goal of this chapter is to present
the basic foundations of the phi-function technique and demonstrate practical bene-
fits of this tool [68, 69, 124, 125, 538, 539, 540, 534, 535, 546, 547].

This chapter is organized as follows: in Section 15.2 phi-objects are introduced,
in Section 15.3 phi-functions are defined and an overview of their properties is
given, in Section 15.4 a reduction of the C&P problem to a constrained optimization
problem using the phi-functions is provided, and in Section15.5 various approaches
to its solution are described. Illustrative examples are presented in Section 15.6.



466 Cutting & Packing beyond and within Mathematical Programming

15.2 Phi-objects

The first goal is to describe a general mathematical model forthe cutting and pack-
ing (C&P) problem that should adequately represent virtually all existing applica-
tions.

The basic task is to place a set of geometric objects (later on, simplyobjects) Ti ,
i ∈ {1,2, . . . ,n} = In, into a containerT0 so that certain restrictions on the location
of the objects are met and a given objective function (measuring the ‘quality’ of the
placement) reaches its extreme value. We specify these requirements below.

This basic task can be also rephrased differently: given a (large) objectT0, we
need to cut a set of smaller objects{T1, . . . ,Tn} from it. These objects are 2D or 3D
geometric figures,i.e., subsets of IR2 or IR3. Generalization to any dimension is not
pursued here.

The multiplicity of shapes ofTi andT0, as well as the variety of restrictions and
forms of the objective function, generate a wide spectrum ofrealizations of this
basic problem. A unified approach to all such applications ispresented with the
ultimate goal of designing efficient algorithms for solvingthe C&P problem.

15.2.1 Phi-objects

A class of objects for the model following is defined; they arecalledphi-objects.
They must have an interior (“main part”) and a boundary (frontier). Each phi-object
is required to be the closure2 of its interior. This requirement rules out such ele-
ments as isolated points, one-dimensional curves, etc.; they do not occur in realistic
applications. Fig. 15.3a shows an invalid phi-object – it has one-dimensional ‘rays’,
isolated points, and punctured interior points.

The smaller objectsT1, . . . ,Tn always have finite size, in mathematical terms they
arebounded. The larger objectT0 may be bounded or unbounded (it is common in
applications that the container is a strip or a cylindrical tube of infinite length).

(a) (b) (c)

Fig. 15.3 Invalid phi-objects.

2 In general topology, closed sets that are closures of their interior are said to becanonically closed;
this is what phi-objects are



15.2 Phi-objects 467

In addition, phi-objects should not have self-intersections along their boundary,
as shown in Fig. 15.3bc, because this may lead to confusion. For example, Fig. 15.3c
shows a dark domain whose two ends touch each other; this mustbe prohibited. The
reason is also demonstrated in that same figure: a similar object (the light grey “fig-
ure eight”) is placed so that the two intersect each other only in their boundaries,
which is generally allowed, but in this particular case we cannot position these ob-
jects as shown because one ‘cuts’ through the other.

Mathematically, the above requirement can be stated as follows: a phi-object
and its interior must have the same homotopy type (the same number of connected
components, the same number of interior holes, etc). Alternatively, one may require
that for any pointz on the boundary fr(T) of a phi-objectT there exists an open
neighborhoodUz of z such thatUz∩ (int T) is a connected set. These requirements
may sound too abstract, but their practical meaning should be clear from the above
example.

An important property of phi-objects is that ifT is a phi-object, thenT∗ =
IRd \ intT), whered = 2,3, is a phi-object too.

In most applications, the boundaries of 2D phi-objects are made by simple con-
tours: straight lines and circular arcs. Likewise, the boundaries of 3D phi-objects
mostly consist of flat sides, spherical, cylindrical and conical surfaces.

15.2.2 Primary and Composed Phi-objects

Any phi-object in IR2 is called aphi-polygonif its frontier is shaped by straight
lines, rays, and line segments. An ordinary polygon is a phi-polygon, but there are
also unbounded phi-polygons – half-plane, a sector boundedby two intersecting
lines, etc.

A phi-object in IR3 is called aphi-polytopeif its boundary is shaped by phi-
polygons. Other objects can be approximated by polygons andpolytopes, which is
a common practice, but we handle some curvilinear objects directly.

We call aprimary phi-object in IR2 a circle, rectangle, or convex polygon. In
3D, a primary object is asphere, cuboid, right circular cylinder, circular cone, or
convex polytope. In addition, ifA is a 2D or 3D primary object, then the closure of
its complement (in IR2 or IR3, respectively), denoted byA∗, is regarded a primary
object, too (see some illustrations in [68]). Thus the list of primary objects is not
limited to bounded or convex figures.

Note that convex polygons formally include rectangles but in practice it is con-
venient to treat the latter separately, as they can be handled more efficiently (e.g.,
compare (15.3.9) and (15.3.15) below).

More complex objects can be constructed from primary objects (by methods sim-
ilar to those used in constructive solid geometry). We say that a phi-objectT is
composedif it is obtained by forming unions and intersections of primary objects,
i.e.,

T = T1◦1 T2◦2 · · · ◦k−1 Tk, (15.2.1)



468 Cutting & Packing beyond and within Mathematical Programming

whereTi are primary objects, each◦i denotes either a union (∪) or an intersection
(∩), and the order in which these operations are executed can bespecified by a set
of parentheses, for exampleT = T1∪ (T2∩T3). Composed phi-objects may be very
complex, see some example in Fig. 15.4.

Fig. 15.4 Examples of composed phi-objects in 2D.

Fact 1: In 2D, composed phi-objects are exactly those whose frontier is formed
by straight lines, rays, line segments, and circular arcs.

Indeed, every phi-object with such a boundary can be represented by unions and/or
intersections of primary objects, in the sense of the formula (15.2.1). Similarly, 3D
composed phi-objects have frontiers made by flat (planar) faces, parts of spheres,
and parts of cylindrical and conical surfaces, see Fig. 15.5.

15.2.3 Geometric Parameters of Phi-objects

The shape of a phi-object can be specified in many ways. For a simple (primary)
object, its type is named and its metric dimensions are listed. For example, a circle
can be specified by a pair(C, r), whereC is the type (“circle”) andr > 0 is its radius,
i.e.,

(C, r) = {(x,y) : x2+y2 ≤ r2}.
A sphere can be specified by a pair(S, r), where is the type (“sphere”) andr > 0 is
its radius,i.e.,

(S, r) = {(x,y,z) : x2+y2+z2 ≤ r2}.
For a rectangle, a triple(R,a,b), can be used, whereR is the type (“rectangle”) and
a,b> 0 are half-sides:

(R,a,b) = {(x,y) : |x| ≤ a and |y| ≤ b}. (15.2.2)

Similarly a cuboidP (a 3D box) can be described:



15.2 Phi-objects 469

Fig. 15.5 Examples of composed phi-objects in 3D.

(P,a,b,c) = {(x,y,c) : |x| ≤ a, |y| ≤ b, |z| ≤ c}.

For a cylinder, we use a triple(C, r,h), whereC is the type,r is the radius of the base
andh is the half-height:

(C, r,h) = {(x,y,z) : x2+y2 ≤ r2 and |z| ≤ h}. (15.2.3)

All objects above are centrally symmetric. In such cases theorigin of the coordinate
system is always placed at the center of symmetry to simplifythe formulas. This
explains the use of ‘half-sides’, ‘half-heights’, etc.

For a convexm-gon, its type is denoted byK and its shape is specified by a set
of inequalitiesα ix+β iy≤ γ i for i = 1, . . . ,m; it is convenient to assume that(0,0)
belongs to the polygon (see Subsection 15.2.4); thenγ i ≥ 0. It is also convenient
to chooseα i andβ i so thatα2

i +β 2
i = 1, this simplifies subsequent computations.

Thus the convexm-gon is described by
(
K,(α1,β 1,γ1), . . . ,(αm,β m,γm)

)
. (15.2.4)

The (closure of the) complement of a primary object is specified similarly, except
we add a star to its type; for example

(C∗, r) =
{
(x,y) : x2+y2 ≥ r2}.

Recall that this is a primary object, too.
It is important that each primary object is specified by a set of linear or quadratic

inequalities. Actually, quadratic formulas allow us to describe even more general
shapes, such as ellipses, ellipsoids, hyperboloids.

To represent a composed object, we can specify the primary objects used in its
construction, their positions (in the way explained below,see Subsection 2.4), and
the sequence of set-theoretic operations (unions and/or intersections) employed to
produce the composed object from its primary constituents.The list of character-
istics of a composed object may be quite long depending on thecomplexity of its
shape.



470 Cutting & Packing beyond and within Mathematical Programming

15.2.4 Position Parameters of Phi-objects

One may notice that in the formulas which specify primary objects the origin(0,0)
plays a special role. It is called thepole of the primary object. If the object is
centrally-symmetric, then its center becomes the pole. Otherwise the choice of the
pole may be quite arbitrary, for example in a generic polygonthe pole can be placed
at a vertex.

In addition, the orientation of the phi-object is usually fixed by its description,
for example the sides of a rectangle may be aligned with the coordinate axes, see
(15.2.2). Thus with each phi-object we associate not only a pole but also a coordinate
frame originating at the pole. We call it theeigen- (own-) coordinate system of
the object. The inequalities specifying a primary object are written in their eigen
coordinates.

Next, in order to specify an arbitrary position of a 2D phi-object in IR2, a transla-
tion vectorν = (ν1,ν2) and a rotation angleθ ∈ [0,2π) are introduced. This means
that the object is translated byν , i.e., its pole moves to the point(ν1,ν2), and then
the object is rotated around the pole byθ (for instance, counterclockwise).

The rotation parameterθ is optional. First of all, it is redundant for such objects
as circles. Second, in many applications the objects cannotbe rotated freely by their
nature. In garment industry, which remains the largest fieldof applications of cutting
and packing algorithms, free rotations are generally not allowed. One cuts pieces
of predetermined shape from a long strip of fabric, and thereare usually just two
orientations in which the pieces can be placed: the originalone and the one obtained
by a 180o rotation (such a restriction is due to the existence of drawing patterns and
to intrinsic characteristics of the fabric’s weave). The cutting and packing problem
both with and without rotation parameters will be analyzed here.

The position of a 3D phi-object in space IR3 requires a translation vectorν =
(ν1,ν2,ν3) and three (optional) rotation anglesθ 1,θ 2,θ 3.

To summarize, a composed phi-object on a plane or in space canbe described by
a list of characteristics that include

(i) types of primary objects used in its construction and therules of construction
(the sequence of intersections and/or unions),

(ii) the metric dimensions of the constituent primary objects, and translation vec-
tors and (optionally) rotation angle(s) that determine theposition of the primary
objects in the eigen-coordinate system of the composed object

(iii) the translation vector and (optionally) rotation angle(s) that determine the
position of the object in plane/space.

While the characteristics (i) and (ii) are fixed for every phi-object, those in (iii) are
usually treated as variables by the optimization algorithms which try to arrange the
objects in an optimal way.



15.3 Phi-functions: Relating Phi-objects 471

Fig. 15.6 Phi-functions in their positive mood serve two purposes: Keepingobjects apart (left) and
keeping objects into a target container (right). Produced for this book by Diana Kallrath, Copyright
©2020.

15.2.5 Interaction of Phi-objects

In solving the C&P problems it is very important to distinguish between different
types of mutual location of two phi-objects (let us call themA andB):

• Interior-intersection: int(A)∩ int(B) 6= /0.
• Touching: int(A)∩ int(B) = /0 and fr(A)∩ fr(B) 6= /0.
• Non-intersection: A∩B= /0.
• Containment: A⊂ B, i.e., int(A)∩ int(B∗) = /0.

HereB∗ denotes the (closure of the) complement ofB. Note that the containment is
conveniently described by non-intersection of the interiors ofA andB∗.

15.3 Phi-functions: Relating Phi-objects

To formalize the above relations between phi-objects, phi-functions are introduced
by Stoyan and his co-workers [534, 546, 547]. As illustratedin Fig. 15.6, phi-
functions serve two purposes: Keeping phi-objects apart (left) and keeping phi-
objects into a target container (right). The basic mathematical idea is that for any pair
of phi-objectsA andB with placement parametersuA,uB the phi-functionΦ(uA,uB)
must be positive for non-intersecting objects, zero for touching objects, and negative
for objects with intersecting interiors,i.e., Φ(uA,uB) must satisfy





Φ(uA,uB)> 0 if A∩B= /0
Φ(uA,uB) = 0 if int(A)∩ int(B) = /0 and fr(A)∩ fr(B) 6= /0
Φ(uA,uB)< 0 if int(A)∩ int(B) 6= /0.

(15.3.5)

The phi-function is required to bedefinedandcontinuousfor all values of its
variablesuA,uB.



472 Cutting & Packing beyond and within Mathematical Programming

Fig. 15.7 Arrangements of two objectsA andB.

Thus knowing the sign ofΦ(uA,uB) for every pair of objects would allow us
to distinguish between the basic types of their mutual location. The containment
A⊂ B, in particular, holds if and only ifΦ(uA,uB))≥ 0 for the objectsA andB∗ =
IRd \ intB.

It is now clear that ifΦ(uA,uB) > 0, the objects are a certain distance apart;
usually, decreasingΦ(uA,uB) brings them closer together. On the other hand, if
Φ(uA,uB)< 0, then the objects overlap, and increasingΦ(uA,uB) would force them
apart. These features make the phi-functions instrumentalfor the performance of
cutting and packing algorithms.

In some applications the metric dimensions of some objects should also be vari-
able; then they can be included in the list of arguments of thephi-functions.

15.3.1 Construction of Phi-functions for various Situations

While the sign of the phi-function plays a crucial role, its absolute value is not
subject to any rigid requirements. In particular, if two objectsA and B overlap,
thenΦ(uA,uB)< 0 and the absolute value|Φ(uA,uB)| should just roughly measure
the extent of overlap. For non-overlapping objectsΦ(uA,uB) > 0, and the value of
Φ(uA,uB) may just roughly correspond to the distance betweenA andB.

In particular, one might setΦ(uA,uB) =dist(A,B), where

dist(A,B) = min
X∈A, Y∈B

dist(X,Y) (15.3.6)

denotes the geometric (Euclidean) distance between closedsets.
There is an issue of existence of the minimum provided by (15.3.6). For every

pair of objects at least one has to be bounded; this property guarantees the existence
of the above minimum.

In some cases the geometric distance between objects is easyenough to compute
and can be used as the value of the phi-function. But in many cases the formula
for the distance involves radicals, which makes it difficultfor local optimization
algorithms to useΦ(uA,uB) and its derivatives. In those casesΦ(uA,uB) should be
defined by a simpler formula which only roughly estimates thedistance between the
objects. Some examples are given below.



15.3 Phi-functions: Relating Phi-objects 473

Phi-function for Two Circles

The phi-function for two circlesCi , i = 1,2, with centers(xi ,yi) and radiir i > 0 can
be defined more simply (see Fig. 15.8 for details):

ΦCC = (x1−x2)
2+(y1−y2)

2− r2, (15.3.7)

r = r1+ r2.

Fig. 15.8 Phi-function for two circles.

Note that the sign ofΦ coincides with that ofd (andΦ = 0 wheneverd = 0).
Formula (15.3.7) allows avoiding square roots and uses onlyquadratic functions.

Phi-function for Two Spheres

Similarly, for two spheresSi , i = 1,2, with centers(xi ,yi ,zi) and radiir i > 0, the
phi-function can be derived as follows:

ΦSS= (x1−x2)
2+(y1−y2)

2+(z1−z2)
2− r2, (15.3.8)

r = r1+ r2.

Phi-function for Two Rectangles

For two rectanglesRi , i = 1,2, with centers(xi ,yi) and half-sidesai ,bi > 0 (assuming
that the sides are aligned with the coordinate axes), the phi-function is defined by
(see Fig. 15.9 for details)

ΦRR= max
i=1,....,4

χ i , (15.3.9)



474 Cutting & Packing beyond and within Mathematical Programming

χ1 =−y−b, χ2 =−x−a, χ3 = y−b, χ4 = x−a,

x= x2−x1, y= y2−y1, a= a1+a2,b= b1+b2.

Fig. 15.9 Phi-function for two rectangles.

Observe that the above function (15.3.9) sometimes coincides with the geometric
distance between the rectangles (if one is above the other orif they are placed side
by side), but in general the distance involves square roots,while this formula is just
a combination of linear functions.

Phi-function for Two Cuboids

Similarly, for two cuboidsPi , i = 1,2, with centers(xi ,yi ,zi) and half-sidesai ,bi ,ci >
0, whose sides are aligned with the coordinate axes, the phi-function can be set

ΦPP = max
i=1,....,6

χ i ,

χ1 =−x−a,χ2 = x−a,χ3 = y−b,χ4 =−y−b,χ5 = z−c,χ6 =−z−c

x= x2−x1,y= y2−y1,z= z2−z1,a= a1+a2,b= b1+b2,c= c1+c2.

Phi-function for Two Parallel Circular Cylinders

Now letCi , i = 1,2, be two cylinders with centers(xi ,yi ,zi), radii of the basesr i and
half-heightshi , see (15.2.3). Assuming the axes of the cylinders are parallel to each
other,Φ is derived as follows:

ΦCC = max{χ1,χ2,ω}, (15.3.10)

χ1 = z−h,χ2 =−z−h,ω = x2+y2− r2,

x= x2−x1,y= y2−y1,z= z2−z1,h= h1+h2, r = r1+ r2.



15.3 Phi-functions: Relating Phi-objects 475

Phi-function for Convex Polygons

Effectively, in (15.3.9) the distance between two verticesof the rectangles is re-
placed with the distance from a vertex of one rectangle to a side of the other (more
precisely, to the line containing that side); and the distance from a point to a line is
always given by a linear formula. This principle can be applied to any pair of convex
phi-polygons.

The phi-function can be written explicitly for convex polygons (recall that those
are primary phi-objects). Suppose

(
K′,(α ′

1,β
′
1,γ

′
1), . . . ,(α

′
m′ ,β ′

m′ ,γ ′m′)
)

(15.3.11)

and (
K′′,(α ′′

1,β
′′
1,γ

′′
1), . . . ,(α

′′
m′′ ,β ′′

m′′ ,γ ′′m′′)
)

(15.3.12)

are two convex polygons specified according to formula (15.2.4). Denote also by
(x′i ,y

′
i), 1≤ i ≤ m′, the vertices ofK′ and by(x′′j ,y

′′
j ), 1≤ j ≤ m′′, the vertices ofK′′.

As before, it is assumed thatα i ’s andβ i ’s satisfyα2
i + β 2

i = 1 for each polygon.
Then the valued = α ix+β iy+ γ i is the ‘signed’ distance from the point(x,y) to
the ith edge of the polygon; the sign ofd is automatically determined as follows: it
is negative if the point(x,y) lies on the same side of the edge as the entire polygon
and positive otherwise.

Now let
ui j = α ′

ix
′′
j +β ′

iy
′′
j + γ ′i (15.3.13)

denote the ‘signed’ distance from thejth vertex(x′′j ,y
′′
j ) of the polygonK′′ to theith

edge ofK′ and
v ji = α ′′

j x
′
i +β ′′

j y
′
i + γ ′′j (15.3.14)

the ‘signed’ distance from theith vertex(x′i ,y
′
i) of the polygonK′ to the jth edge of

K′′. Now the phi-function can be defined in the form

ΦK′K′′
= max{ max

1≤i≤m′
min

1≤ j≤m′′
ui j , max

1≤ j≤m′′
min

1≤i≤m′
v ji}. (15.3.15)

This formula is based on two facts: The first one is a well-known geometric property
of convex polygons: if two convex polygons are disjoint, then there is an edgeE of
one of them such that these polygons lie on the opposite sidesof the line containing
E. This property guarantees the basic features (15.3.5) of the function (15.3.15), in
particularΦK′K′′

> 0 whenever the polygonsK′,K′′ are disjoint.
The second fact is a simple property of continuous functions: if f and g are

continuous, then min{ f ,g} and max{ f ,g} are also continuous functions. This fact
implies the continuity ofΦ in (15.3.15).

Note that the restrictionα2
i +β 2

i = 1 is no longer necessary as the phi-function
need not represent actual distances.

If the polygonsK′ andK′′ have fixed orientation, then their positions are com-
pletely specified by the coordinates of their poles; let us denote those by(x′,y′)



476 Cutting & Packing beyond and within Mathematical Programming

and(x′′,y′′), respectively. These are the only variables in the formulas. It is easy to
check thatα i ’s andβ i ’s are constants (independent of the coordinates of the pole),
andγ i ’s, xi ’s, yi ’s are just linear functions of the coordinates of the pole. Therefore
the phi-function (15.3.15) is piecewise linear in its arguments(x′,y′) and(x′′,y′′).

The phi-function for convex polytopes can be found, for instance, Stoyanet al.
(2002, [535]). The phi-function technique is compared withLagrange multipliers
approach in [386].

Phi-function for Non-convex Polygons

SupposeK′ and K′′ are non-convex phi-polygons (or polytopes), represented as
unionsK′ = K′

1∪ ·· · ∪K′
p andK′′ = K′′

1 ∪ ·· · ∪K′′
q of convexpolygons (polytopes)

K′
i andK′′

j , are convex fori = 1, ..., p and j = 1, ...,q. Then the phi-function forK′

andK′′ can be defined in the form

ΦK′K′′
= min

1≤i≤p
min

1≤ j≤q
ΦK′

i K
′′
j .

The last formula illustrates a general principle. SupposeA= A1∪ ·· ·∪Ap andB=
B1∪·· ·∪Bq are phi-objects, each of which is a union of some phi-objectsAi andB j ,
respectively. These do not have to be disjoint unions,i.e., someAi ’s may overlap,
and so may some ofB j ’s. Then

ΦAB = min
1≤i≤p

min
1≤ j≤q

ΦAiB j . (15.3.16)

This fact can be verified by direct inspection, see also [68].
Now supposeK′′ is a simply connected polygon andK′ is a multiply connected

polygon (i.e., polygon with holes) so thatK′ = K′
1∩ (K′

2∩ ·· · ∩K′
p), whereK′

1 is a
simply connected convex phi-polygon andK′

2, · · · ,K′
p are complements to simply

connected phi-polygons (creating ‘holes’), thenΦK′K′′
may be presented as follows

ΦK′K′′
= max

1≤i≤p
ΦK′

i K
′′
. (15.3.17)

Things may get more complicated when the frontiers of the objects are a mixture
of arcs and line segments; then the constructions of phi-functions may require a
degree of ingenuity; see next section.

Phi-function for a Rectangle and a Circle

Let R be a rectangle with center(x1,y1) and half-sidesa,b > 0, andC be a circle
with center(x2,y2) and radiusr > 0. As can be seen in Fig. 15.10, the phi-function
is defined by

ΦRC= max{ max
i=1,...,4

χ i , min
i=1,...,4

{ω i ,ψ i}} (15.3.18)



15.3 Phi-functions: Relating Phi-objects 477

χ1 = x−A, χ2 = y−B, χ3 =−x−A, χ4 =−y−B,

ω1 = (x+a)2+(y+b)2− r2, ω2 = (x+a)2+(y−b)2− r2,

ω3 = (x−a)2+(y−b)2− r2, ω4 = (x−a)2+(y+b)2− r2,

ψ1 =−x−y−s, ψ2 =−x+y−s,

ψ3 = x+y−s, ψ4 = x−y−s, s= a+b+ r

A= a+ r, B= b+ r, x= x2−x1, y= x2−x1.

Fig. 15.10 Phi-function for a rectangle and a circle.

The reader may check by direct inspection that thisΦ is continuous inx1,y1,x2,y2

and satisfies (15.3.5). Note that the phi-function is quadratic in its arguments(x1,y1)
and(x2,y2).

Phi-function for a Convex Polygon and a Circle

Generalizing the above example, letK be a convex polygon with vertices(xi ,yi), 1≤
i ≤ m, and sides given by the equationsα ix+β iy+ γ i = 0 defined in Section 15.2,
and subject toα2

i +β 2
i = 1. It is assumed that the vertices and sides are numbered

clockwise and theith side joins theith and(i +1)st vertices. LetC be a circle with
center(xc,yc) and radiusr. Then the phi-function can be defined in the form

ΦKC = max
1≤i≤m

max
{

α ixc+β iyc+ γ − r,Ψi
}
, (15.3.19)

where

Ψi = min
{
(xc−xi)

2+(yc−yi)
2− r2,

(β i−1−β i)(xc−xi)− (α i−1−α i)(yc−yi)+ r(α i−1β i −α iβ i−1)
}
.



478 Cutting & Packing beyond and within Mathematical Programming

This formula generalizes (15.3.18).
As we see below, the construction of phi-functions for some composed objects

may turn out rather simple.

Phi-function for a Composed Object and a Circle

Let P be the composed object defined by the formP = R∪C1 ∪C2, whereR is a
rectangle, andCi , i = 1,2 are circles as displayed in Fig. 15.11a.

The phi-function for the composed object and a circleC can be defined by

ΦPC = min{ΦRC,ΦC1,C,ΦC2,C},

whereΦRC,ΦC1,C,ΦC2,C as introduced in the previous sections. This follows from
(15.3.16).

Let T be the composed object defined in the formT = (C1∪C2)∩C∗
3, whereCi ,

i = 1,2 are circles,C∗
3 is the complement of the circleC3 (C∗

3 = R2\intC3 ), see Fig.
15.11b.

The phi-function for the composed object and a circleC can be defined by

ΦPC = min{max{ΦC1,C,ΦC2,C},ΦC∗
3,C}.

This follows from (15.3.16) and (15.3.17).
Here,ΦC1,C,ΦC2,C are defined as above andΦC∗

3,C can be given in the form

ΦCC∗
= r2− (x3−xc)

2− (y3−yc)
2,

r = r3− rc.

(a) (b)

Fig. 15.11 Composed object and a circle.



15.3 Phi-functions: Relating Phi-objects 479

Phi-functions for More General Objects

While the construction of phi-functions may be elaborate, itonly needs to be done
once for every pair of objects. In any cutting and packing problem with known
shapes of available objects, one can prepare a set of properly defined phi-functions
for the use by optimization algorithms. The phi-functions can be stored in advance,
‘off-line’, in a library, and then each instance of the problem can be solved quickly
by calling the ready-to-use phi-functions from that library.

It is interesting to describe pairs of phi-objects for whichone can find a radical-
free phi-function expressed only by linear and quadratic formulas.

Fact 2. If A and B are 2D composed objects(i.e., their frontiers are made by straight
lines, rays, line segments, and circular arcs; recall Fact 1) fixing their orientations
(i.e., exclude rotation angles), there exists a radical-free phi-functionΦAB, the for-
mula of which only involves linear and quadratic expressions.

Phi-functions with Rotational Angles

If the orientations of the composed objectsA andB are not fixed, then the formula
for ΦAB is obtained by changing variables that correspond to translating and rotating
the coordinate system. It can be demonstrated by one example; the other cases are
treated similarly.

Let K′ andK′′ be two convex polygons that are defined by (15.3.11)–(15.3.12).
Suppose they are rotated about their poles by anglesθ ′ andθ ′′ and then translated
by vectors(u′,v′) and(u′′,v′′), respectively. Now let(x′i ,y

′
i) be the coordinates of

a vertexV ′
i of K′ in its eigen coordinate system. Then the coordinates ofV ′

i in the
eigen system ofK′′ are

[
x̃′i
ỹ′i

]
=

[
c′′ s′′

−s′′ c′′

]([
c′ −s′

s′ c′

][
x′i
y′i

]
+

[
u′

v′

]
−
[
u′′

v′′

])
, (15.3.20)

where the common notationc′ = cosθ ′ ands′ = sinθ ′ is used – the same procedure
is applied toθ ′′. Similarly, if (x′′j ,y

′′
j ) are the coordinates of a vertexV ′′

i of K′′ in its
eigen coordinate system, the coordinates ofV ′′

j in the eigen system ofK′ are

[
x̃′′j
ỹ′′j

]
=

[
c′ s′

−s′ c′

]([
c′′ −s′′

s′′ c′′

][
x′′j
y′′j

]
+

[
u′′

v′′

]
−
[
u′

v′

])
. (15.3.21)

Now the equations (15.3.13)–(15.3.14) are modified as follows:

ui j = α ′
i x̃
′′
j +β ′

i ỹ
′′
j + γ ′i

v ji = α ′′
j x̃

′
i +β ′′

j ỹ
′
i + γ ′′j .



480 Cutting & Packing beyond and within Mathematical Programming

Then the phi-functionsΦK′K′′
are defined by the same formula (15.3.15) as before.

This example shows how rotational angles (along with translation vectors) can be
incorporated into the expressions for phi-functions.

Note that if the phi-functionΦAB for two objects with a fixed orientation is
radical-free, then including the rotational parameterθ brings the factors sinθ and
cosθ into the formula, but it remains radical-free.

Normalized Phi-function

Some applications involve explicit restrictions on the allowable distances between
certain pairs of objects (or between the objects and the walls of the container),i.e.,
some upper and/or lower limits on those distances may be set.In such cases one may
need to compute exact distances between the phi-objects to meet those requirements.

Thus there may be a use for phi-functionsΦ̃AB whose values equal dist(A,B)
in caseA∩B = /0. These phi-functions are callednormalizedphi-functions. The
computation of geometric distances between primary and composed objects may
involve rather complicated formulas with radicals, see a variety of examples detailed
in [68], but they all can be done by using elementary geometry.

Normalized Phi-function for Two Circles

The normalized phi-function for two circlesCi , i = 1,2, with centers(xi ,yi) and
radii r i > 0 can be defined in the form

Φ̃CC =
√
(x1−x2)2+(y1−y2)2− r,

r = r1+ r2.

Avoiding radicals is possible even in this case, provided that the restrictions on the
distances between objects are known in advance, see the following section.

15.3.2 Properties of Phi-functions

Suppose the objectsT1 andT2 have fixed metric characteristics and no rotation an-
gles. Then the phi-functionΦ(ν1,ν2) only depends on the two translation vectors
ν1 andν2. As Φ is determined by the relative position of two objects, it follows that

Φ(ν1,ν2) = Φ(ν1−ν2,0) = Φ(0,ν2−ν1).

Thus, to describe the phi-function, it is enough to fix the position of one object and
only translate the other. Then the zero level of the phi-function, i.e.,



15.4 Mathematical Optimization Model 481

γ12 = {ν ∈ IRd : Φ(0,ν) = 0}

(hered = 2,3), plays a special role: it describes all the translations of T2 so that it
touchesT1. This set is congruent(≃) to thefrontier fr of the Minkowski sum of the
two objects,i.e., γ12 ≃ fr T12(v), whereT12(v) = T1(0)⊕−T2(v) is the Minkowski
sum ofT1(0) and−T2(v). The Minkowski sum of two setsA andB is defined by

A⊕B= {X+Y ∈ IRd : X ∈ A,Y ∈ B}. (15.3.22)

The setγ12≃ fr T12 is also calledshape envelope[36] or hodograph[534]. Note that
γ21 ≃−γ12.

Most studies of the C&P problem in 2D are restricted to polygons (other shapes
are simply approximated by polygons) and their orientationis usually fixed, thus no
rotation angles are allowed. In that caseγ12 is also a polygon; it is called theNo-Fit
Polygon(NFP). It bounds the region where the pole ofT2 should not be placed to
avoid the overlap ofT2 with T1.

Today, the No-Fit Polygon is the most common tool used in cutting and packing
applications, and it remains the main object of study in modern literature on the
subject. A number of efficient procedures have been developed for the construction
of No-Fit Polygons; the first one was the orbiting algorithm (or sliding algorithm)
of [392]. There are alternative algorithms, see [10, 72, 108, 224, 375].

Note that the No-Fit Polygon coincides with the zero level set of the phi-function
in the absence of rotation angles and when one object is fixed.Thus the No-Fit
Polygon is a special case of the broader theory of phi-functions [71].

15.4 Mathematical Optimization Model

In terms of phi-functions the cutting and packing problem can be formulated as
a constrained optimization problem suitable to be solved bygeneral methods of
mathematical programming.

First, for each objectTi a vectorui of its variable parameters is defined; these
may include

1. the translation vectorν i ,
2. the rotation angle(s)θ i , and
3. some metric dimensions if those are not fixed.

Thusu0,u1, . . . ,un constitute the variables in the model.

15.4.1 Objective Function

The containerT0 is a special object. In most cases it is not necessary to translate
or rotate it, thus it is assumed thatν0 = 0 andθ 0 = 0 and these parameters are



482 Cutting & Packing beyond and within Mathematical Programming

excluded from the list of variables. On the other hand, the metric characteristics
of the container are usually treated as variables, as some ofthose (for example, the
length, perimeter, area, volume of the container) precisely are to be minimized. Thus
the general goal is to minimize a certain objective function

minF(u0,u1, . . . ,un),

which may depend on some (or all) variables; though in most casesF only depends
on the metric characteristics ofT0, i.e., F = F(u0).

15.4.2 Constraints

Next, all relevant constraints are listed. First, small objectsTi for i = 1, . . . ,n must
be placed in the container,i.e.,

ΦT∗
0 Ti (u0,ui)≥ 0 for i = 1, . . . ,n,

whereT∗
0 denotes the (closure of the) complement ofT0.

Second, the small objects should not overlap,i.e.,

ΦTiTj (ui ,u j)≥ 0 for 1≤ i < j ≤ n.

Third, there may be restrictions on the minimal and/or maximal distance between
certain objects; in that case additional constraints have to be met:

ρ−
i j ≤ Φ̃TiTj (ui ,u j)≤ ρ+

i j

for some 1≤ i < j ≤ n; hereρ−
i j denotes the minimal allowable distance andρ+

i j

the maximal allowable distance. In this case the normalizedphi-functionΦ̃ is used
as the distances must be computed precisely. (But one can still avoid normalized
phi-functions, see below.)

Fourth, there may be restrictions on the minimal and/or maximal distance from
certain objects to the walls of the container,i.e.,

ρ−
0i ≤ Φ̃T∗

0 Ti (u0,ui)≤ ρ+
0i

for some 1≤ i ≤ n. Lastly, there might be constraints on the rotation angles in the
form θ min ≤ θ ≤ θ max. This completes the list of constraints.

It is emphasized that (i) all placement constraints are defined by inequalities, and
(ii) all phi-functions (except the optional constraints involving maximum and mini-
mum distances) are fairly simple – they are continuous piecewise smooth functions
expressed by linear and/or quadratic formulas. The objective functionF is usually
simple, too (for example, it may be just the length of the container).



15.4 Mathematical Optimization Model 483

15.4.3 Simplifying Distance Constraints

The distance constraints, as stated above, involve normalized phi-functions which
may add unwanted radicals to the model. However, the formulas can be further sim-
plified by eliminating radicals as follows. Suppose the minimal allowable distance
ρ−

i j for a pair of objectsTi ,Tj is specified. Anadjustedphi-functionΦ(ui ,u j) can be
constructed such that

Φ(ui ,u j) = 0 if and only if Φ̃(ui ,u j) = ρ−
i j

and so that the sign ofΦ(ui ,u j) coincides with that ofΦ̃(ui ,u j)−ρ−
i j . Since only

the zero level set of the new functionΦ(ui ,u j) is rigidly specified, it can be defined
by simpler formulas than those involved in the normalized phi-function Φ̃(ui ,u j),
i.e., via linear and quadratic formulas only. Now the minimal distance constraint
Φ̃(ui ,u j)≥ ρ−

i j can be replaced with a simpler one:

Φ(ui ,u j)≥ 0.

In this way all minimal and maximal distance constraints with inequalities can be
replaced based on adjusted phi-functions and radicals are eliminated altogether.

For primary and composed objects such a simplification is always possible. To
see this, supposeA andB are primary or composed objects and the constraint reads
dist(A,B)≥ ρ−. LetAρ− =A⊕(C,ρ−), where(C,ρ−) denotes a sphere with radius
ρ− centered at the origin and⊕ is the Minkowski sum. The objectAρ− consists of
points that are either inA or at a distance≤ ρ− from A, and it is clearly a composed
object, too.

Now the original constraint dist(A,B) ≥ ρ− can be replaced with an equivalent
one:ΦAρ− ,B ≥ 0 (see Fig. 15.12). Due to Fact 2 there exists a phi-functionΦAρ− ,B

which can be constructed without radicals.

Fig. 15.12 Simplifying distance constraints forA andB.

Example. Suppose the constraint dist(R1,R2) ≥ ρ− is given for two rectanglesRi ,
i = 1,2, with centers(xi ,yi) and half-sidesai ,bi > 0 (assuming their sides are aligned

with the coordinate axes). Then a phi-function forRρ−
1 = R1⊕ (C,ρ−) andR2 may

be derived in the following radical-free form:



484 Cutting & Packing beyond and within Mathematical Programming

Φ = min
{

min
1≤m≤2

ΦR1mR2, min
1≤k≤4

ΦC1kR2
}

where

R11 = {|x−x1| ≤ a1+ρ−, |y−y1| ≤ b}
R12 = {|x−x1| ≤ a1, |y−y1| ≤ b+ρ−}

andC1k are circles of radiusρ− centered on the vertices of the rectangleR1.

15.4.4 General Remarks

All phi-function constraints define a feasible regionW in the space of all the vari-
ablesu0,u1, . . . ,un. The regionW is also called thesolution space. Let us consider
a few characteristics of the model:

1. The solution spaceW is often a disconnected set. Each connected component
of W may have a complicated structure, in particular it may have multiple internal
holes, ‘through’ holes, and cavities.

2. The frontier ofW is usually made of nonlinear surfaces containing valleys,
ravines, etc.

3. The solution spaceW can be naturally represented asW = ∪J
j=1Wj , where

eachWj is specified by a system of inequalities of smooth functionsextractedfrom
the phi-function inequalities. It should be noted thatJ (the number ofWj ’s) may be
huge, even larger thann!. Since eachWj is a non-convex set, the number of local
extrema may be at leastJ.

4. The constraint optimization problem is multi-extremal and NP-hard (see re-
mark 3).

Various solutions of this optimization problem are outlined in the next section.

15.5 Solving the Optimization Problem

In this section, we discuss various approaches for solving the optimization problem
described in the previous section,i.e., finding a global minimum (or at least a good
approximation to it) of the objective functionF .

This task is treated as a mathematical minimization problem. Given an initial ap-
proximation,i.e., a pointU = (u0,u1, . . . ,un) in the solution spaceW, the algorithm
performs a local search,i.e., it moves (modifies) the pointU ∈W attempting to find
a local minimum ofF .

A point U ∈ W corresponds to a particular layout of all the objectsT1, . . . ,Tn

insideT0, and moving the pointU throughW is a simultaneousmotion of all the
objectsT1, . . . ,Tn in T0. This is where the algorithm allows a simultaneous motion
of all the objects.



15.5 Solving the Optimization Problem 485

It is able to move all the objects at once,i.e., perform a local search in the multidi-
mensional solution spaceW, because of using phi-functions. The phi-functions are
continuous and piecewise-smooth, and in most practical cases they are conveniently
defined by simple (linear and quadratic) formulas. These features are essential for
smooth performance of local minimization schemes.

Thus, given an initial pointU1 = (u0,u1, . . . ,un) ∈W, the algorithm finds a local
minimum of the objective function. More precisely, givenU1 ∈W it forms a natural
subsetWj,1 ⊂ W of the solution spaceW containingU1, i.e., U1 ∈ Wj,1. Then it
findsU2 ∈ Wj,1 so thatF(U2) ≤ F(U) for all U ∈ Wj,1 (or at least in a vicinity of
U2), and in additionF(U2) < F(U1). Then, givenU2, the algorithm forms another
natural subsetWj,2 ⊂W containingU2, i.e., U2 ∈Wj,2, and finds a pointU3 such that
F(U3)≤ F(U) for all U ∈Wj,2 (or at least in a vicinity ofU3) andF(U3)< F(U2).
This procedure is repeated until a local minimum of the objective function is found.

To find a global minimum ofF over the whole spaceW one would apply an
exhaustive search,i.e., a search overeverysubsetWj ⊂ W, which is an unrealistic
task in most cases, because the number of those subsets may beof the order 105

or 1010. In practice, only a few (well chosen) initial pointsU1, . . . ,Uk ∈W may be
examined so that the task of choosinggood initial layoutsbecomes of paramount
importance.

In many industrial applications, experienced workers “manually” (with the help
of CAD systems) build a high quality layout,cf. [238], which can then be followed
by a quick run of a computer optimization program to improve the manual layout as
much as (locally) possible.

In many other applications, however, there are no “expert layouts” available, and
one has to rely on computer generated initial arrangements.In such situations var-
ious heuristics (and ‘metaheuristics’) are used, the simplest and most popular per-
haps being thebottom-left placement procedure. It places objects, one by one, in
the most bottom-left vacant corner of the container. When positioning an object, the
procedure takes into account the previously placed objects, first to avoid overlaps,
and then (in some implementations) to fill holes left empty atearlier stages. Gomes
& Oliveira [237] also propose a randomized version of this method, where at each
step the object to be placed next is selected randomly with probability proportional
to its length.

Many authors then use various heuristics to (globally) alter the initial layout to
obtain other layouts (and thus reach different components of the solution spaceW).
One can swap two randomly chosen objects, or apply more sophisticated strategies
so as ‘tabu search algorithms’ [19, 70] or simulated annealing [238, 435], or various
genetic algorithms [166].

In some implementations, objects are (temporarily) allowed to overlap and move
through one another, so that the algorithm can perform a wider search over the
solution spaceW. In that case one needs to estimate (and penalize) the degreeof
overlap of objects so that the algorithm will gradually separate them and arrive at an
feasible layout (with no overlaps) in the end. With respect to this phi-functions may
be useful, too, as they provide such a feature as an estimate of the degree of overlap.
Other authors develop different tools to penalize overlap;see [70, 238, 375].



486 Cutting & Packing beyond and within Mathematical Programming

Good initial layouts can be generated as follows, see [536].First, the con-
tainerT0 and objectsT1, . . . ,Tn are approximated by rectangular polygons (cuboids)
P0,P1, . . . ,Pn with sides parallel to two fixed coordinate axes. Then the polygonal
(polyhedra) figuresP1, . . . ,Pn are placed intoP0 consecutively, according to an ob-
ject sequencePi1, . . . ,Pin generated by a modification of the decremental neighbor-
hood method. This procedure employs a probabilistic searchand is designed to find
the most promising ones. The latter will correspond to some pointsU1, . . . ,Uk in
W. This time-consuming probabilistic search for local minima of F is only used to
obtain the best initial pointsU1, . . . ,Uk, and it producesk local minimaU∗

1 , . . . ,U
∗
k

of F . In the end, the local minimum ofF is chosen where the value ofF is smaller
than at the other local minima,i.e.,U∗ =U∗

m, wherem= argmin{F(U∗
i ),1≤ i ≤ k}.

Although the construction of an initial layout employs polygonal (polyhedra)
approximations (and thus seems to be similar to many other techniques based on
pixel and square representations,cf. [216]); strips as simpler enclosing shapes can
be also applied, see [543, 536], and thus achieve a high speedin choosing an initial
layout.

15.6 Numerical Examples

15.6.1 Arranging Two Triangles

To illustrate the usage of phi-functions in the context of deterministic global op-
timization, we consider two triangles and the problem of arranging them so that
the convex hull perimeter becomes minimal. For this problem, Kallrath et al.
(2021,[328]) have derived an analytic solution. From theirgeneral model for min-
imal perimeter convex hulls of polygons, we construct a simplified model deal-
ing with two triangles T1 and T2 only. The input data are thex- and y- coordi-
nates(Vx

a ,V
y
a ) and (Vx

b ,Vy
b ) of the vertices(A1,A2,A3) = (A1,B1,C1) of T1 and

(B1,B2,B3) = (A2,B2,C2) of T2 describing both triangles in their own local coor-
dinate system:

T1 : A1 = (Vx
A1
,Vy

A1
) = (0,0),B1 = (Vx

A2
,Vy

A2
) = (14,0),C1 = (Vx

A3
,Vy

A3
) = (10,−5)

T2 : A2 = (Vx
B1
,Vy

B1
) = (0,0),B2 = (Vx

B2
,Vy

B2
) = (8,0),C2 = (Vx

B3
,Vy

B3
) = (6,4).

We use the index setsa∈A = {A1,A2,A3) andb∈B = {B1,B2,B3} to refer to the
vertices of triangles T1=A and T2=B. The verticesAa andBb, resp., are the origin
of a straight line fromAa to Aa++1 andBb to Bb++1 representing the sidesaa and
bb of the triangles. For two given triangles, we name them so that T1 has the largest
side (14 in our example for sidea1).

As the triangle sidesaa andbb are parts of straight lines we represent them ex-
ploiting the Hessian normal form



15.6 Numerical Examples 487

nTx = d.

For triangle T1 and one of its sidesaa the coefficients forn = (α̃, β̃ ) andd = −γ
are given by

(nx,ny)(aa)=
1

‖aa‖
(Vy

a++1−Vy
a ,V

x
a −Vx

a++1) , d(aa)= nx(aa)V
x
a +ny(aa)V

y
a ,

i.e., for the given example

(na1;d) = (−0.447213595499958,−0.894427190999916;0)

(na2;d) = (+0.780868809443030,−0.624695047554424;+10.932163)

(na3;d) = (0,1;0).

Given a translation vector (xT, yT) and a rotation angleθ T, each point(x̃, ỹ) ∈
T(0,0,0) in the local coordinate system of triangle T is transformed into point(x,y)
as follows:

x = +x̃cosθ T + ỹsinθ T +xT,

y = −x̃sinθ T + ỹcosθ T +yT.

Each straight line

L̃ = {(x,y) ∈ R2
∣∣∣α̃x+ β̃y+ γ̃ = 0, α̃2

+ β̃
2
= 1}

is transformed into the straight line

L = {(x,y) ∈ R2 |αx+βy+ γ = 0},

where

α = α̃ cosθ T + β̃ sinθ T

β = −α̃ sinθ T + β̃ cosθ T

γ = γ̃ −αxT −βyT,

andθ T is a rotation parameter,(xT,yT) is a translation vector applied toT. Note that
for the transformed straight lineα2+β 2 = 1 also holds.

The maximum number of sideses, s∈ S := {1, ...,m}, of the convex hullΩ
is m= 4. As the fundamental variables we have the placement-rotation variables
ua = (xa,ya;θ a) andub = (xb,yb;θ b) of both triangles T1 and T2, respectively, and
the side-information variableses = (xs,ys,ωs, ℓs), wheres refers to sides of Ω ,
andℓs is the length of sides. The break symmetry we assume that triangle T1 is
fixed and triangle T2 can be translated and rotated freely; therefore we haveua =
(xa,ya;θ a) = (0,0;0) leaving onlyub = (xb,yb;θ b) and the vertex coordinates of
the convex hull as variables.



488 Cutting & Packing beyond and within Mathematical Programming

The objective function to be minimized is the linear term

ℓ= ∑
s
ℓs.

Non-overlap of both triangles is enforced by

nx
A3

wx
b+ny

A3
wy

b−dA3 ≥ 0 , ∀b (15.6.23)

with the translated and rotated vertex coordinateswx
b andwy

b of triangle B

wx
b = xb+Vx

b cosθ b−Vy
b sinθ b , ∀b

wy
b = yb+Vx

b sinθ b+Vy
b cosθ b , ∀b.

Note that (15.6.23) is similar to the separation line or half-space approach in Section
13.3.1.2. All vertices of triangle T2=B are above sidea1 of the fixed triangle T1=A.
Geometrically, this means triangle B is attached to the largest side of A.

All vertices of the fixed triangle T1 belong to the convex hull,i.e.,

−[Vy
a −xs]sinωs+[Vy

a −ys]cosωs ≥ 0 , ∀s.

For the free triangle T2, the inequalities describing that all its vertices are within the
convex hull are

−[wx
b−xs]sinωs+[wy

b−ys]cosωs ≥ 0 , ∀s.

Closing the convex hull,i.e., glueing the sides to each other, is enforced by

xs++1 = xs+ ℓscosωs , ∀s (15.6.24)

ys++1 = ys+ ℓssinωs , ∀s. (15.6.25)

To avoid degeneration of the sides of the convex hull, we add the inequalities

−(xs++2−xs)sinωs+(ys++2−ys)cosωs ≥ ε , ∀s, (15.6.26)

whereε is a small number,e.g., ε = 0.00125.
Degeneration caused by naming and counting the convex hull vertices is elim-

inated by fixing the first convex hull vertexS1. This fixation requires some care.
For the example below we can safely fix the first convex hull vertex S1 to ver-
tex A3 of triangle T1 as A3 is always a convex hull vertex. With this fixation
(xS1,xS2) = (10,−5), the gap falls below 10−8 in 50 seconds usingBARON.

For the following example of two triangles with vertices

T1 : A1 = (0,0),B1 = (14,0),C1 = (10,−5)

T2 : A2 = (0,0),B2 = (8,0),C2 = (6,4)



15.6 Numerical Examples 489

Fig. 15.13 Two triangles attached to each other and its convex hull.

the model is contained in MCOL asCH-2TRI.gms; it produces the solutionu∗ = 7,
α2 = 33◦.6900675,xB1 = x= 1, andℓ= 33.7079796215289; see also Fig. 15.13.

15.6.2 Arranging Two Irregular Objects

The broad range of situations in which phi-functions and phiobjects can be used
successfully has been demonstrated by Bennellet al. (2015,[69]). From that paper,
we reproduce a few examples:

1. Two irregular objects A and B are to be arranged so that various objective func-
tions are minimized (Fig. 15.14). Both objects can be translated and rotated.

2. Minimal convex hulls of two objects A and B. Fig. 15.15a displays the convex
hull solution of two convex polygons, while Fig. 15.15b shows a locally optimal
solutions of two non-convex objects.

3. Minimal convex hulls for two non-convex objects A and B. A locally optimal
solution,i.e., only an approximation, of the convex hull of minimal area isshown
in Fig. 15.16a. An approximation of the convex hull of minimal perimeter for the
two non-convex objects is displayed in Fig. 15.16b.

These and more examples in Bennellet al. (2015,[69]) demonstrate the potential
of the algorithm to work with a large number of irregular objects in 2D and 3D and
achieve tight packing arrangements that are hard to find otherwise, especially by
manual work. More examples from industry with technical details and illustrations
one can find in,cf. [481, 542, 541, 537].



490 Cutting & Packing beyond and within Mathematical Programming

(a) (b)

(c) (d) (e)

Fig. 15.14 Arrangement of two objectsA andB as described in Example 1: a) minimal enclosing
rectangle, b) minimal enclosing circle, c) minimal enclosing rectangle taking into account distance
constraints causing the objects not to touch each other, d) minimal enclosing m-polygon, e) min-
imum homothetic coefficient. Reprinted by permission from Springer Nature, Journal of Global
Optimization, Bennellet al. (2015,[69]), Fig. 6.

(a) (b)

Fig. 15.15 Convex hull for two objectsA andB: (a) two convex polygons, (b) two non-convex
objects. Reprinted by permission from Springer Nature, Journal of Global Optimization, Bennell
et al. (2015,[69]), Fig. 9.



15.8 Summary & Recommended Bibliography 491

(a) (b)

Fig. 15.16 An approximation of them-polygonal convex hull of two non-convex objects of Ex-
ample 3: a) area of the convex hull b) perimeter of the convex hull. Reprinted by permission from
Springer Nature, Journal of Global Optimization, Bennellet al. (2015,[69]), Fig. 11.

15.7 Conclusions

In this chapter we have demonstrated how the combined use of phi-functions and
mathematical programming can improve the performance of cutting and packing
algorithms. Phi-functions have the following properties:

• They can be applied to 2D and 3D objects of very general types(phi-objects);
these include disconnected objects, non-convex objects, regions with holes and
cavities, etc.

• They take into account continuous translations and rotations of objects.
• They may take into account variable metric characteristics of objects.
• They take into account possible restrictions on the (minimal and/or maximal)

distances between objects and from the objects to the walls of the container.
• They are useful when dealing with overlapping objects, as they measure the de-

gree of overlap.
• In most practical cases, phi-functions (unlike geometricdistances) are defined

by simple (linear and quadratic) formulas, which allows us to use optimization
algorithms of mathematical programming.

• Overall, phi-functions allow enlarging the class of optimization placement prob-
lems that can be effectively solved.

15.8 Summary & Recommended Bibliography

In this chapter we have presented phi-function techniques for solving cutting and
packing problems. Thus the reader should now be familiar with:

• phi-functions;
• phi-objects;
• benefits of phi-functions;
• general solution approaches for cutting and packing problems; and



492 Cutting & Packing beyond and within Mathematical Programming

• constructing NLP models of cutting and packing problems using phi-functions.

Recommendations for further reading: A comprehensive overview of the most im-
portant and frequently considered optimization problems concerning cutting and
packing are provided in the bookIntroduction to Cutting and Packing Optimization
- Problems, Modeling Approaches, Solution Methodsby Scheithauer (2018,[500]).
The paperIrregular packing problems: A Review of Mathematical Models by Leao
et al. (2019,[370]) reviews mathematical models of nesting problems, highlighting
differences and similarities among them.Solving Non-Standard Packing Problems
by Global Optimization and Heuristicsby Fasano (2014,[184]) provides an interest-
ing overview on various types of uncommon packing problems.

15.9 Exercises

Fig. 15.17 Two phi-objectsA andB for which a phi-function should be constructed in Exercise 1.

1. Construct a phi-function for the two phi-objectsAandB in Fig. 15.17. Object A is
a composed object and object B is a circle.Hint: The first object is composed by
four primary objectsC1, C∗

2, C∗
3, R∗

4 using the operationsunionandintersection;
C1 is a circle,C∗

2 andC∗
3 are two circular holes,R∗

4 is a rectangular hole.
2. Construct a mathematical model and solve the following optimization problem.

Place non-overlapping circles A, B, C of variable radii inside a convex polygon
with vertices{(2,0),(0,2),(−2,0),(−2,−3)} using the phi-function technique,
so that the sum of the radii of the circles will be maximal. Usean available NLP
solver to solve the nonlinear programming problem.

3. Construct a mathematical model and solve the following optimization problem.
Let there be a polygonal region with vertices{(4,0),(1,3),(−1,3),(−4,0),
(0,−4)} and the polygonA with vertices{(2,−1),(0,2),(−2,0)}. Find the max-
imum size of the polygonA (with respect to the value of the homothetic coeffi-
cientβ (or scaling parameter), using the phi-function technique,so thatAÎ2 will
be arranged fully inside the polygonal region. Consider twocases: continuous ro-
tations of the polygon are allowable; rotations are not allowable. Use an available
NLP solver to solve the NLP problem.



Chapter 16
The Impact and Implications of Optimization

In this chapter many issues are touched upon which are part ofmore general opera-
tional research concerns, particularly when these are amplified by using mathemat-
ical programming. It includes a discussion of the possibilities of parallel optimiza-
tion.

16.1 Benefits of Mathematical Programming to Users

The process of modeling is a very rigorous one, in the sense that deficiencies in
modelanddata are exposed by solvers. If one has forgotten a class of constraints, it
is likely that an unbounded solution will result. If one has not been careful enough
in collecting data then the result is often infeasible models.

Though the first reaction of the modeler and the end-user is usually one of frustra-
tion after the euphoria of building a syntactically correctmodel, the early exposure
of deficiencies in data or logical thought is a huge benefit of optimization. All the
work done in Quality Improvement Technologies has shown that the earlier a defect
is caught, the less costly the rectification process, and this discovery is just as true
in the context of business modeling.

Bringing together different parts of the organization intoone model is a further
benefit of optimization. Too often in companies, individualsections or groups act
to maximize their own contribution, neglecting the effect of this local objective on
overall profitability. And this effect can occur even if transfer prices have been set.

Optimization will specify a single overall objective function, and will automati-
cally achieve the coordination required to yield the best objective.

Since the optimization model will draw into one place all therequired data, it
is the ideal place to test data consistency and accuracy. Users of optimization fre-
quently report that the results of this data “cleaning” and clarification are as, if not
more, important than the precise results of optimization runs.

It can be argued that optimization is too hard a taskmaster, that it will not be
possible to achieve in practice what the model states is possible. This statement is,

493



494 The Impact and Implications of Optimization

of course, true, but another benefit of optimization is that the decision maker has
an objective measure (in both senses of the word objective!)of the best that could
be done, and so is capable of making a rational assessment of what was actually
achieved. There may be considerable satisfaction in knowing that even if you didn’t
do the best, you did within, say, 2% of that best.

So, to summarize, users of mathematical programming benefitin three major
ways when models are solved. First, there is the gain throughthe greater under-
standing of the problem. The model described in Section 10.4is of this type. The
very act of working through a model formulation with its builder can be of con-
siderable benefit to a client. Secondly, there is the production of a decision support
system using the model and its solution capability. The airline model by Subrama-
nian et al. (1994,[549]) cited in Section 7.4.5 provides an example of this and an
indication of substantial savings made. Thirdly, there is the availability of a model
for future experimental purposes. The model in Section 10.5provides an example
of this, where it is possible to try out ideas for future planning on the model that
could not be conducted on the actual processes themselves. Thus the gains to clients
are considerable. The prospect of saving even a few percent of a very large cost is
exciting for a client or the prospect of devising a new business process which will
make an organization more competitive can be very encouraging and justifies the
operational research approach.

16.2 Implementing and Validating Solutions

As discussed in the large cases introduced in Chapter 10, regular communication
with the client is important for model validation. Emphasisswitches from validation
by the modeler to validation by the end-user. Once solutionsare proposed the vali-
dation process continues and the modeler must continue to work with the client. The
model would normally be tried out on test data to ensure that the model is robust, is
predictively valid (produces predictions that are in line with existing possibilities)
and is replicatively valid (produces working solutions). Thus communication and
feedback between client and modeler continues. When, finally, a proposed solution
is considered for implementation, checking will continue as the process of imple-
mentation may not be straightforward. It will also be important for the modeler to
stress what assumptions have been made in the modeling and the potential shelf-life
of the model. The modeler and users will need to monitor the model in the future
to see if any breaches of the assumptions are made or any aspects of the decision
support system pass their expiry date.



16.4 Keeping a Model Alive 495

16.3 Communicating with Management

Even with a seemingly precise process such as mathematical programming there
will be a stage once modeling has been undertaken when the modeler has to “sell
the solution” to the client. This will be well before implementation is even contem-
plated. The results of a modeling exercise may produce solutions which are perhaps
unexpected,e.g., indicative of inefficient1 current practices and such results may
prove unpopular with some individuals (but highly popular with others). Thus the
modeler has to convince the client that the model is performing according to the
conditions laid down by the client and to establish that no stage has been omitted or
information misinterpreted. Thus it is important that a comfortable relationship of
“mutual trust” exists throughout the lifetime of a mathematical programming project
between modeler and the client for whom the model is being built.

16.4 Keeping a Model Alive

A number of difficulties exist for the users of mathematical programming models.
Firstly there are the typical difficulties with the use of anysophisticated software

system. The user of the model may not follow the “rules” envisaged by its developer
and may try to use data that are not appropriate or to use the model for purposes for
which it was not designed. This difficulty is particularly marked when users employ
a model to investigate different parts of a companye.g. an organization with many
outlets or branches. The model may have been tested on many such parts of the
company, but there may still be some parts which produce unexpected and confusing
results. Problems may turn out to be infeasible or unboundedand the user may not
spot this and may go ahead and use what seems to be the optimal solution from such
models. The remedies here lie with validation, as was discussed in Chapter 2, and
the modeler must have made clear the limitations of the modeland the assumptions
under which it operates. However, once a model has been implemented there may
be no real checks as to whether the user follows the rules of the game, especially
when a model has been used for a considerable time. All that can be done is to
provide accurate documentation, including what to do when things go wrong, and
to encourage periodic health checks on users, data and model.

Secondly there is the difficulty of the total reliance on the model to produce
the answers required. As the approach is a black box one, the user still needs to
question what results the model produces and see if they makesense. The results
may be remarkable, but they must still be reasonable. One of us was involved with an
inventory model which had been built at an engineering company ten years earlier.
All the people who had been involved in the building of the model had long since

1 The terminefficientis a relative term and should give nobody a bad conscience. Before the light
bulb was invented a candle produced sufficient light for Homer to write the Iliad and Copernicus
to prove Earth was not the center of the universe.



496 The Impact and Implications of Optimization

left the organization and no one knew what the model really did. However, inventory
decision making relied on it totally. Eventually consultants were called in to try to
establish what the model actually did, find out whether it wasstill valid and make
appropriate changes. The elapsed period was clearly too long and users should have
questioned earlier whether the model had passed its “sell by” date, and should not
have continued to rely absolutely on it.

Thirdly, the converse to the above, there will be a danger that as time moves on
new users will emerge who will feel that as they were not involved in the original
development of the model then they can have no faith in it. This may have to be
remedied by the involvement of the developers of the model from time to time.

The above three points suggest that even if a model is developed from outside
an organization, that organization must plan to acquire or buy in the expertise for
later validation of the model, even if it is continuing to produce apparently sensible
results year after year. In the cases discussed in Chapter 10, communication with
and feedback from the client was regularly mentioned and this leads to a valid model
being built.

16.5 Mathematical Optimization in Small and Medium Size
Business

In many of the case studies the reader might have got the impression that mathemat-
ical optimization is something particularly useful for larger companies or organiza-
tions. It is certainly true that at present small and medium size businesses make less
use of it. Although governments in most western countries support small business
development these businesses usually do not have the know-how or even awareness
of operational research benefits.

To increase the awareness and acceptance of mathematical methods the analyst
and modeler should have a few things in mind when trying to model problems in
small or medium size companies. It is not sufficient just to scale down models and
approaches used in large companies. The modeler must ensurethat he adjust himself
to the world the small business operates in. In contrast to large companies, which
usually have some special service groups with strong academic backgrounds pro-
viding OR consulting to the company, the situation is quite different in small and
medium size companies. While large companies very often seeksolutions for com-
plex integrated production networks, small and medium sizebusiness might concen-
trate on small and limited aspects changing frequently. Themodeler has to be very
flexible and to be prepared to solve completely different butrelatively small prob-
lems. The mathematical challenge might be smaller but the modeler’s social skills,
e.g., ability to communicate and to convince people, become evenmore important.

Last but not least, the budget frame in small and medium size business is certainly
significantly smaller than that of large companies. It is important to have that in mind
because it helps to understand people and their motives.



16.6 Online Optimization by Exploiting Parallelism? 497

16.6 Online Optimization by Exploiting Parallelism?

In some application areas solution speed is critical for thesuccess of the method and
the acceptance of technology. Scheduling problems, for instance, must be solved in
minutes when sudden changes occur in a factory and personnelhas to be reallocated
to machines. That is a sort of online optimization. To get a solver suitable for this
task we need technological progress related to algorithms,software and hardware.

In fluid mechanics, astrophysics or quantum chemistry a considerable runtime
improvement can be achieved by parallelization. Can this not also play a role in
the optimization environment? The answer is certainly yes,whereas a distinction
has to be made between parallelization efforts of the combinatorial part of the algo-
rithms (especially non-deterministic aspects are to be expected here) and the core
optimization problem (LP, MILP, NLP, MINLP).

For compatibility, we keep the material from the first edition of this book in the
section below now namedParallel Optimization: Status and Perspectives in 1997.
Most of the conceptual issues are still valid while some aspects may appear inter-
esting from a historical point of view. In Section 16.6.2 we follow up with the state
of the art and perspectives in 2020.

16.6.1 Parallel Optimization: Status and Perspectives in 1997

For mixed integer linear or nonlinear optimization problems, commercial software
packages now offer standard parallel versions for PC networks or multiprocessor
systems with almost linear behavior in the number of processors exploiting multi-
thread techniques. While parallel algorithms and their implementation in the late
1970s were still rather a topic for specialists, they are nowpart of everyday life. In
the field of nonlinear optimization, this may be a little different at the moment. How-
ever, this has more to do with the fact that the algorithms in this area are younger
and less mature and have not yet been tested against many really big problems. Es-
pecially with mixed integer optimization, however, one should always bear in mind
that with parallel architectures, even with linear behavior, the exponential growth of
the B&B methods cannot be controlled. In this sense, parallel optimization software
helps push back the limits of what is still solvable in benignproblems; but it is only
a limited means to solve structurally difficult problems,e.g., scheduling problems.
In mixed integer nonlinear optimization, if you are not already using methods of
global optimization, you can assume different starting points exploiting multi-start
techniques exploiting several threads of your computer.



498 The Impact and Implications of Optimization

Speed-up

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

1/Number of slaves

E
la

p
s
e
d

 t
im

e

t

Fig. 16.1 Speed-up achieved with eight slaves.

16.6.1.1 Algorithmic Components Suitable for Parallelization

The exact methods briefly described in Chapter 3 for solving mixed integer linear
problems offer two different ways for parallelization: thecombinatorial part of the
algorithm and the linear program algorithm.

The combinatorial part is either a B&B or a B&C algorithm. In both cases it is
necessary to solve many LP subproblems. Obviously, the evaluation of the subprob-
lems may be performed by a network of parallel processors or workstations. The
subproblems are more or less decoupled from each other and allow a simple paral-
lelization with coarse granularity. Positive results havebeen achieved (Ashfordet
al. 1992,[37]) on a transputer system with 8 slave- and one master-processor. It was
possible to get an almost-linear speed-up [see Fig. 16.1].

The linear optimization kernel is much more difficult to optimize. As described in
Chapter 3 commercial software uses two methods to solve linear programs: revised
Simplex algorithm and interior-point methods. There existattempts to parallelize the
Simplex algorithm, but they only obtain a low speed-up. Therefore, there is more
optimism towards the parallelization of interior-point methods. The major numerical
work of solving IPMs is to solve nonlinear systems of equations. Linearization in
combination with Newton’s method leads to linear systems ofequations. At that
level, broad experience with parallelization is available.



16.6 Online Optimization by Exploiting Parallelism? 499

In the next two subsections let us briefly reflect on some consequences paral-
lelism has on the combinatorial part of the algorithm.

16.6.1.2 Non-determinism in Parallel Optimization

It comes as a surprise to many users to find that runs of exactlythe same optimizer
on the same input data can yield different optimal solutions. How can this happen?

A parallel MIP solver will typically work by sending LP relaxations to other
processors for solution. Setting up the communication channel to send the data will
generally take some random time, which will depend on the traffic on the network,
or what other jobs are being run on the target processors. Thus the (clock) time
before the LP solution is received back is a random variable.It is likely that several
processors will be solving different LP relaxations at the same time, so in one run
processor A might get its solution back first, whilst in another run processor B will
get in first. The processor that controls the node selection will have different sets
to choose from in the two runs, and may well choose a differentnode to work on
next. As soon as that happens we have a completely different B&B tree, and integer
solutions may be found in a different order.

Even worse, as we may find integer solutions in a different order, and if we are
only trying to find the best IP solution within a certain tolerance, we may cut off
a slightly superior node that would have been encountered ina different run. Thus
we stop, perfectly legitimately, with non-identical solutions. Parallel optimization is
not unique in this initially worrying behavior, but it demonstrates the phenomenon
frequently enough that the optimization specialist has to be prepared to explain this
to the concerned end-user.

16.6.1.3 Platforms for Parallel Optimization Software

There are at least two major platform types which can be recommended for parallel
MILP software. The first of these consists of relatively small PC networks, or clus-
ters of workstations (of the order of 10 rather than 100 machines), often comprising
workstations from more than one manufacturer. These workstations are invariably
networked, usually by a relatively slow Ethernet connection.

The second hardware platform is represented by quite cheap,closely coupled
parallel hardware such as that manufactured by Parsytec GmbH (Aachen, Germany).
Here the inter-processor communications are generally much faster, but there are
restriction on the algorithms which can be implemented, as there is no disk storage
attached to each processor.

Another design criterion requires the software to be easilyportable between these
two very different hardware bases. Furthermore, the software must be easy to sup-
port on heterogeneous workstations. Almost inevitably this means basing the inter-
processor communication on PVM [PVM stands forparallel virtual machinesand
is the most frequently used platform for networked parallelcomputing (Geistet al.



500 The Impact and Implications of Optimization

1994,[218])], thede factostandard in the 1990s. However, PVM has the advan-
tage that it addresses some more esoteric hardware platforms, which may be of use
in some specialized applications. In 2020, MPI (Message Passing Interface) is the
standard.

Given the very wide hardware base that is addressed, it is vital that the commu-
nications software is as simple as possible and ideally isolated in one module.

One consequence of supporting different hardware platforms means it cannot be
assumed that different processing elements have sufficientmemory to store informa-
tion about all the nodes solved on that element, because not all hardware platforms
have local disk storage. This limitation rules out several initially attractive architec-
tures in which the B&B is effectively cut into small pieces and farmed outa priori,
possibly with later load balancing, to identical slaves alldoing their own local B&B.
This approach has been adopted by IBM’s Parallel OSL, which only addresses an
architecture where each processor has its own local disk storage.

It is also important to ensure that a parallel version of MILPsoftware is simple
to use for existing users and involves little or no re-learning.

16.6.1.4 Design Decisions

In XPRESS-OPTIMIZER the design criteria set out above, coupled with the different
targeted platforms, have dictated that a master-slave architecture be adopted. This is
one of the classical paradigms of parallel computing, and its effectiveness on limited
trials on a small array of transputers was demonstrated someyears ago by Ashford
et al. (1992,[37]).

The processors are partitioned into two sets, one containing a single master pro-
cessor connected to local disk storage and logically connected to the rest of the
processors (the slaves) which form the second disjoint set.The master processor
has the following tasks:

1. Accept the problem specification from the host. In the caseof a network of work-
stations, this task is done directly from disk storage localto the master. This is
called the base LP.

2. Solve the first linear programming relaxation.
3. Farm out identical copies of the base LP to the remaining slave processors.
4. Maintain all global data, in particular data on the tree structure and summary

node information.
5. Supply the modifications to the base LP to a currently free slave when specifying

the problem to be solved.
6. Receive solution information from the slaves and update the global node infor-

mation.
7. Notify the host when the B&B is complete (not necessary on workstations).
8. Deliver the solution to the host (again, not necessary on workstations).

In contrast the slaves’ jobs are much simpler:



16.6 Online Optimization by Exploiting Parallelism? 501

1. Receive the base LP.
2. Receive modifications that define which particular relaxation is to be solved. At

the same time, receive an advanced basis so that re-optimization is faster.
3. Solve the LP.
4. If the relaxation is feasible, not cut-off and not integer, determine the branching

entity and the branching direction. If the LP is either infeasible, integer, or has
been cut off (dominated), then just inform the master.

In summary, the master processor takes the role of central coordinator with the
slaves acting as mere LP solvers with the added task of exploiting the LP solution
to generate branching decisions.

16.6.1.5 Implementation

A centrally coordinated scheme may at first sight look vulnerable to difficulties in
scaling, because all information has to be funneled throughthe master processor. To
see whether this is so in practice it is necessary to carefully consider the following
factors:

1. average work at master, 2. average work at each slave, 3. quantity of data
passed from master to slave, and from slave to master, 4. latency in message passing.
Simple experiments on large problems show that the work at the master, which
consists of node selection and B&B tree maintenance, is verylight. However, the
time required at each node to solve the LP relaxations associated with large MILP
problems is very much larger, often running to several minutes.

A careful analysis of the data transfer needs on serialXPRESS-MP shows that by
exploiting the detailed structure of the most common integer entities the number
of bytes that had to be passed between master and slave could be greatly reduced.
Consequentially, the transfers to and from disk could be reduced.

The data transfers grow linearly with the problem size, whereas the work at each
node grows faster than linearly. As a result, the ratio of data transfer to computa-
tion time tends to be favorable in circumstances where more processors need to be
added to reduce total elapsed time. This is not necessarily the situation in combina-
torial problems, where the solution time at each node is often a very slowly growing
function of problem size.

A parallel version ofXPRESS-MP is available. The implementation was laborious
but straightforward. A less sophisticated node selection routine at the master was
required and the results reported below were obtained usingthis new routine. The
new routine tends to search more nodes in the B&B tree than theold serial version
did, even when using just one slave, when it is directly comparable to the serial
version. Work has begun on a third version which is believed to be as efficient as the
serial version in terms of the number of nodes explored.



502 The Impact and Implications of Optimization

16.6.1.6 Performance

Early experiments on the limited hardware available at Dash(Ashfordet al. 1992,
[37]) have shown that speed-ups on the target problems were linear, or nearly so.
It must be stressed, however, that it is very hard to make definite statements when
only three workstations were available at Dash. The best test of performance came
in early 1995 when the first commercial copy of ParallelXPRESS-MP passed its
acceptance tests.

One commercial client had some medium- to large-scale long term scheduling
problems, with a need to run many scenarios. Preliminary results on problems run
at night with ParallelXPRESS-MP on unused RS/6000s convinced the client to pur-
chase 6 top-end RS/6000s to be dedicated to solving MILP problems. One of these
workstations was a dedicated master, the other five were slaves.

The client reported achieving a factor of better than 4 speed-up, on average, com-
pared with the current production serialXPRESS-MP solver, including the initial LP
solution, on the 6 processors. Since only five of these were being used for solv-
ing LP relaxations, this represented a substantial speed-up over serial times. Failure
to achieve a perfect linear speed-up can be explained by the observation that the
parallel version typically explores more nodes.

16.6.1.7 Acceptability

As anticipated, the client encountered most difficulties inthat the initial workstation
cluster was on a heavily used local area network, and it was found that network
traffic was causing delays. However, as a result of the efforts Dash had put into re-
ducing the amount of data exchanged, the overall solution time was not significantly
degraded.

The client and problem class can be considered typical of those who make up the
expected market for parallel MILP solvers, with perhaps a bias towards the more
challenging end of the spectrum. There was a heavily loaded network giving poor
communication throughput, and very fast workstations meaning that the work at
each node did not take long. Both of these factors have mitigated against our design
performing as well as it might.

The client found no difficulties in understanding the small extensions to the paral-
lel solver control language. However, it was a surprise thatthe client has not objected
to the non-determinism [see Section 16.6.1.2 for what causes non-determinism] of
the parallel solver.

Besides all technological progress, one should have in mindthat the acceptance
of fast optimization software also depends on how these techniques can overcome
existing cultural, social and psychological barriers.2 Thus, besides technological ef-
forts there should be a strong investment in improving the awareness and acceptance
of mathematical optimization applied to real-world problems.

2 See page 513 for further details on this issue.



16.6 Online Optimization by Exploiting Parallelism? 503

16.6.2 Parallel Optimization: Status and Perspectives in 2020

In Section 16.6.1 we have already addressed some of the conceptual issues related
to parallel optimization. The state of the art and perspective of parallel optimization
has been summarized in the book by Censor & Zenios (1997,[117]) – shortly after
the publication of our first edition. During the time in between 1997 to 2020, there
has been tremendous progress in the theory, algorithms and applications of parallel
optimization. We identify three major areas where paralleloptimization approaches
have been developed or used:

1. Parallel algorithmic techniques (concurrent, concurrent-distributed-concurrent,
distributed) within the solversCPLEX, GUROBI, XPRESSNONL INEAR, andSCIP.

2. Parallel meta-heuristics, and
3. Machine learning and hyper-parameter optimization.

Before we discuss three areas in detail, we encourage the reader to consult Trelles
& Rodriguez (2005, [567], pp. 522) for a very useful taxonomyof parallel architec-
tures. The advantages of using multi-core platforms versusclusters of computer are
discussed by Albaet al. (2013,[17], pp. 13).

16.6.2.1 Parallel Algorithms and Solver Worlds

Usually one finds parallelization techniques deep in solvertechnology,cf. Laundy
(1999,[368], Shinanoet al. (2003,[521]), Baravykait́e & Žilinskas (2006,[48]), Shi-
nanoet al. (2008,[518]), Shinanoet al. (2016,[516]), Bertholdet al. (2018,[77]),
Shinanoet al. (2018,[520]) or Shinanoet al. (2018,[522]), or exploiting multiple
threads (cf. Heipcke (2012,[269]) or Shinanoet al.(2016,[519]) when implementing
B&B based methods. A good overview on architectures of parallel algorithms and
solvers for mixed integer linear optimization is by Ralphset al. (2018,[461]). Most
approaches for parallelization focus on B&B and B&C. While interior-point meth-
ods and their linear algebra part are more suitable to parallelization and have been
parallelized already in the 1990s (cf. de Silva & Abramson(1998,[524]), the Sim-
plex algorithm is inherently a sequential algorithm. Nevertheless, there are now also
some promising attempts to parallelize the Simplex algorithm itself;cf. Huangfu &
Hall (2018,[283]) or Coutinhoet al. (2018,[139]), and reference therein.

Running the same problem with different algorithms, parameters,etc.and choos-
ing the fastest one, also known asconcurrent optimization, is one way – actually the
easiest one, calledembarrassingly parallelor perfectly parallelby Herligy & Shavit
(2012,[276]) – to utilize the parallel computing power,i.e., controlling and tun-
ing parameters of solvers, wheresolverrefers to commercial MILP solversCPLEX

[288], GUROBI [259] or XPRESS-OPTIMIZER [269], or NLP/MINLP solvers such
asBARON [223], ANTIGONE [415], or LINDO [503] to name a few.

All commercial MILP solvers allowconcurrentruns with various flavors:Con-
current, concurrent-distributed-concurrent, distributed. Concurrent optimization



504 The Impact and Implications of Optimization

for MILP can be understood as the simplest realization of theGEA and is avail-
able in CPLEX, GUROBI or XPRESS-OPTIMIZER. The next level isconcurrent-
distributed-concurrentwhich allows communication and interaction between par-
allel runs on cores or threads.Distributed MILPmeans: Each B&B search is started
with different parameter settings, a permutation of the columns/rows, or just another
random seed. The best one wins and the job is done, or one even allows restarts on
that best one and only continues with those settings that perform best so far.CPLEX,
for instance, offersdistributedwith the following tasks: (i) work on the lower bound
on one thread; (ii) work on the primal bound (heuristics!) onthe other, and (iii) have
a third thread to manage the search tree. Impressive resultsare provided by Shinano
et al. (2016,[516]) using a parallel enhanced version of the solver SCIP(cf. Shinano
et al. (2010,[515]) or Gleixneret al. (2018,[231])) using 80,000 cores simultane-
ously on the Titan supercomputer to solve 12 previously unsolved MILP problems
from the MIPLIB benchmark set.

Colombani & Heipcke (2004,[136]) and Heipcke (2012,[269])present possibil-
ities for problem decomposition and concurrent solving from a modeling point of
view with example implementations inMosel that show the handling of multi-
ple models, multiple problems within a model, and as a new feature, distributed
computation using a heterogeneous network of computers. In2004 and 2012, the
XPRESS-OPTIMIZER modulemmjobsprobably have focussed on solving to MILP
problems or solving NLP problems with multi-start techniques. This module allows
one to determine on the modeling level what to parallelize and how to distribute jobs
(whole model or submodels).

A very active and productive group is at ZIB in Berlin with Shinano (2018,[514])
reporting on seven years of progress in parallelizing B&B. When developing and
implementing parallel algorithms, one has to keep in mind that it is very difficult to
come up with and implement a parallel framework correctly leading to true paral-
lelism, in the sense that investing more CPUs results in linear speed-ups. This may
take many years. Shinanoet al. (2020,[517]) have solved previously unsolved MIP
Instances with ParaSCIP, a parallel version ofSCIP,3 on supercomputers by using up
to 80,000 cores. Going back in time, see also Shinanoet al. (2020,[523]), Munguia
et al. (2019,[423]) for solving stochastic mixed-integer programs, and Shinanoet al.
(2019,[522]) and their development ofFiberSCIP, a shared memory paralleliza-
tion of SCIP.

When it comes to developing parallel nonlinear optimizationalgorithms and soft-
ware, some additional problems show up as NLP or MINLP problems can have
very different structural properties such as being sparse,dense, mostly linear, con-
vex, pseudoconvex, large, small, or parametric. In every case, there are different
optimal ways of exploiting parallel hardware, but buildinga piece of software that
implements all of these ways is difficult, which is why the solvers IPOPT, SCIP,
KNITRO, andNLPAROPT probably have very different inner architectures. In other
words, parallelism in nonlinear optimization is tricky from a design point of view
because the choice of allocating parallel resources depends on the real-life problems

3 See Gamrathet al. (2020,[214]).



16.6 Online Optimization by Exploiting Parallelism? 505

the solver is designed to solve. There are three main applications of parallelism for
MINLPs:

1. Calculating derivatives in parallel (important in very dense problems),
2. implementing the factorization step in parallel (important in very large prob-

lems), and
3. solving the problem many times in parallel,e.g., parallel B&B or multi-start (im-

portant in MINLP problems).

Solvers can usually only really do one of these in parallel, and that design choice
determines what problems that solver can solve well. Even ifsolvers such asIPOPT

or SCIP have been developed at research institutions, at least partof their motiva-
tion may stem from real-world problems influencing the innerarchitecture of the
software.

Finally, we comment on determinism when using B&B or parallel solvers: In
2020, some solvers provide more determinism than others andhave control param-
eters for such features! This also becomes obvious when switching from Linux to
Windows using 4 cores to 16 cores, but turning on the control parameters allows for
deterministic optimization runs; at a slight increase in run time, of course. A unique
feature available inCPLEX is enforced by switching from CPU time limits to limits
expressed inticks. With this feature turned on, even when the Branch&Bound pro-
cess is terminated prematurely, the solutions are identical. This is very helpful when
developing and testing polylithic modeling and solutions approaches.

16.6.2.2 Parallel Metaheuristics

Parallel metaheuristics is another area in which parallel techniques are used;cf. Alba
(2005,[15]), Albaet al. (2005,[18]), Alba & Luque (2005,[16]), various chapters in
[15] about parallel versions of genetic algorithms, simulated annealing, and tabu
search, the early work by Pardalos (1995,[448]), Gendreau &Potvin (2010,[219]),
or Crainic (2019,[140]). If we follow Alba (2005,[15]) in his bookParallel Meta-
heuristicson p. 112, in many cases, pPMSA fall into the class ofindependent run
models.

There exists a vast body of literature related to parallel techniques for solving
multi-objective optimization problems. This requires to construct a set of solutions
called the Pareto front. Figueiraet al. (2010,[189]) favor evolutionary algorithms
for this. Jozefowiezet al. (2002,[304]) have constructed a specially defined parallel
tabu search applied to the Pareto front reached by an evolutionary algorithm.

To give an example, Lančinskaset al. (2015,[363]) have developed a stochastic
search optimization algorithm and have applied it to solve abi-objective competitive
facility location problem for firm expansion. The parallel versions of the developed
algorithm for shared- and distributed-memory parallel computing systems approx-
imate the Pareto front and have almost linear speed-up when solving competitive
facility location problems of different scope reasonable for practical applications.



506 The Impact and Implications of Optimization

16.6.2.3 Machine Learning & Hyper-Parameter Optimization

A different community and field where parallel solution approaches have an impact
is machine learning and hyper-parameter optimization in the context of Bayesian
optimization. In machine learning, hyper-parameter optimization or tuning, the goal
is to select a set of optimal hyper-parameters for a learningalgorithm. Hyper-
parameters are those parameters the values of which are usedto control the learning
process, while the values of other parameters (usually nodeweights) are learned.
Grid search and random search (cf. Bergstra & Benglio (2012,[76])) allow for easy
implementation to parallel approaches. Bergstraet al. (2011,[75]) let a Gaussian
process algorithm and a tree-structured parzen estimator run asynchronously in or-
der to make use of multiple computer nodes and to avoid wasting time while waiting
for the trial evaluations to complete.

16.6.2.4 Parallel Optimization in the Real World

In 2020, real-world optimization is still struggling with making use of today’s and
tomorrow’s multi-core computing architecture or exploiting graphical processing
units (GPUs). Not every small or mid-size company has a cluster of 1,000 computers
available. The good news: Parallel optimization is possible for practitioners using
the inherent parallel algorithms of solvers offering parallel algorithms and – with
some programming effort – using AMLs.

An easy task is to program a multi-start approach for solvingNLP or MINLP
problems. This requires a random number generator, a local NLP solver and some
features in an AML or other programming language to run a certain number of
instances in parallel.

Beyond this,i.e., the development of one’s own parallel algorithms and soft-
ware, life becomes complicated due to the lack of good tools to implement, test, and
deploy distributed algorithms and software. One has to keepin mind that parallel
computing applications tend to target time-critical or large problems. Problem size
has implications on data structures and distributing memory, and actually requires
to taking precautions for all kinds of solver details to avoid bottlenecks, which are
non-issues for smaller problems.

While usually one finds parallelization techniques deep in solver technology as
discussed above, Kallrathet al. (2020,[325]) use a parallel PMSA (pPMSA),i.e.,
parallelization at a higher level of the application itself; cf. the example at the end
of Section 14.2.1.1. This can be understood as follows: Running the same problem
with different algorithms, parameters,etc.and choosing the fastest one, also known
asconcurrent optimization(cf. CPLEX User Manual) is one way to utilize the par-
allel computing power. A parallel PMSA takes this one step further by applying the
multi-grid approach on the level of the application itself by exploiting the control
parameters of the PMSA. This approach has been used both on multi-core platforms
of up to 32 cores, and on clusters of up to 1,000 computers – it is very suitable and
relevant for the following two real-world situations: Situation 1: One relevant prac-



16.7 Summary 507

tical requirement is that we have a limit on the time available for returning a solution
back to the user,i.e., we usually cannot solve the problem to optimality; this is espe-
cially true for scheduling problems. In this situation, we want to get the best solution
within the available time. Situation 2: Multi-criteria optimization problems with the
following property: It is difficult for the problem owner to quantify what is agood
solutionto him. Therefore, we want to offer various solutions enabling the user to
select by inspection thebestsolution: an example for this is the cutting stock prob-
lem with two conflicting objectives, the minimization of trimloss and the number of
patterns. Note that both situations (time limit and multi-criteria objectives) can also
show up in combination.

The previous paragraphs shows the potential for parallel optimization. It is all
about computing time and solution quality within a given time limit. Most aca-
demic literature is concerned about linear speed-ups. If a parallelized algorithm on
n identical CPUs produces the optimal result within timeTn, what is the finishing
timesTkn on kn identical CPUs? Ideally, one expectskTkn = Tn. Related follow-up
questions are:

1. For which range do we have linear or almost linear speed-up? This may depend
strongly on hardware, communication between the CPUs, software and also on
the problem itself.

2. If linear speed-up depends on on hardware, software and also on the problem as
suggested above, is the concept of linear speed-up suitablefor real-world opti-
mization problems? LP solvers, and in 2020, also MILP solverare generic to a
reasonable level. Deterministic global optimization solvers can already do a lot,
but they are still limited to a certain problem size.

3. Are there applications areas for which parallel optimization is especially suit-
able? The energy sector with the need to evaluate thousands or millions of inde-
pendent scenarios may be a good candidate.

An interesting project isBEAM-ME (Dec 2019,http://www.beam-me-projekt.de).
This research project supported by the the GermanBundesministerium für Wirtschaft
und Energyaims towards utilizing the full potential of parallel computing on HPC
with decentralized memory architecture for the application to optimizing energy
system models. A detailed description of project results isonhttps://gitlab.com/beam-
me/best-practice-guide.

16.7 Summary

In this chapter we have considered optimization as an approach to problem solv-
ing which is not without limitation. As with other techniques used in operational
research, care and attention to many matters of good practice are required, espe-
cially in the area of communication. Mathematical programming is a powerful tech-
nique but needs to be used sensibly to encourage confidence inclients. The mod-
eler must move steadily but carefully through systematic procedures that require



508 The Impact and Implications of Optimization

constant modeler/client feedback in order to ensure the final implementation of the
benefits of the modeling process. Optimization is an area under continual develop-
ment and we are convinced it has much to offer for the future.



Chapter 17
Concluding Remarks and Outlook

In this chapter, we provide reflections on the material presented in this book. The
chapter ends with the authors’ view of future developments and suggests some con-
clusions.

17.1 Learnings from the Examples and Models

With the opening of markets and borders and a globalization of world economy,
problems like the production network planning system described in Section 10.4
will increase both in number and complexity. The ability to produce complete, ac-
curate and optimal solutions to larger problems offers the potential for enormous
reductions in costs, huge increases in efficiency, and careful handling of resources.
Some industry specialists estimate that savings would average 3-4% of turnover and
could well be much higher. In particular, it becomes possible to exploit the inher-
ent advantages and synergies in highly connected production networks (Kallrath &
Schreieck, 1995,[331]). Thus, the reader can see the potential for business optimiza-
tion illustrated by the case studies.

Some of case studies are scaled down examples of real problems solved in indus-
try. The real cases usually contained additional subtleties which were either confi-
dential or not appropriate for didactic reasons. The model formulations presented in
this book provide the modeler with building blocks for developing comprehensive
models,e.g., in supply chain management. Being able to calculate complete, accu-
rate and optimal solutions to large planning problems offers the potential to save
enormous costs, increase efficiency, and carefully manage limited resources. Expe-
riences with the use of mathematical optimization lead to cautious savings estimates
of about 3-4%. The case studies can only hint at this potential, as for didactic reasons
or for reasons of confidentiality the models are frequently simplified and reduced in
size. Nevertheless, the reader should have benefited from reading the book in the
following way: the case studies

509



510 Concluding Remarks and Outlook

• offer a wide range of real-world problems from different application areas and
industries and hopefully have given an impression of what problems can be ad-
dressed with optimization methods;

• contain some special formulations, subtleties and “tricks-of-the-trade”, which
improve the model formulation considerably and which should be available in
the modeler’s box of tricks;

• show the need for careful, sometimes very specific, tailor-made solution tech-
niques adapted to the problem at hand;

• contain structures and substructures relevant to other problems;
• can be building blocks or starting points for more complex models.

The examples, especially, the bigger case studies in Chapter 10 should illustrate that
modeling is not necessarily a straightforward process, butrather an iterative pro-
cess with some reformulations. Sometimes the question arises in practice whether
one should develop a model precisely to the customer’s needsand then possibly
get problems with its solution, or whether one should already consider during the
modeling process what one considers solvable and reduce thefidelity accordingly
immediately. Here, as the author of this book, I would like toposition myself very
clearly: Because of the acceptance and closeness to reality, mapping the reality is
indispensable and should have the highest priority. In the Chapter 14 ways were
shown to solve also very difficult and large problems. If these possibilities are still
not sufficient to solve the problem, only then, you may think about reducing the
degree of mapping the reality.

17.2 Future Developments

We have seen that some large real-world problems have been successfully solved at
large companies in chemical, airline, refining and other industries and that the use of
optimization, even in smaller companies, demonstrates huge potential for reducing
costs, increasing efficiency and flexibility and generally contributing to the effective
management of the enterprise.

17.2.1 Pushing the Limits

However, we should not be lulled into a false sense of security by a handful of suc-
cess stories. Since its computational beginnings optimization has always tested the
available computer hardware and software to its limits. In acertain light-hearted way
the practical optimization specialist must be likened to a pole vaulter at an athletics
competition. Ultimately the pole vaulter goes home having failed - the competition
may have been won but the goal to clear the last jump is missed.The same thing
faces the optimization specialist, though not for the same reason of failing at some
absolute target of achievement.



17.2 Future Developments 511

The professional optimization specialist always faces a moving target in that once
a problem has been solved for the user, the user will inevitably come back with a
tougher problem. For instance, the user will increase the number of time periods
in a multi-time period model or perhaps disaggregate some process that has been
modeled fairly crudely into its separate components, thus rendering the problem
bigger and generally harder to solve. In our experience thisis not too much of a
problem with pure linear programming problems as though thecomputing times
increase with problem size they do not do so at an exponentialrate. If a ten period
model takes a certain time to solve then one would expect thata twenty period model
might take perhaps four times as long and it would be very unlikely to take twenty
times as long.

In practice users seem to think about solution times in several possible bands. The
first acceptable band is where the solution time for the problem is of the order of 12
hours, so one overnight run can be done per day. There is, in practice, little benefit to
be gained from reducing this to 8 hours as probably there willstill only be one run
possible per day. The next band of solution times is of the order of one hour where,
if we allow some time for users to inspect their results and decide upon another
scenario to analyze, probably two or three runs per day are possible. The next band
covers solution times of the order of a minute or so, at which point several benefits
start to accrue. The first is that now we can start to contemplate optimization almost
“on line”, i.e., to use it to adapt to the situation as data changes. The second benefit
is that we can rapidly analyze many scenarios and start to geta good understanding
of how the solution changes as parameters change.

The final band of solution times is where the optimization takes the order of one
second, rather like recalculating a medium size spreadsheet. At this point we have
achieved a much desired objective of being able to deliver instantaneous optimiza-
tion to the end user. The implications of having this technology are very profound
because we can have a guarantee of optimality in many situations where currently
we are forced to descend to heuristics because of the need to have an implementable
solution within some restricted time limit. We really have online optimization.

The power of computers and high quality optimization software has increased
significantly in the last decade but we should not see this as apanacea. It seems
unlikely that there will be an order of magnitude increase inperformance of either
Simplex or interior-point algorithms (for instance a typical quality interior-point
solver only takes the order of 30 iterations to converge to anoptimal solution. It is
extremely unlikely that this can be reduced to 15 iterationsand at the same time
improve the efficiency of those iterations by a factor of 5 which would be necessary
to get a tenfold reduction in solution times.) Improvementsin computational speed
are increasingly being limited by access time of memory and it is unfortunate that
the Simplex algorithm tends to access memory in a rather random way, which means
that various caching schemes do not perform very well.



512 Concluding Remarks and Outlook

17.2.2 Cloud Computing

Parallelization as described in Section 16.6, is one optionto push the limits. Another
approach to consider could becloud computing, i.e., the use of IT infrastructure and
services that are not maintained locally on local computersbut are rented as a ser-
vice and accessed via a network (e.g., the Internet). Given the raise of the cloud, it
looks very promising that we will able to solve larger models- although there is a
lot of computational overhead. Kurschlet al. (2014,[360]) are convinced that math-
ematical optimization is one of the domains, that benefit from cloud computing by
use of additional computing power for optimization problems to reduce the calcu-
lation time (stronger hardware, higher degree of parallelism). The supportive argu-
ments for cloud computing are to have hardware (memory and computers) available
whenever needed, stability, reduced local IT dependence, and variable costs instead
of investment and maintenance costs. The disadvantages: Virtual computing power
instead of real hardware under one’s own control, security issues, and reliance on
internet access as well as the stability and availability ofthe internet. Due to the
memory-on-demand and machine-on-demand, larger problemscan be solved than
with personal or local hardware – and highly parallel structures can be used.

So, in summary we cannot rely on technology alone to deal withthe expectations
of users, but there is a real need to solve ever larger or more complicated problems.
How can we proceed? In the next section we try to give an answer.

17.2.3 The Importance of Modeling

In earlier chapters we have seen thatmodelingis vital to practical optimization. It is
just about possible to get away with poor modeling if the problem is a pure LP. As
long as the model is correct the implications of a poor (larger, redundant) model are
likely just to be longer running times by a factor of perhaps 2or 3. Not desirable,
but not disastrous. But when we move to MILP problems, the difference between
a good and a poor formulation may not be small factors 2 or 3, but perhaps5 or
6 orders of magnitudeincrease in solution times. The problem in the worst case,
cannot be solved in reasonable time at all.

We have found that analysis and hard work by experienced and expert model-
ers very often yields several orders of magnitude improvements in solution times
for MILP problems. Even when the problem is just too hard to solve, the insights
obtained by this analysis often give very good heuristics.

But even with growing hardware and software capabilities the importance of the
experienced modeler cannot be underestimated. The opposite is true.Analysts will
become more important.When hardware and software capabilities grow there is
demand for more complex and realistic models because clients will ask for more
details in the model. It is the modelers’ task and responsibility to bring clients’
demands and mathematical programming reality to a fruitfulliaison. In addition
to better hardware the modeler will be facing more intelligent algorithms imple-



17.2 Future Developments 513

mented in commercial software,e.g., providing efficient B&C routines which re-
quires that modelers really keeps themselves up-to-date. Integer programming will
not only be more or less restricted to linear problems (as it is now) but quadratic
or mixed integer nonlinear programming in general will become tractable. Last, but
not least, modelers will have more flexible modeling tools attheir finger tips: Mod-
eling tools supporting dynamic cutting planes, formulating optimizations problems
from graphically designed network flow problems, providinglinks to complete dif-
ferent solution algorithms, and allowing to switch betweendifferent solvers. Despite
the success observed when applying mixed integer linear programming, the support
given to expert decision making and scenario generation by mathematical models
and methods is still far from being widely accepted. Very often, analysts experience
great reservations when talking to people working in production, logistics or mar-
keting. There is a psychological and/or cultural barrier. Experts are used to decision
taking based on experience and heuristic rules which are difficult to express explic-
itly. The approach to achieve objective solutions which canbe controlled on a quan-
titative basis is new. It may create unconscious fears, and may in addition require a
huge effort to explain the problem of interest to a non-specialist with the appropri-
ate degree of completeness and accuracy. Indeed, on the one hand the mathematical
kernel of the application operates as a black box usually difficult to understand for
non-mathematicians. On the other hand, experts are afraid to lose influence and ac-
knowledgment when outsiders, in this case mathematicians,can produce solutions
which prove to be better in terms of costs, contribution margin, utilization rate or
some other valuable quantity, when compared to their own solutions. As a rule of
thumb, usually at least 50% of all efforts and time spent during project work trying
to solve a real-world problem using mathematical optimization methods is related to
psychology,i.e., talking to clients in order to increase the acceptance of the solution
techniques or removing reservations and fears against mathematics. Thus, besides
technological efforts there should be a strong investment in improving the awareness
and acceptance of mathematical optimization applied to real-world problems.

The sceptics can be calmed down: mathematical methods and techniques can-
not and will never replace human inventiveness or decision making, but they can
successfully provide a quantitative basis for these decisions and allow analysts and
decision makers to cope most readily with complex problems.Thereby, in this sense,
mathematical optimization can successfully contribute toa safer and better world in
which risks are decreased, quality is improved and resources are used more effi-
ciently.

The very rapid performance gains achieved in the last decadeby general purpose
MILP solvers have had a slightly negative influence on the development of special
purpose algorithms for optimization. It is somewhat dispiriting for the developer
of a special purpose algorithm to be beaten on solution timesby general purpose
software, even though it is probably because the latter has had several man-years
of careful development and tuning. The recent availabilityof modular high perfor-
mance optimization subroutine libraries has meant that if LP or MILP (or some
parts thereof) are required by the special purpose algorithm then this can be ex-



514 Concluding Remarks and Outlook

tracted from the library, and will have top performance. Thelibraries will continue
to develop over the next decade as algorithm developers demand extra functionality.

17.2.4 Tools around Optimization

Originally, the kernel of optimization projects was to formulate the optimization
problem at hand, possibly implementing it into an algebraicmodeling language,
and to solve it by some mathematical algorithm implemented in a programming
language or provided by an optimization software. Nowadays, these kernel compo-
nentsimplementing the modelandsolving it, are accompanied by various tools:

• automatic documentation of the model in the document preparation system LATEX
(frequently, used by mathematicians, physicists, and people in Operations Re-
search),

• graphical representation of the solution output,
• advanced business analytic tools applied to cover the specifics of the solution and

explain it in the language of the end-user,
• additional statistical tools for data pre-processing or result analysis,
• support tools for scenario analysis, and
• connectivity to other programming languages such asPython (which seems to

win the popularity competition).

We will not discuss these tools any further. Instead, we wantto stress that they ex-
tend the functionality of modeling and optimization software, and reach out to larger
user communities. For modeling tools we provide more background information and
indicate some ideas for the presentation of results.

It is our belief that modeling tools will also continue to grow in power and func-
tionality. These tools seem to bifurcate into enhancedalgebraic modelersandvisual
modeling support.

A modeling language used to implement mathematical optimization models sup-
ports the expressions and symbols used in the community of mathematical optimiza-
tion. Therefore, it is natural that algebraic modeling languages (AMLs) support the
concept of structuring a model by separatingdata (what is given),variables(what
we want to know),constraints(restrictions, bounds, etc.) andobjective function
(what we want to maximize or minimize). Those entities are not only connected by
the algebraic operations (+,-,·) but also by nonlinear functional relationships. AMLs
– the earliest,GAMS, LINGO andmp-model, appeared in the late 1970s and early
1980s – are declarative languages for implementing optimization problems. They
keep the relations (equalities and inequalities) and restrictions among the variables,
and connect data and the mathematical objects to a solver; they do not contain in-
formation onhow to solve the optimization problem.

Since the early 1980s, AMLs have played and still play an important role in
the world of mathematical optimization and optimization used in industry. In the
1950s and 1960s, Assembler and Fortran coded LP models were mostly replaced



17.2 Future Developments 515

by IBM’s matrix generators MPS that established the standard of industrial model
formulation. Models in those days were LP models many of themsolved by IBM’s
LP solverMPSX. At that time there was no market for AMLs, but, there was no real
support for NLP problems – and this was a niche for AMLs as theyenabled the
user to formulate NLP problems, and supported automatic differentiation,i.e., they
symbolically generated the first and second derivative information. Another line of
development was triggered by the advent of personal computers (PCs). Dash Op-
timization provided a tool to PC users rather than mainframes in 1984 with their
solver XPRESS-OPTIMIZER and their modeling languagemp-model. Thus, after
a while, AMLs also became superior in implementing LP modelsand succeeded
MPS. Nowadays, academic research models (developed by scientists) are used for
developing and testing solvers, or constructing efficient model reformulations. Do-
main expert models (developed by analysts) are used within consulting projects, or
feasibility studies. And finally, AMLs often host the modelsfor black box model
users doing their operational planning. AMLs ensure robustness, stability, and data
checks needed in industrially stable software. Furthermore, AMLs accelerate the de-
velopment and improvement of solvers ranging from Linear Programming to Mixed
Integer Nonlinear Programming and even Global Optimization techniques. If a user
has an NLP problem implemented in an AML using a local solver to compute its
local optimum, it is only a matter of minutes to switch from a local solver to a
global solver such asBARON, ANTIGONE or LINDOGLOBAL . Thus, there is a sig-
nificantly reduced development risk for the user. But the solver developers can also
count on a much larger market when their solver is embedded inan AML. The
solver technology, in some sense, is now a commodity which allows the users to
switch, for instance, from one MILP solver to another one, orplay around and col-
lect experience with the free Coin-OR solvers. The implementation of polylithic
modeling and solution approaches described in Kallrath (2011,[322]) is possible
without huge development efforts. And last but not least, the development of Mi-
crosoft Windows and improved hardware technology has lead to integrated devel-
opment environments (IDEs)1 such as Xpress Workbench forMosel, GAMSIDE
or GAMS Studio in GAMS, or systems such asAIMMS andMPL. This increases
the efficiency of working with AMLs and contributes greatly to the fact that AMLs
reduce the project time, making maintenance easier and increasing the lifetime of
optimization software.

In contrast to the algebraic modeling approach there existsthe visual modeling
approach. With these visual modeling tools it is possible tolay out the design of
the screen, and from visual objects derive the various bits of programs. The exten-
sion to visual modeling is seemingly obvious - it involves the connecting of the
various objects with arrows to show flows, and the generatingof equations that de-
scribe material balance, transformations, blending etc. from the icons that represent
the objects. This “model of modeling” seems to be attractive, but its application to
anything other than logistics and network modeling soon raises difficulties. For in-
stance, how does one denote that an arrow (denoting a flow) really represents a set

1 Not to be confused with standard ”user interfaces” like reports in a browser, in Tableau, or Xpress
Insight



516 Concluding Remarks and Outlook

of flows and how does one indicate which set this flow belongs to? How does one
declare that certain data are required and need to be collected? If there are five units
of a particular type, does one represent this with five objects, or in some way in
which, e.g., one object stands for all five? If we do not adopt the former approach,
the screen rapidly gets cluttered, whereas if we adopt the latter, a new set of nota-
tions has to be developed and learned.

Visual modeling can be readily applied if a problem at hand can be modeled as
network flows, where a visual interpretation is easy. If modeling is to be used by
relatively unsophisticated end-users, a visual presentation of the model is far more
attractive than an algebraic one. End-users might not be able to build the model
initially, but it is very likely they will be able to modify anexisting model, and even
more likely they will find the visual model easier to understand, and thus thus will
be more likely to accept it.

Regardless of whether or not a model is implemented taking the algebraic or
visual route, visualization of results becomes more and more important. We discuss
this in detail in the next section.

Fig. 17.1 A typical side-by-side scenario comparison of a supply chain network using a map.
Screenshot taken from a FICO Xpress Insight demo appSupply Chain Network Designer.

17.2.5 Visualization of Input Data and Output Results

Algorithm and model developers regularly create and evaluate statistics of optimiza-
tion runs in order to determine which parameter settings work best for a specific
benchmark set. There is a tradeoff between run time and solution quality where so-



17.2 Future Developments 517

lution quality can be a mixture of multiple parts of the objective function based on
different units of measure. Such statistics are often presented in tabular format.

Furthermore, it is of similar importance to validate the data input and the output
for feasibility during development phase. This already requires additional data and
certain visualization capabilities. Validation often needs to be done by the domain
experts, the planners or decision makers need to be involved, not only the modeling
expert. To make this more tangible, we illustrate it with a few examples as the type
of visualizations depend on the use case as well. It is key to review the information
collected in a model in the right context to understand the results:

Fig. 17.2 A horizontal bar chart showing supplier profiles of two scenarios in the same chart.
Screenshot taken from a FICO Xpress Insight demo appSupply Chain Network Designer.

Example 1: A supply chain manager responsible for a production-distribution
problem as in Section 10.4 benefits from drawing the supply and distribution net-
work on a map as in Fig. 17.1, or the supply per supplier (Fig. 17.2). Financial in-
stitutes and sales departments need to understand the impact of various buyer types
and geospatial influence on churn rates to make better decisions, see Fig. 17.3.

Fig. 17.3 Churn rates. Screenshot taken from a FICO Xpress Insight demo appChurn Forecasting.



518 Concluding Remarks and Outlook

Example 2: Operations managers want to see the production plan, for instance, on a
horizontal axis (e.g., via Gantt charts) and the machine utilization (see Fig. 17.4).

Fig. 17.4 A production plan. Screenshot taken from a FICO Xpress Insight demo appProduction
Scheduling FS & JS.

Example 3: Tour planners,e.g., for school bus routing, pick-up and delivery ser-
vices) benefit from seeing the routes proposed as in Fig. 17.5.

Fig. 17.5 A map showing delivery points and an optimal delivery route. Screenshot taken from a
FICO Xpress Insight demo appPackage Delivery Solution.

Visualization capabilities become even more important when models are handed
over to a decision maker, such as an operations manager (cf. the scheduling example
in Section 10.5), a supply chain manager (as in Section 10.4), marketing analyst and
so on. Visualization capabilities, in particular, are extremely important in the context
of Decision Support Tools. Here, it is key to show all the datafed in and the results



17.2 Future Developments 519

as close as possible in the business context. This is crucialfor acceptance of the
software solution. To base a decision on any solution proposed by a software tool,
the users need to trust in the data quality, the algorithmic logic and the feasibility
of the results. This gain of trust can be supported by the way data and results are
visualized.

Decision makers have several key needs which we first describe generically. Yet,
figuring out how to incorporate these needs into software that gets accepted by the
user poses another challenge that is discussed afterwards.

Among the typicaluser visualization needsare: Understanding what input data
are available, if the data are up to date, and results displayed in a way that users
can quickly identify key decisions, the potential bottlenecks and main drivers for
the decision. Finally, users like to understand and to have an answer to the question:
Why there is a deviation from the planned scenario? Given these needs, a tool needs
to provide various visualization capabilities among them:

1. Multi-layer approach: High-level Key Performance Indices (KPIs), drilling down
into the main decisions and further down to each single entity.

2. The way data and solution proposals are displayed must fit the business context.
Typical and prominent examples are Gantt charts for scheduling problems and
maps for network optimization.

3. Drilling down on data requires standard spreadsheet functionality provided across
reports, in particular, searching and filtering across multiple tables and charts, so
called Dashboards.

4. Interactive Dashboards give the impression of control – while the algorithmic
and model part may be a black-box to the user, interacting with the model by ad-
justing some parameters and getting a response with reasonable results generates
trust.

5. Scenario comparison in the same charts to explore trade-offs between different
strategies.

6. Collaboration features such as the ability of sharing scenarios, data and results to
collaboratively develop and evaluate business strategies.

7. Traceability of decisions plays a major role. What where the major triggers to
decide for a specific strategy and reject others?

8. Comparison of plan and actual figures to evaluate historical decisions and re-
evaluate the decision making process, KPIs and input factors in a sustainable
manner – fundamentally, to enable a learning curve.

Overall, we should keep in mind that good users become even better users when
powerful and effective tools are available to them.

17.2.5.1 Tools & Software

The needs described above are partly very well covered by Business Intelligence
(BI) Tools that come with rich charting and dashboarding capabilities. Prominent
BI Tools are Tableau, Qlik, and Power BI from Microsoft. Yet,there are crucial



520 Concluding Remarks and Outlook

gaps such as the missing ability to embed optimization algorithms or to support
whole business process workflows.

There actually is just a handful of software tools tailored for optimization that
offer such a variety of features partly by hooking up dashboard functionalities from
the above BI Tools:AIMMS comes with AIMMS Pro, FICO offers FICO Xpress In-
sight, while IBM provides the Decision Optimization Center. Formerly stand-alone
modeling languages have started to provide additional visualization capabilities as
well: AMPL with Quandec orGAMS with GAMS MIRO are prominent examples.

Let us now focus on thetool development process. To develop sustainable opti-
mization software, data and results must be demonstrated intheir business context.
Yet, a modeling expert or a solution developer is usually no business expert. On the
other hand, a business expert is most likely unable to set up arequirement document
that encompasses all needs.

To maximize the probability of overall success it is recommended to develop
optimization models, the visualization and the overall tool in an iterative and col-
laborative manner. Hence, the framework used must support rapid application de-
velopment. This is highly needed to get down to the guts and needs for a software
solution, and to unite the technical in-love-with-the-model perspective of the mod-
eling experts with the needs of IT-affine decision makers.

The main advantage of a collaborative and agile tool development approach are:

1. The modeling expert gets acquainted with business terminology; the developer
and the domain expert start speaking the same language.

2. The requirements to be developed get refined iteratively with a step-wise increas-
ing joint understanding. This holds for the model as well as for the visualization.

3. Gaps in the model and input data can be identified early.
4. An inherent trust into the model and the data is build up which will help in tool

acceptance.

To get mathematical models into the hands of decision makers, and enable them to
quantitatively assess their strategies is a challenge on its own. Luckily, tools that
closely integrate models with visualizations that can be customized to the specific
use case are available. But visualizing results is just the start. Decision support tools
require a rich amount of features,e.g., for collaboration and workflows. Given the
success of WYSIWYG editors for webpages, the future may have some more sur-
prises for model developers to ease their life when creatingsuch tools.

17.2.5.2 The Broader Company Picture: IT

Another angle to consider are the requirements from IT departments. Software tools
need to be embedded into existing IT infrastructure, with the company’s user authen-
tication management, matching its roles and authorities. Network security becomes
important when decision support tools are no longer stand-alone local computer pro-
grams, but users can share data and scenarios by connecting to internal and external
data sources. Value-based optimization tools bring together plain quantity figures



17.2 Future Developments 521

(historical or forecasted production amounts and capacities) with cost and price fig-
ures. Such data are no longer classified as internal data, noras just confidential, but
usually as strictly or highly confidential. As this leads to highest business impact,
security measures such as access control and monitoring need to become part of the
software.

17.2.5.3 Summary

Building sustainable optimization models and tools requires close collaboration of
the developer, the users and companies’ IT departments. From the IT point of view,
security, data base connectivity, authentication, user and role management need to
be taken into account. For Operations Researchers this poses quite some challenges
but also the possibility to broaden their horizon. It is key to collaboratively develop
models and visualizations in order to find gaps in the data or model early, to be
able to design the right User Interface and to get acceptanceof the tool. This way, a
decision maker is willing to trust the tool and rely on the proposals generated by an
optimization-based Decision Support Tool.

17.2.6 Increasing Problem Size and Complexity

At the risk of spreading despondency, there is one more topicthat we shall have to
discuss before we finish. The theory of computational complexity has been very suc-
cessful in dividing problems into two classes. Very roughly, it says that problems can
either be solved in a time proportional to a polynomial of their sizeS (for instance,
S2 orS7) or they belong to the class of problems calledN P where the solution time
is proportional to an exponential of the size(2S). (We apologize to expert readers for
this gross simplification of computational complexity theory: It is not the solution
time, it is a proof what type of polynomial/exponential worst-case algorithms exist.
But instances may be easy to solve! There is also weak NP-hardness.)

LP falls into the class of polynomial algorithms in practice(interestingly, the
Simplex algorithm is not polynomial in theory but is so in practice, while some
interior-point methods are polynomial both in theory and practice, and the most
widely used interior-point method has not been proven to be polynomial in theory).
On the other hand, IP is in theN P class, where solution time can grow as 2S. The
implications of this can be catastrophic. Suppose we can solve a problem of size
S= 1,000 in 1 hour. Then we cannot expect to be able to solve a problem of size
S= 1,005 in less than 32 hours. In other words, increasing the problem size by half
of 1% moves us from a problem that can be solved several times aday to one which
requires well over a day. And parallelism [see Section 16.6]is not the answer: we
need 32 processors just to get the time back to one hour. It is as if our poor pole
vaulter has to double the run-up speed every time an extra 1cmis to be cleared.



522 Concluding Remarks and Outlook

So in the long run, if end-users keep on insisting on increasing the size of their
problems and there is no huge breakthrough in mathematics which would move
MILP into the class of polynomial problems, we are going to have to give up trying
to solve MILP problems of a certain size.2 Even if computer speeds double, we can
only solve a problem of size one more than we could before. At that level, the last
resort may have to be the use of heuristics to produce approximate solutions.

Many of the problems described and their model formulationsshow that very
large linear problems can now be solved. We find examples of this in the process in-
dustry, in refineries and airlines,i.e., mostly large organizations, but also in medium-
sized and smaller companies there is a worthwhile potentialfor cost reduction and
efficiency increase through the use of mixed integer optimization. As a result of
faster processors and improved algorithms, planning problems that 10 years ago
might have required a night’s computing time on a company computer can now be
solved in less than an hour, or perhaps even a few minutes, so that interactive work
is possible. It is expected that in a few years MINLP and Global Optimization Tech-
niques for non-convex, nonlinear optimization problems will play a similar role to
today’s MILP.

Standard software,e.g., in supply chain optimization or vehicle routing, provides
the user with powerful tools for clearly defined problems. Itis still necessary for
these programs to be used by personnel with knowledge of optimization and model-
ing, but it is conceivable that the models and algorithms will become so robust that
automated solutions will be possible for certain subtasks.The creation of models
and solution methods in this quality requires a lot of experience, as well as the han-
dling of newer solution techniques like B&C for solving MILPproblems, methods
for solving MINLP problems, or the possibility to use several solution methods in
combination.

In addition to robustness, it is to be expected that the improved possibilities will
lead to models becoming more detailed and realistic; this isalso a broad field for
the modeler, whose importance will increase even further asa result of the extended
range of methods. It is the modeler’s task to distinguish between useful details and
exaggerated precision that is not consistent with the quality of the input data. It
would often be useful to consider operational aspects when making strategic deci-
sions, such as process design or purchasing equipment.

Improved solution methods should also be used to make the models more realistic
in terms of data quality. Except for Section 11.3, in this book, deterministic models
were discussed throughout. However, as the data are subjectto uncertainties, which
may be the subject to probability distributions, robust solutions can be found for LP
problems with uncertain data [66] or stochastic optimization – also called stochastic
programming – as the means of choice. Even for MILP problems,solution methods
exist to consider data with stochastic uncertainties [cf. Schultz (1995,[506]), Carøe
& Schultz (1999,[114])]. Although these approaches are still subject to restrictions
and were mostly implemented only in the form of university software, there are
successful applications of these techniques,e.g., in the energy industry [Gollmeret

2 It is sometimes possible to solve very large problems. But there are small problem instances
leading to run time issues.



17.2 Future Developments 523

al. (2000,[236])] and the chemical industry [Sandet al. (2000,[493]) and Engellet
al. (2001,[180])].

In our considerations, we took little account of the complexity of the problems
considered in the sense of complexity theory. This theory,cf. (2000,[217]), has
proved very useful in classifying problems into two classes: those of easy and those
of hard problems3. Problems solved in polynomial runtime belong to the light class,
calledP. The effort to invert a matrix withn rows and columns increases with
n3,4 so this problem is in classP. The proof of a problem belonging to classP
is provided if an algorithm can be constructed which solves this problem in poly-
nomial runtime. For problems that are not solved in polynomial time, the computa-
tional effort usually increases exponentially,e.g., with 2n or with n!. Klee & Minty
(1972,[345]) have shown that there are LP problems for whichthe Simplex algo-
rithm requires at least exponentially many iteration steps; most practical LP prob-
lems, on the other hand, can be solved with the Simplex algorithm in polynomial
time. Khachian (1979,[343]) succeeded in proving that LP problems belong to class
P by showing that some interior-point methods solve LP problems in polynomial
runtime.5

However, for the most commonly used methods in practice, a corresponding the-
oretical proof is still lacking. This shows that it is not so easy to prove that a problem
does not belong toP. If no algorithm has been constructed for a problem that solves
this problem in polynomial time, this does not mean that thiswill not be possible in
the future. In the classN P – this abbreviation stands for non-deterministic polyno-
mial – we find problems that could not be solved with any available (deterministic)
algorithm in polynomial time. If the proof of membership toP is still lacking for
a problem and can at the same time be shown in polynomial runtime and it can be
determined that a proposed solution is actually a solution of the problem, then it
belongs to the classN P. It is useful to note thatN P problems have certain re-
lationships with respect to the required computational effort: they can be solved in
the same time or with the same runtime behavior except for constants.

This leads to the definition ofN P complete problems. A problem is called
N P-complete,6 if the existence of a polynomial algorithm to solve this problem

3 A classification into the class of nice hard and hopelessly hard would perhaps be more appropri-
ate, because the computing time for the allegedly mild problems solvable in polynomial time can
become quite large depending on the coefficients and powers occurring in this polynomial context.
In addition, one should bear in mind that complexity theory deals with the determination of the
run-time behavior as a function of the size of the problem. However, there are many problems,
including those classified asN P complete orN P difficult, which occur in practice in small in-
stances and can easily be solved with B&B or B&C methods. If the problem is hopelessly serious,
the situation is not hopeless, depending on the size of the problem.
4 Pre-factors or lower order polynomials are not considered here.
5 However, it should again be noted here that complexity theory makes statements about the scal-
ability of problems with regard to their solution behavior. Inpractice, the Simplex algorithm often
performs better than the interior-point methods.
6 Furthermore there are theN P-hard problems. Every problem to which we can map or transform
an NP-complete problem in polynomial time and which, regardlessof whether or not this problem
belongs to the classN P, has the property that it cannot be solved in polynomial time, unless



524 Concluding Remarks and Outlook

implies that all problems inN P can be solved in polynomial time. Examples are
the backpack problem from Section 7.1.1, the traveling salesman problem or the
satisfiability problem described in Section 7.5, for whichN P completeness was
first proven. Also the mixed integer optimization in all its forms – MILP, MINLP
and also mixed binary optimization – falls into the classN P (Karp 1972,[338]);
often an exponential growth of computing time is observed. It may be argued that
the classification of a problem as belonging to a complexity class is of more theoret-
ical interest. If you have a certain problem with data instances of non-varying size
and can actually solve it in a satisfactory computing time, you could agree with this
argumentation. However, if one wants to know something about the scaling behav-
ior of the problem or if one simply cannot solve it in the desired computation time,
the classification or the proof that a problem isN P-complete orN P-hard7 can
help to avoid certain aberrations and to find the right means to approach the problem
at least with efficient heuristics and search strategies. Especially in connection with
scheduling it becomes clear that the mixed integer optimization meets insurmount-
able barriers due to the complexity.

17.2.7 The Future of Planning and Scheduling

What are likely scenarios for planning and scheduling in the near future? It is al-
ready evident that there is a growing number of software packages that solve plan-
ning problems with accurate procedures. Mixed integer optimization is increasingly
becoming an accepted standard for planning and design; thisis very obvious in the
process industry [314]. This is not yet the case for scheduling problems and heuris-
tic methods can usually be found here. But a trend is recognizable, which lets the
mathematical optimization community and the community of those preferring Con-
straint Programming, grow closer together;cf. Heipcke (1999,[267]). Hybrid meth-
ods [cf. Harjunkoskiet al. (2000,[263]), Hooker (2000,[279]) or Jain & Grossmann
(2001,[294])] are being developed which combine language elements and algorith-
mic components of both worlds. It is to be expected that this will have great ef-
fects on supply chain optimization and scheduling problems. In 1999, the European
Union decided to support theLISCOS (Large Integrated Supply Chain Optimization
Software) project with several million Euros. This project (http://www.liscos.fc.ul.pt),
initiated by theScientific Computinggroup of BASF Aktiengesellschaft and carried
out jointly with 8 consortium partners, aimed at the development of MIP-CP hybrid
processes. Timpe (2002,[558]) describes a successful application of this approach
to solve a planning and scheduling problem in chemical industry. At about the same
time, the EU supported the projectCOCONUT [91] for the solution of non-convex
optimization problems with methods from Global Optimization and Constraint Pro-

P = N P, meansN P-hard. TheN P-hard problems are therefore at least as hard as the
N P-complete problems.
7 Usually, optimization problems are NP-hard (objective function); and the underlying decision
version is NP-complete.



17.2 Future Developments 525

gramming [91]. Another approach is continuous-time model formulations; here are
especially the work [290], [289], [291], [261], [377] and [379] of Floudas and em-
ployees very promising.

17.2.8 Simultaneous Operational Planning and Design & Strategic
Optimization

In industry, it often happens that a customer wants a planning tool or scheduling
software for a production network that has just been built orexpanded. In schedul-
ing problems, especially, it often turns out that there are bottlenecks for certain
products or situations. The situation could be significantly improved if the planning
and scheduling aspects were included during the design phase. This problem may
seem mathematically very complex, as scheduling problems are very difficult in
themselves. However, scheduling problems are often only very difficult when some
critical resources (e.g., raw materials, machine availability or personnel) become
particularly scarce. But this could be avoided by simultaneous analysis of design
and planning problems. Simultaneous analysis requires reasonably realistic and de-
tailed demand forecasts to be available and the affected operational and planning
departments to cooperate; unfortunately, this is often a problem. The site analysis
and design of the topology of a reactor system described in Kallrath (1999,[311])
are successful examples.

The problem described in Kallrath (2001b,[312]; 2002c,[313]) demonstrates the
usefulness of a model that contains operational and strategic-tactical aspects simul-
taneously. The company wants to acquire additional sites orfacilities, install new
ones with improved technology, or close older facilities. In industry, there may be
a logical link between different plants,i.e., if one plant is shut down, another may
also have to be shut down. The strategic aspects of the problem are given by the
cost of purchasing a site or commissioning or shutting down aplant, whereby the
investment costs should prove to be reasonable over a periodof several years. For
the plant types in question, data must be provided as required for plants already
used in operational planning. The degrees of freedom of decision include the times
of commissioning or shutdown. Since these decisions have long-term consequences
for a production network, it is important that the optimality of the solution can be
proven, but at least the quality of the solution can be evaluated in terms of upper
and lower bounds and then the solution is robust against market fluctuations – this
can be achieved, for example, with the help of stochastic optimization. In Kallrath
(2009, [319]) these aspects are discussed in detail.

Another integration of operational and strategic optimization is found in a work
by Klosterhalfenet al. (2019, [347]). The authors develop a generic and innova-
tive MP solution approach to derive the financial key performance indices (KPIs)
required for future decision-making at the upper management level. In a first step,
they formulate an optimization model that finds the optimal product mix for theen-
tire value chain such that thecontribution margin (CM) is maximized. In a second



526 Concluding Remarks and Outlook

step, they use another nonlinear optimization model (referred to ascost allocation
model, CAM) to allocate the costs of the optimized product mix to the individual
products. Due to the existence of by-products in chemical value chains, the CAM
formulation becomes a nonlinear program (NLP). However, itis possible in this
case, to decompose the problem into two linear programs (LPs), which can be effi-
ciently solved sequentially, in order to obtain the optimalCAM solution for a truly
CM-optimal product ranking. Based on this detailed product-specific solution, all
KPIs can be calculated subsequently on any level of aggregation. Their approach
allows both the strategic accounting and also the product and supply chain manage-
ment (P&SCM) department to work with one and the same data model and calcula-
tion logic ensuring cross-functional consistency and transparency. Thus, they bridge
the gap between the P&SCM and the accounting communities. Itbecomes obvious
that pure isolated business units analyses can lead to wrongassessments of future
capacity investments in our practical use case because capacity bottlenecks in the
value chain cannot be properly detected. The detailed cost split into different cost
categories facilitates the identification of the major costdrivers in the different plan-
ning scenarios. By adopting this integrated approach that considers the entire value
chain as a whole, companies can identify a large improvementpotential over the
common practice that splits the value chain according to organizational boundaries
and calculates isolated solutions.

Simultaneous operational planning and design/strategic optimization is very de-
manding in terms of the data structure and data availability. For all design or strate-
gic objects the same data are required as for the existing objects, for instance, in the
supply network structure. Therefore, the setup of simultaneous strategic and tactical
planning, or simultaneous tactical and operational planning, i.e., scheduling, is not
an easy task. As more as one goes down from strategic into tactical and operational
planning there is a lot of information one needs to collect and validate as input data.
For the existing plants, these data are usually available tothe degree required. For the
design objects,e.g., a whole plant site to integrate into an existing network, this can
be challenging as this affects data from different sources in procurement, production
and logistics like contracts, purchase orders, price matrix formulas, price forecasts,
exchange rates, bill of materials, manufacturing costs, regional and local capacity
in production and warehouses, freight costs, taxes & customs, markups, trade re-
strictions, IBC reimbursement, packaging and filling costs, and in most cases many
additional data on top of that list. In strategic optimization it is helpful to work out
the optimal solution for a set of scenarios covering, for instance, the future of price
and demand forecasts as well as exchange rates. These scenarios could be analyzed
on their own or in the sense of an expected value approach.

A recent software package,PlanNow8, integrates the ongoing collection of pro-
curement, production and logistics data into different scenarios. Transformation,
simulation and change of planning attributes are executed within the scenarios of
PlanNow. After implementation of the numerical and mathematical optimization
model strategic, tactical and operational planning could be combined and executed

8 The webpagewww.PlanNow.aiprovides further details.



17.3 Mathematical Optimization for a Better World * 527

in communicated via the collaboration elements ofPlanNow. Scenario solution
can be visualized and analytically compared also based on different assumptions.
Team and stakeholders could vote, agree or disagree and approve plans. All infor-
mation like data, models, team and stakeholder collaboration and approval within
each scenario are stored inPlanNow and can be retrieved at any time.

17.3 Mathematical Optimization for a Better World *

The titleMathematical optimization for a better worldmay need some explanations
and justification in order not to appear immodest. In this book, mathematical opti-
mization is presented as a modeling approach and a solution technique for problems
that occur in the real-world – primarily in industry, but indeed wherever decisions
are required – and are accessible to quantification in a deterministic or probabilistic
sense. Often, solutions are worked out in optimization projects,i.e., projects with
a mathematical optimization kernel. The process of model building within an opti-
mization project is, ideally, based on three key elements:

1. a binding agreement about the goal of the project (this include a formulation of
the objective function and the constraints),

2. clarity, precision and transparency, and
3. logical consistency, and
4. measurability and quantification.

The result of the project could be an operative decision support system for pro-
duction planning, cutting stock, or service selection to mention a few. It could also
deliver support for a strategic decision to be made. Ideally, at the end, the successful
project and tool implemented leads to awin-win situation to all people participat-
ing, involved or effected by the project. Thus, when talkingabout a better world, it
is aboutmaking good decisions.

Decisions are made on Earth by humans for humans and other living beings
with consequences for all life on this planet. Are the key elements identified above
for mathematical optimization are really limited to optimization projects, or could
they be applied much more comprehensively where conflictinginterests meet in
decision-making processes? Mathematical optimization offers quantitative support,
especially with regard to the robustness of decisions, and reveals inconsistencies
in the assumptions and prerequisites of a model rather than,for example, decision
support based on selective simulations. It provides a framework for multi-criteria
optimization with conflicting goals. In individual optimization projects, it can lead
to win-win situations and reduced usage of natural resources on a company level.

In a much broader sense – and that is meant by better world – it can also help
the society, a country, or the world, as all decisions seem tocontain the following
elements: goal or goals, constraints which one is willing toaccept or which one must
keep for physical reasons, and possible degrees of freedom.Decisions based on an
optimization project are usually better accepted if all people affected have been



528 Concluding Remarks and Outlook

included in the modeling process. Good examples for this areproduction planning
systems and personnel deployment plans, especially those that can easily switch
from holiday planning to staff reduction. It is important for quality and acceptance
to put decisions on a quantitative basis and being able tomeasure and quantify
the improvements– mathematical optimization supports this. This becomes even
more important when extending mathematical optimization by some concepts of
game theory. Collective decision-making processes have their pitfalls. They can, as
proven in mathematical game theory and discussed in Eichneret al. (1996,[177]),
lead to strange paradoxes. If more than three prioritized alternatives are available, it
is possible that decisions will be made that no one actually wants.

If the decision is to be as good as possible, then all possibleconsequences (log-
ical consisteny) and aspects must be examined. We are not claiming that they have
to be considered in the model to be developed – but we propose they can only be
omitted based on a detailed consideration and safe error estimation. Thus, for exam-
ple, Newton’s theory of gravity is sufficient for the construction of an elevator under
earthly gravitational conditions within the required constructional inaccuracy, and
the general theory of relativity does not need to be applied.Not considering certain
aspects, however, can be a bad mistake and lead to acceptanceproblems (see page
9 and the truck drivers concerned).

It helps in the modeling process, that anyone who can make a factually compe-
tent contribution to this without taking their status into account and without con-
sequences for their career is also allowed to do so – for example, involving some
colleagues from the production floor during the design or modeling phase could be
useful. So during the modeling phase, each participant should be completely inde-
pendent. This increases the chance thatunusual ideascan survive the early stage
and so can lead to unbiased results. The most successful projects in my career were
those with new employees who had only recently joined the company, or those close
to their retirement; both groups were hard to beat in terms ofmotivation, openness,
objectivity and commitment – and courage.

If a decision problem can be formulated in whole or in part as amathematical
optimization problem, and if it is to be solved as such, then both the client people and
the modeling people are needed who want to solve the problem as well as possible
and are not bound by too many other things in their minds and freedom of decision.
The basic idea of optimization, does not let you rest until you have been able to
derive the optimal solution or at least a certain statement.Optimization is not only
a solution technique, but in the good sense rather anattitude towards life. Good
doctors, who still obey theoath of Hippocrates9 and care about a patient who is

9 Physician of antiquity, who lived from about 460 to 377 BC and laid the base of ancient
Greek medicine. He formulated the Hippocratic Oath, which contains moral commandments still
valid and binding today for a true physician. For natural scientists the equivalent of the Hippo-
cratic oath would probably be ”Measured values must not be faked”; in the case of persons with
decision-making responsibility, especially managers and politicians, perhaps the moral command-
ment ”name all goals and intentions” openly and completely wouldmake sense.



17.3 Mathematical Optimization for a Better World * 529

seriously ill, will not rest10 until they either saved the patient or can be sure they
have tried everything. Fire-fighters looking for survivorsin a burning building will
have a similar attitude – why else would they risk their lifes? The 80% mentality
and reasoning,80% are good enough, everything else is not reasonable in cost, is a
completely different approach, which, if well justified, isappropriate – only, usually
the justification is not good, because a) often the total potential is not known at
all: it is often only known after a rigorous mathematical investigation (otherwise it
is unclear: 80% of what?) and b) the additional potential is not set in relation to
the costs. The above-mentioned attitude to life has essentially also to do with what
is accepted as an argument and reasoning structure. Anotheraspect of this 80%
mentality is that independent or innocent people suffer from the consequences of
this 80% mentality and decisions. It was fair if the decisiontaker would take 100%
responsibility, but usually this is not what happens. Wouldthey still resort to this
80% responsibility if they were 100% liable for all consequences of their decisions?

As far as the modeler is concerned, the success of the projectdepends on the mod-
eler’s technical knowledge of mathematical optimization,but perhaps even more
on motivation – sportive or altruistic elements can lead to great achievements. A
well executed project that contains mathematical aspects of optimization will, if the
complexity of the underlying problem allows it – although this often only becomes
apparent in the course of the project for mathematical reasons – leads to success
with high probability and to a situation in which all participants win – on their own,
self-chosen scale accepted by all participants. But it requires the participation of all
and their motivation, as well as an atmosphere that allows totalk about goals in an
objective, open and trusting way, and to reach a real consensus. Based on the ob-
servation ”Tell me your goals and I will tell you how you will behave”, the goals
for the members of the project team, but also objective function of the optimization
problem, should not be too narrowly defined, but must be formulated in such a way
that it implies a consistent and desirable behavior. It is now worthwhile to examine
which elements were characteristic of successful projects:

1. The project results and the planning tools based on mathematical optimization
were really wanted by all participants. And no interested party was excluded.

2. The results – and this was usually foreseeable early – led to a situation in which
everyone profited – by their own yardsticks. But here again itbecomes clear
how important openness, trust, and a tolerant, constructive culture of error are;
otherwise not everyone will necessarily disclose their goals and standards.

3. The projects usually had strong personalities as projectleaders who acted and
decided in the team’s spirit, but clearly had the responsibility as individuals. It
is probably one of the most questionable ideas in politics, economics and ad-
ministration of the past 20 years to distribute decision-making authority among
teams, committees or the like – just imagine this in nature: acrowd of hunters,
for example, who debate a lot during the hunt; not to mention the debates af-
ter the hunt, when it comes to distributing the prey, if this system is successful

10 In the truest sense of the wordrest, such doctors will not worry about the end of the working
day, weekends or other things that are often anchored in company agreements or labor law.



530 Concluding Remarks and Outlook

at all. The analysis of successful projects shows that projects led by individuals
perform much better than others.

4. The project teams were very carefully composed, taking into account the task at
hand. Particular attention was paid to thespectrumof the team members.

5. The number of people involved in successful projects has always been quite
small, usually no more than five. This does not necessarily mean that projects
with more participants only bring bad luck. But then, apart from the technical
skills to run such projects, there are certainly even higherdemands on objectiv-
ity, trust and openness to be met; project leaders must then really be very good
leaders, who motivate their team, respond to the peculiarities of the team mem-
bers and understand how to use their knowledge and skills.

6. The best clients or customers were employees who had only been with the com-
pany for a few years, or those who had been on the verge of retirement for a short
time, i.e., not more than two years. They just did what they thought is reason-
able – they were neither afraid of negative effects on their careers nor were they
strictly aligned with bureaucratic rules.

Mathematical optimization is very closely linked to one’s view of life – andvice
versa. It leads to higher precision and objectivity, because inconsistencies always
raise new questions to be clarified – but also to improved leadership and leadership
style due to the transparency. If openness, honesty and professional competence take
precedence over politics in a corporate culture, if there isa good mix of people with
different backgrounds who accept, respect and cooperate with their respective pro-
fessional backgrounds, it should be obvious and self-evident that decision-making
processes are supported by mathematical optimization. It does not always have to
be mathematical optimization, but it is often the only adequate means to safely and
quantitatively support decisions in complex systems with many degrees of freedom
or many restrictions, to use existing resources more efficiently, or to make robust
strategic decisions with uncertain input data. Especiallyin times when the willing-
ness to take risks is rather modest one should expect that mathematical optimization
is highly valued as it enables us to make reliable statementsabout the feasibility and
quality of decisions. There are not always spectacular, career-accelerating results,
rather mathematical optimization can contribute in small steps, especially in large
companies – a physicist would probably say ”in anadiabaticway” – to improve
the technical, procedural, discussion-argumentative basis of a company, as long as
it desires and allows this process.

Large companies with a large number of employees are, for statistical reasons, a
smaller reflection of society, in fact, of the state as a whole. However, as their em-
ployees are also members of state and society and partly contribute the internalized
corporate culture to the social culture, it becomes clear that mathematical optimiza-
tion not only improves the decision-making processes and economic situation of a
company or its internal culture, but can also contribute farbeyond that to a better
world for everyone.



Appendix A
Software Related Issues

In this appendix we briefly address how to access data from external files using
algebraic modeling systems. For convenience, we list the model files in MCOL.

A.1 Accessing Data from Algebraic Modeling Systems

There is not just one approach for data access and people naturally prefer various
techniques depending on their background or objectives. The oldest, easiest and
most transparent way (W1) is to readflat text files. Widespread is another way
(W2) to extract data from spreadsheets or databases using various data connec-
tors – these data connectors can be very elaborated and powerful tools. Finally,
many people nowadays (W3) do all data reading and preprocessing using pro-
gramming languages such asMatlab, Python or R. Finally, there are Extract,
Transform, Load (ETL) tools (W4),e.g., Alteryx, FICO DataPipelines,
Kettle Pentaho Data Integration (open source), andRapidMiner
Turbo Prep. Extraction means extract the relavent data from differentdata
sources, Transformation stands for transform the data intothe structure and for-
mat of the target database, and Load is to load the data into the target data base.
Most importantly, ETL tools define a clear cut of ETL tasks which prepare data,
e.g., for optimization, take care of streaming, batch jobs. Theyprovide the clean and
(partly) validated data input an optimization model requires. Partly, these can call
out to optimization and analytic services for some preprocessing tasks.

The balance between the advantages and disadvantages of these approaches W1
to W4 depends on personal preferences or company requirements. My personal pref-
erence are time-independent techniques and only reading and writing flat text files
(it best fits my ideal of autarky or self-sufficiency). This has enabled me to have
operative optimization-based decision support systems running for more than 20
years without any interaction and maintenance work surviving many migrations of
the operating system or interfaces to SAP without my involvement. I think the best

531



532 Software Related Issues

approach for the customer is to try not to depend on IT supportas this avoids after
sales costs – ideally: buy it, and then use it for ever.

IT departments more often recommend W2 to W4 as they often go with what
is up to date. It is like visiting car dealers: It is more likely that they recommend a
fancy modern car, maybe even one operating on electric energy – rather than rec-
ommending to buy a (used) 1992 Scirocco. Guess, why?

The good news is: Algebraic modeling systems allow you to incorporate data
from external files inall forms and flavors W1 to W4 mentioned above. They all
have their syntax for reading text files, accessing spreadsheets or databases, and
tools for connecting toPython or r. They are loyal to their customers and keep
supporting these different data connectors – and add new ones from time to time.



A.2 List of Case Studies and Model Files 533

A.2 List of Case Studies and Model Files

Filename problem description Section

ABSVAL modeling absolute value terms 6.5
BENCH101 solution to Exercise 10.1 in Chapter 10
BENCH102 solution to Exercise 10.2 in Chapter 10
BLENDX ore blending problem (XPRESS-MP manual) 2.7.1
BOATDUAL dual of the “Boat Renting” problem (Ex. 3.3)
BREWERY brewery planning 8.3
BURGAP knapsack exercise (Exercise 7.3) 7.10
BURGLAR knapsack problem 7.1.1
BUSCREW bus crew scheduling 7.8.4
CALVES calves and pigs problem 3.3.1
CARTON carton scheduling problem problem 10.3
CH-2TRI∗ minimal perimeter convex hull for two triangles 10.3
COUPLES solution to Exercise 6.5 in Chapter 6
DEA data envelopment analysis (Exercise 5.2) 5.3
DUAL solution to Exercise 3.1b) in Chapter 3 3.5.1
dynBigM∗ dynamic computation of big-M coefficients 14.1.2.1
USDO solution to Exercise 7.5 in Chapter 7
FLOWSHOP solution to Exercise 7.7 in Chapter 7
fracProg∗ fractional programming example 11.1
GAP generalized assignment problem (Ex. 7.2)
goalProg∗ example exploiting a hierarchy of goals 5.4.3
lagRel∗ Lagrange relaxation applied to the GAP 14.1.3.3
LIM1 solution to Exercise 5.1 in Chapter 5
LIM2 solution to Exercise 6.7 in Chapter 6
MULTK exercise on multiple knapsack (Exercise 7.4) 7.10
NETWORK network problem (Exercise 4.3)
newsVendor∗ newsvendor problem – two stage stochastic programming 11.3.2.1
NPV solution to Exercise 6.8 in Chapter 6
Portfolio∗ EEV or generalized quantities for multi-stage problems 11.3.2.5
optGrid∗ optimal breakpoints for piecewise linear approximations 14.2.3
PRDX simple production planning exercise 2.5.2
PRIMAL primal problem (Exercise 3.1b)
PROJSCHD project scheduling case study 10.2.3
QUADRAT quadratic programming example 11.4
SET set covering problem (Exercise 7.6)
SIMPLE1 solution to Exercise 2.2 in Chapter 2
SIMPLE2 solution to Exercise 2.3 in Chapter 2
SLAB solution to Exercise 6.6 in Chapter 6
SLUDGE example illustrating recursion 11.2.1
TRIM1 trimloss problem (Exercise 4.1) 4.1.1
TRIM2 trimloss problem (Exercise 4.2) 4.1.2
TrimMINLP∗ trimloss problem formulated as a MINLP problem 13.3
TSP traveling salesman problem (Exercise 7.1)
YLDMNGMT yield management, financial modeling 8.4.2
vehRoute∗ heating oil delivery (e4delivr.mos) 7.2.3





Appendix B
Glossary

The terms used in this book are also defined here in this glossary for the purpose
of subsequent reference. Within this glossary all terms written in boldface are ex-
plained in the glossary.
Algebraic modeling language (AML): A high-level programming language simi-
lar to the mathematical notation of optimization problems.External solvers can be
accessed via the AML to obtain a solution of the implemented model formulation.
Algorithm: A systematic procedure organized into a series of steps, mathematically
or otherwise.
Arc: An object within agraph. Arcs, sometimes also called edges, usually represent
roads, pipelines, or similar paths along which some material can flow. Often arcs
have a capacity. Arcs connect thenodesin a graph.
Basic variables:Those variables in optimization problems whose values, in non-
degenerate cases, are away from theirboundsand are uniquely determined from a
system of equations.
Basis (Basic feasible solution):In an LP problem with constraintsAx= b andx≥ 0
the set ofm linearly independent columns of them x n system matrixA of an LP
problem withm constraints andn variables forming a regular matrixB. The vector
xB =B−1b is called a basic solution.xB is called a basic feasible solution ifxB ≥ 0.
Bilevel programming: Bilevel programming (BLP) problems are mathematical
programming problems that contain an optimization problemin the constraints. Al-
ternatively, one might say, it is an optimization problem constrained by another op-
timization problem.
Bound: Bounds on variables are special constraints. A bound involves only one
variable and a constant which fixes the variable to that value, or serves as a lower or
upper limit.
Branch & Bound: An implicit enumerationalgorithm for solving combinatorial
problems. A general Branch & Bound algorithm forMILP problems operates by
solving anLP relaxation of the original problem and then performing a systematic
search for an optimal solution among sub-problems formed bybranching on a vari-
able which is not currently at an integer value to form a sub-problem, resolving the
sub-problems in a similar manner.

535



536 Glossary

Branch & Cut: An algorithm for solving mixed integer linear programming prob-
lems which operates by solving a linear program which is arelaxation of the orig-
inal problem and then performing a systematic search for an optimal solution by
adjoining to the relaxation a series of valid constraints (cuts) which must be satisfied
by the integer aspects of the problem to the relaxation, or tosub-problems generated
from the relaxation, and resolving the problem or sub-problem in a similar manner.
Constraint: A relationship that implicitly or explicitly limits the values of the vari-
ables in a model. Usually, constraints are formulated as inequalities or equations
representing conditions imposed on a problem, but other types of relations exist,
e.g., set membership relations.
Continuous relaxation: An optimization problem in which the requirements that
certain variables take integer or discrete values have beenremoved.
Convex region:A region in multi-dimensional space where a line segment joining
any two points lying in the region remains completely in the space.
Cutting-planes: Additional valid inequalities that are added toMILP problems to
improve their LP relaxation when all variables are treated as continuous variables.
Duality : A useful concept in optimization theory connecting the (primal) optimiza-
tion problem and its dual.
Duality gap: For feasible points of the primal and dual optimization problem the
difference between the primal and dual objective function values. In LP the duality
gap of the optimal solution is zero.
Dual problem: An optimization problem closely related to the original problem
which is called the primal problem. The dual of an LP problem is obtained by ex-
changing the objective function and the right-hand side constraint vector and trans-
posing the constraint matrix.
Dual values: A synonym for shadow prices. The dual values are the dual variables,
i.e., the variables in the dual optimization problem.
Feasible point (feasible problem):A point (or vector) to an optimization problem
that satisfies all the constraints of the problem. (A problemfor which at least one
feasible point exists.)
Global optimum: A feasible pointx∗ to an optimization problem that gives the
optimal value of the objective functionf (x). In a minimization problem, we have
the relationf (x)≥ f (x∗) for all other points of the feasible region.
Goal programming: A method of formulating a multi-objective optimization prob-
lem by expressing each objective as a goal with a hypothetical attainment level,
modeled as a constraint, and using an expression which will minimize deviation
from goals as the objective function. The goals are also called targets.
Graph: A mathematical object consisting ofnodesandarcs, useful in describing
network flow problems. The structure and properties of graphs are analyzed in graph
theory, a mathematical discipline.
Heuristic solution: A feasible point of an optimization problem which is not nec-
essarily optimal and has been found by a constructive technique which could not
guarantee the optimality of the solution.
Infeasible problem: A problem for which nofeasible pointexists.



Glossary 537

Integrality gap: The difference between the objective function value of the contin-
uous relaxation of an integer, mixed integer or discrete programming problem and
its optimal objective function value.
Kuhn-Tucker conditions: Generalization of the necessary and sufficient conditions
for steady points in nonlinear optimization problems involving equalities and in-
equalities.
Linear combination: A linear combination of vectorsv1, ...,vn is the vector∑i aivi

with real valued numbersai . The trivial linear combination is generated by multi-
plying all vectors by zero and then adding them up,i.e., ai = 0 for all i.
Linear function: A function f (x) of a vectorx which has a constant gradient
∇ f (x) = c. In that casef (x) is of the form f (x) = cTx+α for some fixed scalarα .
Linear independence:A set of vectors is linearly independent if there exists no
non-trivial linear combination which represents the zero-vector. The trivial linear
combination is the only linear combination which generatesthe zero vector.
Linear Programming (LP): A technique for solving optimization problems con-
taining only continuous variables appearing in linear constraints and in a linear ob-
jective function.
Local optimum: A feasible pointx∗ to an optimization problem that gives the op-
timal value of the objective function in the neighborhood ofthat pointx∗. In a min-
imization problem, we have the relationf (x) ≥ f (x∗) for all other points of that
neighborhood. Contrast withglobal optimum.
Matrix: A rectangular array of elements such as symbols or numbers arranged in
rows and columns. A matrix may have operations such as addition, subtraction or
multiplication associated with it, if these are valid for the matrix elements.
Metaheuristics: A metaheuristic in the context of mathematical optimization is a
generic, high-level procedure to generate (near-optimal)feasible solutions to an op-
timization problem. Metaheuristics cannot guarantee global optimality.
Mixed Integer Linear Programming (MILP) : An extension of LP problems
which allows some of the variables to take on binary, integer, semi-continuous or
partial-integer values.
Mixed Integer Nonlinear Programming (MINLP) : A technique for solving op-
timization problems which allows some of the variables to take on binary, integer,
semi-continuous or partial-integer values, and allows nonlinear constraints and ob-
jective functions.
Model: A mathematical representation of a real-world problem using variables, con-
straints, objective functions and other mathematical objects.
Modeling system:In the context of mathematical optimization, a software system
for formulating an optimization problem The optimization problem can be formu-
lated in an algebraic language or can be represented by a visual model. In the mod-
eling system one brings together the structure of the problem and the data.
Network: A representation of a problem as a series of points (nodes), some of which
are connected by lines or curves (arcs), which may or may not have a direction
characteristic and a capacity characteristic. The networkis usually represented by a
graph.



538 Glossary

Node: An object within agraph. Nodes usually represent plants, depots, or a point
in a network. Nodes can be connected byarcs.
Non-basic variables:Those variables in optimization problems which are indepen-
dently fixed to one of their bounds.
Nonlinear function: Any function f (x) of a vectorx which has a non-constant
gradient∇ f (x).
Nonlinear Programming (NLP): Optimization problems containing only continu-
ous variables and nonlinear constraints and objective functions.
N P completeness: Characterization of how difficult it is to solve a certain class
of optimization problems. The computational requirementsincrease exponentially
with some measure of the problem size.
Objective (objective function): An expression in an optimization problem that has
to be maximized or minimized.
Optimization: The process of finding the best solution, according to some criterion,
or objective function, respectively, of an unconstrained or constrained optimization
problem.
Optimum (optimal solution): A feasible point of an optimization problem that can-
not be improved in terms of the objective function without violating the constraints
of the problem.
Outer approximation : Algorithm for solvingMINLP problems based on an equiv-
alent representation of the feasible region by an intersection of hyperplanes and
linearization so as to bound the objective function.
Pivot: An element in a matrix used to divide a set of other elements. In the context
of solving systems of linear equations the pivot element is chosen with respect to
numerical stability. In linear programming the pivot element is selected by pricing
and the minimum ratio rule. In that context, the linear algebra step calculating the
new basis inverse, although not explicitly, is sometimes called the pivoting step.
Parametric programming: Investigation of the effects of significant changes to
problem coefficients on the optimal solution in an optimization problem.
Post-optimality (Post-optimal analysis): Investigation of the effect of marginal
changes in the problem’s coefficients on the optimal solution.
Presolve:An algorithm for modifying an optimization problem before solving it,
whereby redundant features are removed and valid additional features may be added.
Ranging: Investigation of the limits of changes in coefficients in an optimization
problem which will not fundamentally affect the optimal solution.
Reduced cost:The price (or the gain) for moving a non-basic variable away from
the bound it is fixed to.
Relaxation: An optimization problem created from another where some of the con-
straints have been removed or weakened.
Report writer: A software system used to take the mathematical results fromsolv-
ing an optimization problem and turn them into a report in business terms.
Scaling:Reducing the variability in the size of the elements in a matrix (e.g., an LP
matrix) by a series of row or column operations.
Sensitivity analysis:The analysis of how an optimal solution of an optimization
problem changes if some input data used in the problem are slightly changed.



Glossary 539

Shadow price:The marginal change to the objective function value of an optimal
solution of an optimization problem caused by making a marginal change to the
right-hand side value of a constraint of the problem. Shadowprices are also termed
dual values.
Simplex algorithm: Algorithm for solving LP problems that investigates vertices
of polyhedra.
Slack variables: Variables inserted into≤ inequalities with positive unit coeffi-
cients to convert them into equalities.
Solver: A software (library) with a set of implemented algorithms like Simplex
and Branch & Bound capable of solving (various types of) optimization problems.
Examples areCPLEX andBARON.
Special ordered set:An ordered set of variables in which at most a fixed number
of the variables may be non-zero, and if more than one is allowed to be non-zero,
they must be adjacent in the ordering.
Stackelberg game:A strategic game in game theory named after the German
economist Heinrich Freiherr von Stackelberg who introduced this hierachical game
in 1934 in his bookMarktform und Gleichgewicht(engl.: Market Structure and
Equilibrium). In a Stackelberg game, the players of the game compete witheach
other according to the rule: The leader makes the first move, and then the follower
reacts optimally to the leader’s action. In this asymmetrichierarchical game the
leader and the follower cannot be interchanged.
Stochastic optimization: A technique to solve optimization problems in which
some of the input data are random or subject to fluctuations.
Successive Linear Programming (SLP): Algorithm for NLP problems containing
a modest number of nonlinear terms in constraints and objective function.
Surplus variables: Variables inserted into≥ inequalities with negative unit coeffi-
cients to convert them into equalities.
Traveling salesman problem: A very hard MILP optimization problem which con-
sists of finding the cheapest closed tour in a graph subject tothe constraint that all
nodes must be visited exactly once.
Unbounded problem (LP,MILP): A problem in which no optimal solution exists
because the objective function tends to increase to infinityor to decrease to minus
infinity. Often missing bounds on variables or missing constraints cause a problem
to be unbounded.
Unbounded problem (NLP,MINLP): A problem in which a convex objective func-
tion to be maximized, or a concave objective function to be minimized tends to in-
crease to infinity or to decrease to minus infinity due to missing bounds on variables
or missing constraints. Another reason is that the objective function has pointsxp in
the feasible region with limx→xp f (x) =±∞.
Unimodularity: A property of a matrix. A quadratic matrix is called unimodular
if its determinant is +1. An LP matrix is called unimodular ifall its sub-matrices
have determinants with values +1, 0 or−1. If an LP matrix is unimodular, and the
right-side constraint vector has only integer entries, then all basic feasible solutions
to the LP take integer values.



540 Glossary

Variable: An algebraic symbol used to represent a decision or other varying quan-
tity. Variables are also called “unknowns” or just “columns”.
Vector: A single-row or single-column matrix of variables.



Appendix C
Mathematical Foundations: Linear Algebra &
Calculus

In this appendix – a first draft has been provided by Dominik Schweisgut (Heidel-
berg University) – we summarize mathematical principles connected to mathemat-
ical optimization, model building and solution algorithms. We introduce different
topics by giving definitions, mathematical statements and examples.

In particular, we present some elementary aspects of matrices and sets of equa-
tions as well as the basic of one-dimensional calculus to improve the readers’ un-
derstanding of the techniques contained in this book. In this appendix, we want to
get the reader closer to a more formalized mathematical language by introducing
the terminology used when reading or writing mathematical documents on a higher
scientific level.

The material provided in this appendix should not be a complete introduction into
higher mathematics needed when working on optimization problems but it should
provide some fundamental and formalized knowledge that canbe useful when one
wants to get a deeper understanding of the mathematics of an optimization problem.

C.1 Sets and Quantifiers

First of all, we introduce the concept of sets already introduced in Chapter 1. Straight
forward one can say that a set is a collection of objects that often have one or more
properties in common. As an example we can look at the set of all banknotes in
USD. Let us give this set the nameB (for, banknotes) and we call the $1 USD
banknote ”1USD” and so on. So we have

B = {1USD,5USD,10USD,20USD,50USD,100USD}.

Important to recognize is that there is no order in a set. Therefore,

B̂ = {10USD,5USD,100USD,1USD,20USD,50USD}

541



542 Mathematical Foundations: Linear Algebra & Calculus

is the same set asB. The entries contained in a set are called ”objects” or ”elements”
and elements of a set do not appear twice in a set. Sets withoutelements are called
empty setsusually denoted by the symbol /0. In mathematics, there are various sets
of numbers denoted by special symbols and we introduce them as further examples.
For doing so, we write the set symbol followed by ” := ” followed by a list of set
elements:

1. IN := {1,2,3, . . .} (set of natural numbers) as in Section 1.9.1,
2. IN0 := {0,1,2,3, . . .} (set of natural numbers containing the zero),
3. Z := {. . .−3,−2,−1,0,1,2, . . .} (set of integers),
4. Q := Set of fractions (all rational numbers),
5. IR := Set of rational and irrational numbers (set of real numbers).

Before we introduce some definitions and show some properties that sets can have
we introduce so calledquantifiersand have a look at some principles of proposi-
tional logic. Why would we use quantifiers and propositional logic?

First of all using quantifiers and propositional logic it is easy to express mathe-
matical definitions, theorems or propositions short and precise. We make this clear
by giving examples where appropriate. When we look at propositional logic we
always have the boolean algebra in mind. This helps us because a mathematical
proposition can only take two values,true andfalse.1 We now introduce some fun-
damental operations frequently used in mathematics.

First we introduce the very easy negation ”¬”. We make this clear by looking at
the boolean operation table for this operation:

A ¬A
w f
f w

.

Example: Instead ofx 6= y (x is not equal to y) we can now write¬(x= y).
Next we introduce theand-operation:

A B A∧B
w w w
w f f
f w f
f f f

,

where ”A∧B” reads ”A and B”. As an example we can look at the following set:
S = {2,4,6,8,10, . . .} of positive and even integers. This enables us to claim the
following proposition: ”If an integerα is an element ofS , then α is even and
positive” or if we use the and-operation: ”If an integerα is an element ofS then:
α is even∧ α is positive”. Notice that both properties have to be true.

Now we introduce theor-operator:

1 We do not go into the subtleties of undecidable propositions. Readers interested in this are re-
ferred toGödel’s incompleteness theorem.



C.1 Sets and Quantifiers 543

A B A∨B
w w w
w f w
f w w
f f f

,

where ”A∨B” reads ”A or B”. As an example we could look at the following set:
S1 = {. . . ,−4,−2,0,1,2,3, . . .}. Now we can say: ”An integerα is element ofS1

if α is even orα is positive” or, if we use theor-operator: ”An integerα is element
of S1 if: α is even∨ α is positive”.

Last we introduce the useful operators ofimplicationandequivalence(implica-
tion: ” ⇒ ”, equivalence: ”⇔ ”)

A B A⇒B
w w w
w f f
f w w
f f w

,

A B A⇔B
w w w
w f f
f w f
f f w

.

Looking only at these tables this may seem a little bit abstract so we give some
examples:α is even∧ α is positive⇒ α is element of the setS . But also the
equivalence is true:α is even∧ α is positive⇔ α is element of the setS .

There are two things to keep in mind: First, the implicationA⇒ B requires great
care when expressing mathematical propositions, because if A is wrong, B is always
true. Second, to show that two propositions A and B are equivalent, is equivalent to
showing (A⇒B) ∧ (B⇒A).

To express propositions shorter and to express more interesting propositions we
introduce now some quantifiers. With these it is easier to specialize propositions if
one wants to make propositions about special elements that have some properties in
common.

First we introduce the universal quantifier ”∀” (reads ”for all”) already listed in
Section 1.9.1. Given a setX , the universal quantifier is used to express a proposition
about all elements ofX . Example: (X = IN). ∀x∈ IN : x is positive. This could also
be formulated as: Ifx∈ IN, thenx> 0; orx∈ IN ⇒ x> 0.

Another useful symbol is ”∈ ” (is element of) used when one wants to express
that x is element of IN. Furthermore ”:” means: For allx in IN it holds thatx is
positive. Notice that ifX = /0 every proposition:∀x ∈ /0 : A(x) is true for every
propositionA(x), so one has to be careful about the sets one works with.

Next we introduce the existence quantifier or exists operator ”∃” (reads ”it exists
a ...”) that we use when we want to express that it exists a special element of a set
that has specific properties.Example: ∃n ∈ IN0 : n = 3n. This reads as: ”It exists
an elementn of IN0 such thatn = 3n is fulfilled.” – in this example, there is only
one element which fulfills the condition, namely,n= 0. Exactly oneis linked to the
exists operator, not to the conditional ”:”. Notice that theconditional ”:” does not
ask for ”exactly one”. The expression



544 Mathematical Foundations: Linear Algebra & Calculus

∃n∈ IN :
n
2
∈ IN

provides an example with infinite many elements fulfilling the condition. If we want
to express ”exactly one” we use the conditional ! and write:

∃!n∈ IN0 : n= 3n.

When using these quantifiers be careful with switching the position of the quanti-
fiers when combining them. As an example: ”For every woman in aclass, there is
one woman that is the mother of these women.”. But: ”There is one woman for every
woman in a class, so that this woman is their mother.” is very unlikely and for sure
not the same proposition. So keep in mind that:∀x∃y(x) : A(x,y) is not the same as
∃y : ∀x : A(x,y) in general. Being now familiar with quantifiers and propositional
logic allows us to introduce further concepts related to sets.

Definition: Given a setX. A subset ofX (we call it A), A ⊆ X, is a set with the
property:∀x∈ A : x∈ A⇒ x∈ X. Notice thatX = A is also possible.

For two given setsA⊆ X andB⊆ X, the standard operations union ”∪ ”, intersec-
tion ” ∩ ”, complement ”Ac” and relative complement ”B\A” are commonly used.
With the conditional| (read:for that holds) we have:

A∪B : = {x | x∈ A∨x∈ B}
A∩B : = {x | x∈ A∧x∈ B}

Ac : = {x | x∈ X∧x /∈ A}
B\A : = {x | x∈ B∧x /∈ A}.

Often useful is also the Cartesian product of two setsA×B= {(a,b) | a∈ A,b∈ B}.
Notice that the order is important here.

The operations union and intersection can be expanded to more than two sets.
For given setsA1, . . . ,An, their union is

⋃

i=1,...,n

Ai = {x | x∈ A1∨x∈ A2∨ . . .∨An},

while the intersection is
⋂

i=1,...,n

Ai = {x | x∈ A1∧x∈ A2∧ . . .∧An}.

The following laws hold when working with sets. GivenA⊆ X,B⊆ X,C⊆ X:



C.3 Vectors in IRn and Matrices inM (m×n, IR) 545

Commutative law :A∪B= B∪A andA∩B= B∩A

Associative law :(A∪B)∪C= A∪ (B∪C) and(A∩B)∩C= A∩ (B∩C)

Distributive law :(A∪B)∩C= (A∩C)∪ (B∩C) and(A∩B)∪C= (A∪C)∩ (B∪C)

DeMorgan’s laws :(A∪B)c = Ac∩Bc and(A∩B)c = Ac∪Bc.

C.2 Absolute Value and Triangle Inequality

The absolute value and the triangle inequality become important when we talk about
convergence and are always useful in the context of bounds.
Definition: For givenx∈ IR, the absolute value|x| of x is

|x| :=

{
x, x≥ 0

−x, x< 0.

Examples: |−6|= 6, |27|= 27, |0.4|= 0.4.
The absolute value functionx→ |x| obeys thetriangle inequality

|x1+x2| ≤ |x1|+ |x2| , x1,x2 ∈ IR,

and theinverse triangle inequality

|x1−x2| ≥ ||x1|− |x2|| , x1,x2 ∈ IR.

We specify these inequalities here for the one dimensional case, but it holds similarly
in higher dimensions and vectors spaces. In Section 6.5 we have shown how to
replace the absolute function by an equivalent MILP formulation.

C.3 Vectors in IRn and Matrices in M (m×n, IR)

A (column) vector (sometimes, also called array) in the vector space IRn (formal
definition of a vector space follows in the next section) is anordered tuple ofn real
numbers

x =




x1

.

.

.
xn




= (x1, . . . ,xn)
T

and these vectors are the elements of the vector space IRn. The array(x1, . . . ,xn) is
called a row vector. Note that the transpose-operator T changes a row vector into an
column vector, andvice versa. Givenx ∈ IRn as above, andy = (y1, . . . ,yn)

T ∈ IRn,
the vector addition is defined by adding up component by component,i.e.,



546 Mathematical Foundations: Linear Algebra & Calculus

x+y : =




x1+y1

.

.

.
xn+yn



.

Furthermore, we introduce the Euclidean scalar product

x ·y = xTy : =
n

∑
i=1

xiyi .

Definition (matrix): Let m∈ IN,n∈ IN. An m×n - matrixM (m rows,n columns,m
× n entries) is a family of elements in the following form:

M=




a11 . . . a1n

. .

. .

. .
am1 . . . amn



.

The set of allm×n- matrices with entries in IR is calledM (m×n, IR). Matrices
allow the operations addition, multiplication and scalar multiplication with scalars
λ ∈ IR.

Addition: GivenM1 ∈ M (m×n, IR),M2 ∈ M (m×n, IR):

M1+M2 =




a11 . . . a1n

. .

. .

. .
am1 . . . amn




+




b11 . . . b1n

. .

. .

. .
bm1 . . . bmn




=




a11+b11 . . . a1n+b1n

. .

. .

. .
am1+bm1 . . . amn+bmn



.

Multiplication: GivenM1 ∈ M (m×n, IR),M2 ∈ M (n× r, IR):

M1 ·M2 =




n
∑
j=1

a1 jb j1 . . .
n
∑
j=1

a1 jb jr

. .

. .

. .
n
∑
j=1

am jb j1 . . .
n
∑
j=1

am jb jr




.



C.3 Vectors in IRn and Matrices inM (m×n, IR) 547

Notice thatM1 ·M2 ∈ M (m× r, IR) and notice that the number of columns ofM1

and the number of rows ofM2 has to be equal.
Further, instead of this formula it’s easier to remember that the entry with index

(i,k) is thei-th row times thek-th column.
Scalar multiplication: GivenM1 ∈ M (m×n, IR),λ ∈ IR:

λ ·M1 =




λa11 . . . λa1n

. .

. .

. .
λam1 . . . λamn



.

For matrices the following calculation rules apply: GivenM1,M2∈M (m×n, IR),N1,N2∈
M (n× r, IR),P ∈ M (r ×s, IR),λ ∈ IR:

M1 · (N1+N2) = M1 ·N1+M1 ·N2

(M1+M2) ·N1 = M1 ·N1+M2 ·N1

M1 · (λ ·N1) = λ · (M1 ·N1)

M1 · (N1 ·P) = (M1 ·N1) ·P.

Notice that generally it is notA ·B= B ·A for matricesA andB! Furthermore with
the unit matrixEn ∈ M (n×n, IR)

En =




1 . . . 0
. .
. .
. .
0 . . . 1




(only ones on the main diagonal the rest of the entries are zero) it holds that:

M1 ·En =M1 = En ·M1

for all quadratic matricesM1 , i.e., m= n, (same number of columns and rows).

Definition (invertible matrix): We callA ∈ M (n×n, IR) invertible if ∃B ∈ M (n×
n, IR) such thatA ·B = B ·A = En applies. We callB = A−1 the inverse ofA. No-
tice thatGL(n, IR) = {A ∈ M (n× n, IR) | A is invertible} (| means ”such that”)
is a group in terms of multiplication,i.e., every matrixA ∈ GL(n, IR) is invertible,
En ∈GL(n, IR), the associative law applies andA ·B∈GL(n, IR) if A,B∈GL(n, IR).

Annotation: ForA,B ∈ GL(n, IR) it is:

(A ·B)−1 = B−1 ·A−1.



548 Mathematical Foundations: Linear Algebra & Calculus

Definition (transposed matrix): GivenA ∈ M (m×n, IR) the transposed matrixAT

is given by:

AT =




a11 . . . am1

. .

. .

. .
a1n . . . amn




, A=




a11 . . . a1n

. .

. .

. .
am1 . . . amn




Example:

A=




1 2
3 4
5 6


 , AT =

(
1 3 5
2 4 6

)
.

Lemma: GivenA1,A2,A3 ∈ M (m×n, IR),B ∈ M (n× r, IR),λ ∈ IR. It applies:

(A1+A2)
T = AT

1 +AT
2

(λ ·A1)
T = λ ·AT

1

(AT
1)

T = A1

(A1 ·B)T = BT ·AT
1 .

Finally in this chapter, we introduce thedyadic product. The dyadic product is a
vector multiplication which generates a matrix based on thetwo input vectors. For
vectorsx,y ∈ IRn, the dyadic productxyT is

xyT :=




x1

.

.

.
xn



(

y1 . . . yn
)
=




x1y1 x1y2 . . . x1yn

. .

. .

. .
xny1 xny2 . . . xnyn



.

C.4 Vector Spaces, Bases, Linear Independence and Generating
Systems

When we talked about IRn in Chapters 3 or 12, we repeatedly talked informally
about vector spaces. Now we have a closer look on vector spaces and some princi-
ples associated with them. Before we formally define a vectorspace, we introduce
some other mathematical structures first. This will help us to understand the struc-
ture of a vector space. We start with introducing the conceptof an (abelian) group.



C.4 Vector Spaces, Bases, Linear Independence and Generating Systems 549

Definition (group): When we talk about a group, we talk about a tuple(G,⋆)
containing a setG and a map

⋆ : G×G−→ G;(g,h) 7−→ g⋆h,

such that the following axioms are fulfilled:

1. Associative law :(a⋆b)⋆c= a⋆ (b⋆c) , ∀a,b,c∈ G

2. Neutral element :∃!e∈ G : e⋆g= g⋆e= g , ∀g∈ G

3. Inverse element :∀g∈ G∃!h∈ G : g⋆h= h⋆g= e.

G is called an abelian group⇔ g⋆ h = h⋆ g for all elementsg,h ∈ G, i.e., the
commutative law holds. The unique inverse elementh is also calledg−1.

The next entity to be introduced is that of a field. This concept is more familiar
to the reader, even though one does not notice. Well known examples areQ or IR.

Definition(field): A field is a tuple(IK ,⋆,•) containing a set IK and two maps⋆ and
•:

⋆ : IK × IK −→ IK; (g,h) 7−→ g⋆h

• : IK × IK −→ IK; (g,h) 7−→ g•h.

For a short and precise definition we define two ”subtuples”(IK ,⋆) and(IK ,•) and
define: IK is a field⇐⇒ (IK ,⋆) and(IK ,•) are both abelian groups.
When combining these maps the distributive laws have to hold:

(a⋆b)•c = (a•c)⋆ (b•c)

a• (b⋆c) = (a•b)⋆ (a•c)

Often in literature the neutral element of(IK ,⋆) is called ”0” and the map ”⋆ ” is
called ”+ ”. Further the neutral element of(IK ,•) is called ”1” and the map• is
called ”· ”. This may seem more familiar to the reader especially when looking at
the distributive law these rules look similar as in IR. But weintroduced this in a
general way on purpose to show that there are more fields with sometimes abstract
maps⋆ and•.

Now we are ready to introduce a vector space in a universal way.

Definition(vector space): We define a vector space over a field IK as a setV together
with two maps⋆ and•:

⋆ : V ×V −→V;(v,w) 7−→ v⋆w

• : IK ×V −→V;(λ ,v) 7−→ λ •v.



550 Mathematical Foundations: Linear Algebra & Calculus

For the tuple(V,⋆), V is a vector space over a field IK, if the following aspects are
fulfilled:

1. (V,⋆) is an abelian group. According to our annotation above we call the neutral
element of this group ”0”

2. (λ +µ)•v= (λ •v)⋆ (µ •w), ∀v,w∈V.
3. λ • (v⋆w) = (λ •v)⋆ (λ •w), ∀v,w∈V.
4. (λ ·µ)•v= λ • (µ •v), ∀v,w∈V.
5. 1•v= v, ∀v∈V.

Notice that we used the terms for the field IK (considering theneutral element and
the maps) according to our annotation above. Doing this it isimportant to distinguish
between the maps of the vector space and the maps of the field. In literature the map
” • ” is called ”multiplication” and the map ”⋆ ” is called ”addition” when talking
about a field and ”• ” is called ”scalar multiplication” when talking about a vector
space. Examples for vector spaces are IRn over the field IR, orC over the field IR.

Next we introduce the vector space equivalent of a subset namely a vector sub-
space or simply subspace.

Definition(subspace): Given the vector space introduced above. A non-empty subset
W ⊆V, W 6= /0 is called a subspace if the following conditions hold:

1 : 0∈W

2 : v,w∈W =⇒ v⋆w∈W

3 : λ ∈ IK ,v∈W =⇒ λ •v∈W.

Another useful concept is the linear span of a subsetX ⊆V of a vector spaceV over
a field IK, written asspan(X). This is the smallest subspace ofV that contains the
subsetX. We distinguish between a linear span of a finite set and a linear span of an
infinite set. A linear combination of elements (or so called ”vectors”) ofV is defined
as:
Definition (linear combination): LetV be a vector space over a field IK andXn =
{v1, . . . ,vn} ⊆ V a finite subset ofV. Then we callv = µ1v1+ . . .+ µnvn a linear
combination ofv1, . . . ,vn. Notice thatv∈ V asV is a vector space. Now the linear
span follows as:

Definition(linear span): LetV be the vector space mentioned above and letX ⊆V be
the same finite subset as in the previous definition. Further,let R⊆V be an infinite
subset of the vector spaceV.

1. span(X) = {v | v= µ1v1+ . . .+ µnvn,µ1, . . . ,µn ∈ IK} is called the linear span
of X.

2. span(R) =
⋃

n∈IN
{v | v=

n
∑

i=1
µ ivi ,vi ∈V,µ i ∈ IK ,(i = 1, . . . ,n)} is called the linear

span ofR. This is the union
⋃

n∈IN span(Xn).



C.4 Vector Spaces, Bases, Linear Independence and Generating Systems 551

Notice that /0 is a finite subset ofV, too. To cover this case we definespan( /0) = {0},
where 0 is the neutral element of(V,⋆).

The next definition introduced is the concept of linear independence that is fre-
quently used explicit or implicit in this book and is an important concept when
talking about bases of vector spaces (we will introduce thisterm later on).

Definition (linear independent): Considering the vector space from above and the
finite subsetX we write alsoX′ = (v1, . . . ,vn) as an ordered tuple (sometimes called
”vector family”). So now for examplev1 = v2 is possible and the order is important.
We call this tuple linear independent if the following implication holds:

µ1v1+ . . .+µnvn = 0=⇒ µ1 = . . .= µn = 0,

whereµ1, . . . ,µn ∈ IK. The definition in the case whenX is infinite is analogous
to the definition of the linear span over the finite subsets of the infinite set. Formu-
lating this is a good task for the reader to get used to some maybe a little abstract
definitions.

Before we get to some useful propositions in this topic we have to introduce two
more concepts that are absolutely necessary to know to work with vector spaces.

Definition (generating system): LetV be the vector space over the field IK andX′

the vector family from the last definition.

1. X′ is called a generating system of the vector spaceV if V = span(X′) holds
(Notice that we can define the span for this tuples, too. The definition does not
change.)

2. We say thatV is finally generated⇔ X′ is finite (that is the case here)
3. We callX′ a basis of the vector spaceV ⇔ X′ is linear independent and a gener-

ating system ofV
4. The dimension ofV is defined by

dimIK (V) =

{
n ,V is finally generated and| X′ |= n
∞ ,V is not finally generated.

Notice that|X′| is the cardinality of the family, (or in more general terms this is
defined for normal sets, too),i.e., the number of elements contained in the family
(or the set). Sometimes|X′| is called the length of the basis or the length of the
generating system.

Let us finish this section by introducing some useful propositions associated to
this topic.

LemmaC.1: LetV be a vector space over a field IK andI and index set. Then the
following propositions hold (notice that ”0IK ” defines the neutral element of field
IK considering the ”addition” and ”1” is the neutral elementof IK considering the
”multiplication”):

1. v•0IK = 0, ∀v∈V



552 Mathematical Foundations: Linear Algebra & Calculus

2. 0•µ = 0, ∀µ ∈ IK
3. v•µ = 0⇒ v= 0∨µ = 0IK ,∀v∈V, ∀µ ∈ IK
4. v• (−1) =−v, ∀v∈V (Notice that ”− ” is used to mark the Inverse considering

” ⋆ ” or ” + ” respectively)
5. LetW1, . . . ,Wn be subspaces ofV ⇒ ⋂

i∈I
Wi is a subspace, too.

6. The union of two or more subspaces is in general no subspaceof V.

For simple examples one can look at subspaces from the vectorspace IR2 which are
simple lines through the origin for example.

LemmaC.2: Let the requirements of this lemma be the same as in LemmaC.1 and
let X = (v1, . . . ,vn) be a family of vectors. Then it holds:
X is linear independent⇔ everyv ∈ span(X) can be expressed in unique way. A
analogous lemma holds for infinite families of vectors (The proposition is reduced
to the finite case of every finite subset).

LemmaC.3: Let the requirements of this lemma be the same as in LemmaC.1 and
let U ⊆V be subspace ofV. Then it holds:

1. For every finally generated vector spaceV there is a basis B with finite dimension.
2. V has finite dimension⇒ U has finite dimension
3. dimIK (U)≤ dimIK (V) anddimIK (U) = dimIK (V)⇔U =V.

C.5 Rank of Matrices, Determinant and Criteria for Invertibl e
Matrices

Maybe the reader thinks that this section would better fit after the section about ma-
trices. It is placed here because it is highly linked to the previous section. First, we
introduce a special kind of vector space.

Definition(rank): GivenA ∈ M (m×n, IR) and

A=




a11 . . . a1n

. .

. .

. .
am1 . . . amn



.

Let us further define:a1=
(

a11 . . . am1
)T

, a2=
(

a12 . . . am2
)T

, . . . , an=
(

a1n . . . amn
)T

the columns of the matrixA. Further we definẽA = (a1, . . . ,an) the vector family
containing the columns ofA (notice thata1, . . . ,an ∈ IRm).

1. We call the subspace of IRm span(Ã)⊆ IRm the column space of the matrixA.



C.6 Systems of Linear Equations 553

2. The dimension of the column spacespan(Ã) is called the column rank ofA
3. Analogous it is possible define the row space of the matrix A(subspace of IRn).

An important function of a matrixA ∈ M (n× n, IR) is its determinant written as
detA, det(A), or |A| (Notice that this is just a concept for quadratic matrices).The
determinant could be called a scalar classification number for a matrixA. More ab-
stract this is a map det :M (n×n, IR)−→ IR;A 7−→ det(A) that has some interesting
properties and is very useful for example for deciding whether a matrix is invertible
or not but also in the theory of eigenvalues and eigenvectorsthe determinant has
an important role and it even has some geometrical meaning but we don’t want
to show this here; notice that this concept can be used for more general fields IK
(corresponding toM (n×n, IK), too).

There are several ways to compute the determinant of a matrixA, but we only
present two formulas for the case of 2× 2 and 3× 3 as this is enough to get an
understanding for this concept; in practice calculations in higher dimensions without
a computer are rare.

So let us defineA ∈ M (2×2, IR) andB ∈ M (3×3, IR). The determinants of
such matrices follow as:

1. ForA=

(
a b
c d

)
the determinant ofA is given by detA= ad−bc

2. ForB=




a b c
d e f
g h i


, the formula of Leibnitz gives us detB= a(ei− f h)+c(dh−

eg)−b(di− f g).

To close this section, we introduce some useful propositions for this topic.

LemmaC.4: For quadratics matricesA,B∈M (n×n, IR) with column rankk holds:
row rank = column rank (notice that this statement is true forA ∈ M (m×n, IR)),
too and we shortly say ”rank” of a matrix). Furthermore, we have:

detEn = det(A) ·det(A−1) , detAT = detA

A−1exists (A is”regular”)⇔ detA 6= 0⇔ k= n

det(A ·B) = detA ·detB , det(µ ·A) = µn ·detA,∀µ ∈ R.

C.6 Systems of Linear Equations

The next thing we want to introduce is the concept of a system of linear equations
that is frequently used in this book. First of all this is a setof linear equations,i.e.,
equations that consists of one or more variables with linearcoefficients (no powers
or exponential functions and so on). The goal is to find valuesfor these variables
such that all equations are fulfilled at the same time. We write such a system in a
general way as follows:



554 Mathematical Foundations: Linear Algebra & Calculus

a11x1+a12x2+ . . .+a1nxn = b1

a21x1+a22x2+ . . .+a2nxn = b2

. . .

am1x1+am2x2+ . . .+amnxn = bm.

Alternatively we can express this in shorter terms in matrixformAx = b with:

A=




a11 . . . a1n

. .

. .

. .
am1 . . . amn




∈ M (m×n, IR),

andx =
(

x1 . . . xn
)T ∈ IRn andb =

(
b1 . . . bm

)T ∈ IRm.
Another frequently used concept is the so called ”extended coefficient matrix”

(A|b) =




a11 . . . a1n b1

. . .

. . .

. . .
am1 . . . amn bm



.

Generally when trying to find a solution for such a system three cases can occur:

1. The system has no solution.
2. The system has a unique determined solution.
3. The system has an infinite number of solutions.

Mathematicians ideally want to know which of these three cases applies just byA
andb. Therefore, we give some criteria for identifying those cases:

1. r = rank ofA 6= c= rank of(A|b)⇒ case (1)
2. r = c= n= number of variables in the system⇒ case (2)
3. r = c< n⇒ case (3).

Annotations:

1. A ∈ M (n×n, IR) and detA 6= 0⇒ case (2).
2. Further should be noted that there are several ways to determine the rank of a

matrices and there are other ways to determine which case occurs.

Finally we introduce the concept of elementary row transformations which occurred
in this book often. The elementary row transformations havespecial properties and
we want to introduce them now (notice that when we talk about rows we always
mean rows of(A | b)):



C.7 Some Facts on Calculus 555

1. Adding one row to another
2. Multiplication of µ ∈ IR with a row of(A|b) (µ 6= 0)
3. Addingµ-times one row to another row(µ 6= 0)

These row transformations help us to simplify the systemAx = b. But this is only
possible due Lemma C.5:

LemmaC.5: Elementary row transformations do not change the rank of the matrix
(A|b) and this implies that they do not change the number of solutions and their
values of the systemAx = b.

C.7 Some Facts on Calculus

In this last section of this appendix we cover the need of calculus in this book be-
cause in particular the theoretical propositions of this book are easier to understand
with some knowledge of this topic.

So first of all for the rest of the section letf ,g : U →R, U ⊂ IR be two functions.
First of all we start with the elementary definition of an environment, especially for
the real vector spaceR:

Definition(environment): An environment of a pointx∈ IR is a subsetU ⊆ R such
that there exists anε ∈ IR, ε > 0 with U = (x− ε,x+ ε).

We callx0 ∈U

1. alocal minimumif ∃ ε > 0 :∀x∈ (x− ε,x+ ε)∩U : f (x0)≤ f (x).
2. alocal maximumif ∃ ε > 0 :∀x∈ (x− ε,x+ ε)∩U : f (x0)≥ f (x).
3. aglobal minimumif f (x0)≤ f (x), ∀x∈U.
4. aglobal maximumif f (x0)≥ f (x), ∀x∈U.

Further we call a functionf bounded upwards if∃C ∈ IR such that:C ≥ f (x),
∀x∈U . The definition of downwards bounded functions is similar. Further we call a
function bounded if it is bounded upwards and downwards. We start by introducing
two special functions:

Definition(maximum, minimum):

1. The maximum off andg is given by:

u(x) := max( f ,g)(x) =

{
f (x), if f (x)≥ g(x)
g(x), if g(x)> f (x).

2. The minimum off andg is given by:

v(x) := min( f ,g)(x) =

{
f (x), if f (x)≤ g(x)
g(x), if g(x)< f (x).

Notice thatu(x) andv(x) are functions.



556 Mathematical Foundations: Linear Algebra & Calculus

Definition (function max,min):f+ := max( f ,0) and f− := min(− f ,0), where ”0”
is the function that has constant value 0.

Now we summarize a few simple definitions and a very elementary proposition
about convergence of sequences. When we talk about a sequence(xn)n∈IN we mean
an infinite list of elements that is ordered and the elements can occur more than
once. A simple example is the sequence(1

n)n∈IN = 1
1,

1
2,

1
3, . . .

In this book we often talked about the convergence of algorithms and the number
of iterations. One way to approach this topic is to have a lookat the convergence of
sequences.

Definitions(convergence of a sequence, limit):

1. We say a sequence(xn)n∈IN converges to ax ∈ IR, if ∀ε > 0 (ε ∈ IR) ∃n0 ∈ IN
such that∀n≥ n0 : | xn−x |< ε. To express this we write: limn→∞ xn = x, and we
sayxn is convergent to its limitx.

2. A real sequence(xn)n∈IN is called bounded upwards if∃C∈ IR such thatxn ≤C,
∀n∈ N (bounded downwards is defined analogously).

3. A real sequence is called bounded if∃C∈ IR such that| xn |≤C, ∀n∈ IN.

The calculation of limits of real sequences is based on the following limit rules:

LemmaC.6: Given two convergent sequences(xn)n∈IN and (yn)n∈IN with limits x
andy respectively. Then it holds:

lim
n→∞

(xn±yn) = x±y ; lim
n→∞

(cxn) = cx, c∈ IR)

lim
n→∞

(xnyn) = xy ; lim
n→∞

xn

yn
=

x
y

, if (yn 6= 0∧y 6= 0) .

Let us transfer this concept to a topic central in this book: algorithms. We look at
the starting problem namedP1, and let an algorithm operate on it leading to stateP2

of the problem and so on. The desired state of the problem is namedP. This could
be computing the root of a nonlinear equation or the optimum of an optimization
problem. Based on the outputxn of the algorithm, and an error toleranceε, we are
able to quantify when the algorithm has approached the desired stateP quantified by
x close enough.Then we saythe algorithm convergeswhen it is, after finitely many
steps, within the error toleranceε and one can apply the mathematical notation
introduced above.

In calculus, it is very important to know the domain of a function when analyzing
it. For instance, in mathematical optimization, dependingon the type of domain on
which a function is defined, it is guaranteed that a continuous takes it optimum.

Definitions(open, closed, compact): LetX ⊆ IR be a non-empty subset (we will talk
about the empty set separately). Further letI be an index set.

1. We callX open if∀x∈ X,∃ε ∈ IR,ε > 0 such that(x− ε,x+ ε)⊂ X.



C.7 Some Facts on Calculus 557

2. We callX closed ifXc is an open set.
3. We call a closed setX compact, if for every open cover

⋃
Vi ,i∈I Vi such thatX ⊆⋃

Vi ,i∈I Vi there is an finite subsetJ ⊂ I such thatX ⊆⋃
Vj , j∈JVj , whereVi is open

∀i ∈ I .

Annotation: The empty set is considered as open and closed (both!). Because there
is nothing to check we can consider the empty set as open. But the definition for a
closed set is fulfilled, too. This implies that IR itself is open and closed, too. We call
sets like this ”closed open sets” and there are more of them. Additionally, there are
also sets that are not open neither closed like(a,b] for a,b∈ IR anda< b.
This last point maybe seems a little bit abstract. Fortunately, the theorem of Heine-
Borel tells us that a setX ⊂ IR is compact⇔ X is closed and bounded. Bounded
means that∃C∈ IR such that|x| ≤C, ∀x∈ X.

Now we have a look at two important properties when talking about real func-
tions: LetU = (a,b), a< b.

1. We call f continuous in a pointx0 ∈ U if ∀ε > 0,∃δ > 0 such that| f (x0)−
f (x) |< ε , ∀x with | x−x0 |< δ .

2. We call f continuous, iff is continuous in all pointsx0 ∈U.

3. We call f differentiable in a pointx0 ∈ U , if the limit lim
h→0

f (x0+h)− f (x0)
h exists.

The limit is called derivative or in other termsf ′(x0).
4. We call f differentiable, if f is differentiable in all pointsx0 ∈U.
5. We say thatf is continuously differentiable, iff is differentiable and its deriva-

tive is continuous.

Now we have the concepts to introduce the extreme value theorem from Karl Weier-
strass which is very essentially in real calculus. This theorem tells us that every
function f : [a,b] −→ IR (a< b) that is continuous in every point of[a,b] takes its
(global) minimum and maximum on the compact interval[a,b].

The final thing to mention is a property of multi-variate functions f : U −→ IR,
whereU ⊂ IRn, i.e., we have nown variablesx1, . . . ,xn.

Definition(partial differentiable): We definefxi as the function we get when taking
all other variablesx1, . . . ,xi−1,xi ,xi+1, . . . ,xn as fixed constants. Now we callf par-
tial differentiable if every functionfxi is differentiable in thexi-th variable and the
i-th partial derivative is written as∂xi f .

With this knowledge we finally define a special vector namely the gradient
∇ f (x) = (∂x1 f (x), . . . ,∂xn f (x)). This concept turns out as very useful in many top-
ics of mathematics and physics; it has been used in Chapter 12. Certainly, there is
much more to say about the gradient of a function than what fitsin this appendix.



558 References

References

[1] A. Migdalas, P.P., V̈arbrand, P. (eds.): Multilevel Optimization: Algorithms and Applica-
tions. Kluwer Academic Publishers, Boston, MA, USA (1998)

[2] Abadie, J.: The GRG Method for Nonlinear Programming. In: H.J. Greenberg (ed.) De-
sign and Implementation of Optimization Software, pp. 335–363.Sijthoff and Noordhoff,
Niederlande (1978)

[3] Abadie, J., Carpenter, J.: Generalization of the Wolfe Reduced Gradient Method to the Case
of Nonlinear Constraints. In: R. Fletcher (ed.) Optimization,pp. 37–47. Academic Press,
New York (1969)

[4] Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint Integer Programming: A New
Approach to Integrate CP and MIP. In: L. Perron, M.A. Trick (eds.) Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programmingi
for Combinatorial Problems, pp. 6–20. Springer, Berlin, Heidelberg (2008)

[5] Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve Reductions in
Mixed Integer Programming. INFORMS J. Comput.32(2), 473–506 (2020)

[6] Achterberg, T., Koch, T., Martin, A.: Branching Rules Revisited. Oper. Res. Lett.33(1),
42–54 (2005)

[7] Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A Global Optimization Method,αBB,
for General Twice-differentiable Constrained NLPs - I. Theoretical Advances. Computers
and Chemical Engineering22, 1137–1158 (1998)

[8] Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A Global Optimization Method,αBB,
for General Twice-differentiable Constrained NLPs - II. Implementation and Computational
Results. Computers and Chemical Engineering22, 1159–1179 (1998)

[9] Adjiman, C.S.J.: Global Optimization Techniques for Process Systems Engineering. PhD
Dissertation, Dept. of Chemical Engineering, Princeton University, Princeton, NJ (1999)

[10] Agarwal, P.K., Flato, E., Halperin, D.: Polygon Decomposition for Efficient Construction
of Minkowski Sums. Comp.Geometry Theory Appl.21, 29–61 (2002)

[11] Aiyoshi, E., Shimizu, K.: Hierarchical Decentralized Systems and Its New Solution by a
Barrier Method. IEEE Trans. Systems, Man, and Cybernetics40, 444–449 (1988)

[12] van den Akker, M.: LP-based Solution Methods for Single-Machine Scheduling Problems.
Phd thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (1994)

[13] Al-Khayyal, F.A.: Jointly Constrained Bilinear Programsand Related Problems: An
Overview. Computers Math. Applic.19, 53–62 (1990)

[14] Al-Khayyal, F.A., Falk, J.E.: Jointly Constrained Biconvex Programming. Maths Ops Res
8, 273–286 (1983)

[15] Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, New
York, NY, USA (2005)

[16] Alba, E., Luque, G.: Measuring the performance of parallel metaheuristics. In: E. Alba
(ed.) Parallel Metaheuristics: A New Class of Algorithms, Wiley Series on Parallel and
Distributed Computing, chap. 2, pp. 43–62. Wiley (2005)

[17] Alba, E., Luque, G., Nesmachnow, S.: Parallel Metaheuristics: Recent Advances and New
Trends. ITOR20(1), 1–48 (2013)

[18] Alba, E., Talbi, E.G., Luque, G., Melab, N.: Metaheuristics and parallelism. In: E. Alba
(ed.) Parallel Metaheuristics: A New Class of Algorithms, Wiley Series on Parallel and
Distributed Computing, chap. 4, pp. 79–104. Wiley (2005)

[19] Albano, A., Sapuppo, G.: Optimal Allocation of Two-Dimensional Irregular Shapes Using
Heuristic Search Methods. IEEE Transl. System Man Cybernetics10, 242–248 (1980)

[20] Anbil, R., Gelman, E., Patty, B., Tanga, R.: Recent Advances in Crew Pairing Optimization
at American Airlines. Interfaces21(1), 62–74 (1991)



References 559

[21] Andersen, E.D.: On Exploiting Problem Structure in a Basis Identifications Procedure for
Linear Programming. Department Publication 6, Department of Management Sciences,
Odense Universitet, Odense, Denmark (1996)

[22] Andersen, E.D., Andersen, K.D.: Presolving in Linear Programming. Mathematical Pro-
gramming71, 221–245 (1995)

[23] Andersen, E.D., Gonzio, J., Meszaros, C., Xu, X.: Implementation of Interior Point Methods
for Large Scale Linear Programming. Department Publication 1,Department of Manage-
ment Sciences, Odense Universitet, Odense, Denmark (1996)

[24] Andersen, E.D., Ye, Y.: Combining Interior-point and Pivoting Algorithms for Linear Pro-
gramming. Technical report, Department of Management Sciences,The University of Iowa,
Ames, Iowa (1994)

[25] Andersen, E.D., Ye, Y.: On a Homogeneous Algorithm for theMonotone Complementary
Problem. Technical report, Department of Management Sciences,The University of Iowa,
Ames, Iowa (1995)

[26] Andrade, R., Lisser, A., Maculan, N., Plateau, G.: BB Strategies for Stochastic Integer Pro-
gramming. In: K. Spielberg, M. Guignard (eds.) Special Volume ofAnnals of OR: State-of-
the-Art IP and MIP (Algorithms, Heuristics and Applications). Kluwer Academic Publish-
ers, Dordrecht, The Netherlands (2005)

[27] Andrei, N.: Nonlinear Optimization Applications Using the GAMS Technology. Springer,
New York (2013)

[28] Anthonisse, J.: An Input System for Linear Programming Problems. Statistica Nederlandica
24, 71–81 (1970)

[29] Appa, G.M.: The Transportation Problem and its Variants.Operational Research Quarterly
24, 79–99 (1973)

[30] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem:
A Computational Study. Princeton Series in Applied Mathematics. Princeton University
Press, Princeton, NJ, USA (2007)

[31] Arabeyre, J., Fearnley, J., Steiger, F., Teather, W.: TheAirline Crew Scheduling Problem: A
Survey. Transportation Science3, 140–163 (1969)

[32] Arbel, A.: Exploring Interior-Point Linear ProgrammingAlgorithms and Software. MIT
Press, London (1994)

[33] Arellano-Garcia, H., Martini, W., Wendt, M., Li, P., Wozny, G.: Chance-constrained Batch
Distillation Process Optimization under Uncertainty. In: I.E. Grossmann, C.M. McDonald
(eds.) Proc. 4th Intl. Conf. on Foundations of Computer-AidedProcess Operations (FO-
CAPO), pp. 609–612. OMNI Press, Wisconsin (2003)

[34] Arellano-Garcia, H., Martini, W., Wendt, M., Wozny, G.: Robust Optimization Process
Design Optimization under Uncertainty. In: C.A. Floudas, R. Agrawal (eds.) Proc. 6th
Intl. Conf. on Foundations of Computer-Aided Process Design (FOCAPD), pp. 505–508.
CACHE Corp., Austin, TX (2004)

[35] Arntzen, B.C., Brown, G.C., Harrison, T.P., Trafton, L.L.: Global supply management at
Digital Equipment Corporation. Interfaces25, 69–93 (1995)

[36] Art, R.C.: An Approach to the Two-Dimensional Irregular Cutting Stock Problem. Tech.
report 36.008, IBM Cambridge Scientific Centre (1966)

[37] Ashford, R.W., Connard, P., Daniel, R.C.: Experiments insolving mixed integer program-
ming problems on a small array of transputers. Journal of the Operational Research Society
43, 519–531 (1992)

[38] Ashford, R.W., Daniel, R.C.: LP-MODEL XPRESS-LP’s modelbuilder. Institute of Math-
ematics and its Application Journal of Mathematics in Management 1, 163–176 (1987)

[39] Ashford, R.W., Daniel, R.C.: Practical aspects of mathematical programming. In: A.G.
Munford, T.C. Bailey (eds.) Operational Research Tutorial Papers, pp. 105–122. Opera-
tional Research Society, Birmingham (1991)

[40] Ashford, R.W., Daniel, R.C.: Some Lessons in Solving Practical Integer Programming Prob-
lems. Journal of the Operational Research Society43, 425–433 (1992)



560 References

[41] Athanassopoulos, A.D., Thanassoulis, E.: Separating MarketEfficiency from Profitability
and its Implications for Planning. Journal of the OperationalResearch Society46, 20–34
(1995)

[42] Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling Problem: Al-
ternate Formulations and Solution Methods. Management Science50, 761–776 (2004)

[43] Baker, B., Baia, A.P.: Branch-and-bound Algorithms fora Regional Water Authority Distri-
bution Problem. Journal of the Operational Research Society46, 698–707 (1995)

[44] Baker, E., Fisher, M.: Computational Results for Very Large Air Crew Scheduling Problems.
OMEGA 9, 613–618 (1981)

[45] Balas, E.: An Additive Algorithm for Solving Linear Programs with Zero-one Variables.
Operations Research13, 517–546 (1965)

[46] Balas, E.: Disjunctive Programming. Springer Nature, Cham,Switzerland (2018)
[47] Baldacci, R., Toth, P., Vigo, D.: Exact Algorithms for Routing Problems under Vehicle

Capacity Constraints. Annals OR175(1), 213–245 (2010)
[48] Baravykait́e, M., Žilinskas, J.: Implementation of Parallel Optimization Algorithms using

Generalized Branch and Bound Template. In: I.D.L. Bogle, J.Žilinskas (eds.) Computer
Aided Methods in Optimal Design and Operations, chap. 3, pp. 21–28. World Scientific
Publishing Co. Pte. Ltd. (2006)

[49] Bard, J.: Convex Two-level Programming. Mathematical Programming40, 15–27 (1988)
[50] Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic

Publishers, Dordrecht, The Netherlands (1998)
[51] Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsberg, M.W.P., Vance, P.H.: Branch-

and-price: column generation for solving huge integer programs. Operations Research
46(3), 316–329 (1998)

[52] Bartusch, M., M̈ohring, R.H., Radermacher, F.J.: Scheduling Project Networks with Re-
source Constraints and Time Windows. Annals of Oper. Res.16, 201–240 (1988)

[53] Baston, V.J.D., Rahmouni, M.K., Williams, H.P.: The Practical Conversion of Linear Pro-
grammes to Network Flow Models. European Journal of OperationalResearch50, 325–334
(1991)

[54] Bazaraa, M.S., Jarvis, J.J., Sherali, D.: Linear Programmingand Network Flows, 4th edn.
John Wiley & Sons, New York (2010)

[55] Bazaraa, M.S., Sherali, H.D.: On the Choice of Step Sizes in Subgradient Optimization.
European Journal of Operational Research7, 380–388 (1981)

[56] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: NonlinearProgramming Theory and Algo-
rithms, 2nd edn. Wily-Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, New York (1993)

[57] Beale, E.M.L.: Integer Programming. In: D.A.H. Jacobs (ed.) The State of the Art of Nu-
merical Analysis, pp. 409–448. Academic Press, London (1977)

[58] Beale, E.M.L., Daniel, R.C.: Chains of linked ordered sets. Tech. rep., Scicon, Wavendon
Tower, Wavendon, Milton Keynes, MK17 8LX (1980)

[59] Beale, E.M.L., Forrest, J.J.H.: Global Optimization using Special Ordered Sets. Mathemat-
ical Programming10, 52–69 (1976)

[60] Beale, E.M.L., Forrest, J.J.H.: Global Optimization Using Special Ordered Sets. Mathemat-
ical Programming10, 52–69 (1976)

[61] Beale, E.M.L., Tomlin, J.A.: Special Facilities in a General Mathematical Programming
System for non-convex Problems using Ordered Sets of Variables.In: J. Lawrence (ed.) OR
’69: Proceedings of the 5th International Conference on Operational research, pp. 447–454.
Tavistock, London (1970)

[62] Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, New Jersey
(1957)

[63] Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci,M., Nogales-Ǵomez, A., Salvagnin,
D.: On Handling Indicator Constraints in Mixed Integer Programming. Comp. Opt. and
Appl. 65(3), 545–566 (2016)

[64] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer
Nonlinear Optimization. Acta Numerica22, 1–131 (2013)



References 561

[65] Belton, V., Vickers, S.P.: Demystifying DEA - A Visual Interactive Approach based on
Multiple Criteria Analysis. Journal of the Operational Research Society44, 883–896 (1993)

[66] Ben-Tal, A., Nemirovski, A.: Robust Solutions of Linear Programming Problems Contami-
nated with Uncertain Data. Mathematical Programming88, 411–424 (2000)

[67] Benders, J.F.: Partitioning Procedures for Solving Mixed-variables Programming Problems.
Numerische Mathematik4, 238–252 (1962)

[68] Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T.: Tools of Mathematical Modelling of
Arbitrary Object Packing Problems. J. Annals of Operations Research179, 343–368 (2010)

[69] Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal Clustering
of a Pair of Irregular Objects. Journal of Global Optimization61, 497–524 (2015)

[70] Bennell, J.A., Dowsland, K.A.: Hybridising Tabu Search with Optimisation Techniques for
Irregular Stock Cutting. Management Science47, 1160–1172 (2001)

[71] Bennell, J.A., Oliveira, J.F.: The Geometry of Nesting Problems: A Tutorial. European J.
Operational Research184, 397–415 (2008)

[72] Bennell, J.A., Song, X.: A Comprehensive and Robust Procedure for Obtaining the Nofit
Polygon using Minkowski Sums. Computers and Operations Research35, 267–281 (2008)

[73] Benoist, T., Bourreau, E.: Fast Gloabl Filtering for Eternity II. Constraint Programming
Letters3, 35–50 (2008)

[74] Benson, H.: Global Optimization of Nonlinear Sums of Ratios. Journal of Mathematical
Analysis and Applications263, 301–315 (2001)

[75] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for Hyper-parameter Optimiza-
tion. In: Proceedings of the 24th International Conferenceon Neural Information Processing
Systems, NIPS’11, pp. 2546–2554. Curran Associates Inc., USA (2011)

[76] Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. J. Mach. Learn.
Res.13, 281–305 (2012)

[77] Berthold, T., Farmer, J., Heinz, S., Perregaard, M.: Parallelization of the FICO xpress-
optimizer. Optimization Methods and Software33(3), 518–529 (2018)

[78] Bertsimas, D., Sim, M.: Robust Discrete Optimization and Network Flows. Mathematical
Programming Series B98, 49–71 (2003)

[79] Beyer, H.G., Sendhoff, B.: Robust Optimization - A comprehensive survey. Computer
Methods in Applied Mechanics and Engineering196(33), 3190 – 3218 (2007)

[80] Biegler, L.T., Grossmann, I.: Retrospetive on Optimization. Computers and Chemical En-
gineering28, 1169–1192 (2004)

[81] Birge, J.R.: Stochastic Programming Computation and Applications. INFORMS Journal on
Computating9, 111–133 (1997)

[82] Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Philadelphia,
PA 19194-2688, USA (1997)

[83] Birge, J.R., Louveaux, F.V.: Introduction to StochasticProgramming, vol. 10. Springer,
New York (1997)

[84] Birge, J.R., Louveaux, F.V.: Introduction to StochasticProgramming. Operations Research
and Financial Engineering. Springer, New York (2000)

[85] Bisschop, J., Meeraus, A.: On the Development of a General Algebraic Modeling System in
a Strategic Planning Environment. In: Applications,Mathematical Programming Studies,
vol. 20, pp. 1–29. Springer Berlin Heidelberg (1982)

[86] Bisschop, J.J., Kuip, C.A.: Compound Sets in Mathematical Programming Modeling Lan-
guages. Management Science39, 746–756 (1993)

[87] Bixby, R.E., Cunningham, W.H.: Converting Linear Programs to Network Problems. Math-
ematics of Operations Research5, 321–357 (1980)

[88] Blackburn, R., Kallrath, J., Klosterhalfen, S.T.: Operations research in BASF’s supply chain
operations. International Transactions in Operational Research22(3), 385–405 (2014)

[89] Blais, J.Y., Lamont, J., Rousseau, J.M.: The Hastus Vehicle and Manpower Scheduling Sys-
tem at Societ̀e de Transport de la Communantè Urbaine de Montr̀eal. Interfaces20(1),
26–42 (1990)

[90] Blazewicz, J., Ecker, K., Schmidt, G., Weglarz, J.: Scheduling in Computer and Manufac-
toring Systems. Springer, Berlin - Heidelberg (1993)



562 References

[91] Bliek, C., Spellucci, P., Vicente, L., Neumaier, A., Granvilliers, L., Monfroy, E., Ben-
hamouand, F., Huens, E., Hentenryck, P.V., Sam-Haroud, D., Faltings, B.: Algorithms for
Solving Nonlinear Constrained and Optimization Problems: The State of the Art. Report of
the European Community funded project COCONUT, MathematischesInstitut der Univer-
sität Wien, http://www.mat.univie.ac.at/ neum/glopt/coconut/StArt.html (2001)

[92] Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen. Preprint 142, Universität Heidelberg, SFB 123, Institut für
Angewandte Mathematik, 69120 Heidelberg (1987)

[93] Bock, H.G., Zillober, C.: Interior Point Methods and Extrapolation. In: P. Kleinschmidt (ed.)
Symposium Operations Research (SOR’95): Program and Abstract of the Annual Confer-
ence of the DGOR, GM̈OOR andÖGOR, p. 39. University of Passau, Passau, Germany
(1995)

[94] Bodington, C.E., Baker, T.E.: A history of Mathematical Programming in the Petroleum
Industry. Interfaces20(4), 117–127 (1990)

[95] Bohoris, G.A., Thomas, J.M.: A Heuristic for Vehicle Routeing and Depot Staffing. Journal
of the Operational Research Society46, 1184–1191 (1995)

[96] Bomze, I.M., Grossmann, W.: Optimierung – Theorie und Algorithmen. Wissenschaftsver-
lag, Mannheim (1993)

[97] Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and Software for Convex Mixed Integer
Nonlinear Programs. In: J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming,
The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 1–39. Springer (2012)

[98] Bossel, H.: Modellbildung und Simulation, 2nd edn. Vieweg, Braunschweig (1994)
[99] Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer

nonlinear programming, minlp, and constrained derivative-free optimization, cdfo. Euro-
pean Journal of Operational Research252(3), 701 – 727 (2016)

[100] Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New
York (1987)

[101] Bracken, J., McGill, J.M.: Mathematical Programs with Optimization Problems in the Con-
straints. Operations Research21, 37–44 (1973)

[102] Bradley, G., Brown, G.H., Graves, G.W.: Design and Implementation of Large-scale Primal
Transshipment Algorithms. Management Science24(1), 1–34 (1977)

[103] Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of Mathematical Programming Problems
prior to Applying the Simplex Algorithm. Mathematical Programming 8, 54–83 (1975)

[104] Brockm̈uller, B., Günlük, O., Wolsey, L.A.: Designing Private Line Networks - Polyhedral
Analysis and Computation. Transactions on Operational Research 16, 7–24 (1997)

[105] Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide. The Scientific Press,
Redwoord City, CA (1988)

[106] Brooke, A., Kendrick, D., Meeraus, A.: GAMS - A User’s Guide (Release 2.25). Boyd &
Fraser Publishing Company, Danvers, Massachusetts (1992)

[107] Burer, S., Letchford, A.N.: Non-convex Mixed-integer Nonlinear Programming: A Survey.
Surveys in Operations Research and Management Science17(2), 97 – 106 (2012)

[108] Burke, E., Hellier, R., Kendall, G., Whitwell, G.: A New Bottom-Left-Fill Heuristic Al-
gorithm for the Two-Dimensional Irregular Packing Problem. Operations Research54,
587–601 (2006)

[109] Burkhard, R.E.: Methoden der Ganzzahligen Optimierung. Springer, Wien, New York
(1972)

[110] Burkhard, R.E., Derigs, U.: Assignment and Matching Problems: Solution methods with
Fortran-Programs. Springer Verlag, Berlin (1980)

[111] Bussieck, M.R., Meeraus, A.: General Algebraic ModelingSystem (GAMS). In: J. Kallrath
(ed.) Modeling Languages in Mathematical Optimization, pp. 137–157. Kluwer Academic
Publishers, Norwell, MA (2003)

[112] und C. A. Floudas, C.D.M.: Global Minimum Potential Energy Confirmations of Small
Molecules. Journal of Global Optimization4, 135–170 (1994)



References 563

[113] Cacchiani, V., Bolton, C.C., Toth, P.: Models and algorithms for the Traveling Salesman
Problem with Time-dependent Service Times. European Journal ofOperational Research
283(3), 825–843 (2020)

[114] Carœ, C.C., Schultz, R.: Dual Decomposition in Stochastic Integer Programming. Opera-
tions Research Letters24, 37–45 (1999)

[115] Carpaneto, G., Martello, S., Toth, P.: Algorithms and Codes for the Assignment Problem.
Annals of Operations Research13, 193–223 (1988)

[116] Castillo, P., Castro, P., Mahalec, V.: Global Optimization of Nonlinear Blend-Scheduling
Problems. Engineering3, 188–201 (2017)

[117] Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, USA (1997)

[118] Chakraborty, A., Malcom, A., Colberg, R.D., Linninger, A.A.: Optimal Waste Reduction
and Investment Planning under Uncertainty. Computers and Chemical Engineering28,
1145–1156 (2004)

[119] Charnes, A., Cooper, W.W.: The Stepping-stone Method ofExplaining Linear Programming
Calculations in Transportation Problems. Management Science1, 49–69 (1954)

[120] Charnes, A., Cooper, W.W.: Chance-constrained Programming. Management Science5,
73–79 (1959)

[121] Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the Efficiency of Decision Making
Units. European Journal of Operational Research2, 429–444 (1978)

[122] Chauhan, S.S., Eremeev, A.V., Romanova, A.A., Servakh,V.V.: Approximation of Linear
Cost Supply Management Problem with Lower-bounded Demands Solutions. In: A.A.
Kolokolov, A.V. Eremeev (eds.) Proceedings of Discrete Optimization Methods in Produc-
tion and Logistics (DOM 2004), pp. 16–21. Omsk, Russia (2004)

[123] Cheng, L., Subrahmanian, E., Westerberg, A.W.: Design and Planning under Uncertainty:
Issues on Problem Formulation and Solution. Computers and Chemical Engineering27,
781–801 (2003)

[124] Chernov, N., Stoyan, Y., Romanova, T.: Mathematical Model and Efficient Algorithms for
Object Packing Problem. Computational Geometry43, 535–553 (2010)

[125] Chernov, N., Stoyan, Y., Romanova, T., Pankratov, A.: Phi-Functions for 2D Objects
Formed by Line Segments and Circular Arcs. Advances in Operations ResearchArticle
ID 346358(2012)

[126] Cheshire, M.K., McKinnon, K.I.M., Williams, H.P.: The Efficient Allocation of Private
Contractors to Public Works. Journal of the Operational Research Society35, 705–709
(1984)

[127] Choi, T.M. (ed.): Handbook of Newsvendor Problems: Models, Extensions and Appli-
cations,International Series in Operations Research & Management Science, vol. 176.
Springer, New York (2012)

[128] Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project Scheduling with Resource Con-
straints: A Branch and Bound Approach. European Journal of Operational Research29,
262–273 (1987)

[129] Christofides, N., Beasley, J.E.: A Tree Search Algorithm for the p-Median Problem. Euro-
pean Journal of Operational Research10, 196–204 (1982)

[130] Ciriani, T.A., Colombani, Y., Heipcke, S.: Embedding Optimisation Algorithms with Mosel.
4OR1(2), 155–168 (2003)

[131] Clark, P.A., Westerberg, A.W.: Bilevel Programming for Steady State Chemical Process
Design: Fundamentals and Algorithms. Computers and Chemical Engineering14, 87–97
(1990)

[132] Collatz, L., Wetterling, W.: Optimierungsaufgaben, 2nd edn. Springer, Berlin, Germany
(1971)

[133] Colombani, Y., Daniel, B., Heipcke, S.: Mosel: a ModularEnvironment for Modeling and
Solving Problems. In: J. Kallrath (ed.) Modeling Languages in Mathematical Optimization,
pp. 211–238. Kluwer Academic Publishers, Norwell, MA, USA (2004)

[134] Colombani, Y., Heipcke, S.: The Constraint Solver SchedEns. Tutorial and Documentation.
Technical report, LIM Laboratoire d’Informatique Marseille, Marseille, France (1997)



564 References

[135] Colombani, Y., Heipcke, S.: Mosel: An Extensible Environment for Modeling and Pro-
gramming Solutions. In: N. Jussien, F. Laburthe (eds.) Proceedingsof CP-AI-OR’02, pp.
277–290. Le Croisic (2002)

[136] Colombani, Y., Heipcke, S.: Multiple Models and Parallel Solving with Mosel. Tech.
rep., FICO Xpress Optimization, Birmingham, UK (2004). URL http://www.fico.com/fico-
xpress-optimization/docs/latest/mosel/moselparallel/dhtml

[137] Conejo, A.J., Castillo, E., Ḿınguez, R., Garćıa-Bertrand, R.: Decomposition Techniques
in Mathematical Programming: Engineering and Science Applications. Springer, Berlin,
Germany (2006)

[138] Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of Bank Accounts to Optimize
Floats: An Analytic Study of Exact and Approximate Algorithms. Management Science
23, 789–810 (1977)

[139] Coutinho, D., de Souza, S.X., Aloise, D.: A Scalable Shared-Memory Parallel Simplex for
Large-Scale Linear Programming. CoRRabs/1804.04737(2018)

[140] Crainic, T.G.: Parallel metaheuristics and cooperative search. In: M. Gendreau, J.Y. Potvin
(eds.) Handbook of Metaheuristics, pp. 419–451. Springer (2019)

[141] Crowder, H.E., Johnson, E.L., Padberg, M.W.: Solving Large Scale 0-1 Linear Programming
Problems. Operations Research31, 803–834 (1983)

[142] Curtis, A.R., Reid, J.K.: On the Automatic Scaling of Matrices for Gaussian Elimination.
Journal of the Institute of Mathematics and its Applications10, 118–124 (1972)

[143] Dakin, R.J.: A Tree Search Algorithm for Mixed Integer Programming Problems. Computer
Journal8, 250–255 (1965)

[144] Danna, E., Rothberg, E., Le Pape, C.: Exploring Relation Induced Neighborhoods to im-
prove MIP Solutions. Mathematical Programming102, 71–90 (2005)

[145] Dantzig, B., Wolfe, P.: Decomposition Principle for Linear Programs. Operations Research
8, 101–111 (1960)

[146] Dantzig, B., Wolfe, P.: The decomposition algorithm forlinear programming. Operations
Research8, 101–111 (1960)

[147] Dantzig, C.B.: Linear Programming under Uncertainty. Management Science1, 197–206
(1955)

[148] Dantzig, G.B.: Application of the simplex method to a transportation problem. In: T.C.
Koopmans (ed.) Activity Analysis of Production and Allocation, pp. 359–373. Wiley, New
York (1951)

[149] Dantzig, G.B.: Discrete Variable Extremum Problems. Operations Research5, 266–277
(1957)

[150] Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton,
New Jersey (1963)

[151] Dantzig, G.B., Dempster, M.A.H., Kallio, M.J. (eds.): Large-scale Linear Programming,
IIASA Collaborative Proceedings Series, vol. CP-81-51. International Institute for Applied
System Analysis, Laxenburg, Austria (1981)

[152] Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solutionof a Large-scale Traveling Sales-
man Problem. Operations Research2, 393–410 (1954)

[153] Dantzig, G.B., Wolfe, P.: Decomposition Principle for Linear Programs. Operations Re-
search8, 101–111 (1960)

[154] Day, R.: MAGIC version 1.0: A Matrix Generator Convertor for Linear and Integer Pro-
gramming Models. Tech. rep., Research Report and Department of Business Studies and
University of Edinburgh (1982)

[155] de Farias Jr., I.R., Johnson, E.L., Nemhauser, G.L.: A Generalized Assignment Problem
with Special Ordered Sets: a Polyhedral Approach. Mathematical Programming Ser. A89,
187–203 (2000)

[156] de Farias Jr., I.R., Zhao, M., Zhao, H.: A Special Ordered Set Approach for Optimizing
a Discontinuous Separable Piecewise Linear Function. Operations Research Letters36,
234–238 (2008)

[157] Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publisher, Dordrecht,
The Netherlands (2002)



References 565

[158] Dempe, S., Kalashnikov, V., Pérez-Vald́es, G.A., Kalashnykova, N.I.: Natural Gas Bilevel
Cash-out Problem: Convergence of a Penalty Function Method. European Journal of Oper-
ational Research215(3), 532–538 (2011)

[159] Dempe, S., Khamisov, O.V., Kochetov, Y.: A Special Three-level Optimization Problem.
Journal of Global Optimization76(3), 519–531 (2020)

[160] Dempe, S., Kue, F.M.: Solving Discrete Linear Bilevel Optimization Problems using the
Optimal Value Reformulation. Journal of Global Optimization68(2), 255–277 (2017)

[161] Dennis, J.B.: A High-speed Computer Technique for the Transportation Problem. Journal
of the Association for Computer MachineryApril , 132–153 (1958)

[162] Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M.M., Soumis, F.: VRP with Pickup
and Delivery. In: P. Toth, D. Vigo (eds.) The Vehicle Routing Problem, pp. 225–242. Society
for Industrial and Applied Mathematics, Philadelphia, PA (2001)

[163] Desrochers, M., Desrosiers, J., Solomon, M.M.: A New Optimization Algorithm for the
Vehicle Routing Problem with time Windows. Operations Research 40(2), 342–354 (1992,
March-April)

[164] Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time Constrained Routing and
Scheduling. In: M.E. Ball, T.L. Magnanti, C. Monma, G.L. Nemhauser (eds.) Handbook
in Operations Research and Management Science, pp. 35–140. Society for Industrial and
Applied Mathematics, Philadelphia (1995)

[165] Di Domenica, N., Lucas, C., Mitra, G., Valente, P.: Scenario Generation for Stochastic Pro-
gramming and Simulation: a Modelling Perspective. IMA Journal ofManagement Mathe-
matics20(1), 1–38 (2007)

[166] Dighe, R., Jakiela, M.J.: Solving Pattern Nesting Problems with Genetic Algorithms Em-
ploying Task Decomposition and Contact. Evolutionary Computation 3, 239–266 (1996)

[167] Dikin, I.I.: Iterative Solution of Problems of Linear and Quadratic Programming. Soviet
Mathematics. Doklady8, 674–675 (1967)

[168] Dinter, J.V., Rebennack, S., Kallrath, J., Denholm, P., Newman, A.: The Unit Commitment
Model with Concave Emissions Costs: A Hybrid Benders’ Decompositionwith Nonconvex
Master Problems. Annals of Operations Research210, 361–386 (2013)

[169] Diwekar, U.: Introduction to Applied Optimization, vol. 22. Springer, New York (2008)
[170] Drud, A.S.: CONOPT - A Large-Scale GRG Code. ORSA Journal of Computing6(2),

207–218 (1994)
[171] Duran, M.A., Grossmann, I.E.: An Outer-Approximation Algorithm for a Class of Mixed-

Integer Nonlinear Programms. Mathematical Programming36, 307–339 (1986)
[172] Duriagina, Z., Lemishka, I., Litvinchev, I., Marmolejo,J., Pankratov, A., Romanova, T.,

Yaskov, G.: Optimized filling a given cuboid with spherical powders for additive manufac-
turing. Journal of the Operations Research Society of China (2020)

[173] Dyson, R.G., Gregory, A.S.: The Cutting Stock Problem in the Glass Industry. Operational
Research Quarterly25, 41–54 (1974)

[174] Dyson, R.G., Thanassoulis, E.: Reducing Weight Flexibility in Data Envelopment Analysis.
Journal of the Operational Research Society39, 563–576 (1988)

[175] Edmonds, J., Johnson, E.L.: Matching and Euler tours and theChinese Postman Problem.
Mathematical Programming5, 88–124 (1973)

[176] Eglese, R.W.: Routeing Winter Gritting Vehicles. Discrete Applied Mathematics48, 231–
244 (1994)

[177] Eichner, T., Pfingsten, A., Wagener, A.: Strategisches Abstimmungsverhalten bei Verwen-
dung der Hare-Regel. zfbv48, 466–473 (1996)

[178] Eley, M.: A Bottleneck Assignment Approach to the Multiple Container Loading Problem.
OR Spectrum25, 113–130 (2003)

[179] Emet, S., Westerlund, T.: Solving a Dynamic Separation Problem using MINLP Techniques.
Applied Numerical Mathematics58(12), 395–406 (2008)

[180] Engell, S., M̈arkert, A., Sand, G., Schultz, R., Schulz, C.: Online Scheduling of Multiprod-
uct Batch Plants under Uncertainty. In: Online Optimizationof Large Scale Systems, pp.
649–676. Springer, Berlin, Germany (2001)



566 References

[181] Escudero, L., Garı́n, A., Merino, M., Ṕerez, G.: The Value of the Stochastic Solution in
Multistage Problems. TOP: An Official Journal of the Spanish Society of Statistics and
Operations Research15(1), 48–64 (2007)

[182] Farley, A.A.: Planning the Cutting of Photographic Color Paper Rolls for Kodak (Australa-
sis) Pty. Ltd. Interfaces21(1), 96–106 (1991)

[183] Farrell, M.J.: The Measurement of Productive Efficiency.Journal of the Royal Statistical
Society Series A120, 253–281 (1957)

[184] Fasano, G.: Solving Non-Standard Packing Problems by Global Optimization and Heuris-
tics. Springer, Cham, Switzerland (2014)

[185] Ferrier, G., Lovell, K.: Measuring Cost Efficiency in Banking: Econometric and Linear
Programming Evidence. Journal of Econometrics46, 229–245 (1990)

[186] Ferris, M.C., Dirkse, S.P., Jagla, J.H., Meeraus, A.: An Extended Mathematical Program-
ming Framework. Computers and Chemical Engineering33, 87–97 (2009)

[187] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming. Sequential Unconstrained Mini-
mization Techniques. John Wiley and Sons, New York (1968)

[188] Fieldhouse, M.: The pooling problem. In: T. Ciriani, R.C. Leachman (eds.) Optimization in
Industry: Mathematical Programming and Modeling Techniques inPractice, pp. 223–230.
John Wiley and Sons, Chichester (1993)

[189] Figueira, J., Liefooghe, A., Talbi, E.G., Wierzbicki,A.: A Parallel Multiple Reference Point
Approach for Multi-objective Optimization. European Journal of Operational Research
205(2), 390 – 400 (2010)

[190] Fischetti, M., Glover, F.: The Feasibility Pump. Mathematical Programming104, 91–104
(2005)

[191] Fischetti, M., Lodi, A.: Local Branching. MathematicalProgramming98, 23–47 (2003)
[192] Fisher, M.L.: An Applications Oriented Guide to Lagrangian Relaxation. Interfaces15,

10–21 (1985)
[193] Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester, UK (1987)
[194] Flin, H., Liebling, T.M., Prodon, A.: Optimal Subtreesand Extensions. Annals of Discrete

Mathematics16, 121–127 (1982)
[195] Floudas, C.A.: Nonlinear and Mixed Integer Optimization. Oxford University Press, Ox-

ford, UK (1995)
[196] Floudas, C.A.: Nonlinear and Mixed-Integer Optimization : Fundamentals and Applica-

tions. Oxford University Press, Oxford, England (1995)
[197] Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications.

Kluwer Academic Publishers, Dordrecht, Niederlande (2000)
[198] Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global Op-

timization in the 21st Century: Advances and Challenges for Problems with Nonlinear Dy-
namics. Computers and Chemical Engineering29, 1185–1202 (2005)

[199] Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. Journal
of Global Optimization45, 3–38 (2009)

[200] Floudas, C.A., Pardalos, P.M. (eds.): Frontiers in Global Optimization. Kluwer Academic
Publishers, Dordrecht, The Netherlands (2004)

[201] Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T.,
Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems of Local and
Global Optimization. Kluwer Academic Publishers, Dordrecht, Niederlande (1999)

[202] Ford(Jr), L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton,
New Jersey (1962)

[203] Forrest, J.J.H., Hirst, J.P.H., Tomlin, J.A.: Practical Solution of Large Mixed Integer Pro-
gramming Problems with UMPIRE. Management Science20, 736–773 (1974)

[204] Fourer, R.: Modeling Languages versus Matrix Generators for Linear Programming. ACM
Transactions on Mathematical Software9, 143–183 (1983)

[205] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming Language.
Tech. Rep. Computing Science Technical Report No. 133, AT&T Bell Laboratories, Murray
Hill, NJ, USA (1987). Revised June 1989



References 567

[206] Fourer, R., Gay, D.M., Kernighan, B.W.: A Modeling Language for Mathematical Program-
ming. Management Science36(5), 519–554 (1990)

[207] Fourer, R., Gay, D.M., Kernighan, B.W.: Design Principles and New Developments in the
AMPL Modeling Language. In: J. Kallrath (ed.) Modeling Languages in Mathematical
Optimization, pp. 137–135. Kluwer Academic Publishers, Norwell, MA (2003)

[208] Fourer, R., Gay, D.M., Kernighan, H.W.: A Modeling Language for Mathematical Program-
ming. Management Science36, 519–554 (1990)

[209] Freund, R.M., Mizuno, S.: Interior Point Methods: Current Status and Future Directions.
Optima (Mathematical Programming Society Newsletter)51, 1–9 (1996)

[210] Frisch, K.R.: The Logarithmic Potential Method for Convex Programming. Technical re-
port, University Institute of Economics, Oslo, Norway (1955)

[211] Fulkerson, D., Wolfe, P.: An Algorithm for Scaling Matrices. SIAM Review4, 142–147
(1962)

[212] Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi,
A., Misener, R., Mittelmann, H., Sahinidis, N.V., Vigerske, S.,Wiegele, A.: QPLIB: A
Library of Quadratic Programming Instances. Mathematical Programming Computation
11(2), 237–265 (2019)

[213] Galati, M.: Decomposition Methods for Integer Linear Programming. PhD thesis, Lehigh
University (Industrial Engineering), Lehigh, UK (2009)

[214] Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander,
P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L.,
Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., M̈uller, B., Pfetsch, M., Schlösser,
F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig,
J.: The SCIP Optimization Suite 7.0. Tech. Rep. 20-10, ZIB, Takustr. 7, 14195 Berlin (2020)

[215] Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress in Presolving
for Mixed Integer Programming. Math. Program. Comput.7(4), 367–398 (2015)

[216] Gan, M., Gopinathan, N., Jia, X., Williams, R.A.: Predicting Packing Characteristics of
Particles of Arbitrary Shapes. KONA22, 2–93 (2004)

[217] Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP
Completeness, 22nd edn. W. H. Freeman and Company, New York, USA (2000)

[218] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel
Virtual Machines - A User’s Guide and Tutorial for Networked Parallel Computing. The
MIT Press, Cambridge, Massachusetts (1994)

[219] Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics,2nd edn. Springer Publishing
Company, Incorporated (2010)

[220] Geoffrion, A.M.: Generalized Benders Decomposition. Journal of Optimization Theory and
Applications10, 237–260 (1972)

[221] Geoffrion, A.M.: Lagrangian Relaxation and its Uses inInteger Programming. Mathemati-
cal Programming Study2, 82–114 (1974)

[222] Gershkoff, I.: Optimizing flight crew schedules. Interfaces19(4), 29–43 (1989)
[223] Ghildyal, V., Sahinidis, N.V.: Solving Global Optimization Problems with BARON. In:

A. Migdalas, P. Pardalos, P. Värbrand (eds.) From Local to Global Optimization, pp. 205–
230. Kapitel 10, Kluwer Academic Publishers, Dordrecht, Niederlande (2001)

[224] Ghosh, P.K.: An Algebra of Polygons through the Notion of Negative Shapes. CVGIP:
Image Understanding54, 119–144 (1991)

[225] Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP Algorithm for Large-scale Con-
strained Optimization. Numerical analysis report 97-2, Department of Mathematics, Uni-
versity of California, San Diego, San Diego, La Jolla, CA (1997)

[226] Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H.: On the projected New-
ton barrier methods for linear programming and an equivalence to Karmarkar’s projective
method. Math. Programming36, 183–209 (1986)

[227] Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London
(1981)

[228] Gilmore, P.C., Gomory, R.E.: A Linear Programming Approach to the Cutting Stock Prob-
lem. Operations Research9, 849–859 (1961)



568 References

[229] Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem.
Operations Research9, 849–859 (1961)

[230] Gilmore, P.C., Gomory, R.E.: A Linear Programming Approach to the Cutting Stock Prob-
lem, Part II. Operations Research11, 863–888 (1963)

[231] Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G.,
Hojny, C., Koch, T., L̈ubbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch,
M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Vier-
nickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig,J.: The SCIP Optimization
Suite 6.0. Technical report, Optimization Online (2018). URL http://www.optimization-
online.org/DBHTML/2018/07/6692.html

[232] Glen, J.J.: Sustainable Yield Analysis in a Multicohort Single-species Fishery: a Mathemat-
ical Programming Approach. Journal of the Operational ResearchSociety46, 1052–1062
(1995)

[233] Glover, F.: A New Foundation for a Simplified Primal Integer Programming Algorithm.
Operations Research16, 727–740 (1968)

[234] Glover, F., Klingman, D., Philips, N.: Netform Modelingand Applications. Interfaces20(4),
7–27 (1990)

[235] Goel, V., Grossmann, I.E.: A stochastic programming approachto planning of offshore gas
field developments under uncertainty in reserves. Computers andChemical Engineering
28(8), 1409–1429 (2004)

[236] Gollmer, R., Nowak, M.P., R̈omisch, W., Schultz, R.: Unit Commitment in Power Genera-
tion - A Basic Model and Some Extensions. Annals of Operations Research96, 167–189
(2000)

[237] Gomes, A.M., Oliveira, J.F.: A 2-Exchange Heuristic for Nesting Problems. European J.
Operational Research141, 359–370 (2002)

[238] Gomes, A.M., Oliveira, J.F.: Solving Irregular Strip Packing Problems by Hybridising Sim-
ulated Annealing and Linear Programming. European J. Operational Research171, 811–
829 (2006)

[239] Gomory, R.E.: Outline of an algorithm for integer solutions to linear programming. Bulletin
of the American Mathematical Society64, 275–278 (1958)

[240] Gonzaga, C.L.: Path-Following Methods for Linear Programming. SIAM Review34, 167–
224 (1992)

[241] Gould, N.I.M., Reid, J.K.: New crash procedures for large systems of linear constraints.
Mathematical Programming45, 475–503 (1989)

[242] Granot, F., Hammer, P.: On the use of boolean functions in 0-1 programming. Methods of
Operations Research12, 154–184 (1972)

[243] Greenberg, H.J.: How to analyse the results of linear programs - Part 1: Preliminaries. In-
terfaces23(4), 56–67 (1993)

[244] Greenberg, H.J.: How to analyse the results of linear programs - Part 2: Price interpretation.
Interfaces23(5), 97–114 (1993)

[245] Greenberg, H.J.: How to analyse the results of linear programs - Part 3: Infeasibility. Inter-
faces23(6), 120–139 (1993)

[246] Greenberg, H.J.: How to analyse the results of linear programs - Part 4: Forcing substruc-
tures. Interfaces24(1), 121–130 (1994)

[247] Greenberg, H.J., Murphy, F.H.: A comparison of mathematical programming modeling sys-
tems. Annals of Operations Research5, 177 – 238 (1992)

[248] Gregory, C., Darby-Dowman, K., Mitra, G.: Robust Optimization and Portfolio Selection:
The Cost of Robustness. Eur. J. Oper. Res.212(2), 417–428 (2011)

[249] Grossmann, I.E.: Review of Nonlinar Mixed-Integer and Disjunctive Programming Tech-
niques. Optimization and Engineering3, 227–252 (2002)

[250] Grossmann, I.E., Harjunkoski, I.: Process Systems Engineering: Academic and Industrial
Perspective. Computers and Chemical Engineering126, 474–484 (2019)

[251] Grossmann, I.E., Trespalacios, F.: Systematic Modeling of Discrete-Continuous Optimiza-
tion Models through Generalized Disjunctive Programming. AIChE Journal59, 3276–3295
(2013)



References 569

[252] Grötschel, M.: Discrete Mathematics in Manufacturing. In: R.E. O’Malley (ed.) ICIAM 91:
Proceedings of the Second International Conference on Industrial and Applied Mathemat-
ics, pp. 119–145. SIAM (1992)

[253] Grötschel, M., Lovasz, L.: Combinatorial Optimization. In: R.L. Graham (ed.) Handbook
on Combinatorics, pp. 1541–1597. North-Holland, Amsterdam (1982)

[254] Gúeret, C., Heipcke, S., Prins, C., Sevaux, M.: Applications ofOptimization with Xpress-
MP. Dash Optimization, Blisworth, UK (2002)

[255] Guignard, M.: Lagrange Relaxation. Sociedad de Estadı́stica e Investgaciǿn Operativa
11(2), 151–228 (2003)

[256] Gupta, A., Maranas, C.D.: Managing Demand Uncertainty in Supply Chain Planning. Com-
puters and Chemical Engineering27, 1219–1227 (2003)

[257] Gupta, A., Maranas, C.D., McDonald, C.M.: Mid-term Supply Chain Planning under De-
mand Uncertainty: Customer Demand Satisfaction and Inventory Management. Computers
and Chemical Engineering24(12), 2613–2621 (2000)

[258] Gupta, O.K., Ravindran, V.: Branch and Bound Experiments in Convex Nonlinear Integer
Programming. Management Science31, 1533–1546 (1985)

[259] Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2019). URL
http://www.gurobi.com

[260] Hales, T.C.: A Proof of the Kepler Conjecture. Annals ofMathematics pp. 1065–1185
(2005)

[261] Harding, S.T., Floudas, C.A.: Locating Heterogeneousand Reactive Azeotropes. Industrial
and Engineering Chemistry Research39, 1576–1595 (2000)

[262] Harjunkoski, I.: Application of MINLP Methods on a Scheduling Problem in the Paper
Converting Industry. PhD Dissertation, Abo Akademi University,Abo, Finland (1997)

[263] Harjunkoski, I., Jain, V., Grossmann, I.E.: Hybrid Mixed-integer/Constrained Logic Pro-
gramming Strategies for Solving Scheduling and CombinatorialOptimization Problems.
Computers and Chemical Engineering24, 337–343 (2000)

[264] Harris, P.M.J.: Pivot selection methods of the Devex LP code. Mathematical Programming
5, 1–28 (1973)

[265] Heinz, S., Schlechte, T., Stephan, R.: Solving Steel Mill Slab Design Problems. Constraints
17, 39–50 (2012)

[266] Heipcke, S.: Resource Constrained Job-Shop-Schedulingwith Constraint Nets. Diplo-
marbeit, Katholische Universität Eichsẗatt, Mathem.-Geographische Fakultät, Universiẗat
Eichsẗatt, Eichsẗatt, Germany (1995)

[267] Heipcke, S.: Comparing Constraint Programming and Mathematical Programming Ap-
proaches to Discrete Optimisation. The Change Problem. Journal of the Operational Re-
search Society50(6), 581–595 (1999)

[268] Heipcke, S.: Mosel: Modeling and Optimization. Dash Optimization, Blisworth, UK (2002)
[269] Heipcke, S.: Xpress-Mosel: Multi-Solver, Multi-Problem, Multi-Model, Multi-Node Mod-

eling and Problem Solving. In: J. Kallrath (ed.) Algebraic Modeling Systems: Modeling
and Solving Real World Optimization Problems, pp. 77–110. Springer, Heidelberg, Ger-
many (2012)

[270] Helber, S.: Operations Management Tutorial. S. Helber(2014). URL
https://books.google.de/books?id=HUTioQEACAAJ

[271] Held, M.H., P.Wolfe, Crowder, H.D.: Validation of Subgradient Optimization. Mathematical
Programming6, 62–88 (1974)

[272] Hendrix, E.M.T., G.-T́oth, B.: Introduction to Nonlinear and Global Optimization,Springer
Optimization and Its Applications, vol. 37. Springer, New York, NY (2010)

[273] Hendry, L.C., Fok, K.K., Shek, K.W.: A cutting stock andscheduling problem in the copper
industry. Journal of the Operational Research Society47, 38–47 (1996)

[274] Henrion, R., K̈uchler, C., R̈omisch, W.: Discrepancy distances and scenario reduction in
two-stage stochastic mixed-integer programming. Journal of Industrial and Management
Optimization4, 363–384 (2008)



570 References

[275] Henrion, R., K̈uchler, C., R̈omisch, W.: Scenario reduction in stochastic programming with
respect to discrepancy distances. Computational Optimization and Applications43, 67–93
(2009)

[276] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2012)

[277] Hertz, D.: The Extreme Eigenvalues and Stability of Real Symmetric Interval Matrices.
IEEE Transactions on Automatic Control37, 532–535 (1992)

[278] Hitchcock, F.L.: The distribution of a product from several sources to numerous localities.
Journal of Mathematical Physics20, 224–230 (1941)

[279] Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction. Wiley, Chichester, UK (2000)

[280] Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer Academic
Publishers, Dordrecht, Niederlande (1995)

[281] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction toGlobal Optimization, 2nd edn.
Kluwer Academic Publishers (2000)

[282] Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, New
York (1996)

[283] Huangfu, Q., Hall, J.A.J.: Parallelizing the Dual Revised Simplex Method. Math. Program.
Comput.10(1), 119–142 (2018)

[284] Hummeltenberg, W.H.: Implementations of special ordered sets in MP software. European
Journal of Operational Research17, 1–15 (1984)

[285] Hung, M.S., Rom, W.O.: Solving the Assignment Problem by Relaxation. Operations Re-
search28, 969–982 (1980)

[286] I., L., E.L., O.E.: Solving the two-stage capacitated facility location problem by the la-
grangian heuristic. In: Hu H., Shi X., Stahlbock R., Voß S. (eds) Computational Logistics.
ICCL 2012. Lecture Notes in Computer Science7555, 92–103 (2012)

[287] IBM: AIX Easy Modeler/6000 and User Guide. IBM World Trade Corporation, New York,
Paris (1993)

[288] IBM: IBM ILOG CPLEX Optimization Studio (2017) CPLEX Users Manual (2017). URL
http://www.ibm.com

[289] Ierapetriou, M.G., Floudas, C.A.: Effective Continuous-Time Formulation for Short-Term
Scheduling. 1. Multipurpose Batch Processes. Industrial and Engineering Chemistry Reser-
ach37, 4341–4359 (1998)

[290] Ierapetriou, M.G., Floudas, C.A.: Effective Continuous-Time Formulation for Short-Term
Scheduling. 2. Continuous and Semicontinuous Processes. Industrial and Engineering
Chemistry Reserach37, 4360–4374 (1998)

[291] Ierapetriou, M.G., Hene, T.S., Floudas, C.A.: Continuous Time Formulation for Short-Term
Scheduling with Multiple Intermediate Due Dates. Industrial and Engineering Chemistry
Research38, 3446–3461 (1999)

[292] Ignizio, J.P.: Goal Programming and Extensions. Heath, Lexington, Massachusetts, USA
(1976)

[293] Irnich, S., Toth, P., Vigo, D.: The family of vehicle routing problems. In: P. Toth, D. Vigo
(eds.) Vehicle Routing,MOS-SIAM Series on Optimization, vol. 18, pp. 1–33. SIAM (2014)

[294] Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class of Optimiza-
tion Problems. IFORMS Journal on Computing13, 258–276 (2001)

[295] Janak, S.L., Floudas, C.A., Kallrath, J., Vormbrock, N.: Production Scheduling of a Large-
Scale Industrial Batch Plant: I. Short-Term and Medium-Term Scheduling. Industrial and
Engineering Chemistry Research45, 8234–8252 (2006a)

[296] Janak, S.L., Lin, X., Floudas, C.A.: A New Robust Optimization Approach for Scheduling
under Uncertainty - II. Uncertainty with Known ProbabilityDistribution. Computers and
Chemical Engineering31, 171–195 (2007)

[297] Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London,
England (2001)

[298] Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. Mathematical Programming
Study22, 167–184 (1984)



References 571

[299] Jeroslow, R.G., Lowe, J.K.: Experimental results with the new techniques for integer pro-
gramming formulations. Journal of the Operational Research Society 36, 393–403 (1985)

[300] Jesson, D., Mayston, D., Smith, P.: Performance assessment in the education sector; educa-
tional and economic perspectives. Oxford Review of Education13, 249–266 (1987)

[301] Jia, Z., Ierapetritou, M.: Mixed-Integer Linear Programming Model for Gasoline Blending
and Distribution Scheduling. Industrial & Engineering Chemistry Research - IND ENG
CHEM RES42, 825–835 (2003)

[302] Johnson, E.L., Kostreva, M.M., Suhl, U.H.: Solving 0-1 integer programming problems
arising from large scale planning models. Operations Research33, 803–819 (1985)

[303] Jonker, R., Volgenat, T.: Improving the Hungarian Assignment algorithm. Operations Re-
search Letters5, 171–175 (1986)

[304] Jozefowiez, N., Semet, F., Talbi, E.G.: Parallel and Hybrid Models for Multi-objective Op-
timization: Application to the Vehicle Routing Problem. In: J.J.M. Guerv́os, P. Adamidis,
H.G. Beyer, H.P. Schwefel, J.L. Fernández-Villacãnas (eds.) Parallel Problem Solving from
Nature — PPSN VII, pp. 271–280. Springer Berlin Heidelberg,Berlin, Heidelberg (2002)

[305] J̈unger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G.,
Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958-2008 - From the
Early Years to the State-of-the-Art. Springer, Heidelberg(2010)

[306] Jungnickel, D.: Graphs, Networks and Algorithms, 4th edn.Springer, Berlin (2012)
[307] Kalan, J.E.: Aspects of large-scale in-core linear programming. In: ACM Annual Confer-

ence Proceedings 1971 and Chicago, pp. 304–313. ACM, New York (1971)
[308] Kall, P.: Stochastic Linear Programming. Springer, Berlin (1976)
[309] Kall, P., Wallace, S.W.: Stochastic Programming. John Wiley and Sons, Chichester (1994)
[310] Kallrath, J.: Diskrete Optimierung in der chemischen Industrie. In: A. Bachem, M. J̈unger,

R. Schrader (eds.) Mathematik in der Praxis - Fallstudien aus Industrie, Wirtschaft, Natur-
wissenschaften und Medizin, pp. 173–195. Springer Verlag, Berlin (1995)

[311] Kallrath, J.: Mixed-Integer Nonlinear Programming Applications. In: T.A. Ciriani,
S. Gliozzi, E.L. Johnson, R. Tadei (eds.) Operational Research in Industry, pp. 42–76.
Macmillan, Houndmills, Basingstoke, UK (1999)

[312] Kallrath, J.: Combined Strategic, Design and Operative Planning - Two Success Stories in
MILP and MINLP. In: V. Bulatov, V. Baturin (eds.) Proceedingsof 12th Baikal Interna-
tional Conference: Optimization Methods and Their Applications, pp. 123–128. Institute of
System Dynamics and Control Theory, Irkutsk, Russia (2001)

[313] Kallrath, J.: Combined Strategic and Operational Planning - An MILP Success Story in
Chemical Industry. OR Spectrum24(3), 315–341 (2002)

[314] Kallrath, J.: Planning and Scheduling in the Process Industry. OR Spectrum24(3), 219–250
(2002)

[315] Kallrath, J.: Exact Computation of Global Minima of a Nonconvex Portfolio Optimization
Problem. In: C.A. Floudas, P.M. Pardalos (eds.) Frontiers in Global Optimization, pp. 237–
254. Kluwer Academic Publishers (2004)

[316] Kallrath, J. (ed.): Modeling Languages in MathematicalOptimization. Kluwer Academic
Publishers, Norwell, MA, USA (2004)

[317] Kallrath, J.: Modeling Difficult Optimization Problems. In: C.A. Floudas, P.M. Pardalos
(eds.) Encyclopedia of Optimization, pp. 2284–2297. Springer Verlag, New York (2008)

[318] Kallrath, J.: Pricing Problems in the Chemical Process Industry. Computational Manage-
ment Science5, 403–405 (2008)

[319] Kallrath, J.: Combined Strategic Designand Operative Planning in the Process Industry.
Computers and Chemical Engineering33, 1983–1993 (2009)

[320] Kallrath, J.: Cutting Circles and Polygons from Area-Minimizing Rectangles. Journal of
Global Optimization43, 299–328 (2009)

[321] Kallrath, J.: Cutting Circles and Polygons from Area-Minimizing Rectangles. Journal of
Global Optimization43, 299–328 (2009)

[322] Kallrath, J.: Polylithic Modeling and Solution Approaches Using Algebraic Modeling Sys-
tems. Optimization Letters5, 453–466 (2011). 10.1007/s11590-011-0320-4



572 References

[323] Kallrath, J. (ed.): Algebraic Modeling Systems: Modelingand Solving Real World Opti-
mization Problems. Springer, Heidelberg, Germany (2012)

[324] Kallrath, J.: Packing Ellipsoids into Volume-minimizing Rectangular Boxes. Journal of
Global Optimization67(1), 151–185 (2017)

[325] Kallrath, J., Blackburn, R., N̈aumann, J.: Grid-enhanced Polylithic Modeling and Solution
Approaches for Hard Optimization Problems. In: H.G. Bock, W. Jäger, E. Kostina, H.X.
Phu (eds.) Modeling, Simulation and Optimization of Complex Processes HPSC 2018 –
Proceedings of the 7th Internationial Conference on High Performance Scientific Comput-
ing, Hanoi, Vietnam, March 19-23, 2018, pp. 83–96. Springer Nature, Cham, Switzerland
(2021)

[326] Kallrath, J., Frey, M.M.: Packing Circles into Perimeter-Minimizing Convex Hulls. Journal
of Global Optimization73(4), 723–759 (2019)

[327] Kallrath, J., Maindl, T.I.: Real Optimization with SAP-APO. Springer, Heidelberg, Ger-
many (2006)

[328] Kallrath, J., Pankratov, A., Romanova, T., Litvinchev,I.: Minimal Perimeter Convex Hulls
of Convex Polygons. Journal of Global Optimizationin preparation (2021)

[329] Kallrath, J., Rebennack, S.: Cutting Ellipses from Area-Minimizing Rectangles. Journal of
Global Optimization59(2-3), 405–437 (2014)

[330] Kallrath, J., Rebennack, S., Kallrath, J., Kusche, R.: Solving Real-World Cutting Stock-
Problems in the Paper Industry: Mathematical Approaches, Experience and Challenges.
European Journal of Operational Research238, 374–389 (2014)

[331] Kallrath, J., Schreieck, A.: Discrete Optimization and Real World Problems. In:
B. Hertzberger, G. Serazzi (eds.) High-Performance Computingand Networking, no. 919 in
Lecture Notes in Computer Science, pp. 351–359. Springer, Berlin-Heidelberg-New York
(1995)

[332] Kalvelagen, E.: Branch-and-Bound Methods for an MINLP Model with Semi-Continuous
Variables (2003, discontinued on http://www.gams.com)

[333] Kantorovich, L.V.: Mathematical methods in the organization and planning of production.
Translated in Management Science6, 366–422 (1960 (1939))

[334] Karelathi, J.: Solving the Cutting Stock Problem in theSteel Industry. Master thesis,
Helsinki University of Technology, Department of EngineeringPhysics and Mathematics,
Helsinki, Finland (2002)

[335] Karelathi, J., Vainiom̈aki, P., Westerlund, T.: Large Scale Production Planning in the Stain-
less Steel Industry. Industrial and Engineering Chemistry Research50, 4893–4906 (2011)

[336] Karmarkar, N.: A new polynomial time algorithm for linearprogramming. Combinatorica
4, 375–395 (1984)

[337] Karmarkar, U.S., Schrage, L.: The Deterministic Dynamic Product Cycling Problem. Op-
erations Research33, 326–345 (1985)

[338] Karp, R.M.: Reducibility among Combinatorial Problems. In: R.E. Miller, J.W. Thatcher
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

[339] Karuppiah, R., Grossmann, I.E.: A Lagrangean Based Branch-and-cut Algorithm for Global
Optimization of Nonconvex Mixed-integer Nonlinear Programswith Decomposable Struc-
tures. Journal of Global Optimization41, 163–186 (2008)

[340] Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Constraints.
Master thesis, Department of Mathematics, University of Chicago, Chicago (1939)

[341] Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publish-
ers, Dordrecht, Niederlande (1996)

[342] Kelley, J.E.: The Cutting Plane Method for Solving Convex Progr. Journal of SIAM8(4),
703–712 (1960)

[343] Khachian, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics Dok-
lady20, 191–194 (1979)

[344] Kilinç, M.R., Sahinidis, N.V.: Chapter 21: State of the Art in Mixed-Integer Nonlinear Op-
timization, chap. 21, pp. 273–292. SIAM (2017)

[345] Klee, V., Minty, G.J.: How good is the Simplex algorithm? In: O. Shisha (ed.) Inequalities
III, pp. 159–175. Academic Press, New York (1972)



References 573

[346] Klein-Haneveld, W.K., van der Vlerk, M.H.: StochasticInteger Programming: General
Models and Algorithms. Annals of Operational Research85, 39–57 (1999)

[347] Klosterhalfen, S.T., Kallrath, J., Frey, M.M., Schreieck, A., Blackburn, R., Buchmann, J.,
Weidner, F.: Creating Cost Transparency to Support StrategicPlanning in Complex Chemi-
cal Value Chains. European Journal of Operational Research279, 605–619 (2019)

[348] Klotz, E.: Identification, Assessment, and Correction of Ill-Conditioning and Numerical In-
stability in Linear and Integer Programs, chap. Chapter 3, pp. 54–108. INFORMS TutORials
in Operations Research. INFORMS (2014)

[349] Klotz, E., Newman, A.M.: Practical Guidelines for Solving Difficult Linear Programs. Sur-
veys in Operations Research and Management Science18(1), 1 – 17 (2013)

[350] Klotz, E., Newman, A.M.: Practical Guidelines for Solving Difficult Mixed Integer Linear
Programs. Surveys in Operations Research and Management Science18(1), 18 – 32 (2013)

[351] Koopmans, T.C.: Optimum Utilization of the Transport Systems. Econometria Suppl.17,
136–145 (1947)

[352] Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 6th edn. No. 21
in Algorithms and Combinatorics. Springer (2018)

[353] Kristjansson, B.: MPL Modeling System. Maximal Software, 1655 N. Fort Myer Drive,
Suite 700, Arlington, VA (1992)

[354] Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.:A Review and Comparison of
Solvers for Convex MINLP. Optimization and Engineering20(2), 397–455 (2018)

[355] Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.:A Review and Comparison of
Solvers for Convex MINLP. Optimization and Engineering20(2), 397–455 (2019)

[356] Kuhn, H.: Nonlinear Programming: A Historical View. In: R. Cottle, C. Lemke (eds.) Non-
linear Programming,SIAM-AMS Proceedings, vol. 9, pp. 1–26. American Mathematical
Society, Providence, RI (1976)

[357] Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly2, 83–97 (1955)

[358] Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: J. Neumann (ed.) Proceedings Sec-
ond Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Univer-
sity of California, Berkeley, California (1951)

[359] Kuhn, H.W., Tucker, A.W.: Nonlinear Programming. In: J. Neumann (ed.) Proceedings Sec-
ond Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Univer-
sity of California, Berkeley, CA (1951)

[360] Kurschl, W., Pimminger, S., Wagner, S., Heinzelreiter, J.: Concepts and Requirements for a
Cloud-based Optimization Service. In: 2014 Asia-Pacific Conference on Computer Aided
System Engineering (APCASE), pp. 9–18 (2014)

[361] Lancia, G., Serafini, P.: Compact Extended Linear Programming Models. Springer Interna-
tional Publishing Company AG, Cham, Switzerland (2018)

[362] Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems.
Econometrica28, 497–520 (1960)

[363] Laňcinskas, A., Ortigosa, P.M.,̌Zilinskas, J.: Parallel Optimization Algorithm for Competi-
tive Facility Location. Mathematical Modelling and Analysis20(5), 619–640 (2015)

[364] Laporte, G., Nickel, S., Saldanha da Gama, F.: LocationScience. Springer, Cham, Switzer-
land (2015)

[365] Laporte, G., Toth, P., Vigo, D.: Vehicle Routing: Historical Perspective and Recent Contri-
butions. EURO J. Transportation and Logistics2(1-2), 1–4 (2013)

[366] Lasdon, L.S., Waren, A.D.: Generalized Reduced Gradient Method for Linearly and Non-
linearly Constrained Programming. In: H.J. Greenberg (ed.) Design and Implementation of
Optimization Software, pp. 363–397. Sijthoff and Noordhoff, Niederlande (1978)

[367] Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M.: Design and Testing of a Generalized Re-
duced Gradient Code for Nonlinear Programming. ACM Trans. Math. Software4, 34–50
(1978)

[368] Laundy, R.S.: Implementation of Parallel Branch-and-Bound Algorithms in Xpress-MP.
In: T.A. Ciriani, S. Gliozzi, E.L. Johnson, R. Tadei (eds.) Operational Research in Industry.
MacMillan, London (1999)



574 References

[369] Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, Chichester
(1985)

[370] Leao, A.A.S., Toledo, F.M.B., Oliveira, J.F., Carravilla, M., Alvarez-Valdes, R.: Irregular
Packing Problems: A Review of Mathematical Models. European Journal of Operational
Research282(3), 803–822 (2019)

[371] Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity ofmachine scheduling problems.
Annals of Discrete Mathematics1, 343–362 (1977)

[372] Letchford, A.: Allocation of school bus contracts usinginteger programming. Journal of the
Operational Research Society47, 369–372 (1996)

[373] Leung, J., Magnanti, T.L.: Valid inequalities and facets of the capacitated plant location
problem. Mathematical Programming44, 271–291 (1989)

[374] Leyffer, S.: Deterministic Methods for Mixed Integer Nonlinear Programming. Phd thesis,
Department of Mathematics and Computer Science, University of Dundee, Dundee, Scot-
land (1993)

[375] Li, Z., Milenkovic, V.: Compaction and Separation Algorithms for Non-convex Polygons
and their Applications. European J. Operational Research84, 539–561 (1995)

[376] Liberti, L., Maculan, N. (eds.): Global Optimization: From Theory to Implementation,Non-
convex Optimization and Its Applications, vol. 84. Springer (2006). 223–232

[377] Lin, X., Floudas, C.A.: Design, Synthesis and Schedulingof Multipurpose Batch Plants
via an Effective Continuous-Time Formulation. Computers and Chemical Engineering25,
665–674 (2001)

[378] Lin, X., Floudas, C.A., Kallrath, J.: Global Solution Approaches for Nonconvex MINLP
Problems in Product Portfolio Optimization. Journal of GlobalOptimization32, 417–431
(2005)

[379] Lin, X., Floudas, C.A., Modi, S., Juhasz, N.M.: Continuous-Time Optimization Approach
for Medium-Range Production Scheduling of a Multiproduct Batch Plant. Industrial and
Engineering Chemistry Research41, 3884–3906 (2002)

[380] Lin, X., Janak, S.L., Floudas, C.A.: A New Robust Optimization Approach for Scheduling
under Uncertainty - I. Bounded Uncertainty. Computers and Chemical Engineering28,
1069–1085 (2004)

[381] Linderoth, J., Savelsbergh, M.W.: A Computational Studyof Search Strategies for Mixed
Integer Programming. INFORMS J. Comput.11(2), 173–187 (1999)

[382] Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.:An algorithm for the traveling sales-
man problem. Operations Research11, 972–989 (1963)

[383] Litvinchev, I.: Decomposition-aggregation Method forConvex Programming Problems.
Optimization22(1), 47–56 (1991)

[384] Litvinchev, I., Mata, M., Rangel, S., Saucedo, J.: Lagrangian heuristic for a class of the
generalized assignment problems. Computers and Mathematics with Applications60(4),
1115–1123 (2010)

[385] Litvinchev, I., Rangel, S.: Localization of the Optimal Solution and a posteriori Bounds for
Aggregation. Computers and Operations Research26(10-11), 967–988 (1999)

[386] Litvinchev, I., Romanova, T., Corrales-Diaz, R., Esquerra-Arguelles, A., Martinez-Noa, A.:
Lagrangian Approach to Modeling Placement Conditions in Optimized Packing Problems.
Mobile Networks and Applications (2020)

[387] Litvinchev, I., V., T.: Aggregation in Large-Scale Optimization. Applied Optimization83
(2003)

[388] Lübbecke, M.E., Desrosiers, J.: Selected Topics in Column Generation. Oper. Res.53(6),
1007–1023 (2005)

[389] Lundell, A., Westerlund, T.: Solving Global Optimization Problems using Reformulations
and Signomial Transformations. Computers and Chemical Engineering 116, 122–134
(2018)

[390] Lustig, I.J., Marsten, R.E., Shanno, D.F.: ComputationalExperience with a Primal-dual
Interior Point Method for Linear Programming. Linear AlgebraApplications152, 191–222
(1991)



References 575

[391] Lustig, I.J., Marsten, R.E., Shanno, D.F.: On ImplementingMehrotra’s Predictor-Corrector
Interior-Point Method for Linear Programming. SIAM Journal ofOptimisation2, 435–449
(1992)

[392] Mahadevan, D.A.: Optimization in Computer-Aided Pattern Packing. Ph.d. thesis, North
Carolina State University (1984)

[393] Main, R.A.: Large Recursion Models: Practical Aspects ofRecursion Techniques. In:
T. Ciriani, R.C. Leachman (eds.) Optimization in Industry: Mathematical Modeling Tech-
niques in Practice, pp. 241–249. John Wiley and Sons, Chichester (1993)

[394] Makhorin, A.: GNU Linear Programming Kit - Reference Manual (2009). Version 4.37,
2009, http://www.gnu.org/software/glpk

[395] Maniezzo, V., Sẗutzle, T., Voß, S. (eds.): Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming. Springer, Heidelberg (2009)

[396] Margot, F.: Symmetry in Integer Linear Programming. In: M.Jünger, T.M. Liebling,
D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi, L.A. Wolsey (eds.)
50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art,
chap. 17, pp. 647–686. Springer, Heidelberg (2010)

[397] Maros, I., Mitra, G.: Finding better starting bases for the simplex method. In: P. Klein-
schmidt (ed.) Operations Research Proceedings 1995. SpringerVerlag, Berlin (1996)

[398] Martello, S., Toth, P.: Knapsack Problems: Algorithms andComputer Implementations.
John Wiley and Sons, Chichester (1990)

[399] Martin, R.K.: Large Scale Linear and Integer Optimization – A Unified Approach. Kluwer,
Dortrecht, The Netherlands (1999)

[400] McCormick, G.P.: Computation of Global Solutions to Factorable Nonconvex Programs:
Part I - Convex Underestimations Problems. Mathematical Programming 10, 147–175
(1976)

[401] McKinnon, K.I.M., Williams, H.P.: Constructing IntegerProgramming Models by the Pred-
icate Calculus. Annals of Operations Research21, 227–246 (1989)

[402] McMullen, P.: The Maximum Number of Faces of Convex Polytopes. Mathematika17,
179–184 (1970)

[403] Meeraus, A.: An Algebraic Approach to Modeling. Journalof Economic Development and
Control5(1), 81–108 (1983)

[404] Mehrotra, S.: On the Implementation of a Primal-dual Interior Point Method. SIAM Journal
on Optimization2(4), 575–601 (1992)

[405] Mei-Ko, K.: Graphic programming using odd or even points. Chinese Mathematics1, 273–
277 (1962)

[406] Meyer, M.: Applying Linear Programming to the Design of Ultimate Pit Limits. Manage-
ment Science16, 121–135 (1969)

[407] Meyn, S.P.: Stability, performance evaluation, and optimization. In: Handbook of Markov
Decision Processes,Internat. Ser. Oper. Res. Management Sci., vol. 40, pp. 305–346.
Kluwer Acad. Publ., Boston, MA (2002)

[408] Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)
[409] Miliotis, P.A.: Data Envelopment Analysis Applied to Electricity Distribution Districts.

Journal of the Operational Research Society43, 549–555 (1992)
[410] Miller, C.E.: The Simplex Method for Local Separable Programming. In: R.L. Graves, P.L.

Wolfe (eds.) Recent Advances in Mathematical Programming, pp. 311–317. McGraw-Hill,
London (1963)

[411] Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer Programming Formulation of Traveling
Salesman Problems. ACM7, 326–329 (1960)

[412] Mingozzi, A., Roberti, R., Toth, P.: An exact algorithm for the multitrip vehicle routing
problem. INFORMS J. Comput.25(2), 193–207 (2013)

[413] Mirrlees, J.A.: The theory of moral hazard and unobservable behaviour: Part i. Review of
Economic Studies66, 3–21 (1999)

[414] Misener, R., Floudas, C.: GloMIQO: Global Mixed-integer Quadratic Optimizer. Journal of
Global Optimization pp. 1–48 (2012). URL http://dx.doi.org/10.1007/s10898-012-9874-7.
10.1007/s10898-012-9874-7



576 References

[415] Misener, R., Floudas, C.: ANTIGONE: Algorithms for coNTinuous / Integer Global Opti-
mization of Nonlinear Equations. Journal of Global Optimization 59, 503–526 (2014)

[416] Misener, R., Floudas, C.A.: Advances for the pooling problem: Modeling, global optimiza-
tion, and computational studies survey. Applied and Computational Mathematics8, 3–22
(2009)

[417] Misener, R., Floudas, C.A.: Piecewise-Linear Approximations of Multidimensional Func-
tions. Journal of Optimization Theory and Applications145, 120–147 (2010)

[418] Mitchell, G.: The Practice of Operational Research. John Wiley and Sons, Chichester (1993)
[419] Mitra, G., Darby-Dowman, K., Lucas, C., Smith, J.W.: Maritime Scheduling using Discrete

Optimization and Artificial Intelligence Techniques. In: A. Sciomachen (ed.) Optimization
in Industry 3: Mathematical Programming Techniques in Practice, pp. 1–17. John Wiley and
Sons, Chichester (1995)

[420] Mitra, G., Poojari, C., Sen, S.: Strategic and Tactical Planning Models for Supply Chain:
an Application of Stochastic Mixed Integer Programming. In: I.Aardal, G.L. Nemhauser,
R. Weismantel (eds.) Handbook of Discrete Optimization. Elsevier, North-Holland (2004)

[421] Mulvey, J.M.: Testing of a Large-Scale Network Optimization Program. Mathematical Pro-
gramming15, 291–315 (1978)

[422] Mulvey, J.M., Beck, M.P.: Solving Capacitated Clustering Problems. European Journal of
Operational Research18, 339–348 (1984)

[423] Munguia, L.M., Oxberry, G., Rajan, D., Shinano, Y.: Parallel pips-sbb: Multi-level paral-
lelism for stochastic mixed-integer programs. Computational Optimization and Applica-
tions (2019). Epub ahead of print

[424] Muñoz, J., Gutierrez, G., Sanchis, A.: Evolutionary techniquesin a constraint satisfaction
problem: Puzzle Eternity II. In: Proceedings 2009 IEEE Congress on Evolutionary Compu-
tation, pp. 2985–2991 (2009)

[425] Murtagh, B.A., Saunders, M.A.: Large-scale Linearly Constrained Optimization. Mathe-
matical Programming14, 41–72 (1978)

[426] Murtagh, B.A., Saunders, M.A.: A Projected LagrangianAlgorithm and its Implementa-
tion for Sparse Nonlinear Constraints. Mathematical ProgrammingStudy (Algorithm for
Constrained Minimization of Smooth Nonlinear Function)16, 84–117 (1982)

[427] Mutapcic, A., Boyd, S.: Cutting-set Methods for Robust Optimization with Pessimizing
Oracles. Optimization and Methods & Software24, 381–406 (2009)

[428] Muts, P., Nowak, I., Hendrix, E.M.T.: The Decomposition-based Outer Approximation Al-
gorithm for Convex Mixed-integer Nonlinear Programming. Journal of Global Optimization
77(1), 75–96 (2020)

[429] Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comp. J.7, 308–313
(1965)

[430] Nemhauser, G.L.: The Age of Optimization: Solving Large-Scale Real World-Problems.
Operations Research42, 5–13 (1994)

[431] Nemhauser, G.L., Wolsey, L.A.: Integer and CombinatorialOptimization. John Wiley and
Sons, New York (1988)

[432] Neumann, K., Morlock, M.: Operations Research. Carl Hanser, München, Wien (1993)
[433] Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Program-

ming. Birkḧauser (2005)
[434] Nowak, I., Muts, P., Hendrix, E.M.T.: Multi-Tree Decomposition Methods for Large-Scale

Mixed Integer Nonlinear Optimization. In: J.M. Velásquez-Berḿudez, M. Khakifirooz,
M. Fathi (eds.) Large Scale Optimization in Supply Chains and Smart Manufacturing: The-
ory and Applications, pp. 27–58. Springer International Publishing, Cham (2019)

[435] Oliveira, J.F., Ferreira, J.S.: Algorithms for Nesting Problems. In: R. Vidal (ed.) Applied
Simulated Annealing,Lect. Notes Econ. Math. Syst., vol. 396, pp. 255–274. Springer, Hei-
delberg, Germany (1993)

[436] Orçun, S., Altinel, I.K., Hortaçsu, O.: Scheduling of Batch Processes with Operational Un-
certainties. Computers and Chemical Engineering20, S1215–S1220 (1996)

[437] Orchard-Hays, W.: Advanced Linear Programming ComputingTechniques. McGraw-Hill,
New York (1969)



References 577

[438] Orden, A.: LP from the ’40s to the ’90s. Interfaces23(5), 2–12 (1993)
[439] Osman, I.H., Christofides, N.: Capacitated Clustering Problems by Hybrid Simulated An-

nealing and Tabu Search. International Transactions in Operational Research1, 317–336
(1994)

[440] Ostrowski, J., Linderoth, J.T., Rossi, F., Smriglio, S.: Orbital branching. Math. Program.
126(1), 147–178 (2011)

[441] Padberg, M.: Linear Optimization and Extensions. Springer, Berlin - Heidelberg (1996)
[442] Padberg, M.W., Rinaldi, G.: Optimization of a 532-CityTraveling Salesman Problem by

Branch and Cut. Operations Research Letters6, 1–6 (1987)
[443] Pankratov, A., Romanova, T., Litvinchev, I.: Packing Ellipses in an Optimized Convex Poly-

gon. Journal of Global Optimization75(2), 495–522 (2019)
[444] Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized convex poly-

gon. Journal of Global Optimization75(2), 495–522 (2019)
[445] Pankratov, A., Romanova, T., Litvinchev, I.: Packing ellipses in an optimized rectangular

container. Wireless Networks26(7), 4869–4879 (2020)
[446] Pankratov, A., Romanova, T., Litvinchev, I.: Packing oblique 3d objects. Mathematics8(7)

(2020)
[447] Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complex-

ity. Prentice Hall, Englewood Cliffs, NJ (1982)
[448] Pardalos, P.M., Pitsoulis, L.S., Mavridou, T.D., Resende, M.G.C.: Parallel Search for

Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu Search and
GRASP. In: Parallel Algorithms for Irregularly Structured Problems, Second International
Workshop, IRREGULAR ’95, Lyon, France, September 4-6, 1995, Proceedings, pp. 317–
331 (1995)

[449] Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J.: An Algorithm for a General Class of
Precedence and Resource Constrained Scheduling Problems. In: R. Slowinski, J. Weglarz
(eds.) Advances in Project Scheduling, pp. 1–26. Elsevier, Amsterdam, The Netherlands
(1989)

[450] Pidd, M.: Computer Simulation in Management Science, 3rdedn. John Wiley and Sons,
Chichester (1992)

[451] Pillo, G.D., Lucidi, S., Rinaldi, F.: An Approach to Constrained Global Optimization based
on Exact Penalty Functions. Journal of Global Optimization pp.251–260 (2012)

[452] Pochet, Y., Wolsey, L.A.: Production Planning by MixedInteger Programming. Springer,
New York (2006)

[453] Poljak, B.T.: A General Method of Solving Extremum Problems. Soviet Mathematics Dok-
lady8, 593–597, Translation of Doklady Akademii Nauk SSSR 174, 1967(1967)

[454] Polya, G.: Vom Lernen und L̈osen mathematischer Aufgaben. Einsicht und Entdeckung.
Lernen und Lehren. Birkḧauser Verlag, Basel (1979)

[455] Popper, K.R.: The Logic of Scientific Discovery, 10th edn. Hutchinson, London (1980)
[456] Potts, C.N., Wassenhove, L.N.V.: Integrating Scheduling with Batching and Lot-sizing: a

Review of Algorithms and Complexity. Journal of the Operational Research Society43,
395–406 (1992)

[457] Pŕekopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordrecht, The
Netherlands (1995)

[458] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes - The Art
of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK (1992)

[459] Pritsker, A.B., Watters, L.J., Wolfe, P.M.: Multiproject Scheduling with Limited Resources:
A Zero-One Programming Approach. Management Science16, 93–108 (1969)

[460] Rahimian, H., Mehrotra, S.: Distributionally robust optimization: A review (2019)
[461] Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear

optimization. In: Y. Hamadi, L. Sais (eds.) Handbook of Parallel Constraint Reasoning, pp.
283 – 336. Springer, Cham, Switzerland (2018)

[462] Ratschek, H., Rokne, J.: Experiments using Interval Analysis for Problem Solving a Circuit
Design Problem. Journal of Global Optimization3, 501–518 (1993)



578 References

[463] Ratschek, H., Rokne, J.: Interval Methods. In: R. Horst, P.M. Pardalos (eds.) Handbook of
Global Optimization, pp. 751–828. Kluwer Academic Publishers,Dordrecht, Niederlande
(1995)

[464] Ravindran, A., Phillips, D.T., Solberg, J.J.: Operations Research. Principles and Practice.
John Wiley & Sons, New York (1987)

[465] Rebennack, S., Kallrath, J.: Continuous Piecewise Linear Delta-Approximations for Bivari-
ate und Multivariate Functions. Journal of Optimization Theory and Applications167,
102–117 (2015)

[466] Rebennack, S., Kallrath, J.: Continuous Piecewise Linear Delta-Approximations for Uni-
variate Functions: Computing Minimal Breakpoint Systems. Journalof Optimization The-
ory and Applications167, 617–643 (2015)

[467] Rebennack, S., Kallrath, J., Pardalos, P.M.: Column Enumeration based Decomposition
Techniques for a Class of Non-convex MINLP Problems. Journal of Global Optimization
43, 277–297 (2009)

[468] Rebennack, S., Nahapetyan, A., Pardalos, P.M.: Bilinear Modeling Solution Approach for
Fixed Charged Network Flow Problems. Optimization Letters3, 347–355 (2009)

[469] Rebennack, S., Oswald, M., Theis, D.O., Seitz, H., Reinelt, G., Pardalos, P.M.: A Branch
and Cut Solver for the Maximum Stable Set Problem. Journal of Combinatorial Optimiza-
tion pp. 434–457 (2011)

[470] Rebennack, S., Reinelt, G., Pardalos, P.M.: A Tutorialon Branch&Cut Algorithms for the
Maximum Stable Set Problem. International Transactions in Operational Research pp. 161–
199 (2012)

[471] Reinfeld, N.V., Vogel, W.R.: Mathematical Programming.Prentice-Hall International, En-
glewood Cliffs, New Jersey (1958)

[472] Robinson, E.P., Gao, L.L., Muggenborg, S.D.: Designingan Integrated Distribution System
at DowBrands Inc. Interfaces23(3), 107–117 (1993)

[473] Robinson, S.M.: A Quadratically Convergent Algorithmfor General Nonlinear for Pro-
gramming Problems. Mathematical Programming3, 145–156 (1972)

[474] Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A.: Packing of Concave Polyhedra with
Continuous Rotations using Nonlinear Optimisation. EuropeanJournal of Operational Re-
search268, 37–53 (2018)

[475] Romanova, T., Litvinchev, I., Grebennik, I., Kovalenko, A., Urniaieva, I., Shekhovtsov, S.:
Packing Convex 3D Objects with Special Geometric and Balancing Conditions. In: P. Vas-
ant, I. Zelinka, G.W. Weber (eds.) Modeling an Optimization inSpace Engineering Ap-
plications,Intelligent Computing and Optimization. Advances in Intelligent Systems and
Computing, vol. 1072, pp. 273–281. Springer, Cham, Switzerland (2020)

[476] Romanova, T., Litvinchev, I., Pankratov, A.: Packing Ellipses in an Optimized Cylinder.
European Journal of Operational Research285, 429–443 (2020)

[477] Romanova, T., Pankratov, A., Litvinchev, I., Pankratova, Y., Urniaieva, I.: Optimized pack-
ing clusters of objects in a rectangular container. Mathematical Problems in Engineering
2019(2019)

[478] Romanova, T., Pankratov, A., Litvinchev, I., Plankovskyy, S., Tsegelnyk, Y., Shypul, O.:
Sparsest packing of two-dimensional objects. International Journal of Production Research
(2020)

[479] Romanova, T., Stetsyuk, P., Chugay, A., Shekhovtsov, S.:Parallel computing technologies
for solving optimization problems of geometric design. Cybernetics and Systems Analysis
55(6), 894–904 (2019)

[480] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Avramov, K., Chernobryvko, M.,
Yanchevskyi, I., Mozgova, I., Bennell, J.: Optimal layout of ellipses and its application for
additive manufacturing. International Journal of Production Research (2019)

[481] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Avramov, K., Chernobryvko, M.,
Yanchevskyi, I., Mozgova, I., Bennell, J.: Optimal Layout of Ellipses and its Application
for Additive Manufacturing. International Journal of Production Research (2019)



References 579

[482] Romanova, T., Stoyan, Y., Pankratov, A., Litvinchev, I., Plankovskyy, S., Tsegelnyk, Y.,
Shypul, O.: Sparsest balanced packing of irregular 3d objectsin a cylindrical container.
European Journal of Operational Research (2020)

[483] Romero, C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford
(1991)

[484] Rommelfanger, H.: Fuzzy Decision Support-Systeme - Entscheiden bei Unscḧarfe, 2nd edn.
Springer, Heidelberg (1993)

[485] Rosl̈of, J., Harjunkoski, I., Westerlund, T., Isaksson, J.: Solving a Large-scale Industrial
Scheduling Problem using MILP combined with a Heuristic Procedure. European Journal
of Operational Research138(1), 29–42 (2002)

[486] Ruszczýnski, A., Shapiro, A.: Stochastic Programming,Handbooks in Operations Research
and Management Science, vol. 10. Elsevier, North-Holland (2003)

[487] Ryan, D.M.: The Solution of Massive Generalized Set Partitioning Problems in Aircrew
Rostering. Journal of the Operational Research Society43, 459–468 (1992)

[488] Ryu, J., Lee, M., Kim, D., Kallrath, J., Sugihara, K., Kim, D.S.: VOROPACK-D: Real-time
disk packing algorithm using Voronoi diagram. Applied Mathematics and Computation
375, 125,076 (2020)

[489] Sahinidis, N.V.: Optimization under Uncertainty: State-of-the-art and Opportunities. Com-
puters and Chemical Engineering28, 971–983 (2004)

[490] Sahinidis, N.V.: Mixed-integer Nonlinear Programming 2018. Optimization and Engineer-
ing 20, 301 – 306 (2018)

[491] Salkin, H.M., Kluyver, C.A.D.: The Knapsack Problem: a Survey. Naval Research Logistics
Quarterly24, 127–144 (1975)

[492] Salveson, M.E.: The Assembly Line Balancing Problem. Journal of Industrial Engineering
6, 18–25 (1955)

[493] Sand, G., Engell, S., M̈arkert, A., Schultz, R., Schulz, C.: Approximation of an Ideal Online
Scheduler for a Multiproduct Batch Plant. Computers and Chemical Engineering24, 361–
367 (2000)

[494] Santos, M.O., Almada-Lobo, B.: Integrated Pulp and Paper Mill Planning and Scheduling.
Comput. Ind. Eng.63(1), 1–12 (2012)

[495] SAS Institute Inc.: SAS/OR 15.1 User’s Guide: Mathematical Programming Examples.
SAS Institute Inc., Cary, NC (2018)

[496] Savelsbergh, M.W.P.: Preprocessing and Probing Techniques for Mixed Integer Program-
ming Problems. ORSA Journal on Computing6, 445–454 (1994)

[497] Savelsbergh, M.W.P.: A Branch-and-Price Algorithm for the Generalized Assignment Prob-
lem. Operations Research6, 831–841 (1997)

[498] Savelsbergh, M.W.P.: Branch-and-Price: Integer Programming with Column Generation.
In: C.A. Floudas, P. Pardalos (eds.) Encyclopedia of Optimization, pp. 218–221. Kluwer
Academic Publishers, Dordrecht, Holland (2001)

[499] Savelsbergh, M.W.P., Sismondi, G.C., Nemhauser, G.L.: Functional Description of MINTO
and a Mixed INTeger Optimizer. Operations Research Letters8, 119–124 (1994)

[500] Scheithauer, G.: Introduction to Cutting and PackingOptimization - Problems, Modeling
Approaches, Solution Methods,International Series in Operations Research and Manage-
ment Science, vol. 263. Springer, Cham, Switzerland (2018)

[501] Schindler, S., Semmel, T.: Station Staffing at Pan American World Airways. Interfaces
23(3), 91–94 (1993)

[502] Schniederjans, M.J.: Goal Programming: Methodology and Applications. Kluwer Aca-
demic Publishers, Boston, MA (1995)

[503] Schrage, L.: LindoSystems: LindoAPI (2004)
[504] Schrage, L.: Optimization Modeling with LINGO. LINDO Systems, Inc., Chicago, IL

(2006)
[505] Schrijver, A.: Combinatorial optimization: Polyhedraand efficiency. Journal of Computer

and System Sciences - JCSSB (2003)
[506] Schultz, R.: On Structure and Stability in stochastic Programs with Random Technology

Matrix and Complete Integer Recourse. Mathematical Programming70, 73–89 (1995)



580 References

[507] Schultz, R.: Stochastic Programming with Integer Variables. Mathematical Programming
Ser. B97, 285–309 (2003)

[508] Schweiger, C.A., Rojnuckarin, A., Floudas, C.A.: MINOPT: A Software Package for
Mixed-Integer Nonlinear Optimization. Dept. of Chemical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 (1996)

[509] Sen, S.: Algorithms for Stochastic Mixed-Integer Programming Models. In: I. Aardal,
G.L. Nemhauser, R. Weismantel (eds.) Handbook of Discrete Optimization. Elsevier, North-
Holland (2004)

[510] Sen, S., Higle, J.L.: An Introductory Tutorial on Stochastic Linear Programming Models.
Interfaces29(2), 33–61 (1999)

[511] Sexton, T.R., Sleeper, S., Taggart(Jr), R.E.: Improving Pupil Transportation in North Car-
olina. Interfaces24(1), 87–103 (1994)

[512] Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Mod-
eling and Theory,MPS-SIAM Series on Optimization, vol. 9. Society for Industrial and
Applied Mathematics, Philadelphia, PA 19194-2688, USA (2009)

[513] Sharda, R.: Linear and Discrete Optimization and Modeling Software. Unicom in associa-
tion with Lionheart Publishing Inc, Atlanta, GA 30339 (1993)

[514] Shinano, Y.: The ubiquity generator framework: 7 yearsof progress in parallelizing branch-
and-bound. In: Operations Research Proceedings 2017, pp. 143 – 149 (2018)

[515] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S.,Koch, T.: ParaSCIP: A Parallel Ex-
tension of SCIP. In: Competence in High Performance Computing 2010 - Proceedings
of an International Conference on Competence in High Performance Computing, Schloss
Schwetzingen, Germany, June 2010., pp. 135–148 (2010)

[516] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S.,Koch, T., Winkler, M.: Solving Open
MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores. In: 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 770–779 (2016)

[517] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S.,Koch, T., Winkler, M.: Solving Previ-
ously Unsolved MIP Instances with ParaSCIP on Supercomputers byusing up to 80,000
Cores. Tech. Rep. 20-16, ZIB, Takustr. 7, 14195 Berlin (2020)

[518] Shinano, Y., Achterberg, T., Fujie, T.: A Dynamic Load Balancing Mechanism for New
ParaLEX. In: 2008 14th IEEE International Conference on Parallel and Distributed Systems,
pp. 455–462 (2008)

[519] Shinano, Y., Berthold, T., Heinz, S.: A First Implementation of ParaXpress: Combining
Internal and External Parallelization to solve MIPs on Supercomputers. In: International
Congress on Mathematical Software, pp. 308–316. Springer (2016)

[520] Shinano, Y., Berthold, T., Heinz, S.: ParaXpress: An Experimental Extension of the FICO
Xpress-Optimizer to Solve Hard MIPs on Supercomputers. Optimization Methods & Soft-
ware33(3), 530 – 539 (2018)

[521] Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness ofParallelizing the ILOG-CPLEX Mixed
Integer Optimizer in the PUBB2 Framework. In: K. H., L. Bösz̈orményi, H. Hellwagner
(eds.) Euro-Par 2003 Parallel Processing. Euro-Par 2003,Lecture Notes in Computer Sci-
ence, vol. 2790, pp. 770–779 (2003)

[522] Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP - A Shared Memory Paral-
lelization of SCIP. INFORMS Journal on Computing30(1), 11 – 30 (2018)

[523] Shinano, Y., Rehfeldt, D., Gally, T.: An Easy Way to Build Parallel State-of-the-art Com-
binatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree
Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries. In:
Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and Optimiza-
tion, pp. 530 – 541 (2019)

[524] de Silva, A., Abramson, D.: A Parallel Interior Point Method and Its Application to Facility
Location Problems. Computational Optimization and Applications9, 249–273 (1998)

[525] Skj̈al, A., Westerlund, T.: New Methods for Calculatingα BB-type Underestimators. Jour-
nal of Global Optimization58(3), 411–427 (2014)



References 581

[526] Skj̈al, A., Westerlund, T., Misener, R., Floudas, C.A.: A Generalization of the Classical
αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms. J. Optim.
Theory Appl.154(2), 462–490 (2012)

[527] Smith, P., Mayston, D.: Measuring Efficiency in the PublicSector. OMEGA15, 181–189
(1987)

[528] Sousa, J.P., Wolsey, L.A.: A Time Indexed Formulation of Non-Preemptive Single Machine
Scheduling Problems. Mathematical Programming54, 353–367 (1992)

[529] Spelluci, P.: Numerische Verfahren der nichtlinearen Optimierung. Birkḧauser, Basel (1993)
[530] Spencer(III), T., Brigandi, A.J., Dargon, D.R., Sheehan, M.J.: AT&Ts Telemarketing Site

Selection System Offers customer Support. Interfaces20(1), 83–96 (1990)
[531] Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential Application of Simplex Designs in

Optimisation and Evolutionary Operation. Technometrics4, 441–461 (1962)
[532] Stigler, G.J.: The Cost of Subsistence. Journal of Farm Economics27, 303–314 (1945)
[533] Stoer, J.: Foundations of Recursive Quadratic Programming Methods for Solving Nonlinear

Programs. In: K. Schittkowski (ed.) Computational MathematicalProgramming, no. 15 in
NATO ASI Series. Springer, Heidelberg, Germany (1985)

[534] Stoyan, Y.: Mathematical Methods for Geometric Design. In: Advances in CAD/CAM,
Proceedings of PROLAMAT82 (Leningrad, USSR, May 1982), pp.67–86. North-Holland,
Amsterdam (1983)

[535] Stoyan, Y., Gil, M., Terno, J., Romanova, T., Schithauer, G.: Construction of a Phi-function
for Two Convex Polytopes. Applicationes Mathematicae2, 199–218 (2002)

[536] Stoyan, Y., Gil, N.I., Scheithauer, G., Pankratov, A., Magdalina, I.: Packing of Convex Poly-
topes into a Parallelepiped. Optimization54, 215–235 (2005)

[537] Stoyan, Y., Grebennik, I., Romanova, T., Kovalenko, A.: Optimized Packings in Space Engi-
neering Applications: Part II. In: G. Fasano, J.D. Pintier (eds.) Modeling and Optimization
in Space Engineering,Springer Optimization and its Applications, vol. 144, pp. 439–457.
Springer, Cham, Switzerland (2019)

[538] Stoyan, Y., Pankratov, A., Romanova, T.: Cutting and Packing Problems for Irregular Ob-
jects with Continuous Rotations: Mathematical Modelling andNon-linear Optimization.
Journal of the Operational Research Society67, 786–800 (2016)

[539] Stoyan, Y., Pankratov, A., Romanova, T.: Quasi-phi-functions and Optimal Packing of El-
lipses. Journal of Global Optimization65, 283–307 (2016)

[540] Stoyan, Y., Pankratov, A., Romanova, T.: Placement Problems for Irregular Objects: Math-
ematical Modeling, Optimization and Applications. In: S. Butenko, P. M. Pardalos, and
V. Shylo (Eds.), pp. 521–559. Optimization Methods and Applications. Springer Interna-
tional Publishing, Cham (2017)

[541] Stoyan, Y., Pankratov, A., Romanova, T., Fasano, G., Pinter, J.D., Stoian, Y.E., Chugay,
A.: Optimized Packings in Space Engineering Applications: Part I. In: G. Fasano, J.D.
Pintier (eds.) Modeling and Optimization in Space Engineering, Springer Optimization and
its Applications, vol. 144, pp. 395–437. Springer, Cham, Switzerland (2019)

[542] Stoyan, Y., Romanova, T.: Mathematical Models of Placement Optimisation: Two- and
three-dimensional problems and applications. In: G. Fasano, J.D.Pinter (eds.) Modeling
and Optimization in Space Engineering,Lect. Notes Econ. Math. Syst., vol. 73, pp. 363–
388. Springer, New York (2013)

[543] Stoyan, Y., Romanova, T., Pankratov, A., Chugay, A.: Optimized Object Packings using
quasi-phi-functions. In: G. Fasano, and J. D. Pintier (Eds.), pp.265–293. Optimized Pack-
ings with Applications. Springer International Publishing,Cham (2015)

[544] Stoyan, Y., Romanova, T., Pankratov, A., Kovalenko, A., Stetsyuk, P.: Modeling and Opti-
mization of Balance Layout Problems. In: G. Fasano, J.D. Pinter (eds.) Space Engineering.
Modeling and Optimization with Case Studies,Optimization and its Applications, vol. 114,
pp. 369–400. Springer, New York (2016)

[545] Stoyan, Y., Romanova, T., Scheithauer, G., Krivulya, A.: Covering a polygonal region by
rectangles. Computational Optimization and Applications48(3), 675–695 (2011)

[546] Stoyan, Y., Scheithauer, G., Gil, N., Romanova, T.:Φ-functions for Complex 2D-objects.
4OR: Quarterly J. Belgian, French and Italian Operations Research Soc2, 69–84 (2004)



582 References

[547] Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., Romanova, T.: Phi-functions for Primary
2D-objects. Studia Informatica Universalis2, 1–32 (2001)

[548] Stoyan, Y., Yaskov, G., Romanova, T., Litvinchev, I., Yakovlev, S., Velarde Cantu, J.M.:
Optimized packing multidimensional hyperspheres: A unified approach. Mathematical Bio-
sciences and Engineering pp. 6601–6630 (2020)

[549] Subramanian, R., Scheff(Jr.), R.P., Quinlan, J.D., Wiper, D.S., Marsten, R.E.: Coldstart:
Fleet Assignment at Delta Air Lines. Interfaces24(1), 104–120 (1994)

[550] Suhl, L., Mellouli, T.: Optimierungssysteme: Modelle, Verfahren, Software, Anwendungen.
Springer-Verlag, Berlin, Heidelberg (2007)

[551] Talbot, F.B., Patterson, J.H.: An Efficient Integer Programming Algorithm with Network
Cuts for Solving Resource-Constrained Scheduling Problems. Management Science24,
1163–1174 (1978)

[552] Tavares, L.V.: A Review on the Contributions of Operational Research to Project Manage-
ment. In: Proceedings of the 14th European Conference on Operational Research. The
Hebrew University, Jerusalem, Israel (1995)

[553] Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming: Theory, Algorithms,Software, and Applica-
tions,Nonconvex Optimization And Its Applications, vol. 65. Kluwer Academic Publishers,
Dordrecht, The Netherlands (2002)

[554] Tawarmalani, M., Sahinidis, N.V.: The Pooling Problem. In: N.V. Sahinidis, M. Tawar-
malani (eds.) Convexification and Global Optimization in Continuous and Mixed-Integer
Nonlinear Programming., no. 65 in Nonconvex Optimization and Its Applications, pp. 253–
283. Springer, Boston, MA (2002)

[555] Tawarmalani, M., Sahinidis, N.V.: Global Optimization of Mixed Integer Nonlinear Pro-
grams: A Theoretical and Computational Study improve MIP Solutions. Mathematical Pro-
gramming99, 563–591 (2004)

[556] Thanassoulis, E., Dyson, R.G., Foster, M.J.: Relative Efficiency Assessments using Data
Envelopment Analysis: An Application to Data on Rates Departments. Journal of the Op-
erational Research Society38, 397–412 (1987)

[557] Thue, A.:Über die dichteste zusammenstellung von kongruenten kreisen in einer ebene.
Christiana Vid. Selsk. Skr. pp. 1–9 (1910)

[558] Timpe, C.: Solving Mixed Planning & Scheduling Problemswith Mixed Branch & Bound
and Constraint Programming. OR Spectrum24 (2002)

[559] Tomlin, J.A.: On Scaling Linear Programming Problems. Mathematical Programming4,
146–166 (1975)

[560] Tomlin, J.A., Welch, J.S.: A Pathological Case in the Reduction of Linear Programs. Oper-
ations Research Letters2, 53–57 (1983)

[561] Tomlin, J.A., Welch, J.S.: Formal Optimisation of some ReducedLinear Programming
Problems. Mathematical Programmng27, 232–240 (1983)

[562] Toregas, C., Swain, R., Revelle, C., Bergman, L.: The Location of Emergency Service Ve-
hicles. Operations Research19, 1363–1373 (1971)

[563] Toth, P., Vigo, D.: 2. branch-and-bound algorithms forthe capacitated vrp. In: P. Toth,
D. Vigo (eds.) The Vehicle Routing Problem, pp. 29–51. SIAM, Philadelphia, PA (2002)

[564] Toth, P., Vigo, D.: Models, Relaxations and Exact Approaches for the Capacitated Vehicle
Routing Problem. Discrete Applied Mathematics123(1-3), 487–512 (2002)

[565] Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM, Philadelphia, PA (2002)
[566] Toth, P., Vigo, D. (eds.): Vehicle Routing,MOS-SIAM Series on Optimization, vol. 18.

SIAM (2014)
[567] Trelles, O., Rodriguez, A.: Bioinformatics and parallel metaheuristics. In: E. Alba (ed.) Par-

allel Metaheuristics: A New Class of Algorithms, Wiley Series on Parallel and Distributed
Computing, chap. 21, pp. 517–549. Wiley (2005)

[568] Trespalacios, F., Grossmann, I.E.: Review of Mixed-Integer Nonlinear and Generalized Dis-
junctive Programming Methods. Chem. Ing. Tech.86, 991–1012 (2014)

[569] Vajda, S.: Mathematical Programming. Adison-Wesley, Reading, Massachusetts (1961)



References 583

[570] Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling languages for
stochastic programming. INFORMS Journal on Computing21(1), 107–122 (2009)

[571] Vanderbeck, F., Wolsey, L.A.: An Exact Algorithm for IPColumn Generation. Operations
Research Letters19, 151–160 (1996)

[572] Vanderbei, R.J.: Linear Programming - Foundations and Extensions. Kluwer, Dordrecht,
The Netherlands (1996)

[573] Vanderbei, R.J.: Linear Programming - Foundations and Extensions, 4. edn. Springer, New
York (2014)

[574] VanRoy, T.J., Wolsey, L.A.: Solving Mixed Integer Programs by Automatic Reformulation.
Operations Research35(1), 45–57 (1987)

[575] Vasquez-Marques, A.: American Airlines Arrival Slot Allocation System (ASAS). Inter-
faces21(1), 42–61 (1991)

[576] Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-Integer Models for Nonseparable
Piecewise-Linear Optimization: Unifying Framework and Extensions. Operations Research
53, 303–315 (2009)

[577] Vielma, J.P., Nemhauser, G.: Modeling Disjunctive Constraints with a Logarithmic Number
of Binary Variables and Constraints. Math. Programming Ser. A128, 49–72 (2011)

[578] Vishnoi, N.: Algorithms for Convex Optimization. Cambridge University Press, Cambridge,
UK (2021)

[579] Viswanathan, J., Grossmann, I.E.: A Combined Penalty Function and Outer-Approximation
Method for MINLP Optimization. Comp. Chem. Eng.14(7), 769–782 (1990)

[580] Wächter, A., Biegler, L.T.: On the Implementation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Program-
ming106, 25–57 (2006)

[581] Wallace, S.W.: Decision Making Under Uncertainty: Is Sensitivity Analysis of any Use?
Operations Research48, 20–25 (2000)

[582] Wenger, K.M.: Generic Cut Generation Methods for Routing Problems. Ph.D. thesis, Uni-
versity of Heidelberg, Institute of Computer Science, Im Neuenheimer Feld 368, D-69120
Heidelberg, Germany (2003). ISBN 3-8322-2545-5, Shaker Verlag, http://www.shaker.de

[583] Werner, J.: Numerische Mathematik. Vieweg, Wiesbaden, Deutschland (1992)
[584] Westerlund, J., Ḧastbacka, M., Forssell, S., Westerlund, T.: A Mixed-Time MILP Schedul-

ing Model. Industrial and Engineering Chemistry Research46, 2781–2796 (2007)
[585] Westerlund, J., Papageorgiou, L.G., Westerlund, T.: A MILP Model for N-dimensional Al-

location. Computers and Chemical Engineering31(12), 1702–1714 (2007)
[586] Westerlund, T., Eronen, V., M̈akel̈a, M.M.: On Solving Generalized Convex MINLP Prob-

lems using Supporting Hyperplane Techniques. J. Global Optimization 71(4), 987–1011
(2018)

[587] Westerlund, T., Isaksson, J.: Some Efficient Formulations forthe Simultaneous Solution of
Trim-Loss and Scheduling Problems in the Paper-Converting Industry. Chemical Engineer-
ing Research and Design76, 677–684 (1998)

[588] Westerlund, T., Petterson, F.: An Extended Cutting Plane Method for Solving Convex
MINLP Problems. Computers chem. Engng Sup.19, S131–136 (1995)

[589] Westerlund, T., Petterson, F., Grossmann, I.E.: Optimization of Pump Configuration Prob-
lems as a MINLP problem. Computers and Chemical Engineering18(9), 845–858 (1994)

[590] Westerlund, T., P̈orn, R.: Solving Pseudo-Convex Mixed Integer Problems by Cutting Plane
Techniques. Optimization and Engineering3, 253–280 (2002)

[591] Westerlund, T., Skrifvars, H., Harjunkoski, I., Pörn, R.: An Extended Cutting Plane Method
for Solving a Class of Non-Convex MINLP Problems. Computers Chemical Engineering
22, 357–365 (1998)

[592] Williams, H.P.: Model Building in Mathematical Programming, 3rd edn. John Wiley and
Sons, Chichester (1993)

[593] Williams, H.P.: The Dual of a Logical Linear Programme. Research paper, Mathematical
Sciences, University of Southampton, Southhampton (1995)

[594] Williams, H.P., Redwood, A.C.: A Structured Linear Programming Model in the Food In-
dustry. Operational Research Quarterly25, 517–528 (1974)



584 Index

[595] Wilson, E.J.G., Willis, R.G.: Scheduling of Telephone Betting Operators - A Case Study.
Journal of the Operational Research Society33, 991–998 (1983)

[596] Wilson, J.M.: Alternative Formulations of a Flow-shop Scheduling Problem. Journal of the
Operational Research Society40, 395–399 (1989)

[597] Wilson, J.M.: Generating Cuts in Integer Programming withFamilies of Special Ordered
Sets. European Journal of Operational Research46, 101–108 (1990)

[598] Wolfe, P.: The Reduced-Gradient Method. unpublished manuscript, RAND Corporation
(1962)

[599] Wolsey, L.A.: Group-theoretic Results in Mixed IntegerProgramming. Operations Research
19, 1691–1697 (1971)

[600] Wolsey, L.A.: Uncapacitated Lot-Sizing Problems with Start-Up Costs. Operations Re-
search37, 741–747 (1989)

[601] Wolsey, L.A.: Valid Inequalities for 0-1 Knapsacks and MIPS with Generalised Upper
Bound Constraints. Discrete Applied Mathematics29, 251–261 (1990)

[602] Wright, M.M.: Speeding up the Hungarian Algorithm. Computers and Operations Research
17, 95–96 (1990)

[603] Wright, S.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA (1996)

[604] Xiao, X., Floudas, C.: Integrated gasoline blending andorder delivery operations: Part
i. short-term scheduling and global optimization for single andmulti-period operations.
AIChE Journal62(6), 2043–2070 (2016)

[605] Young, R.D.: A Simplified Primal (all-integer) Integer Programming Algorithm. Operations
Research16, 750–782 (1968)

[606] Young, R.E., Baumol, W.J.: Integer Programming and Pricing. Econometrica28, 520–550
(1960)

[607] Zenios, S.A. (ed.): Financial Optimization. Cambridge University Press, Cambridge, UK
(1993)

[608] Zhang, J., Kim, N., Lasdon, L.: An Improved Successive LinearProgramming Algorithm.
Management Science31, 1312–1331 (1985)

[609] Zimmermann, H.J.: Fuzzy Set Theory and its Applications, 2nd edn. Kluwer Academic
Publishers, Boston, MA (1987)

[610] Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems. Kluwer Academic
Publishers, Boston, MA (1987)

[611] Zimmermann, H.J.: An Application-Oriented View of Modeling Uncertainty. European
Journal of Operations Research122, 190–198 (2000)



Index

A

abbreviation list 27
absolute value function 41, 183
acceptance 9
acceptance of optimization 502
active set 399
activities 33, 263
addcut 122, 293, 300
additive algorithm 86
advent of PCs 515
affine scaling methods 112
after sales costs 532
AIMMS 515, 520
air-force-planning 29
algebraic modeling languageseeAML
algorithm 71, 535

B&P 88
Branch & Bound 121
Branch & Cut 84
cutting-plane 84
enumerative 84
exact 84
exponential time 71
homotopy 113
local and global search 86
polynomial time 71

all-different relation 182, 183
allocation problems 24

alternative solutions 103
AML 6, 19, 46, 514,514, 515, 535
AMPL 6, 51, 520
analytic center 115
And (logical) 169
ANTIGONE 411, 414, 417, 421, 427, 503, 515
approximation

outer 414
arc 137, 535
Archimedian approach 158
arithmetic tests 266, 267
assignment problem 131, 134, 138

generalized 208, 209, 441
automatic differentiation 515

B

BARON 27, 411, 417, 421, 427, 488, 503, 515,
539

basic feasible point 100
basic feasible solution 100
basis 74, 99, 263, 266, 373, 535

advanced 501
crash 89
identification procedures 119
re-inversion of the 104

basis matrix 404
Benders decomposition 409, 436

generalized 436

585



586 INDEX

nested 436
big-M method 106, 107
bilevel programming seeBLP
bilinear terms 412
bin packing problem 227, 228, 230
blending 24, 129, 143
BLP 445, 447, 535
boat renting problem 91, 95
boiling temperature 149
bound tightening 83, 266, 268, 269
bounds 71, 79, 82, 84, 105, 111, 119, 121, 122,

535
lower 44, 82, 97
treatment of 107
upper 44, 82, 97, 108

Branch & Bound 121, 535
Branch & Cut 84, 87, 536
Branch & Price 88
branching 122

control 281
direction 280, 281, 284
generalized upper bound 122
high level 265, 283, 289, 295
methodologies 280
on a variable 122, 281
on partial integer variables 285
on semi-continuous variables 285
on special ordered sets 195, 283
priorities 283
strategies 278, 280, 295

breadth-first strategy 122
brewery planning 246

C

capacitated clustering 229
capacitated plant location 228
catering/laundry problem 132
CBC 266
CCP (chance constrained programming)

377
central path 112, 115, 117, 118
central trajectory 112, 115
central trajectory methods 112
change-over 296, 301, 306–308, 311, 317–

321

chemical industry 143
Chinese postman problem 213

capacitated 213
client xxx, 32, 45, 62, 494, 495, 502, 507,

512, 513
clique 266, 273
closed set 17,556
cloud 512
cloud computing 512
clustering 229, 238
coastguard operations 161
coefficient reduction 271
COIN-OR 515
column enumeration 436
column generation 54, 88, 208, 429, 431, 436, 437
columns 33
communication 30

with the client 494, 496
with the management 495

compact set 17, 97, 258,556
complementarity gap 98, 115, 117, 118
complementary slackness 96, 391
complexity theory 64, 521, 523
computation of lower bounds 438, 451
computational geometry 417
conditions of the second order 400
CONOPT 402, 404
consistency between units 14
constrained optimization 399
constraint 514
constraint programming 335, 336, 338, 524
constraint qualification 400
constraints 536

active 75
availability 42, 44
balance 42, 278
bound implications on 177
capacity 42, 348
disaggregation of 266
hard 165
indicator 188, 189
logical 44
multi-period flow 43, 243
non-negativity 68
nonlinear 402



INDEX 587

quality 43
recipe 43
requirements satisfaction 43
satisfaction 165
soft 160
types of 41

convex 408, 536
underestimator 412

convex hull 85, 180, 265, 289
convexification 409, 414
convexity row 190
copper industry 243
COUENNE 411, 421
counting 50, 169
cover 274

lifted 274
minimal 274

CPLEX 88, 164, 259, 391, 393, 434, 449,
453, 454, 503–506, 539

crash 89, 106, 107
basis 276

cross-over 119
cuts 44, 87, 332, 350–352, 354, 355, 536
cutting-planes 84, 86, 536
cutting-set methods 376

D

Dantzig-Wolfe decomposition 438
data

accuracy of 61
collection of 61
comments on 61
origin of 61

data consistency checks 62
data envelopment analysisseeDEA
data structures 33
database systems 6, 19, 20, 55, 56, 59–

61
De Morgan’s laws 170
DEA 143,150, 151, 156, 157

applications of 156
general model 156

decentralization 29
decision variables 12, 33
DECOA 411

decomposition 29
Dantzig-Wolfe 438

degeneracy 101, 103
demand forecast 376
density 79, 313, 314, 316, 350
depot location problem 241
depth-first strategy 122
derivatives

analytical 397
numerical 398

deterministic equivalent 382
deterministic global optimization xxiii, xxix, 365,

417
deterministic methods 409
deterministic solutions 505
DICOPT 410
diet problems 29
differential equations 411
direct problem 146
disaggregation 269
discount 252
disjunction 169
disjunctive 179
disjunctive programming 181

generalized 181
distribution 25
distributionally robust optimization 376
distributive laws 170
distributive recursion 370–373, 395
domain 33, 37, 140, 407

of a variable 122, 268
relaxation 34

dual degeneracy 103
dual problem 92, 536

construction of the 94
interpretation of the 95

dual value 91, 536
duality 92

interpretation of 95
strong 97
weak 97

duality gap 96–98, 112, 115, 118, 119, 536
dyadic product 548
dynamic programming 29, 54, 84



588 INDEX

E

edge-following algorithm 101
elementary row operations 75, 103
engineering design problems 25
entities 36, 190, 282, 283, 285, 355, 501
enumeration

complete 453, 456
explicit 80, 84
implicit 84

environment 396,555
equivalence 169
equivalent MILP formulations 185
eta-factors 104
ETL tools 531
expected value 380, 383
external purchase 310–312

F

facility location problem 217, 229
capacitated 219
uncapacitated 217, 218

feasible region 86
feasible set 53, 84
field 549,549, 550, 551, 553
finance 30
financial engineering 251
financial optimization 251, 377
finite Differences 398

asymmetric 398
finite differences

symmetric 398
first-order conditions 400
flow conservation 42, 137, 278, 342, 345, 348,

351
food mix problem 129
fractional programming 366
fractional programming problem

linear 366
free variables 34, 373
function

objective 514
functions

linear 537
nonlinear 50, 253, 538

fuzzy set 375

G

Gödel’s incompleteness theorem 542
GAMS 6, 51, 406, 435, 447, 515, 520
GAMS Studio 515
GAMSIDE 515
GAP seegeneralized assignment prob-

lem
gas field development 389
generalized assignment problem 89, 208, 438, 441
generating system 551
glas industry 125
global optimization 515
global solution 53
globalization of economy 509
GLOMIQO 414, 417, 427
goal programming 143
goals 158
gradient 396–398, 403
graph 137, 536
group 549
Gurobi 88, 164, 503, 504

H

hedging strategies 251
Hessian 398, 400, 401

interval- 413, 414
Hessian matrix 396, 397
heuristic methods 30, 86, 409
homogeneous 78
homotopy

method 450
homotopy parameter 113

updating the 118
hot start 275
Hungarian algorithm 135
hybrid methods 107

I

ILP 79
implication 169
implicit enumeration 80, 121



INDEX 589

improving formulations 199
independent infeasible sets 259
index sets xxv, 33, 36, 37
index space shrinking 452
indicator constraints 188, 189
indices 33
inequalities

active 400
initial feasible basis 106
initial solution 106
initial values 396
integer programming 3
integrality gap 83, 123, 200, 317, 318, 321, 322,

350, 537
integrated system 61
interface 55
interior-point methods 29, 77–79, 92, 97, 107,

112–114, 116–120, 406, 498, 523
interval arithmetic 413, 414
interval methods 412
inverse problem 146
inverse triangle inequality 545
invertible 547
IPOPT 406, 504, 505

J

Jacobian 399, 400, 404
Jacobian matrix 115, 396, 397

K

Karush-Kuhn-Tucker conditions 390, 391
Kepler conjecture 423
KKT conditions 390, 391, 400, 401, 406
KKT point 400, 401
knapsack problem 205, 206–208

multiple 209
KNITRO 504
Kuhn-Tucker conditions 114, 390, 391, 537
Kuhn-Tucker-

conditions 400, 401
dot 400
Theory 399

L

Lagrange multipliers 29, 96, 390, 391, 399, 406,
438, 476

Lagrange relaxation 84, 209,438, 442, 445
Lagrangian function 114, 115, 399, 401, 404, 405
language

algebraic modeling 514
declarative 514

large step methods 118
lexicographic approach 158
lexicographic goal programming 158, 357, 429
limitations of LP 143
LINDO 411, 417, 421, 459, 503
LINDOGLOBAL 515
line search 404
linear combination 537,550
linear fractional programming problem

366
linear independence 537,551
linear interpolation 194, 195
linear programming 3, 67, 71, 99, 122

standard notation 67
linear span 550,550
linearization 115, 353, 410, 498, 538
linked ordered sets 197–199
list of abbreviations 27
list of symbols 27
local minimum 53
local solution 53
logarithmic barrier method 78, 79, 113
logical conditions 169
logical expressions 169
logical restrictions 176
logical tests 266
logistics 30
LP relaxation 79, 81
LR seeLagrange relaxation
LU decomposition 402, 404
LU factorization 104

M

manpower scheduling 136
Markov processes 376
master problem 453



590 INDEX

master processor 500, 501
master-slave architecture 500
matching problem 136
MatHeuristics 429, 460
matrix 537
matrix generator 17, 19, 373
maximin 45
maximum element method 276
MCOL xxiv
metaheuristic 537
metaheuristics 450
method

alternating variables 396
B&B 414
Branch & Price 88
derivate-based optimization 396
diagonal shift 413
interior-point 406
Quasi-Newton- 398, 399
Simplex- (Nelder&Mead) 396
variable metric 399

methods
deterministic 411
polynomial 523

MILP 36, 45, 49, 79
a first example 50
definition of 80
rounding 49
useful for 50

minimax 45
minimum

global 53, 396
local 396

minimum ratio rule 75, 108, 277
minimum utilization rates 312
minimum utilsation rates 304
MINLP 79, 406
MINOPT 411
MINOS 402
model 7

analogy 8
continuous-time 37, 525
discrete-time 37
mathematical 8
mechanical 7

purpose 8
modeler 32
modeling 7

algebraic 514
polylithic 515
the importance of 512
tools 513–515
visual 515

modeling language
AIMMS 515, 520
AMPL 51, 520
GAMS 6, 51, 406, 435, 447, 515, 520
MINOPT 411
Mosel 6, 51, 435, 504
mp-model 514, 515
MPL 515
SAS/OR 6, 51, 436

modeling system 17, 537
models 537

advantages of 8, 10
building blocks of 2
definition 2
nonlinear 251
significance of 7

monotony 148
Mosel 6, 51, 435, 504
mp-model 514, 515
MPI 500
MPL 515
MPS 515
MPS format 18, 19
MPSX 515
multi-criteria optimization 143, 158
multi-criteria problems 158
multi-period problems 243
multi-stage model 378
multi-stage problem solving 86

N

negation (logical) 169
Nelder-Mead method 396
network design problems 25
network flow problem 29, 137, 332, 339, 342, 343,

351, 537



INDEX 591

network flow problems 140, 370
Newton-Raphson algorithm 114–116, 498
node 83, 137, 538
non-anticipativity 382
non-determinism 499
nonlinear expressions 169
nonlinear programming 3, 56, 399
Not (logical) 169
notation 27
NP-complete 523, 524
NP-hard 64, 523, 524

O

objective cut-off 281
objective function 14, 514, 538
online optimization 497
open set 556
operational research 28, 61
Operations Research 8
optimal portfolio systems 251
optimal solution 53
optimization 538

advantages of 5
chance constrained 375
combinatorial 4
commercial potential 5
constrained 399
convexe 401
discrete 4
global 417, 419, 422, 427
history of 28
mathematical 1
mixed integer 4
models 514
multi-stage stochastic 375
online 497, 511
robust 375
stochastic 375, 436, 522, 539
unconstrained 395
under uncertainty 373
versus simulation 4

optimization problem 2
optimum

global 367, 369, 372, 373, 396, 536

local 369, 373, 396, 537
Or (logical) 169
orbital branching 280
outer approximation 409, 410, 435, 538

P

p-median problem 230
paper industry 125, 429
parallel computing 500
parametric programming 262
Pareto optimal 158
partial differentiable 557
partial integer variables 286
partitioning model 437
penalty function 404
perfect matching problem 136
performance measurement 150
phase I and phase II 106
phi-functions 465
phi-objects 466
pivot 538
pivoting 79, 101
planning horizon 243
PlanNow 526
polylithic modeling xxiv, xxix, 365

testing 505
polylithic solution approaches 515
polynomial 64
pooling problem 370, 373, 394
positive definite 397
post-optimal analysis 258, 538
postsolving 266
potential reduction methods 112
predictor-corrector step 117
preprocessing 30, 265
presolve 79, 265–267, 269, 277, 287, 538
pricing 74, 76, 77, 79, 103, 315, 538

devex 103
partial 103

pricing problem 438
primal-dual pair 94
priorities 122, 158, 160, 162, 278, 280, 282, 283, 285
problem

degenerate 101, 263, 277



592 INDEX

discrete optimization 52
generalized assignment 89, 441
infeasible 22, 90, 106, 267, 268, 536
irregular strip packing 453
master 453
mixed integer optimization 52
pooling 394, 417, 450
satisfiability 524
scheduling 497, 525
traveling salesman 238, 524
trimloss 125–127
unbounded 90
unbounded (LP,MILP) 539
unbounded (NLP,MINLP) 539
vehicle routing 213

problem size 80
procedure

damped 397
descent- 397
GRG 404
Inner-points- 401
line search 397
method of the steepest descent 397
Newton- 398
Quasi-Newton- 398, 403
reduced-gradient- 401
steepest descent method 397
Update- 399

procedures
sequential linear 404
SQP 401
undamped 397

process design problems 25
process industry 25
production planning 24, 30, 528
products of binary variables 189
programming

chance constrained 375
constraint 335
dynamic 84
fractional xxiii, 365
goal 157, 536
linear 537
mathematical 1
mixed integer linear 537

mixed integer nonlinear 537
nonlinear 79, 407
parametric 263, 538
quadratic xxiii, 365, 390, 391, 407
separable 195
stochastic xxiii, 375, 377, 522
successive linear xxiii, 365, 367, 539

proof of optimality 4, 77
pruning criteria 84
pseudo costs 280–283
purchase/storage problem 132
purchasing 25
PVM 499

R

ranging 258, 263, 538
rank 400,552
real-world problems 143

representation of 2
survey of 24
what can be learned from 289

recursion 367, 369, 370
example 367

reduced costs 74, 92, 538
reduced gradient 403
reduced gradient method 402
reduced-gradient algorithm 401
redundant equations 70
reference row 191
refinery planning 25
reformulation-linearization techniques 415
regularity conditions 400
relative costs 74
relative profits 73
relaxation 538

continuous 536
convex 412
Lagrange 438, 440, 442
LP 79, 81, 196
LP- 88
of domain 34, 84
of equations 279

Reliable Computing 417
report writer 60, 90, 538



INDEX 593

restriction 514
RINS heuristics 448
risk management 251
RLT-conditions 415
robust optimization 376
robust solutions 166, 522
rota problem 132
rounding 49, 50

S

SAS/OR 6, 51, 436
satisfiability 225
scalar product 68,546
scaled down models 38
scaling 35, 51, 106, 157, 196, 276, 277, 287,

310, 314, 315, 372, 501, 538
Curtis-Reid 276

scenario analysis 526
scenario reduction 382
Scheduling 524
scheduling 24, 25, 88, 161, 231, 238, 264, 376,

407, 417, 524
Scientific Computing 8, 28
SCIP 266, 503–505
search direction 397
selection

of entities 282
of nodes 122
of variables 278, 279, 282, 284

selection problems 25
self-dual solvers 78, 118
semi-continuous variables 35
sensitivity analysis 92, 375, 538

in MILP problems 263
sequencing problems 24
sequential linear programming 395
set

of active inequalities 399
set covering problem 219, 220, 242
set packing problem 222
set partitioning problem 221
shadow price 91, 105, 267
sharp formulation 180
short step methods 118
side-conditions

linear 402
sigma notation 38
Simplex algorithm 29, 63–65, 71–73, 77–

79, 101, 104, 105, 108, 119, 120, 131, 276, 277, 396,
401, 539

computational steps 101
dual 111
primal 111, 112
specialized 137
worst case 64

simulated annealing 86, 453
simulation 1, 2, 4, 146, 375
single objective 157
slack variables 69
SLP 367, 370, 371, 373, 395
small size business 26, 496
SNOPT 405
software

GAMS 402, 450
solution

alternative 263
ease of 63
graphical 14, 50
heuristic 536
number of 101
optimal 538
quality of the 317, 336, 338

solutions
robust LP- 522

solver 539
ANTIGONE 411, 414, 417, 421, 427, 503, 515
BARON 27, 411, 417, 421, 427, 488, 503, 515,

539
CBC 266
CONOPT 402, 404
COUENNE 411, 421
CPLEX 88, 164, 259, 391, 393, 434, 448, 449,

453, 454, 503–506, 539
DECOA 411
DICOPT 410
GLOMIQO 414, 417, 427
GloMIQO 415, 428
Gurobi 88, 164, 503, 504
IPOPT 406, 504, 505
KNITRO 504



594 INDEX

LINDO 411, 417, 421, 459, 503
LINDOGLOBAL 515
MINOS 402
MPSX 515
SCIP 266, 503–505
SNOPT 405
Xpress NonLinear 503
XPRESS-MP 501, 502
Xpress-Optimizer 88, 259, 369, 391, 393,

448, 449, 500, 503, 504, 515
SOS1 35,190, 191, 192, 255
SOS2 190,192, 193–195, 253
sparsity 64, 79, 104, 112, 116, 120

conserving 104
exploiting 313

special ordered sets 190, 199, 390, 539
branching on 283
families of 199
of type 1 184, 190, 391
of type 2 192

spreadsheet 55
Stackelberg game 446, 447,539
standard cuts 88
stepping-stone algorithm 131
stochastic programming xxiii, 377
stock market 251
strategic planning 25
strong branching 281
strong duality theorem 97
style convention 27
subgradient 440,440
subgradient method 439–441
subproblem 83
subsets 37, 40
subspace 550
summation 38
supersparsity 64
supply chain management 509, 524
surplus variables 69
symbol list 27
symmetry 88, 280, 281, 424, 427

destroying 286, 418

T

Tableau 515

tabu search 86
tapered discounts 252
targets 158–160, 536
Taylor series 397, 398, 405
telecommunication network 339
telephone betting 139
termination criterion 97, 118, 119, 122, 410
textile industry 423
tighter formulation 352
time-indexed formulation 323, 326
timetabling problems 25
transport 30
transportation problem 130, 138
transposed matrix 27, 93, 95,548
transposed vector 27
transputer 500
transshipment problem 133
traveling salesman problemseeTSP
triangle inequality 545
tricks of the trade xxviii, 86, 149, 183, 184, 189,

277–280, 285, 303, 390
trimloss problem 125, 207, 292, 293
truth table 172
TSP 210, 212, 213, 235, 238, 435, 524, 539
two-phase method 106, 107
two-stage model 378

U

unbounded 22
unbounded

NLP problem 258
unconstrained variables 34
underdetermined equations 70
unimodular 131, 133, 138, 539

V

valid inequalities 44, 87, 317, 350–352, 354, 355
validation 10, 299, 312, 494
vapor pressure 149
variables 514, 540

artificial 106
basic 72, 404, 535
binary 34
bound 401



INDEX 595

canonical 72–76
continuous 33
dependent 71, 401
discrete 35, 36
free 34, 94
independent 71, 401
integer 34
linear 402
logical 170
non-basic 73, 404, 538
non-zero 181
nonlinear 402
partial integer 35
recursed 369, 372, 373
semi-continuous 35
semi-integer 35
slack 539
superbasic- 402
surplus 539
unbound 401
unconstrained 34
unrestricted 34

vector 540,545
addition 545

vector minimization 158
vector optimization 158
vector space 94, 399,549
vehicle routing 9, 55, 88,213, 436
vehicle scheduling problem 136
vertex 137
vertex packing 228

W

warm start 120, 275
weak duality theorem 96
workstation clusters 499

X

Xpress Insight 515
Xpress NonLinear 503
Xpress Workbench 515
XPRESS-MP 501, 502
Xpress-Optimizer 88, 259, 369, 391, 393, 449, 500,

503, 504, 515

Y

yield management 30, 252, 256


